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1. Abstract 
 

1.1 Abstract 
 
 Personal work and research results in the period 1993-2012 are presented. This period 
follows the public presentation of my doctoral thesis in 1992.  
 Three main research areas have been approached: Applied Electromagnetics, Signal 
Processing and Solar Energy. The same domains constitute my education related interests. 
 Activity in the field of Applied Electromagnetics has been directed to (i) applications of 
Metamaterials with electromagnetic band-gap (ii) calculation of forces in magnetic fluids 
environment and (iii) education. 
 The history of Metamaterials is about a decade long. Our team  has recently approached 
this direction of research, in 2009. We have devised many fixed and switched planar 
structures with potential applications in filtering and signal integrity. We have published 3 
articles in international peer-reviewed journals, 18 papers in conference proceedings on four 
continents and 4 articles in other national and international journals.  
 Our team has calculated restoring forces in magnetic fluids bearings by using several 
models and approximations in view of validation. We have published 3 articles in peer-
reviewed journals, one paper in conference proceedings and other 2 papers in national 
journals. 
 I have taught disciplines related to Microwaves and Optical Electronics since these fields 
have been considered to be related at educational level by the responsible department in the 
University. I taught 5 disciplines related to the field, out of which 3 have been newly 
introduced. I wrote 3 textbooks and co authored 2 monographs. I coauthored 2 education 
related papers published in international peer-reviewed journals participated to two 
international conferences and coauthored other 5 papers with educational content published in 
international and national journals. I coauthored other 4 papers presented at international 
conferences with various topics from Microwaves. I have also approached applications of 
holograms in dentistry. 
 I participated to 7 national programs and grants related to Microwaves and Optical 
Electronics and conducted a direct contract with a local subsidiary of a multinational 
enterprise for course delivery. 
 In Signal Processing, work and results can be grouped in two categories (i) spectral 
analysis and (ii) sampling theory. 
 I have been member of a team that has tackled the problem of frequency estimation of real 
sinusoids embedded in additive, white, Gaussian noise in 2006. I have participated to devising 
two new procedures of spectral estimation that significantly improved existing ones and kept 
the same level of complexity of algorithms. Results have been published in 4 papers in 
national and international peer reviewed journals and 4 papers have been presented at 
international conferences. Other 2 papers have been published in the Scientific Bulletin of my 
institution.  
 The results obtained in Sampling theory are a continuation of my doctoral work. The 
selected signal model consisted of complex,  multidimensional, band-limited periodic and 
finite energy signals sampled along non-orthogonal axes. I proposed several sampling 
procedures at the minimum sampling density and the corresponding reconstruction methods. I 
authored 15 journal papers and participated to 4 international conferences. 
 In the field of Signal Processing, I participated to 3 national grants, conducted one as a 
director and conducted an European Tempus grant as contractor. I authored 2 educational 
books and taught 4 disciplines out of which 2 have been newly introduced. 
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 Solar Energy applications have been approached in 2006 following an administrative 
decision of the University. The field has a long history at the "Politehnica" University of 
Timişoara (from 1976) and notable achievements. However, work has stagnated after 1990. 
The activity has been resumed by organizing and equipping a network of laboratories and a 
Solar House, by restarting research, by disseminating information on the historical 
applications and publication record and by organizing a master level degree in Solar Energy. 
This has been possible by attracting funds through a Platform of Solar Energy at the 
University level, where I have acted as a scientific director. I have introduced a new discipline 
at the master level. I have coauthored 6 papers published in international peer-reviewed 
journals, 10 papers published in university and national journals and 3 papers presented at 
international conferences. I have also co-authored a review book and a chapter in a book 
issued by an international publisher. Besides the Platform, I conducted 3 contracts with 
partners from industry and I have been member of a team in a national grant. I participated to 
an intense activity of mass-media dissemination of solar application at the "Politehnica" 
University of Timişoara. 
  The second part of this work is structured in four sections. It starts with an account of 
relevant facts and achievements from my career. The section on Applied Electromagnetics 
contains a review of the field of metamaterials introduced in order to motivate the framework 
of my related interests and activity. A selection of relevant results in fixed, planar structured 
surfaces acting like Metamaterials with electromagnetic band-gaps is presented, followed by 
another subsection containing results on switched surfaces. The second part of the section on 
Applied Electromagnetics is dedicated to results obtained in calculation of restoring force in 
magnetic fluid bearings with poles on the stator and on the rotor (shaft). Plane-parallel and 
plane-meridian models for the magnetic field are used in order to compare the predictions in 
view of validation of results concerning the evaluation of the restoring force.  
 In the section concerning Signal Processing, two algorithms that significantly improve the 
frequency estimation of sinusoids embedded in white, Gaussian noise are presented. The 
algorithms are evaluated in the small sample case and asymptotically and results of computer 
experiments are reported in order to demonstrate the effectiveness of the proposed methods.  
 Results in Sampling Theory of multi-dimensional signals are then reviewed. A sampling 
theorem for band-limited, complex periodic signals is stated and demonstrated. Sampling is 
performed on non-orthogonal directions. Finite-energy, complex, band-limited signals with 
spectrums containing gaps have been consideredd in view of finding sampling procedures at 
the minimum Shannon-Landau sampling density. Examples in the cases of derivative 
sampling and delay-systems sampling are provided. The aliasing error is evaluated and 
aliasing error bounds are reported. 
 The second part of this reports ends with perspectives on future work in the newly 
equipped Laboratory of Microwaves, Antennas and Electromagnetic Compatibility. 
 A list of references and a complete list of my publications in the time period 1993-2012 are 
attached at the end.  
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1.2. Rezumat 
 
 Se prezintă activitatea şi rezultatele cercetării din perioada 1993-2012. Această perioadă 
urmează susţinerea publică a tezei de doctorat în 1992.  
 Au fost abordate trei domenii de cerecetare principale: Electromagnetism, Prelucrarea 
Semnalelor şi Energie Solară. Aceleaşi domenii constituie şi preocupările educaţionale ale 
autorului. 
 Activitatea în domeniul Electromagnetismului a fost direcţionată către: (i) aplicaţii ale 
metamaterialelor cu bandă interzisă electromagnetică; (ii) calculul forţei de sustentaţie în 
fluide magnetice şi (iii) educaţie. 
 Istoria metamaterialelor nu e mai lungă de un deceniu. Echipa noastră a abordat această 
direcţie de cerecetare în 2009. Am conceput mai multe structuri planare fixe şi comutate cu 
aplicaţii potenţiale în filtrare şi intergritatea semnalelor.Am publicat 3 articole în reviste 
internaţionale cu evaluare colegială, 18 lucrări la conferinţe internaţionale desfăşurate pe 
patru continente şi 4 articole în alte reviste. Echipa noastră a calculat forţa de readucere în 
lagărele cu fluid magnetic folosind diverse modele în vederea validării rezultatelor. Am 
publicat 3 articole în reviste cu evaluare colegială, am participat la o conferinţă internaţională 
şi am publicat alte 2 articole în periodice naţionale. 
 Am predat discipline legate de Microunde şi Electronică Optică deoarece aceste domenii 
au fost considerate înrudite la nivel educaţional de către conducerea departamentului de 
resort.  
 Am predat 5 discipline din domeniu, dintre care 3 au fost nou introduse. Am scris 3 
manuale şi am participat la scrierea a 2 monografii. Am mai publicat în colaborare două 
lucrări pe teme educaţionale în reviste internaţionale cu evaluare colegială , am participat la 
două conferinţe internaţionale şi am participat la publicarea a altor 5 lucrări cu conţinut 
educaţional în periodice. Am mai colaborat la alte 4 lucrări cu conţinut de Microunde 
prezentate la conferinţe internaţionale şi am lucrat la aplicarea tehnicilor holografice în 
Stomatologie. 
 Am participat la 7 programe şi granturi naţionale legate de Microunde şi Electronică 
Optică şi am condus un contract direct cu o filială a unei multinaţionale pentru furnizare de 
cursuri. 
 În domeniul Prelucrării Semnalelor, activitatea poate fi grupată în două categorii: (i) 
analiză spectrală şi (ii) teoria eşantionării. 
 Am făcut parte dintr-o echipă care a abordat problema estimării frecvenţei sinusoidelor 
acoperite de zgomot alb, gaussian în 2006. Am participat la concepţia a două noi proceduri de 
estimare spectrală care au îmbunătăţit semnificativ procedurile existente păstrând acelaşi nivel 
de complexitate a algoritmilor. Rezultatele au fost publicate în 4 lucrări în reviste cu evaluare 
colegială şi 4 lucrări au fost prezentate la conferinţe internaţionale. Alte două lucrări au fost 
publicate în Buletinul Ştiinţific al UPT. 
 Rezultatele obţinute în teoria eşantionării sunt o continuare a activităţii doctorale. Modelul 
ales a fost cel al semnalelor complexe, multidimensionale, de bandă limitată, periodice sau de 
energie finită, eşantionate paralel cu axe nu neapărat ortogonale. Am propus diverse proceduri 
de eşantionare la densitate minimă, precum şi metodele corespunzătoare de reconstrucţie. Am 
publicat 15 articole în periodice şi am participat la 4 conferinţe internaţionale.  
 În domeniul Prelucrării Semnalelor, am participat la 3 granturi naţionale şi am condus un 
astfel de grant ca director. Am fost contractor la un program Tempus. Am publicat două cărţi 
având conţinut educaţional şi am predat 4 discipline, dintre care două au fost nou introduse. 
 Aplicaţiile Energiei Solare au fost abordate în 2006 în urma unei decizii administrative la 
nivel de Universitate. Domeniul are o istorie lungă la Universitatea "Politehnica" din 
Timişoara (din 1976) şi realizări notabile. Din păcate, activitatea a stagnat după 1990. A fost 
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reluată prin organizarea  echiparea unei reţele de laboratoare şi a unei Case Solare, prin 
redemararea cercetării, prin diseminarea informaţiilor asupra aplicaţiilor puse la punct în 
trecut şi a publicaţiilor aferente şi prin organizarea unei direcţii de master în Energetică 
Solară. Acestea au fost posibile datorită atragerii de fonduri printr-o Platformă de Energie 
Solară la care am participat ca Director Ştiinţific. Am introdus o nouă disciplină la nivel de 
master. Am publicat în colaborare 6 lucrări în reviste internaţionale cu evaluare colegială, 10 
lucrări în periodice naţionale şi 3 lucrări la conferinţe internaţionale. Am colaborat la scrierea 
unei cărţi de sinteză a rezultatelor de cercetare şi la un capitol dintr-o carte publicată la o 
editură din străinătate. În afara Platformei, am condus 3 contracte directe şi am fost membru 
al echipei unui grant naţional. 
 
 Partea a doua acestei teze este structurată în patru secţiuni. Începe cu o dare de seamă 
asupra realizărilor şi rezultatelor din carieră. Secţiunea dedicată Electromagnetismului Aplicat 
conţine o sinteză a domeniului Metamaterialelor introdusă cu scopul de a motiva şi încadra 
preocupările mele din acest domeniu. Este prezentată o selecţie a rezultatelor personale 
relevante obţinute în legătură cu structurile planare fixe care se comportă ca Metamateriale cu 
bandă electromagnetică interzisă, urmată de o altă subsecţiune conţinând rezultate în legătură 
cu suprafeţele comutate. A doua parte a secţiunii consacrate Electromagnetismului este 
dedicată rezultatelor obţinute în calculul forţei de readucere în lagărele cu lichid magnetic cu 
poli pe stator sau rotor. Sunt folosite atât modele plan-paralele cât şi plan-meridiane pentru 
câmpul magnetic cu scopul de a compara predicţiile celor două în vederea validării 
rezultatelor.  
 În secţiunea dedicată Prelucraării Semnalelor sunt prezentaţi doi algoritmi care 
îmbunătăţesc semnificativ estimarea frecvenţei sinusoidelor acoperite de zgomot alb, 
gaussian. Algoritmii sunt evaluaţi în ipoteza unui număr mic de eşantioane, dar şi asimptotic. 
Rezultate ale experimentelor efectuate pe calculator demonstrează eficienţa metodelor 
propuse. 
 Este prezentată apoi o sinteză a rezultatelor obţinute în teoria eşantionării semnalelor 
multidimensionale. Se enunţă şi se demonstrează o teoremă de eşantionare a semnalelor 
complexe, periodice, de bandă limitată. Eşantionarea este realizată pe direcţii neortogonale. 
Au fost apoi considerate semnale complexe, de energie finită, de bandă limitată  ale căror 
spectre conţin lacune în vederea găsirii de proceduri de eşantionare la densitatea minimă 
Shannon-Landau. Sunt date exemple în cazul eşantionării semnalului şi derivatelor sale, 
precum şi a unor variante întârziate ale semnalului. Se prezintă o evaluare a erorii de aliere şi 
se propun margini pentru aceste erori. 
 A doua parte a tezei se încheie cu perspective ale dezvoltării viitoare în Laboratorul de 
Microunde, Antene şi Compatibilitate Electromagnetică, proaspăt echipat. 
 La sfârşit, sunt ataşate o listă a referinţelor biblografice şi o listă completă a publicaţiilor 
autorului din perioada 1993-2012. 
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Technical Presentation 
 

2.1. Overview of Activity and Results, 1993-2012 
 
 The title of my PhD thesis was Adaptive Sampling for Data Compression and I presented it 
publicly at the "Politehnica" University of Bucharest in 1992. Therefore the following overview of my 
scientific interests and work starts from 1993. 
 I have worked in three fields of research: Signal Processing, Applied Electromagnetics and Solar 
Energy. My teaching interests are also related to these fields and the list of publications reflects this 
situation. In the list the first topic is identified by an "S", the second one by an "M" and the third one 
by "E". 
 In Signal Processing I tackled two different topics: sampling theory and spectral analysis of real 
sinusoidal signals. Sampling theory has been also the subject of my PhD thesis and I continued the 
research in this field until 2006 when I began working in Spectral Analysis. I have published 21 papers 
related to sampling of signals and 10 papers in Spectral Analysis.  
 My scientific interest in Sampling Theory has been related to finding sampling expansions for 
multidimensional signals having finite support spectrums that contained gaps. A well-known result 
states that a minimum sampling density that ensures possibility of reconstruction for the signal is 
given by the reciprocal of the measure of the spectrum (Shannon-Landau). However sampling 
strategies do not exist in general. I considered both finite energy signals and band-limited periodic 
signals in my work and found the above-mentioned sampling strategies and expansions under various 
hypotheses on the supports of the spectra. The most significant results are reviewed in the section 
devoted to this subject. 
 The work in Spectral Analysis has targeted algorithms for recovery of frequency of sinusoids 
embedded in white, additive noise in the small sample case. The team I worked with proposed two 
novel algorithms that significantly reduced the mean square error of the estimate with respect to 
known procedures but still keeping complexity of the same order of magnitude. A first two-step 
solution relies on finding a rough estimate of the frequency in a first step, by using a known method, 
estimating then a multiple of the unknown frequency and resolving the induced aliasing through the 
information from the first step. A second method consists of an iterative procedure: a rough frequency 
estimate is found at the first iteration and the result is filtered at each iteration with a linear system 
whose frequency response depends on the first estimate. It has been shown experimentally that the 
mean square error of the estimate approached the Cramer-Rao bound after a few iterations. All 
algorithms have been analyzed theoretically in the small sample case and asymptotically. The results 
are reviewed in one of the next sections. 
 At the same time I participated to national research programs and grants as follows: 1. Research 
concerning time-frequency and time-scale representations of 1- and 2D signals with applications to 
devising new multi-resolution analysis algorithms (1995, 1996); 2. Construction of statistical 
mathematical morphology operators through hierarchic random processes with applications to digital 
processing of 1- and 2D signals (1996); 3. Time frequency representations for signal analysis and 
processing (1996). I have conducted as a director the national research grant New methods of non-
uniform sampling with applications to spectral analysis (2000-2002). I have also conducted as a 
contractor a Tempus program Restructuring post-university DSP course (1999-2001). Besides 
restructuring courses, the purpose of the program has been to re-equip laboratories with modern DSP 
instruments and to publish a series of courses written by the participants to the program. My 
contribution has been a book on applications of adaptive filtering to measurements (Adaptive Methods 
for Measurements Technique [01_06_S]).  
 I had also a long-run teaching activity in the field of Signal Processing. I have taught the following 
undergraduate and graduate courses: "Signals, Circuits and Systems", "Time-Frequency 
Representations" (in French), "Adaptive Measurements Techniques" and "Spectral Analysis". I wrote 
several series of lecture and applications notes. 
 The development of Signal Processing took inputs from a wide range of disciplines and 
consequently its concepts, methods and algorithms have a wide range of applications. Therefore the 
experience I have gained in this field has been very useful for the research in the other fields I have 
approached.  
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 The second subject for research has been Applied Electromagnetics. I approached this field for two 
reasons: by personal interest and by the shift in main teaching domain from Signal Processing to 
Microwave and Optical Electronics in 1997. My first published technical contributions tackled 
educational issues: wave propagation and power transfer on transmission lines. I have continued by 
devising a measurement setup for determining the constitutive parameters of various types of seeds in 
view of food processing by microwave heating. The first substantial subject of research that resulted in 
significant results concerned theoretical evaluation of restoring force in magnetic fluid bearings. This 
topic has been approached following a long-term cooperation of one of the authors with the research 
team on magnetic fluids, belonging to the Romanian Academy and the "Politehnica" University of 
Timişoara. Several theoretical models have been conceived and results have been compared in view of 
validation. This subject is covered in one of the next sections. The third considered field has been the 
recently introduced one concerning metamaterials. Scientific interest on metamaterials is about one 
decade long, so that the subject is dynamic. I consider this my main scientific field of activity. I have 
approached research in connection to metamaterials in 2009 and published over 20 papers since, in 
refereed journals and in proceedings of international conferences held on four continents (according to 
my publication list). These publications deal mainly with fixed and tunable filtering applications and 
with Electromagnetic Compatibility and Signal Integrity ones. In parallel with further research on 
metamaterials, a closely related direction occurred recently, namely an opportunity to approach again 
the field of magnetic fluids, only this time at a much higher frequency. Preliminary results of 
waveguide measurement of constitutive parameters of nano-structured magnetite particles embedded 
in a support material, by means of S parameters, showed promising results. 
 The disciplines related to Microwaves and Optical Electronics are considered related at Department 
of Measurement and Optical Electronics. The part of my research activity pertaining to Optics 
concerned mainly production of holograms. The holograms produced in our laboratory have been used 
in Dentistry applications [09_02_M]. Experience in optical devices triggered our interest in 
photovoltaic cells and consequently in Solar Energy. This field of research will be covered at a later 
point below. 
 Apart from journal articles and conference proceeding publications, I have co-authored two 
monographs treating subjects from high frequencies domain: Antennas and Propagation [02_02_M] 
and Aspects Concerning Monitoring of Perturbations in a Site [06_01_M]. 
 Education in Microwaves and Optical Electronics involved teaching several disciplines both at an 
undergraduate and graduate level: Microwaves, High Frequency Techniques, Optical Electronics, 
Electronic and Optoelectronic Devices, Optoelectronics and Microwaves Measurements and Antennas 
and Waves Propagation (in English). I have authored a book High Frequency Techniques [01_02_M] 
and the first part of a university course Optoelectronics and Microwaves Measurements [96_01_M]. 
The published part concerned microwave measurements and has been the first publication devoted 
entirely to this topic at the university. Besides publications, I have written several hundreds of pages of 
lecture notes for all the aforementioned disciplines, which are available from the web-site of the 
Faculty of Electronics and Telecommunications. 
 The research activity in the field of metamaterials has been realized in an informal way in 
cooperation with a small group from the Laboratory of Antennas and Electromagnetic Compatibility 
with the Politecnico di Torino, Italy. However, these contacts have not been restricted to research: we 
had teaching exchanges every year in the period 2003-2009 and the exchanges will be resumed this 
year under the framework of the Socrates / Erasmus program. From my part, I sustained 8-hour 
courses at the third year of Electronics Engineering each year in the above referred period and I have 
written 60 pages of lecture notes with the subject S parameters. The notes are available from the web-
site of the Italian institution. My colleague from Torino taught 8-hour courses with topics from the 
Applications of the Smith Chart and Constitutive Parameters to our students from the second year, 
undergraduate level. 
 I have participated as member of the team to several national research programs and grants: 
Research on magneto-optic electro-optic and electro-luminiscent effects with applications to sensor 
construction (1997), Research on magneto-optic, electro-optic, piezo-electric and optoelectronic 
sensors and their interface with computers (1998), Monitoring system of bone tissues and study of 
healing of fractures and bone-implant interface through vibration-related techniques (2001), Antenna 
calibration by means of the auto-reciprocity method (2000-2002), Modern techniques for biomedical 
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signal processing and hypermedia transmission (2006),Electromagnetic monitoring of the "Judeţean" 
Hospital, Timişoara (2004), Foresight Scenarios for the Romanian Economical Sectors with Inovetion 
Potential in the View of the Year 2020, "INOVFOR" (CEEX 2005, 2006) and Inter-laboratory tests for 
evaluation of measuring uncertainty in Electromagnetic Compatibility (PNCDI-INFRAS 2004-2006). 
 I have also participated as a coordinator of the team from the "Politehnica" University of Timişoara 
to the COST 289 action Spectrum and Power Efficient Broadband Communications (2004-2006). 
 Electronics industry developed in the last years in the region of Timişoara. Cooperation between 
industry and university is advisable for both sides. I have started a cooperation with Flextronics, a 
local producer of electronic boards and equipment by signing a contract on education provided for the 
employees. I sustained courses under this contract with topics from Optical Communications, 
Transmission lines, Microwaves devisces, systems and  measurements.  
 A constant concern has been procurement of modern microwave and optical equipment, since no 
modern research activity can be conceived without experimental facilities. The instruments that are 
used in these fields are notoriously costly. Due to favorable opportunties offered by the programs I 
participated in or coordinated, to be presented at a later point below, it has been possible to purchase 
equipment that allow a wide range of measurements and experiments for the Microwaves and 
Electromagnetic Compatibility Laboratory: a 24 GHz vector network analyzer, a high frequency 
programable signal generator, a high performance and two average performance spectrum analyzers. 
These acquisitions made the laboratory functional. For the Optical Electronics Laboratory, I 
contributed to the acquisition of an optical kit and of an optical comunications kit to be used in 
education and research. I have also contributed to the acquisition of a wide range of general purpose 
electronic instruments and tools and computers. 
 The third field of research I have contributed to is Solar Energy. Solar Energy has a long tradition 
at the "Politehnica" University of Timişoara since research started back in 1976. After some 
pioneering achievements in industrial and home applications, the work has stagnated after 1990. An 
administrative decision has been taken in 2006 to revigorate this research field in order to take 
advantage of the still existing experience. I have been personally involved in this initiative, so that I 
concentrated on several actions: i) document and spread worldwide information on the research results 
and practical implementations obtained by the university in this field in the last 35 years; ii) procure 
modern equipment for supporting research and education; iii) revigorate publication activity; iv) 
introduce Solar Energy in the education offer of the university by creating a new master level 
program; v) cooperate with local authorities and industry for finding common interests in view of 
finding financement opportunities; and vi) public and mass-media dissemination of information 
regarding Solar Energy expertize existing in the university. 
 Information on Solar Energy related activity at the university has been disseminated by means of 
publications in international peer-review journals. Several new measurement results on solar radiation 
and climatic data and feasibility studies for solar applications relying upon have been presented at 
international conferences and published in the proceedings (according to the list of publications). In 
order to document the past activity we have published a book (Tradition and Perspectives in Solar 
Energy at the Politehnica University of Timişoara [10_08_E]) and current and past research results 
have been reported in a chapter of an international book (Applications Oriented Research on Solar 
Collectors at the "Politehnica" University of Timişoara [10_06_E]). 
 The means for equipment procurement have been provided by a Platform for Solar Energy (2006-
2009), a grant won by competition where I have acted as a scientific director. Six new laboratories and 
a Solar House have been equiped with research instruments and tools. Following the activity of the 
Platform, the following research areas have been approached at the university: measurements and 
local models for solar radiation, energy and air conditioning for residences, simulation and 
measurements of photovoltaic cells, measurement and conception of materials for solar 
applications, system integration of solar energy applications, greenhouse effect applications, 
data acquisition, automation and control of solar applications and systems, solar collectors 
and concentrators, fuel cells, hydrogen production and storage and solar architecture. 
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 A new master level program has been created with the Department of Physics Foundations of 
Engineering under the same framework, where I teach a course in "Optical Electronics". I have 
elaborated the necessary teaching material. 
 The connection with local authorities led to several participations to meetings and cooperation, one 
of which has been formally finalised by a contract with the mayor office of the town of Jimbolia where 
I acted as director (Assessment of renewable energies potential of the Timiş Department – charge 
book, a PHARE CBC Ro-Hu 2006, contract). Another cooperation activity with local authorities has 
been personal participation through direct contract to the elaboration of a charge book for a Renewable 
Energies Industrial Parc at Covaci, department of Timiş. The beneficiary has been the Development 
Agency of the Timiş Department – ADETIM. 
  I have participated to several press conferences and at a television round table dedicated to solar 
energy, at national and international energy fairs with presentations aimed to disseminate the 
experience and current research interests existing at the "Politehnica" University of Timişoara: 
Energia viitorului (The Energy of Future) – 2007, 2008, 2009, 2010, Săptămâna calităţii Timişorene 
(Weed Dedicated to Quality in Timişoara) – 2008, 2009. I have written a study for the Commerce and 
Industry Chamber of Timişoara entitled Studiu privind sursele alternative de energie în regiunea 
transfrontalieră România - Ungaria, judeţele Timiş şi Csongrád (Study on alternative sources of 
energy in the frontier region Romania – Hungary, Departments of Timiş and Csongrád), 47 pages, 
2009. 
 I have beneficiated of several mobilities abroad. The first one has been a nine-month postdoctoral 
grant at the Institut National Polytechnique de Lorraine, Center de Recherche en Informatique, France, 
1993-94. In the framework of the Tempus program where I acted as a contractor, I beneficiated of 
short term (two-week) mobitities at the University of Granada, Spain, National Technical University 
of Athens, Greece and Fachhochschule Karlsruhe, Germany (1999-2000). I participated to a one-week 
course in Digital Radio and TV at Kathrein Werke in Rosenheim, Germany, 1999 and a Tempus 
mobility at ITAL TBS SpA, Trieste, Italy, for education in Medical Electronics (1997). 
 I sustained lectures of Electronics for four months with IUT Rennes, France, 2001 as PAST. And, 
as already mentioned, I sustained lectures with topics from Micowaves at the Politecnico di Torino, 
Italy for seven consecutive years (2003-2009) and this activity will be resumed next year in the 
framework of the Socrates / Erasmus program. 
 As a Scientific Secretary of the Faculty of Electronics and Telecommunications I have organized 
four editions of the International Symposium of Electronics and Telecommunications, 2001-2008. 
 In the next section, some of the relevant research results I have obtained in the course of my career 
are presented. Since I consider Applied Electromagnetics and Signal Processing as the research fields 
that best define my activity, the selected topics are taken from these fields. Nevertheless, publications 
in the field of Solar Energy are also relevant (four papers published in peer-reviewed journals abroad), 
despite the fact that I have approached this field of research only in 2006. Sample papers focusing on 
Solar Energy are attached. 
 The next two sections present results from Applied Electromagnetics, from low frequencies, which 
allows neglection of radiation to microwave frequencies, where focus is on radiation and wave 
propagation. Section 2.2 contains results for the field of Metamaterials. It is divided into three 
subsections. The first one is entirely dedicated to a survey of the results that are relevant to my work. 
The presence of the survey is motivated by the novelty of the field, about one decade old. 
Furthermore, it provides the framework of my results. The results are of exploratory type and are 
devoted to finding new structures and devices with favorable properties for applications by simulation 
and experiments. The next two subsection deal with conception of fixed and switched electromagnetic 
band-gap structures in view of applications to filtering and signal integrity. For space limitation, the 
mathematical model concerning wave propagation and consequently issues like Bloch waves, Floquet 
theorem and Bloch harmonics are not tackled. This part is very well covered in classic literature e.g. 
[bri_53], [collin_92], [kittel_96] etc. 
 Section 2.3 presents a series of three works where a thorough study of restoring forces acting on 
bearings built with magnetic fluids is reported. Here the emphasis is on mathematical modelling, since 
several models have been constructed and the prediction compared in view of validation of results. 
Therefore this section is more mathematically involved.  
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 In Sections 2.4 and 2.5, results from Signal Processing are presented. In Section 2.4, two novel 
procedures for spectral analysis of real sinusoids embedded in white, gaussian noise are reviewed. The 
algorithms are described and low sample analysis and asymptotic analysis are performed. The 
effectiveness of the novel algorithms is demonstrated by computer experiments. Sampling theory is 
the subject of the last section. Both multi-dimensional band-limited periodic signals and finite energy 
signals are considered. Sampling strategies and sampling expansions on general, non-orthogonal grids, 
targeting the minimum Shannon-Landau sampling density are presented. Aliasing error bounds are 
provided. References and the author’s list of publications are grouped in the third Chapter. 
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2.2. Applied Electromagnetics: Metamaterials 
 
A. Metamaterials: Literature Review 
 Interest on microstrip boards having impressed a periodic metal pattern on the face opposite to the 
ground plane has been raised to the microwave and antenna community by the works of Sievenpiper 
published at the end of the last decade of the last century [siev_98, 99_a, 99_b]. A periodic pattern 
consisting of square shaped unit cells that contained a square metal patch positioned symmetrically 
with respect to the center of the unit cell and connected around the same point to the ground plane 
through a via with metal walls has been proposed. This arrangement is now known as "Sievenpiper's 
mushroom structure". It has been demonstrated that the structure could carry surface waves, except for 
some frequency bands called electromagnetic band-gaps (EBGs). Guided waves have been classified 
in slow and fast following a comparison with the speed of light. Fast waves have been proven to be 
leaky, so that the device became useful as a controllable leaky-wave antenna, a topic that will be 
considered at a latter point. 
 In order to describe theoretically the mushroom structure, an effective impedance model for the 
surface has been developed in the cited publications. Such a model works properly when the 
wavelength is much larger than the dimension of the unit cell, which means low frequency and small 
wave-numbers. The surface presents a distributed impedance that can be modeled by a parallel L-C  
circuit with typical parameters values of C=0.5−10 pF/square and L=1−2 nH/square (the reported unit 
cell had an edge of 2.4 mm, a distance between metal plates of 0.15 mm, a radius of the vias of 
0.36 mm, a thickness of the board of  1.6 mm and a dielectric constant of the substrate of 2.2). The 
resonance frequency is around 10 GHz and the surface impedance has an inductive behavior below 
and a capacitive one above the resonance frequency. It has been demonstrated that the surface 
impedance is very high in the vicinity of the resonance frequency; therefore, the surface acts like an 
artificial magnetic conductor in the considered frequency band. The structure radiates at an angle 
determined by the condition of continuity of the tangential wave vectors of the surface waves and 
plane waves propagating through free space surrounding the device. The resonance frequency is 

1/ LC  and the relative bandwidth is proportional to /L C . The reflecting properties of the surface 
are those of a magnetic conductor inside this bandwidth. These results suggested the name of "high 
impedance surfaces" (HISs) for the considered structures. 
 Several applications have been proposed: enhancing the radiated power by using a reflective plane 
near the antenna, due to the magnetic conductor behavior of the surface around the resonance 
frequency, reduction of ground plane currents in antenna arrays sharing a common ground plane and 
consequently reduction of speckle related effects etc. 
 The frequency related properties of the surface have been presented in terms of dispersion diagrams 
(DDs) that consist of representations of frequencies versus wave-numbers [bri_53]. Electromagnetic 
waves interact with the periodic structure in a way that is analog to the one in which crystal lattices in 
solids interact with de Broglie waves associated to electrons. DDs display various modes of 
propagations and one or several EBGs. Following such an analogy, microstrip boards printed with a 
periodic metal pattern have been associated later to the field of metamaterials [lapine_07]. 
 The present time interest in metamaterials has a history of about one decade [elef_11_a]. This 
interest has been raised mainly by the possibility to synthesize materials with user-defined constitutive 
parameters. Electromagnetic waves that interact with an array of small-sized scatterers (much smaller 
than the wavelength) can be considered to propagate through a homogeneous medium with 
appropriately defined effective permittivity and permeability. This idea, inspired from the propagation 
of light is not new in the Applied Electromagnetics community, since "artificial dielectrics" relying on 
the same principle have been created in the WW2 period and in the aftermath. A brief discussion of 
the history of the concept of effective medium can be found in the review article [elef_12_b].  
However, a major excitement has been triggered by the demonstration of existence of materials with 
negative index of refraction [shelby_01]. This opened a new perspective for the pioneering work of 
Veselago [veselago_68] who derived theoretically the wave-related properties of such media. 
 A material with a negative index of refraction must have a negative permittivity and a negative 
permeability (see e.g. [elef_02]). A medium with negative permeability has been proposed in 
[pendry_99], relying on a periodic network of loosely-coupled split-ring resonators. The 3D medium 
with negative index of refraction reported in [shelby_01] has been obtained by alternating split-ring 
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resonators and wires. The medium filled with wires presents a negative permittivity for electric fields 
polarized along the wires, while the split-ring resonators provide the negative permeability 
[elef_2012_b].  
 The negative permittivity and permeability are achieved in some frequency bands and are 
components of tensors. The other components of the tensors are positive, so that negative index of 
refraction can be obtained only for appropriately polarized fields [dong_12]. 

Media with negative index of refraction exhibit negative refraction i.e. a negative angle of 
refraction when electromagnetic waves are incident from a usual medium on the boundary of the 
metamaterial. This property gave rise to a large palette of dispersion engineering applications such as 
self-collimation [matt_07], super lens, super prisms [enoch_03] and propagation control [notomi_00]. 
 Another interesting feature of materials with a negative index of refraction is that the phase and 
group velocities are opposite directed vectors in some frequency bands i.e. the phase of the wave and 
the energy (or narrow band signals) propagate in opposite directions. In fact, signals in periodic media 
are Bloch waves, with an infinite number of spatial harmonics. It has been known for long that some 
harmonics have positive group velocities while other harmonics have negative ones [collin_92]. 
However, in the case of negative refractive index materials, the first (fundamental) harmonic enjoys of 
this interesting property. 
 In our work we have considered devices based on microstrip boards with a 2D periodic pattern 
impressed on one side. The metal patches have been connected to the ground plane through one or 
several vias. Such structures have also been considered by many research groups in the last decade and 
an extensive literature is available, as reviewed below. Radiation properties of  the HISs have been 
exploited in the conception of steerable and electronically tunable antennas. The EBG structure led to 
filtering applications, while the presence of a large fundamental (low frequency) EBG has been taken 
advantage of in suppression of switching noise in power planes for fast digital or mixed signal circuits. 
Reflectarrays, holographic surfaces and active configurations represent important challenges for the 
present-day research activity. In the considered applications, the interest in DDs is not restricted to 
zones where an effective medium model can be applied. Therefore, generally the DDs are calculated 
and exploited for a wider range of parameters, including high frequencies and large wave-numbers. 
 As mentioned above, one of the simplest ways for realizing HIS structures is employing microstrip 
technology. Periodic microwave structures can be obtained by impressing a basic pattern periodically 
on one face of a microstrip board. It can be floating as for Peano [mcvay_05] or Hilbert [mcvay_04]]  
surfaces, the fish-like solution [matek_08] or other shapes or connected to the continuous metallic 
ground plane on the other side of the board through one or several vias. This second solution has been 
spread out following their introduction by Sivenpiper. Fabry-Perot like resonators used e.g. to increase 
antenna performances require partially reflective surfaces. This can be done by impressing different 
patterns on both sides of the dielectric support [vall_09]. Other applications of HIS include surfaces 
transparent for the magnetic field [teix_07] and holographic surfaces [siev_05_a]. 
 Our main topics of interest in this field has been related to filtering properties of HISs, including 
conception of switched filters and to applications to parallel-plate noise mitigation in digital and 
mixed-signal high-speed circuits. Therefore, literature related to these topics will be covered in detail. 
Nevertheless, present-day research challenges from other applications domains will be also tackled 
below. 
 The physics governing electromagnetic phenomena is well known and understood. However, 
analytical solutions to equations can be found only in some simplified situations, and therefore 
computer simulations have to be relied upon. This issue applies to wave propagation in periodic planar 
structures too. Fortunately, the development of specialized electromagnetic simulation and design 
software in the last two decades provided means for parametric characterization of the devices that 
constitute the subject of our work [gupta_02]. 
 When only the low frequency, low wave-number part of DDs are of interest, circuit models 
predicting the limits of the first EBG can be elaborated and used [elek_04]. These models, relying on 
transmission line theory and related to the physical parameters of the periodic structure are more or 
less precise but greatly reduce the computation time since circuit models run much faster on 
computers than full-wave electromagnetic simulations. However, when the DDs are needed for a large 
range of frequencies and wave-numbers, in 1D or 2D, then full-wave simulation becomes 
irreplaceable. In order to provide design guidelines, parametric studies have to be performed by 
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varying the geometrical parameters of the structure or the constitutive parameters of the materials 
entering the composition of the structure [rajo_07], [rajo_09]. The constitutive parameters can take 
values from a wide range due to present-day achievements in materials synthesis [she_05]. 
 The possibility of controlling analytically the band limits of the first EBG exhibited by a HIS has 
been proven for an array of width-modulated microstrip transmission lines [matek_08]. In the same 
paper, an example of HIS exhibiting EBG in the absence of vias has been reported. This situation can 
occur in open structures, but presence of vias is mandatory in closed structures, such as parallel-plate 
waveguides (PPWs), in order for EBGs to be present [pau_10]. 
 Another solution for unit cells with analytically expressed DDs has been proposed in [matek_10] in 
connection to holographic surfaces obtained by cascading unit cells with sinusoidal modulated 
effective dielectric constant and different modulation parameters. 
 EBG structures, initially introduced in [siev_99_a] in connection to low profile antennas, has 
gained attention for application in power distribution networks of high-speed digital and mixed-signal 
electronic circuits in view of switching noise suppression. Fast signal edges and fast varying 
conduction currents through vias give rise in the PPW environment of multilayered printed circuit 
boards (PCBs) to simultaneous switching noise, also termed ground bounce or power/ground noise 
that can cause signal integrity problems and malfunctioning of analog and digital circuits. The 
spurious signals are deterministic in nature; nevertheless, the term "noise" is motivated by their 
harmful effects. Once they reach the edges of the PCBs, PPW noise causes additional problems by 
radiation into the surroundings. The inclusion of EBG structures into the multilayered structures 
mitigates these problems since EBG structures are patterned surfaces that propagate surface 
electromagnetic waves in some frequency bands and prevent their propagation in other bands. To be 
effective for PPW noise suppression, the stopbands have to be wide enough in the low frequency 
range of the spectrum and the low cut-off frequency should be as small as possible. An obvious 
solution for these issues is to increase the size of the unit cell of the EBG structure. However, this 
solution is in contradiction with miniaturization of present-day circuits, since several unit cells must be 
present in 2D in order for the finite-size surface to appropriately function similarly to the infinite one. 
Therefore this solution has to be combined to other ones, such as enhancing the distributed inductance 
and capacitance by connection of aditional lumped components, increasing the number of vias and 
finding new shapes for the metallization in order to increase the number of resonances.  
 An early work in suppression of parallel plate power leakage by using a 1D periodic structure has 
been [das_96]. A solution based on two rows of shorting pins placed parallel to the central conductor 
of a conductor backed coplanar waveguide has been proposed among others. 
 Suppression of parallel-plate modes can be achieved by inserting a HIS in between two dielectric 
materials contained in the space bordered by the plates of a PPW. The HIS consists of square shaped 
unit cells with square metal patches. Each patch is connected to the ground plane by vias with metal 
walls [abhari _03]. Trough an appropriate design, the EBG covers the most part of the PPW noise 
spectrum which extends from DC to around 6 GHz. In the cited reference, the transverse resonance 
method for transmissions lines is used for predicting the limits of the first EBG with a certain degree 
of approximation in order to alleviate the design. A similar idea is developed in [rogers_05], where a 
circuit model for the structure is derived. The circuit model has several limitations but it drastically 
reduces the computation time since the correct results can be obtained only by solving an eigenmode 
equation in a full-wave simulator software environment. 
 A low-period coplanar EBG structure is proposed in [wu_05] in view of ground bounce noise 
elimination. The novel design is incorporated in the power plane, while the ground plane is kept 
continuous. A transmission line model providing stop-band prediction is also proposed. The edge of 
the unit cell has been chosen as 18 and 30 mm in two reported experiments. Stop-band widths of 
4−6 GHz have been measured, starting from low cut-off frequencies of 1−2 GHz on finite dimension 
boards. It has been demonstrated by EMI measurements that the board does not suffer from radiation 
problems, although the upper metal plane is not contiguous. 
 The problem of finding a more precise circuit model for HISs embedded in power planes has been 
approached in [kam_05]. The authors report the results of a large number of simulations performed in 
order to find the influence of various geometrical parameters on the band-width of the first EBG. A 
circuit model is extracted, which is quite complicated, contrarily to the ones reported before. However, 
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a claimed reduction of computation time for finding EBG limits from 1−2 days with a commercial EM 
solver to 1 min has been obtained. 
 A further extension of the conventional solution to the parallel-plate noise mitigation problem has 
been to embed two HIS layers, with different low frequency EBGs, between the upper and lower metal 
walls of the power distribution network [park_06]. The solution has been applied to low-temperature 
co-fired ceramic system-in-package products. 100 µm thick dielectrics and 10 µm thick gold 
conductors have been used for constructing the device. Unit cells with edge dimensions of 3.8 and 
1.8 mm have been tested. One or two EBGs in the GHz frequency range have been experimentally 
determined. 
 The problem of 2D transmission-line models for the mushroom structure embedded in PPW 
configuration has been revisited in [tav_07]. Transmission line based eigenvalue dispersion equations 
giving approximate limits for the low-frequency EBGs have been proposed. 
 In [zhang_07] it has been shown that increasing the number of vias per unit cell in the embedded 
mushroom structure widens the bandwidth of the EBG with favorable effects on parallel-plate noise 
suppression when appropriately placed. 
 A fundamental limitation of planar EBG structures, namely the difficulty to obtain a low cut-off 
frequency with reasonable dimensions of the unit cell, is tackled in [kim_08]. The authors propose the 
use of hybrid planar-type EBG structures that contain lumped passive components in order to increase 
the capacitances and inductances, with the favorable consequence of decreasing the lowest cut-off 
frequency. A 1D model is provided and a feasibility study for application of the hybrid EBG structure 
is conducted. The same issue is addressed in [kam_08]. The proposed solution relies on planar 
structures containing unit cells with spiral metallizations, called spiral-based inductance-enhanced 
EBG surfaces. 
 Results concerning the impact on signal integrity of planar EBG structures embedded in 
transmission media such as strip-lines and of the placement of vias in multi-layered circuit boards are 
reported in [pau_09] and [pau_10]. 
 An EBG surface based on square unit-cells with multiple slits in the upper metal plane is 
introduced in [rao_11] for noise mitigation. With a cell edge of 15.2 mm, a stop-band in the range 
0.9−3.5 GHz has been obtained. A circuit model is proposed for predicting the band limits. 
 Leaky wave antennas can be built starting from a high impedance surface exploited in the region of 
fast surface waves, when the structure radiates and consequently the propagation constant 
corresponding to surface waves is complex. As mentioned above, radiation steering is explained by the 
continuity of the tangent component of the wave vector when surface waves couple with plane waves 
that propagate in the medium surrounding the surface. The literature treating leaky wave antennas 
inspired from metamaterial technology is very large and will not be covered here in detail. Only some 
examples will be provided instead. Rather, the topic concerning switched and tunable radiating 
structures will be referred more thoroughly since it has constituted a starting point for a part of our 
own work. 
 An application of EBG structures to antenna construction has been reported in the same issue of the 
journal where the first work of Sievenpiper on HISs has been published [shum_99]. An EBG structure 
in a PPW has been used for construction of a Luneburg lens in antenna feeding [park_01]. 
 Finding new shapes for the metal pattern in the unit cell of periodic surfaces based on microstrip 
boards in view of improving various features have been a constant subject of research. A proposed 
fork-like pattern has reduced the covered area by 40% with respect to the mushroom structure 
[yang_05] The device has been used for a double-element microstrip antenna array, a notch-type 
antenna duplexer etc. 
 When the geometry of the surface is altered, the effective parameters change and so does the 
tangent component of the wave vector. Consequently, signals can be steered by taking advantage of 
this property. A mechanical solution for beam-steering of radiation from a HIS has been proposed in 
[siev_02]. The modification of surface parameters of the HIS is achieved by translating a second 
tuning layer at a certain distance above the surface. The tuning layer consists of square metal patches 
and changes the capacitance of the HIS with the effect of modifying the steering angle for a given 
frequency. A claimed 45o scan is obtained for a movement of the tuning layer of 1/500 of a 
wavelength. 
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 Electronic solutions when exist are in general more reliable and controllable than mechanical ones. 
Tunable surfaces can be obtained by incorporating electronic control devices, such as MEMS, diodes 
or FETs, into the geometry of the HIS. A solution that relies on varactor diodes connecting the patches 
of the mushroom structure is presented in [siev_03]. A bias voltage modifies the capacitances of the 
varactors and consequently the resonance frequency of the surface. A ±40o range of modifiable 
steering has been obtained in two dimensions. The device can function as a reflectarray with greater 
bandwidth than conventional solutions and offer a low-cost alternative to generally used phased 
arrays. However, the array of varactors needs a biasing network that could alter the propagation of the 
electromagnetic field. 
 A tunable HIS also based on the mushroom structure and varactor diodes has been used for the 
realization of an electronically steerable leaky wave antenna [siev_05-b]. By tuning the surface, the 
radiated beam could be scanned over a wide range in both forward and backward directions. An 
optimization algorithm has been applied for finding the bias voltage of individual varactors in order to 
provide a convenient beam steering. 
 A solution for tunable and steerable S-band low-profile antenna based on varactor diodes mounted 
between patches of a HIS has been proposed in [costa_08]. A bow-tie radiating element has been 
placed above the FSS which acted like an artificial magnetic conductor due to the high impedance. 
Beam scanning for each working frequency has been achieved by appropriately biasing the diodes and 
changing in this way the capacity between patches. The proposed biasing solution is simple, involving 
two potentials, one applied to the patch plane and one to the ground plane. However, the biasing 
network must be present on the face of the board containing the patches. 
 A tunable surface based on periodic arrays of metallic loops impressed on either side of a thin 
dielectric substrate has been proposed, discussed and tested in [baya_09]. Tuning has been achieved 
again by means of varactor diodes mounted between metallizations of the unit cells and by modifying 
the value of the bias voltage. The solution has been assessed by simulation and then tested in a 
waveguide measurement setup. The difficulties for biasing the diodes inside the waveguide have been 
circumvented by using different values of fixed capacitors in the experiments. 
 A 1D tunable structure using FET devices has been proposed in [matek_09]. The device consisted 
of a 1D periodic structure positioned between the ground plane and the microstrip line. The unit cell 
contained one metal patch of rectangular shape. The patches could be selectively connected to the 
ground plane by individually controlled FETs. The technology (GaAs substrate) allowed for very 
small dimensions of the unit cell (tenths of mm). Variation of the effective dielectric constant of the 
material from small values up to 100 has been obtained in a frequency range from low values up to 
150 GHz. 
 An improved device, relying on the same principles has been proposed in [matek_11]. This time, 
the device has been aimed to function in the leaky region for antenna-on-chip or system-on-chip 
millimeter-wave applications. The possibility to digitally program the device allowed for changing the 
radiation pattern for a given frequency and for obtaining nearly identical radiation patterns for 
different frequencies. Dynamic shifting of the EBG by 80 GHz has been demonstrated. 
 The problem of modeling of switching devices for use in electromagnetic simulators has been 
raised in [thala_11]. It has been demonstrated that replacing reverse biased varactor diodes by 
capacities is not enough. Complete S parameters model should be used instead. Furthermore, 
placement of switching elements has an significant impact on the frequency characteristics of the 
system because of their transmission characteristics. 
 Switched and tunable frequency selective surfaces (FSSs) to be used in indoor environment for 
modification of electromagnetic architecture in view of facilitating propagation of mobile and wireless 
technology related signals has been proposed in [sanz_09]. The FSS consisted of slot dipoles and has 
been placed on one side of a flexible dielectric layer, while the active elements and the biasing 
network have been mounted on the other side. Switching between reflecting and transmitting modes 
has been demonstrated with pin diodes as control elements. Control of the pass-band has been 
achieved through varactor diodes. 
 A similar switching technique has been applied to substrate integrated waveguides (SIW) [xu_11]. 
SIWs are waveguides realized in microstrip technology that represent a low-cost and low-profile 
alternative to rectangular waveguides. The lateral walls are obtained by drilling two parallel rows of 
aligned vias along the conducting strip in the microstrip board. A fundamental high-pass mode of 
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propagation exists, like in a waveguide with metal walls. The switching solution involves a slot in the 
upper wall, parallel to the direction of propagation, which can be short-circuited by means of 
transversally mounted pin diodes. The diodes are placed on metal pads, separated from the upper wall 
of the waveguide by a thin insulating layer. The waveguide can be switched between conduction and 
50 dB isolation with a 3 dB insertion loss. 
 When building a tunable FSS, at least one tuning element must be considered per unit cell. If the 
number of unit cells is large, the cost of the final product becomes prohibitive. A solution to reduce the 
number of varactors has been proposed in [costa_11]. Square metal patches impressed on one side of a 
board have been connected through vias to a layer placed beneath and insulated from the ground 
plane, containing a network of segments of transmission lines which connected several patches (eight) 
to one diode. Waveguide measurements of reflection phase demonstrated tuning capabilities controlled 
by the bias voltage of the diode. 
 Filtering is a natural application of EBG materials due to the band-structure. Multi-band and broad-
band filters in microstrip and suspended strip-line technology are current subject of research (see e.g. 
[menzel_03]). In microstrip filter design, patterns introduced as defects in the ground plane are known 
as a solution for frequency response shaping [ahn_01].  
 A non-uniform series of circular slots or annular rings in the ground plane parallel to the signal line 
of a microstrip board, with dimensions proportional to coefficients of binomial and Chebyshev 
polynomials, have been shown to provide low pass-band ripples and distinct stop-bands [karm_03]. 
 A repeated pattern of resonant loads etched in the ground plate below a microstrip line has been 
proposed as a 1D structure of filter inspired from EBG materials [gao_06]. A design methodology, 
including control of ripples in pass-bands has been devised.  
 Filtering applications of 1D periodic structures realized in ridge waveguide technology have also 
been reported [gouss_06].  
 A dual-band filter has been devised for applications in the wireless communications area, such as 
multi-antennas, by using a 2D periodic structure in microstrip technology obtained by cascading 
mushroom-like unit cells that operate at different frequencies [zhang_08]. The modification of the 
frequencies defining the filter bands has been achieved by changing the positions of the vias within the 
rectangular patches in the unit cells. 
 Filters with multiple notch bands, fabricated in multi-layer liquid-crystal polymer lamination 
technology, designed to be used in UWB communication and radar systems have been proposed 
[hao_09]. The structure included three layers; the periodic pattern has been etched as a 1D slotted 
structure in the ground plane. 
 A modification of the ladder microstrip line, performed by inserting loaded grounded strips 
between the signal strips allowed the construction of third-order Chebyshev filters with claimed pass-
band ripple of 0.05 dB and a relative bandwidth of 10% [chang_11]. 
 The research we are presenting in the next sections has been performed by using a commercial full-
wave field solver [CST] which relies on the Finite Integration Technique [weil_77] for solving the 
integral forms of Maxwell's equation. A presentation of relevant issues related to such field solvers can 
be found in [weil_08]. 
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 We will present the results obtained in the field of high impedance surfaces (HISs) and 
metamaterials in a logical sequence rather than in a time order following publication. We present fixed 
surfaces in the first subsection and switchable ones in the second subsection. 
 
B. Fixed Surfaces 
 The first presented work (in 2009) and published paper (2011) dealing with HISs reported a 
parametric study of the shielded Sievenpiper structure [11_08_M]. 
 The structure and the dimensions of the first HIS we have considered are represented in Fig. 1. It 
consists of a microstrip board with the periodic metallic pattern impressed on one side. The other side 
of the board plays the role of a ground plane. In order to obtain a parallel plate waveguide, a metallic 
plane is placed at a distance g above. In fact, an electric condition has been imposed in the simulation 
and periodic conditions have been imposed on the planes perpendicular to the structure that contain 
the edges of the unit cell; the origin of the reference system has been taken at the center of the basic 
pattern. The following parameters have been varied during the simulations: the dimensions x and y of 
the rectangular patch and the distance g between the upper metallic wall and the patch. 

 
 The DD for some specific values of the geometric parameters and the light lines are reported in Fig. 
2. Unlike the other simulations that will be presented below, we performed calculation on the entire 
Brillouin irreducible zone ΓXMΓ.  The figure shows some features of the DD consistent with other 
results that have been reported in the past. The DD for the first mode is tangent to the light lines, and it 
presents regions of positive and negative group velocities. The group velocities are zero at points X 
and M. DD's of higher order modes intersect the light lines so that fast and slow waves may be 
launched. As indicated on the figure, the EBG is comprised between the maximum frequency 
corresponding to the first mode and the minimum frequency of the next mode. The figure also 
suggests that, in order to determine the central frequency and the width of the band gap, the DD for the 
ΓX portion of the Brillouin zone suffices. 
 The widths and the central frequencies of the EBG for various dimensions of the rectangular patch 
and a fixed value of g are reported in Fig. 3 and Fig. 4 respectively. The central frequency is calculated 
by taking the geometric mean of the two frequencies that define the limits of the EBG. The reason 
why we preferred the geometric mean rather than the arithmetic one is that, in an effective medium 
model, the surface impedance behaves like a second-order parallel resonant circuit [siv_99] whose 
central frequency is defined in this way. 
 The same quantities are represented in Figs. 5 and 6 for another value of g. The decrease of the 
central frequency with the increase of the patch dimension might be associated with the increase of the 
capacitive effects due to the fact that adjacent patches become closer together. 
 In order to gather more information on the EBG, we have performed two other simulations. In the 
first one, we kept constant the y dimension of the patch and varied the x dimensions, for two different 
values of g that are also different from the values we have used in the previously reported simulations. 

(c) 

Fig. 1. (a) Basic pattern: top view; (b) basic pattern: side view; (c) high impedance 
surface obtained by repetition of the basic pattern. 
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In the second one, we imposed a square shape for the patch, so that we varied simultaneously the 
dimensions x and y for the same values of g as previously.  The frequencies that define the limits of 
the EBG are represented in Fig. 7 and 8. It can be seen that the height of the waveguide has a greater 
influence on the upper limit than on the lower one.  
Figs. 7 and 8 suggest that the central frequency and the bandwidth diminish when g is increased, 
which is in accordance to Figs. 3..6.  

 
 

 
 
 

 
 We considered a variation of the structure obtained by replacing the rectangular patch with a 
circular one, of radius r and keeping constant the other geometrical parameters and the dielectric 
constant of the substrate. The top view of the basic pattern is represented in Fig. 9. 
 The DD for the new structure is quite similar to the DD of the previous one. An example, for some 
specific values of the radius r and of the height g is presented in Fig. 10. Only the ΓX portion of the 
Brillouin zone has been considered and the horizontal axis has been marked in radians, measuring the 
normalized wave-number. As it can be seen, the EBG is well defined in this case too. 
 The limits of the EBG for a specific value of g, but different from the previous one are reported in 
Fig. 11, in function of the patch radius r. Both limits decrease with the decrease of the distance 
between two adjacent patches, like in the case of rectangular ones (Figs. 7 and 8). 
 
 

Fig. 4. Central frequencies of the bandgap 
for various patch dimensions and g=0.5h. 
 

Fig. 2. Dispersion diagram for g=2h and 
x=y=2.1 mm (light lines have no markers). 

Fig. 3. Widths of the bandgap for various 
patch dimensions and  g=0.5h. 

Fig. 5. Width of the bandgap for various 
patch dimensions and g=2h. 
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 We have calculated the widths of the bandgap and the central frequencies (defined again as 
geometric means of the limits of the EBG) in function of the radius of the patch, for various values of 
g and represented the results in Figs. 12 and 13 respectively. The shapes of the curves are similar to 
those obtained for rectangular patches. 

Fig. 11. Minimum and maximum 
frequencies that define the bandgap in 
function of the circular patch radius (g=3h). 

Fig. 10. The first two modes in the ΓX 
region of the dispersion diagram for the 
case of a circular patch: g=0.5h, r=2.1 mm. 

Fig. 8. Minimum and maximum frequencies 
that define the bandgap in function of the 
patch dimension (x=y). 

Fig. 7. Minimum and maximum frequencies 
that define the bandgap in function of x, for 
two values of g and y=1.95 mm. 

Fig. 6. Central frequency for various 
patch dimensions and g=2h. 
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Fig. 9. Circular patch. 
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In order to compare a HIS based on square 
patches to a HIS based on circular ones, we have 
represented, in Fig. 14, the limits of the EBG in 
function of the patches dimensions, for a specific 
value of g, when the side of the square is equal to 
the diameter of the circle. The limits result lower 
in the square (rectangular) case than in the 
circular case and the shape of the curves are 
similar. However, the ratios of the corresponding 
frequency limits have a very slight variation with 
r (being around 0.9).  
The parameterized families of curves presented 
consistent variations and have been intended to be 
used in the design activity. 
 

 
 After gaining some insight into properties of square and circular patches, we have introduced the 
elliptical patches for three reasons: i) provision of smooth edges for the current density, like the 
circular patches; ii) provision of design flexibility in the same way as rectangular patches present 
versus square metal patches and iii) larger bandwiths that can be obtained (as demonstrated below). 
We have introduced and studied parametrically the elliptical patches in [09_01_M]. 
 The geometry of the HIS and relevant dimensions and parameters are represented in Fig. 15. The 
origin of the coordinate system is at the center of the patch. The upper metallic plane (not represented) 
is situated at a distance g=0.5h from the patches plane. The influence of g on the EBG has been 
already established and reported (e.g. in the above mentioned paper): a smaller g provides a larger 
width of the EBG. Therefore, this parameter has been be kept constant throughout this work. 
 The DD corresponding to this structure, with x=2.4 mm and y=1.8 mm is reported in Fig. 16, where 
the first four modes have been considered, and the (air) light line has been also represented. The shape 
of the DD is consistent with other patch geometries and an EBG exists between the first two modes. It 
is interesting to compare the width of the EBG of this HIS to EBG widths of other structures 
characterized by similar parameters. We have considered a rectangular patch and an elliptical one with 
two vias, situated on the x axis at half distances between the origin and the extreme points of the 
ellipse (Fig. 17). The radii of the vias are the same in all situations and so are the x and y dimensions 
of the patches. The results are synthesized in Table 1. 
The frequencies fmin and fmax correspond to the lower and upper limits of the band gap defined in Fig. 
16, and the bandwidth B is the difference of the two. The central frequency f0 is the geometric mean of 

Fig. 14. Positions of the bandgaps for a circular 
and a rectangular patch, for various dimensions 
of the patches (x=y=2r). 

Fig. 13. Central frequencies of the bandgap 
in function of the radii of the circular 
patches, for various values of g. 
 

Fig. 12. The widths of the bandgap in the 
case of circular patches, for various values 
of g. 
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the limit frequencies: 0 min maxf f f= . The reason why we preferred the geometric mean rather than the 

arithmetic one is the same as in the case of rectangular patches: in an effective medium model 
[siv_99], the HIS impedance behaves like a parallel resonant circuit. The quality factor is defined as 

usual by 0fQ
B

= . We have also added results concerning HIS built with unit cells with elliptical 

patches having the same x dimension but y=1.5 mm (last column of Table 1). Since interpolation has 
been used, some numerical inaccuracies might de present. 

 

 
 

 
 The results in Table 1 may be explained in terms of the circuit parameters of the HIS from the 
effective medium model [siv_99]: the vias have an important inductive effect, while adjacent patches 
introduce capacitive effects. When two vias are used instead of one, the path for the current induced 
by electromagnetic surface waves gets shortened, resulting in a reduced inductance and hence a higher 
central frequency. The surfaces of an elliptical patches are lower than those of rectangular ones, 
resulting in reduced capacitive effects and again an increased central frequency. For similar reasons, 
decreasing the y dimension of a HIS based on a unit cell with an elliptical patch results in increased 
frequency characteristics of the EBG. The DD's of the HIS based on unit cells with elliptical patch and 
two vias and rectangular patch with dimensions specified above are presented in Figs. 18 and 19 
respectively. 

Fig. 17. Patches: (a) rectangular,  
(b) elliptical with two vias. 

b=2.5 mm 

via -  
radius 
=0.2 mm 

(a) 

a=2.5 mm 

x 

y 

b=2.5 mm 

via -  
radius 
=0.2 mm 

(b) 

a=2.5 mm 

x 

y 

Fig. 16. Dispersion diagram for a HIS with elliptical patches 
(the light line has no marker). 

(c) 

Fig. 15. (a) Unit cell: top view; (b)unit cell: side view; (c) high impedance surface 
obtained by repetition of the unit cell. 
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Table 1: Frequency characteristics of EBG's 

 Elliptical patch,  
two vias,  

x=2.4 mm, 
y=1.8 mm 

Elliptical patch,  
one via,  

x=2.4 mm, y=1.8 mm 

Rectangular patch,  
one via,  

x=2.4 mm, 
y=1.8 mm 

Elliptical patch,  
one via,  

x=2.4 mm, 
y=1.5 mm 

fmin [GHz] 16.1730 11.4610 9.2169 12.1154 
fmax [GHz] 26.1362 24.0922 19.5651 24.7499 
B [GHz] 9.9632 12.6312 10.3482 12.6345 
f0 [GHz] 20.5597 16.6169 13.4287 17.3163 
Q 2.0636 1.3155 1.2977 1.3706 

 

 
 

 

 
 
 
For a quantitative characterisation of the position 
in frequency of the EBG for various dimensions 
of the patches, we have determined the DD's for a 
fixed value of y, namely 1.5 mm but we have 
varied the x dimension in the range 1.5..2.25 mm, 
for the three cases we have considered above: 
elliptical patches with two vias, elliptical patches 
with one via and rectangular patches. The other 
geometrical dimensions and the value of the 
dielectric constant are the same as above. From 
the DD's we have determined the minimum and 
maximum frequencies and represented the results 
in Fig. 20. The monotonicity properties of the 
curves in Fig. 20 tend to confirm what has been 
said about the influence of the circuit parameters 
from the effective medium model of the HIS. 
 

 
The presented results may be useful in the design of HIS with specified EBG parameters, for various 
applications. 

Fig. 19. Dispersion diagram for a HIS with 
rectangular patch. 

Fig. 18. Dispersion diagram for a HIS with 
elliptical patches and two vias. 

Fig. 20. Minimum and maximum frequencies defining 
the EBG for elliptical patches with two vias, elliptical 
patches with one via and rectangular patches. The 
dimension y is kept constant at 1.5 mm, while the 
dimension x is varied. 
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 Parametric studies and numerical explorations of the shielded structure with elliptical patches have 
been performed by varying geometric and material parameters. The obtained results have been 
reported in [10_01_M] and [10_02_M]. 
 In the first one of the above mentioned papers, we deal with a unit cell including an elliptically 
shaped patch on a dielectric layer, connected to the metallic ground plane by a variable number of 
vias. The geometry can be conveniently realized in microstrip technology. The vias are thought to 
have diodes or FET switches whose state can be externally controlled by a biasing voltage with the 
aim to generate a tunable geometry. When the active devices are not biased, they exhibit high 
impedances, which can be modeled for precise characterization or simply assumed to be infinite. On 
the other hand, when they are biased, their impedances are negligibly small and they act as short-
circuits. This preliminary study does not tackle the presence of the control part, but it aims to verify 
the degrees of freedom of the structure and the feasibility of a tuneable surface with the considered 
control parameters.  
 For non-tuneable applications, HIS geometries that provide the largest values for EBG's are of 
interest. Therefore we have determined the EBG parameters for this particular configuration with the 
radius of the vias which maximizes the band-width.  
 The numerical study, carried out by commercial software, allows a full characterization of the 
infinite surface, by adequate periodic boundary conditions imposed to the unit cell.  The parametric 
study regarding the effect of the number of vias and of the aspect ratio of the ellipse allows for 
collecting information needed to fulfil design inputs. The EBGs for the various geometries have been 
obtained from the dispersion DD computed by the Eigenmode Solver of the CST Microwave Studio 
on the entire ΓXMΓ border of the first irreducible Brillouin zone associated to the rectangular lattice. 
The DD is useful for finding other relevant quantities, such as the phase and group velocities as well. 
The applications of HIS in the field of low profile antennas require a precise control of the limits of 
the band-gaps. Therefore, studies on the influence of the various geometrical parameters on the 
frequency position of the EBG have been performed. 

 The unit cells we are considering here, and shown in Fig. 21, have square shape with dimension 
a=b=2.5 mm in the two orthogonal directions. The grounded dielectric of height h=1.58 mm is 
characterized by εr=3.5. On the top of the dielectric an elliptically shaped patch with the main axes y 
and x is considered. 
 In this study, one of the major axis of the ellipse has been maintained constant, while the other one 
has been varied. The variation has been chosen in such a way to incorporate the degenerate 
configuration of circular shape. In particular, the y dimension has been fixed to the value of 1.8 mm, 

b=2.5 mm 

a=2.5 mm 

x/6 

y/6 

Fig. 21: Geometries of the unit 
cells. Top: Elliptical patch with 
one eccentric via, Middle: 
Elliptical patch with two 
eccentric vias asymmetric (left), 
symmetric (right), Bottom: 
Elliptical patch with three 
eccentric vias (left), Elliptical 
patch with four eccentric vias 
(right). 
 
 

y 
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while the dimension along x has varied from xmin=1.5 mm to xmax=2.25 mm with steps ∆x=0.15 mm. 
Different numbers NV of vias from 1 to 4, all with a radius of 0.2 mm, have been considered. The 
eccentric vias are shifted with respect to the origin by Sx= ± x/6 and Sy= ± y/6. This means that when x 
varies, the positions of the vias vary as well: this choice has been considered for scalability reasons. 
On the top of the entire geometry an air layer has been positioned; the CAD model for NV=3 is shown 
in Fig. 22. 
 DDs for all configurations in Fig. 21 have been computed. In Fig. 23 we report those related to the 
NV=4 vias case. The band-gap and the light-lines are clearly indicated.  
 
  

 
 The DDs for the structures with other numbers of vias present similar behaviour, allowing a 
comparison in terms of band-gap position and width. The results referring to the central frequencies of 
the band-gaps are reported in the plot in Fig. 24, while band-gap widths are represented in Fig. 25 as a 
function of the size along the x axis of the ellipses.  
 The EBG bounds are defined as the maximum of the first, always bounded, mode and the lowest 
value of first higher order mode. The variation of the band-gap is as high as 10% around 12 GHz. The 
central frequencies are calculated as the geometric mean of the EBG limits. Moreover we can observe 
that the maximum width of the band-gap is achieved for a circular configuration, except for the case of 
NV=1 and NV=2 asymmetric vias. This can be explained by the effect of two opposite behaviours 
resulting from the variation of the geometry. When the value of x is varied in the indicated interval, the 
mutual inductance between the various vias decreases, while the capacity between patch and ground 
plane increases. The effect of the two opposite behaviors gives the results shown in Fig. 25.  For the 
NV=1 case, the variation of the mutual inductance is not present, hence the continuous increase of the 
width of the band-gap can be observed as a consequence of the increase of the capacitance. Similar 
observations hold for the NV=2 cases but the responses are affected by the symmetries. 
 The parameterized results reported here are useful for design issues and for circuit models 
conception and validation. 
 Unit cells with the same geometry, but different electromagnetic responses, can be employed in 
different applications in the field of antenna technology, e.g. controlling of the direction of radiation, 
sensoring etc. 
 
 
 

Fig. 22: CAD model of the geometry for 
NV=3, x=1.5 mm, y=1.8 mm. 

 

Fig. 23: Dispersion diagram for the elliptic patch with 
NV=4  vias. 
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Fig. 26. Via numbering. 
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Fig. 27. Dispersion diagram for the structure with three 
vias of radii r=0.2 mm and patch dimensions p=2.25 mm, 
q=1.8 mm. Each graph corresponds to a propagation 
mode. The free space light lines are also represented.  

  
 
 
 The continuation of the above presented parametric study of EBG planar structures with elliptical 
patches has been continued in [10_02_M]. We have considered vias with variable radii. The radii of 
the vias for a single geometry are equal in each simulation; however, three values have been 
considered, namely r=r1=0.2 mm; r=r2=0.15 mm; and r=r3=0.1 mm. Three vias configurations have 
been studied: 1o two vias: 1 and 2; 2o three vias: 1, 2 and 3; 3o all four vias. We will refer to a given 
geometry in the shape (m,n), where m is the number of vias and n is the index of the radius as denoted 
above. For reference, the vias are numbered as in Fig. 26, where the position of the xy frame is also 
represented. 
 The results of the first simulation, performed on the configuration with three vias of radius 0.2 mm, 
denoted by (3,1) above, is reported in Fig. 27.  
 

 
 
 The DD corresponds to the whole ΓXMΓ border of the Brillouin irreducible zone. The general 
shape is consistent with other geometries. The EBG is clearly outlined; the comparison with the light 
lines shows the presence of waves with phase velocities greater and smaller than the speed of light; 
regions with negative group velocities are also apparent, and the group velocities vanish at X and M. It 
is interesting to note the points of higher order modes intersections. These points might be used for 

Fig. 25.  Extension of the band-gaps for 
the structures in Fig. 1 with y=1.8 mm. 
 

Fig. 24. Central frequencies of the band-gaps 
for the structures in Fig. 1 with y=1.8 mm. 
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applications involving power exchange between modes; however this issue is not considered in this 
context. 
 The rest of the simulations have been performed on the ΓX edge of the Brillouin zone, involving 
surface waves that propagate along the x direction only. The obtained band-gaps and the center 
frequencies of the EBG's are reported in Fig. 28 and Fig. 29 respectively. The central frequencies have 
been calculated at midpoints between the frequency limits of the band-gap. A geometric mean would 
have been an appropriate choice too, since e.g. the impedance of Sievenpiper's HIS admits an effective 
medium model in the shape of a parallel resonant circuit, as mentioned above. However, the arithmetic 
mean is easier to interpret in this context. 

 

 

 
 The following relevant data may be derived from Figs. 28 and 29. The largest band-gap widths, 
between 13.33 and 14.35 GHz correspond to (3,3), while the smallest one, of 10.47 GHz, occurs for 
(4.1), at p=2.25 mm. The m=4 vias geometry is similar to a closed resonator. The role of the vias is to 
confine the electromagnetic field. Similarly to the shorting pins used to prevent generation of the 
fundamental parallel plate modes in the strip line configurations, they inhibit the “passing thru” of the 
electromagnetic field from the inside of the cavity toward its exterior (and vice-versa) when the 
wavelength is smaller than the distance between them. The volume in-between the vias corresponds to 
a closed resonator, with high Q. Increasing the patch dimension p the volume of the resonator 
increases and consequently the resonant frequency decreases in accordance to the data in Fig. 29. 
When m=3, the closed resonator becomes an open resonator where the field intensity in 
correspondence to the "missing" vias externally to the resonator is different from the 4-via case. 
Consequently the Q factor decreases corresponding to an enlargement of the band-width. The 
distributions of the electromagnetic field in the dielectric for the m=3 vias cases in the first two pass-
bands and stop band are reported in Fig. 30. The data have been obtained with a phase shift of (φx, 
φy)=(40.5,0) degrees between the input and output ports. 
 The band-gap widths for the geometries (2,n), n=1..3  have an almost linear variation, which is very 
convenient for design purposes. For the rest of the geometries, maxima occur when ellipses become 
circles (p=q=1.8 mm), while (3,3) and perhaps (4,3) also admit minima. When two vias are used, a 
decrease in the vias diameter have the effect of decreasing the bandwidth due to the variation of the 
self inductance of the vias, while the effect is opposite for geometries with three and four vias, because 
of the different role of the vias as explained above. 

Fig. 29. Arithmetic central frequency as a 
function of the p patch dimension. The graphs 
are marked as in Fig. 28. 

Fig. 28. Band gap as a function of the p patch 
dimension for q=1.8 mm. The graphs are marked as 
follows. Two vias with r=0.2 mm: x mark, r=0.15 mm: 
plus, r=0.1 mm: circle. Three vias with r=0.2 mm: 
down triangle, r=0.15 mm: up triangle, r=0.1 mm: left 
triangle. Four vias with r=0.2 mm: square, r=0.15 mm: 
diamond, r=0.1 mm: pentagram. Identical radii are 
drawn with the same line type. 
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 All central frequency curves decrease with the increases of p, which correspond to a larger area of 
the capacitor formed by the ground plane and patch. Increasing the capacitance, the resonant 
frequency will decrease. Again, the geometries with two vias provide almost linear variations. The 
central frequencies for (4,1) and (4,2) are almost coincident, and so are (3,1), (3,2) and (4,3); however 
the bandgaps are different. Regardless of the number of vias, decreasing diameter leads to a decrease 
of the central frequency. The largest central frequency, of 25.53 GHz corresponds to (4,1) or (4,2), 
while the smallest one, of 18.18 GHz, occurs for the (2,3) geometry.  
 For the two-via geometry, the largest bandgap width, of 13.17 GHz and the largest central 
frequency, of 23.89 GHz occur for (2,1) at p=1.5 mm, while the smallest bandgap width, of 11.03 GHz 
and the smallest central frequency, of 18.18 GHz occur for (2,3), at p=2.25. The frequency span is 
from 12.67 to 30.47 GHz.  
 The three-via geometry provides a frequency span from 15.07 to 31.20 GHz. The minimum occurs 
for (3,3) at p=2.25 mm and the maximum occurs for (3,1), at p=1.5 mm. The band-gap widths are 
14.35 and 12.29 GHz, while the central frequencies are 22.24 and 25.11 GHz respectively. 
 For the four-via case, a frequency span between 15.96 and 31.38 GHz is obtained. The results that 
correspond to those presented above are: (4,3) and p=2.25 mm for the minimum and (4,2), p=1.5 mm 
for the maximum. The band-gap widths and central frequencies are 12.38 GHz, 22.15 GHz and 
12.27 GHz, 25.53 GHz respectively. 
 The global frequency span is from 12.67 GHz to 31.38 GHz, the limits being in a ratio of 2.48:1. 
 The presented  results are relevant for the design of fixed or tuneable HIS in view of various 
applications. 
 A passive, low-cost device built with a textured surface, consisting of a periodic lattice of metal 
patches, embedded in an inhomogeneous parallel-plate waveguide has been proposed in [11_12_M]. It 
acts as a band-pass filter in the microwave frequency range and it can be also used in sensor 
applications. We presented the frequency related properties of the structure by means of the dispersion 
diagram calculated by full-wave electromagnetic simulation. We performed a parametric study in 
function of the dielectric constant of one of the materials entering the construction of the device. 
 The structure of the device we have proposed is reported in Fig. 31 (a). It consists of two parallel 
metal plates that contain in between two different media of dielectric constants εr1 and εr2 respectively. 
At the border of the two media, a textured surface consisting of metal patches arranged in a periodic 
2D lattice is impressed. Circular shaped patches have been chosen for each unit cell of the lattice. 
Metal pins connect the upper metal plate to the patches and vias connect the lower metal plate to the 
same patches, one of each for every unit cell. We have chosen pins instead of vias for the connection 

Fig. 30. Distribution of the electromagnetic field a) in the first pass-band (first 
mode, f=8.07 GHz); b) in the second pass-band (f=31.47 GHz) of the m=3 vias 
case (same case as in Fig. 3). The cuts are parallel to the ground plane in the 
dielectric at half of its height. 
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of the upper plate as εr2 may be equal to unity, so that air fills the corresponding space. Therefore, the 
mechanical structure is more robust in this case. A unit cell of the textured surface is represented in 
Fig. 31 (b) and the HIS obtained by the repetition of the unit cell is reported in Fig. 31 (c). Fig. 31 (d) 
shows the CAD model used for the unit cell of the device. 
 
 

 
 
 We have used the following parameters: dimension of the square shaped unit cell d=2.5 mm, patch 
diameter 2r=2.1 mm, t1=1.6 mm, t2=0.3t1, radius of vias 0.1 mm, radius of pins 0.15 mm. The 
dielectric constant of the lower layer has been kept constant εr1=3.5, while that of the upper layer, εr2, 
has been varied between 1 and 12 during simulations. 
 The DD of the structure for the case εr2=12 is reported in Fig. 32. The shape of the border of the 
first irreducible Brillouin zone in the wave-numbers space is drawn in the inset of the figure. Light 
lines (LL's) are also represented, by assuming an effective dielectric constant of the inhomogeneous 
medium defined by εr1 and εr2 [rogers_05]. LL's are used for separation between fast and slow surface 
waves.  
 The first EBG spreads from DC up to f0, which is the minimum frequency of the first mode.  
 The second EBG is defined by f1, the maximum frequency of the first mode and f2 the minimum 
frequency of the second mode. The fact that low frequency waves are cut up to DC is motivated by the 
DC connection between the two metal plates. 
 The frequency positions and widths of the EBG's can be adjusted according to requirements of 
various applications by varying the geometrical and material parameters of the device. We have 
performed a study on the influence of the dielectric constant of the upper layer on the relevant 
frequencies f0, f1 and f2, Fig. 33. This choice is motivated by availability of a large range of low loss 
materials for high frequency applications. 
 The frequency span is sensitive to the material of the upper layer. The width of the pass-band 
(between f0 and f1) diminishes with the increase of the dielectric constant, making the filter more 
selective. 
 Several other parametric studies, in function of the geometric parameters will be performed in the 
future in order to provide further degrees of freedom in design. 
 

(c) 

(d) 

Fig. 31. (a) Proposed structure; (b) unit cell of the textured surface; (c) textured surface; (d) CAD 
model with upper metal plane removed for visualization. 
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 A solution for mitigation of parallel-plate noise in power distribution networks of high speed 
digital and mixed-signal circuits and of printed circuit boards based on an inhomogeneous parallel-
plate waveguide (PPW) has been proposed in [12_01_M]. The PPW consisted of two different 
dielectric layers and a high impedance surface (HIS) at their interface. The frequency related 
properties of the structure have been studied through the numerically computed DD. 
 The general structure of a power distribution network in a multilayered environment is presented in 
Fig. 34 (a). The patterned surface is embedded within the upper and lower metal plates. Two materials, 
generally of different dielectric constants, fill the space in between the planes. The structure obtained 
in this way is an inhomogeneous PPW. Vias of type 1 connect the upper and lower metal plates and 
are electrically insulated from the patterned surface by a surrounding dielectric slot.  The patterned 
surface consists of a periodic lattice of metal patches that can be connected by metallic pads. The 
patches may be connected to the lower metal plate by means of hollow vias. Additionally, pins are 
inserted between patches and the upper metal plane, and they may electrically connect the two in the 
limit. The idea of using pins has been first introduced in the context of coplanar waveguides, involving 
1D periodicity. Here we prefer to test the effect of pins in a 2D seting. 
 Not all elements in the figure are actually present in a special solution. In fact, three configurations 
are generally used. First, a "mushroom" like configuration, when the upper metal plate, the vias type 1 
and the pins are absent and εr2=1. In this case, vias type of 2 must not be present and metal pads 
connecting patches must exist in order to provide two conducting plates for power supply. An example 
of a unit cell of a patterned surface and the surface itself are shown in Fig. 34 (b) and (c) (the pin must 
be removed in this case). This solution is not compact enough since radiation occurs in the stop-band. 
 In the other two solutions, both upper and lower metal plates are present. If vias of type 1 connect 
the two metal plates, the metal pads connecting the patches on the middle plane must be present in 
order to provide two power supply lines at different DC potentials. However, if vias of type 1 are 
absent, then it can be shown that the structure with pads does not have a band-gap. Therefore, in the 
third solution, only vias of type 2 are present. The patches are electrically connected to the lower metal 
plane and disconnected from the upper plane. 
 We have considered a structure of the third kind. Therefore, vias of type 1 and pads are absent from 
the diagram in Fig. 34 (a). The unit cell with elliptically shaped metal patch and the textured surface 
are represented in Fig. 34 (b) and (c) respectively. This structure is a variation of a solution we have 
proposed in the past for building passive band-pass filters based on a HIS. A CAD model we have 
used is reported in Fig. 34 (d). The DD's have been calculated for waves propagating in the x direction. 
 Let us consider a unit cell with d=2.5 mm. In a first example, we take τ1=τ2=0 i.e. the pin extends 
from the patch plane to the upper plate. The DD in Fig. 35 shows a very wide EBG starting from zero 
frequency and a narrower one at higher frequencies. The light line (LL) is also represented in Fig. 35, 
and in subsequent figures. Although this result triggered the idea of introducing pins, it is not a 

Fig. 33. Frequency limits of the EBGs versus 
dielectric constant of the upper material 
layer. 

Fig. 32. DD of the proposed structure, 
featuring the first five modes. Inset: border 
of the first irreducible Brillouin zone. 
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realistic solution in this context since the metal plates are short-circuited. However, a small gap (τ1>0) 
corrects for this fact and the corresponding DD is reported in Fig. 36. In can be seen that the EBG is 
still wide enough in the lower frequency range, although low frequency waves are now propagated. 
 

 

 
 Next, we have approached the influence of geometrical dimensions on the location and width of the 
DD. We also took advantage of the availability of a wide range of dielectric materials with negligible 
losses in order to consider various values for εr1 and εr2. This study is motivated by the necessity to 
find geometrical and material parameters for the structure such that the frequency limits of the first 
EBG in the DD be relevant for the noise mitigation problem. As known, the parallel-plate noise 
spectrum has a low-pass pattern with a cutoff frequency of about 6GHz. 
 The structure we have started from is characterized by the following parameters: d=2.5 mm; 
t1=1.6 mm; t2=0.1t1; τ1=0.035 mm; τ2=0; rvia=rpin=0.1 mm; 2a=2.25 mm; 2b=1.8 mm; pin (0,0); vias 
(±a/3,0); εr1=3.5 and the associated DD is similar to that represented in Fig. 36. In order to match the 
frequency position of the EBG to the necessities of noise suppression, we have the option to vary the 
geometrical and material parameters. The results we present may be used for design of the device in 
order to meet specifications of various applications, not necessary related to the noise mitigation 
problem. 
 

 
 
 The position of the EBG in function of the dielectric constant of the upper layer (of width t2) is 
reported in Table 2. We have denoted by fMi and fmi

 the maximum and minimum frequency limits of 
mode i respectively. Increasing εr2 leads to both decrease of frequency limits of the EBG and increase 
of the gap width. Therefore, a large value of the dielectric constant is recommended for the considered 
application 
 
 
 

c) d) 

Fig. 34. (a) PPW-  transverse section; (b) unit cell; (c) textured surface; (d) CAD model (upper 
metal plane removed for better visualization). 
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Fig. 35. DD -  pins electrically connected 
to patches. 

Fig. 36. DD -  pins are not electrically connected to 
patches. 
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Table 2 EBGs in function of the dielectric constant of the upper layer 
εr2 fM1 fm2 EBG 
5 7.53 27.90 20.38* 
10 7.14 27.83 20.69 
12 7.05 27.82 20.77 
30 6.77 27.78 21.01 

*A second EBG appears between fM2=38.41 GHz and fm3=38.59 GHz. 
 
 A larger value for the first dielectric constant εr1=12 and taking εr2=30 leads to two EBGs, namely 
fM1=5.73 GHz and fm2=15.41 GHz (BW=9.68 GHz) and fM2=21.43 GHz and fm3=22.87 GHz 
(BW=1.44 GHz). A comparison with the corresponding line in Table 2 reveals that, as expected, 
increasing the dielectric constant leads to a shift of the DD towards lower frequencies.  
 The effect of increasing geometrical dimensions has been tested by increasing the radius of the pin 
to rpin=0.2 mm. We obtained, for εr1=3.5 and εr2=5 the following EBGs: fM1=7.26 GHz to 
fm2=27.88 GHz (BW=20.61 GHz) and fM2=38.43 GHz to fm3=38.83 GHz (BW=0.40 GHz). A 
comparison with the corresponding line of Table 2 reveals a shift towards lower frequencies of the 
first EBG (which is the major concern in this context), while the second EBG is shifted towards higher 
frequencies, probably motivated by the change in reactive elements following the increase of the pin 
radius. If the position of the pin is changed to (0,b/3), the first EBG results in between fM1=7.95 GHz 
and fm2=29.58 GHz (BW=21.64 GHz) and the second EBG does not occur. The increase in the EBG 
width motivates keeping this position of the pin. We have tested the effect of changing positions of the 
vias, to (±2a/3,0) and obtained two EBGs: fM1=8.80 GHz to fm2=29.08 GHz (BW=20.28 GHz) and 
fM4=47.06 GHz to fm3=48.08 GHz (BW=1.02 GHz). 
 It is interesting to note that the variation of the dielectric constant and/or geometrical dimensions 
can lead to important qualitative differences in the behavior of the HIS. For example, we have tested 
the following situation: εr1=3.5, εr2=12, 2a=2b=2.25 mm, t1=1.1 mm, t2=0.1t1, τ1=0.035 mm; τ2=0; 
rvia=rpin=0.1 mm, pin (0,0); vias (±a/3,0). We obtained two EBGs, but the second one resulted much 
larger than other secondary EBG widths we have reported until now. The results are: fM1=7.53 GHz to 
fm2=27.65 GHz (BW=20.12 GHz) and fM4=38.74 GHz to fm3=45.66 GHz (BW=6.92 GHz). The second 
EBG does not occur when geometrical parameters that were used for Table 1 are selected. 
 Turning now to the PPW noise mitigation problem, the position of the EBGs must be moved to 
much lower frequencies than in the situations considered above, since it is known that this type of 
noise has a low-pass spectrum, below 6 GHz. An obvious solution for this is to increase all the 
geometrical dimensions of the structure. We have performed five simulations in order to optimize the 
design, which are reported below in the increasing order of performance (and also by observing the 
time order in which we have gradually approached the final solution). 
 We have begun by doubling the sizes of the unit cell and patch: d=5 mm; t1=1.6 mm; t2=0.1t1; 
τ1=0.035 mm; τ2=0; rvia=rpin=0.2 mm; 2a=4.5 mm; 2b=3.6 mm; pin (0,b/2); vias (±a/2,0); εr1=3.5; 
εr2=5. Three EBGs resulted, one from 4.43 to 14.61 GHz (BW=10.18 GHz), the second one from 
20.57 GHz to 21.91 GHz (BW=1.34 GHz) and the third one from 24.24 to 24.81 GHz 
(BW=0.57 GHz). 
 We have then tried two alternative solutions. In the first one, we doubled the height of the structure, 
t1=3.2 mm; t2=0.1t1 and obtained two EBG: one from 3.65 to 14.31 GHz (BW=10.65 GHz) and the 
second one from 21.54 to 21.85 GHz (BW=0.31 GHz).  
 As a second solution, we have kept the height of the structure t1=1.6 mm; t2=0.1t1 and increased 
instead the dielectric constant εr2 to 30. We obtained three EBGs: one from 3.54 GHz to 14.42 GHz 
(BW=10.88 GHz), the second one from 19.53 to 20.92 GHz (BW=1.39 GHz) and the third one from 
21.82 to 22.48 GHz (BW=0.66 GHz).  
 The obtained results for EBG1 are quite similar in the two cases. Therefore, we doubled again the 
size of the structure in the xy plane: d=10 mm; t1=1.6 mm; t2=0.1t1; τ1=0.035 mm; τ2=0; 
rvia=rpin=0.4 mm; 2a=9.0 mm; 2b=7.2 mm; pin (0,b/2); vias (±a/2,0); εr1=3.5; εr2=30. The three 
obtained EBGs have been: from 1.83 to 7.13 GHz (BW=5.29 GHz), from 9.76 to 10.77 GHz 
(BW=1.01 GHz) and from 11.13 to 11.42 GHz (BW=0.29 GHz). 
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 A further decrease of the frequency parameters have been obtained by increasing four times the 
height of the structure: t1=6.4 mm; τ1=0.035 mm. The two EBGs that occurred are from 1.24 to 
6.76 GHz (BW=5.52 GHz) and from 10.14 to 10.34 GHz (BW=0.20 GHz).  
 The last two presented HISs clearly satisfy the frequency requirements for PPW noise mitigation. 
The corresponding DDs are reported in Figs. 37 and 38. 
 

 
 
 The presented study has been performed in view of applications of mitigation of parallel-plate 
noise in power distribution networks for high-speed digital and mixed-signal multilayer integrated 
circuits and for printed circuit boards. After a quite large number of simulations, we have derived a 
configuration suitable for solving the approached problem. Moreover, the influence of parameter 
variation on positions of EBGs may be used, qualitatively or quantitatively, to the design of similar 
structures in view of meeting frequency filtering specifications in various situations. 
 Since we proposed a number of switched periodic structures, to be presented in the next subsection, 
we preformed and reported a study of the effects of the biasing network on the dispersion 
characteristics of the network [11_01_M].  
 The unit cell geometry with elliptical patches we have introduced, as shown above, for easy 
fabrication in stripline technology, consisting of an elliptical-shaped patch grounded with a variable 
number of vias has been selected for demonstration. The encouraging results of this passive, fixed 
geometry offering a 2-D stopband as wide as 13 GHz around a central frequency of 20 GHz, i.e., 
approximately 65%, have motivated the extension of this research to construct tunable configurations. 
A novel technique easily implementable in coplanar transmission line technology for biasing a tunable 
configuration has been introduced.  
 The main difference between passive and tunable configurations is represented by the presence of 
the active devices, which could be diodes, field effect transistors (FETs), or microelectromechanical 
systems (MEMS). Typically, tunable impedance surfaces are biased using a network of biasing tracks, 
located on the opposite side of the ground plane from the tunable impedance surface, to minimize 
interaction of the biasing lines with the impedance surface operation. However, this solution is 
affordable when only a smaller number of switches are to be controlled; it becomes prohibitively 
expensive for large, 2-D periodic configurations. 
 To overcome such a limitation, a novel configuration of biasing network has been introduced and 
investigated. The biasing signal is conducted to the diodes through a coplanar waveguide (CPW) 
positioned directly in the ground plane itself. As the insertion of such a CPW in the geometry of the 
unit cell implicitly means that it will be periodically repeated, it is expected that the DD of the present 
solution is affected by the presence of the biasing network, but on the other hand, it also represents a 
further degree of freedom, which can be exploited with appropriate design. To the best of our 
knowledge, similar investigation has not been proposed in the literature. 
 Because of the aforementioned periodicity of the biasing network, we explicitly concentrate on its 
effect on the dispersion characteristics of the periodic structure. These effects are studied by 
monitoring the variation of the full DD for any additional pieces of the biasing network as it is 

Fig. 37. DD for l d=10 mm and 
t1=1.6 mm  

Fig. 38. DD for d=10 mm and 
t1=6.4 mm 
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introduced in the unit cell geometry, allowing a better understanding of its frequency response. The 
wide band-gap structure in [10_01_M] has been used for the investigation since it allows an easier 
observation of the spectral rearrangement of the characteristic modes. 
 In the UC proposed in [10_01_M], the patch is of elliptical shape, with the two symmetry axes 
parallel to those of the square UC. In each UC, several vias are positioned off-axis, with nodes on a 
two-dimensional nonuniform Cartesian lattice. The number of vias per UC is a variable and, together 
with the patch dimensions, represents degrees of freedom for the design. The computer-aided design 
(CAD) model for the NV = 2 case is presented in Fig. 39, with the leading dimensions of the geometry. 
With the emphasis on guided-wave applications, a top metal sheet is added to the unit cell, but for 
better visualization, it has been removed in the CAD model shown in Fig. 39. The circular-shaped 
hollow vias, centered in (xvi, yvi)i=1,2, are described in terms of internal and external radii of the 
metallization, which has a finite thickness. Because of the small dimensions of the hollow cavity, the 
resulting air-filled circular waveguide is always below cutoff. The characteristics for different values 
of  t2 and for q=1.8 mm, p=2.25 mm, and for the symmetric case (−p/6, −q/6)|1 and (p/6, q/6)|2 are 
summarized in the first three rows of Table 3, where fmin and fmax denote the minimum propagation 
frequency of the second mode and maximum propagation frequency of the first (fundamental) mode 
over the entire DD. BD max minw f f= −  and ( )0.5c max minf f f= −  denote the width and the central 

frequency of the band-gap respectively. 
 Starting from the reference structure above, the modifications incorporated to the CAD model and 
represented in Fig. 40 are the following. 
 

 
 

Fig. 39. Geometry with two vias positioned 
symmetrically with respect to the center. (left) CAD 
model with top metallic sheet removed. (right) 
Dimensions. 

Fig. 40. Evolution of the geometry: (a) slot around the 
via, (b) slot and access CPW line, (c) final CPWx 
configuration, and (d) final CPWy configuration. 

 
 

Table 3. Characteristics of the reference configuration (rows 1–3) and modified structure (rows 4–5) 

 

 
1) The vias that need to be commanded are circumscribed by slots (Fig. 40 (a)). The simplest case is a 
circular slot around the base of the vias. The slot radii Rin and Rout represent degrees of freedom that 
can be considered for an optimization of the DD. Rectangular/elliptical shapes can also be considered. 
2) A short CPW starting from the external rim of the circular slot towards the boundary of the UC in 
Fig. 40 (b). 
3) The other end of the previous CPW is connected to a second CPW going through the UC, and 
orthogonal to the previous one (Fig. 40(c)). This main CPW is connected to the voltage supply. 
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 Contrarily to the drawing in Fig. 40(c), where the main CPW is parallel to (Fig. 39), denoted 
hereafter by CPWx, in Fig. 40 (d) the BN has been rotated by 90 degrees and the main line is parallel 
to (configuration CPWy). Even if the UC has a square shape, the two configurations are different 
because of the elliptic shape of the patch. The region below the ground plane is considered to be air. 
 One of the potential drawbacks of such a solution is the possible radiation from the CPW itself. The 
problem of radiation of such structures has been studied in the literature [fang_1999]. However, 
because of the balanced structure, and of the same RF polarity (only dc polarities are different), the 
radiation is quite reduced. A second issue to be taken into account regards the symmetry breaking of 
the geometry of the unit cell. Changing the unit cell geometry, without changing the EBG’s spatial 
lattice dimensions, will not result in a different irreducible Brillouin zone since the shape of this latter 
depends only on the EBG grid. However, breaking the unit cell’s symmetry may result in the necessity 
to investigate wave propagation in the whole irreducible Brillouin zone and not only on the triangle 
given by the spectral direction vectors Γ, X, and M (for the considered rectangular unit cell) in order to 
determine the complete band structure. This issue has also been addressed in, e.g., [noj_2008]. 
  

 
Fig. 41. DDs for different steps of the design. Indexing from (a) to (d) corresponds to the cases in Fig. 40. 

 
 DDs of the geometries in Fig. 40 have been computed on the ΓXMΓ contour by commercial 
software [CST_2011]. Corresponding results are reported in Fig. 41, and numerical values are given in  
the last two rows of Table 3. The presence of the slot has no significant effect on the DD, as can be 
observed when comparing the third and fourth rows in Table 3. The DD of the configuration without 
the slot (not reported) is quite similar to that in Fig. 41 (a). The selection of the slot dimensions, as 
Rin=0.25 mm and Rout=0.4 mm, has been essentially based on geometrical constraints. Since here we 
are interested in the global effect, they were not optimized to reach specific target values for the band-

gap. The resonant frequency fr of the slot can be computed by / 4r med efff c Rπ ε=  , where c is the 

speed of light in vacuum, Rmed is the arithmetic mean of the inner and outer radii,  and εeff is the 
effective dielectric constant. For the values considered, it results that fr ≅ 40 GHz, i.e., the resonance of 
the concentrated, high-Q slot is far away from the upper edge of the band-gap. Its presence does not 
affect the spectral arrangement of the modes in the vicinity of the band-gap. The short CPW has a 
much higher impact on the DD, as can be observed in Fig. 41 (b). The resonance of the short line 
occurring inside the band-gap introduces an additional mode, splitting the otherwise wide band-gap 
into two narrower band-gaps with limits summarized in Table 3. This effect can be avoided by 
changing the length of the line using, e.g., a tilt (nonparallel to the Cartesian axes) geometry, pushing 
the resonance below or above the initial band-gap. The through CPW introduces an additional TEM 
mode with zero cutoff frequency, clearly present in the DD in Fig. 41 (c). Consequently, the band-gap 
disappears for the considered dimensions. Slowing down the phase velocity on this line, the upper 
limit of the mode can be decreased to a value below the lower limit of the initial band-gap. This can be 
obtained by periodic loading of the line itself, by simple stubs, or the fishlike geometry studied for a 
different application in [matek_2008].  
 In Fig. 41, another interesting phenomenon can be observed, namely some group velocities do not 
vanish at the indicated limits X and M for the irreducible Brillouin zone. This clearly indicates that 
anisotropy has been introduced when the symmetry of the UC has been broken down as mentioned 
earlier. This phenomenon requires further investigation for the full description of the propagation of 
the EM waves in any direction inside the 2-D lattice. If study of one-dimensional propagation only 
(inside the 2-D periodic arrangement) is of interest, e.g., x-direction in our case, anisotropy has no 
meaning. 
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 The following step of our study extends the investigation to the case when an active switch is 
inserted across the slots, connecting the base of the via to the central conductor of the CPW, as 
illustrated in the magnified Fig. 42. The prism models a diode in the “ON” state, while the absence of 
the prism models the “OFF” state of the diode. The diode has been modeled as a rectangular metal 
prism, i.e., a short circuit, when it is in the “ON” state, and as an air gap in the “OFF” state. The 
simple model used for the diodes allows understanding of the effect of the biasing network only. It is 
expected that a more realistic RLC model will slightly change the limits of the band-gaps when they 
are present. 

 
 

Fig. 42. Details of the connection between the biasing 
line and via base: (left) top view and (right) bottom 
view. 

Fig. 43. DDs for CPWx (a) and CPWy (b) cases with diode 
in "ON" state. Clear zone refers to the x-direction 
propagation. 

 
 DDs for both CPWx and CPWy configurations have been computed and reported in Fig. 5. Because 
of the above discussed anisotropy, only one-dimensional propagation (along x-direction) gives useful 
results (ΓX path). Anisotropy is clearly present. Comparing these DD’s to the results in Fig. 3, it can 
be seen, that switch between the ON and OFF states of the diode corresponds to a change from 
passband to stopband in the 20–28-GHz frequency band for the CPWy configuration. 
 The analysis we have just presented gives a close insight on the effects of different parts of the 
biasing on the DD of a periodic structure. The link between each component and its effect allows 
breaking down the overall geometry when optimization for a specific application is required. Because 
of the balanced configuration of the CPW, the solution exhibits low radiation leakage. For a specific 
design, the issue has to be carefully considered, and full 2-D DD must be computed that takes into 
account the introduced anisotropy. While the proposed solution allows individual control of the UCs 
for 1-D structure, for 2-D extension, row-by-row control can be achieved. 
 The use of materials with various constitutive parameters in the construction of waveguides based 
on metamaterials is also an important issue for miniaturization, scaling and field confinement 
[park_01]. This problem has been tackled in [11_10_M]. Materials with a wide range of dielectric 
constants have been realized, either from ceramics or by arrangements of layers of different substances 
[siev_05, lim_05]. However, the construction of low-loss materials with various permeabilities, this 
latter being an important factor for equalization of electric and magnetic stored energy, is a much more 
difficult task [ark_01]. The solution also relies on metamaterials, by incorporating electrically small 
inductors, split-ring resonators or wires in dielectric materials. If randomly arranged, the effective 
permeability has a scalar characteristic, otherwise anisotropy occurs. The problem has also been 
approached in view of photonic applications, and with the fast developing technology, 3D optical 
magnetic materials are expected to be feasible in the near future [matek_09]. 
 The use of magnetic materials in advanced magnetic switches, or controlled drug delivery are 
examples from other fields, where such materials find their applications. Applications to sensors has 
also been investigated in [zhang_09]. However, the use of such materials at high frequency, e.g. X 
band, is still a challenging operation. Some encouraging results have been recently published on this 
issue.  
 We have realized a study of the dispersion characteristics relative to a PPW unit cell with one of 
the conductor plates being substituted by a metamaterial. The structure presents no symmetry planes, 
resulting in a strong anisotropic medium for the propagation. The frequency response of the structure 
when the space between the two walls is filled by lossless magnetic materials has been found by 
simulation.  
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 Nevertheless the aforementioned anisotropic behaviour, the frequency responses are described by 
the DDs on the ΓXMΓ border of the first irreducible Brillouin zone by means of the CST. The values 
of electromagnetic band-gap (EBG) positions and widths obtained in this way are conservative, as we 
are interested mainly on waves propagating along the positive x direction (Fig. 44). However, the DDs 
for the whole first zone provide a better insight into the structure properties, even if the geometry does 
not present the required symmetries such that these DDs completely characterize the device for the 
whole zone, but only for the ΓX portion. As the best of our knowledge, similar studies are only 
sporadically present in the literature. 
 The CAD model of the unit cell of the metamaterial based PPW is presented in Fig. 44. The unit 
cell is square shaped with a side of 2.5 mm. The lower metal ground plane is separated from the patch 
plane, situated tsub=1.8 mm above, by a dielectric, non-magnetic material with a dielectric constant of 
εr,sub=3.5. The elliptically shaped patch with axes of 2.25 and 1.8 mm, is connected to the ground plane 
by two hollow, metalized vias of radii 0.1 mm. The positions of the vias are symmetric with respect to 
the center of the unit cell and are at 1/6 of the lengths of the patch in the considered directions. 
 

 
 
 
 The use of elliptical shape patch has been considered; insofar it represents an additional degree of 
freedom with respect to the circular one, maybe more diffused in applications. Moreover, the rounded 
shape without corners reduces the presence of discontinuities of the current on the radiator. As for the 
choice of the position of the vias, in some previous investigations [10_01_M, 10_02_M] it results that 
such values can give reasonable results. 
 A dielectric layer, of thickness tsup=0.18 mm, characterized by a dielectric constant εr and relative 
permeability µr, is inserted in between the patch plane and the upper metal plane, which has been 
removed in Fig. 44 in order to improve visibility. In our study, we have considered different values for 
these two material parameters. The patch is connected to the upper planes by a metal pin of radius 
0.1 mm. 
 The DD of the presented structure have been computed in two different situations: firstly when the 
top layer has a permittivity εr=1 and permeability equal to µr=1 and to µr=2 respectively. Results are 
reported in Fig. 45 (a) and (b). In the second investigation the top layer has had a permittivity εr=3.5 
(similar to the bottom layer) and a permeability µr=3 (Fig. 46). The first situation allows for 
demonstrating the impact of the variation of the permeability. As it may be noticed by examination of 
Fig. 35, two EBGs are present. EBG1, which starts from zero frequency, is explained by the DC path 
between the ground plane and the patch plane, while EBG2 is characteristic for such structures 
[siev_99, tav_07]. The first mode of propagation is confined by the patch surface. The pins 
concentrate the magnetic field (and the surface current), as shown in Fig. 47. 
 

Fig. 44. CAD model of the unit cell. 

tsub, εr,sub 

tsup, εr, µr 
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 Furthermore, the group velocity of waves carried by the first mode is almost constant and has a 
small value. The second situation (εr=3.5, µr=3) is a better choice for a more compact mechanical 
structure. By examining the DD in Fig. 46, one sees that two EBGs are present again. 
 

 
 
 In the next phase of the analysis, the relative permeability of the upper dielectric material has been 
varied from 1 to 6 with a step of 1, considering constant value for the dielectric constants of the 
material equal to εr=3.5. The corresponding positions and width of the EBGs have been determined 
and reported in Fig. 48. 
 In Fig. 45, EBG1 is defined by the minimum frequency of the first mode, while the limits of EBG2 
are defined by the maximum frequency of mode 1 and minimum frequency of mode 2. Since all 
aforementioned values are in the ΓX segment, the limits of the EBGs are those relative to the 
propagation along x direction. The lower EBG is large (more than 20 GHz) for low values of 
permeability, while the upper EBG is more than 7 GHz. The pass-band in between the two EBGs is 
minimum between 1< µr<2, when the frequency limits are the highest. After that point, the frequency 
limits decrease monotonically with µr. However, the highest frequency limit decreases slower that the 
lower and intermediate ones, so that EBG1 is smaller and EBG2 is larger for high values of 
permeability. 
 

Fig. 45. DD for the structure in Fig. 1: (a) εr=1, µr=1; (b) εr=1, µr=2. 

(a) 
 

(b) 
 

Fig. 46. DD for the structure in Fig. 1: εr=3.5, µr=3. 
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 The results of this study concerned the modification of the frequency response of a PPW built in 
metamaterial technology when one of the dielectric substrates’ entering its composition is replaced by 
a lossless magnetic material. The EBG structure has been discussed and it has been demonstrated that 
it is sensitive to changes in the relative permeability of the material. The preliminary results of our 
investigation show that this is another structure that may be efficiently used in sensor and 
measurement applications.  
 We proposed a multiband passive filter in the microwave frequency range based on a strip-line 
technology metamaterial with rectangular, hollow patches and two vias [11_04_M]. The pattern 
impressed inside the unit cell has a novel structure introducing three electromagnetic band gaps 
ranging across of the first six modes of operation. The relatively large band-gaps, allowing to be 
controlled by the geometrical and material parameters of the unit cell, recommend the structure for 
applications as band-pass, band-stop or multi-band filter or in sensor related applications. The 
structure is also fit for construction of switchable devices. 
 Our goal has been devising a patterned surface on grounded dielectric board having several EBG's 
in between the first modes of operation. A solution for the unit cell that satisfies these constraints is 
reported in Fig. 49 (a) – top view and Fig. 49. (b) – side view. The unit cell is square and it contains, 
like the "mushroom" structure, a square shaped central patch, connected to the ground plane through a 
grounding via. The via is in an eccentric position, allowing for an additional degree of freedom in the 
design. The central patch is surrounded by a metallization, with sides parallel to those of the unit cell 
and having a via in a position that can also be varied in order to gain further design flexibility. The 
patterned surface is obtained by 2D periodic repetition of the unit cell, Fig. 49 (c). 

Fig. 47. Magnitude of intensity of magnetic field (top) and electric field (bottom) at the patch plane (mode 1). 
 

Fig. 48. EBG limits versus relative permeability of 
the upper dielectric material with εr=3.5. 
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 The frequency related properties of the structure in Fig. 49 have been tested by constructing the DD 
on the boundary of the first irreducible Brillouin zone in the wave-number space. We have 
concentrated on propagation along the x axis only, Fig. 49. The geometric dimensions we have chosen 
for the first experiment have been: Dx=Dy=2.5 mm, a=0.35 mm, b=0.6 mm, c=1.1 mm, t1=1.6 mm and 
t2=0.1t1. The vias, having equal radii r=0.1 mm, have been positioned at (−0.15 mm,0) and 
(0.85 mm,0) respectively. The relative dielectric constant of the substrate has been chosen as εr1=3.5.  
 

  

 
 We have tested the closed structure, which is obtained by placing a metallic plane at a distance 
t2=0.1t1 above the open structure and clearly indicates the band-stop properties of the surface. Closed 
structures, which may be assimilated to inhomogeneous parallel plate wave guides, find applications 
in various fields. For the beginning, we assume that the space in between the patch plane and the upper 
metallic plane is filled with air, ε2=ε0, i.e. εr2=1, Fig. 49 (b). 
 The DD obtained by simulation, featuring the first eight propagation modes, is reported in Fig. 50. 

Normalized wave-number 
2

x x x
x

k D D
π

λ
= , ranging between 0 and π, corresponding to the ΓX edge of 

the first Brillouin zone, is displayed on the horizontal axis. The light line and the CAD model are also 
shown on Fig. 50. The patterned structure features three EBG's, in between the first and the second 
mode, the second and the third and in between the fifth and the sixth. The frequency ranges of the 
aforementioned band-gaps in GHz are [6.67; 11.88], [15;28.79] and [44.17;46.18] respectively. The 
EBG widths are 5.22, 13.79 and 2.01 GHz respectively.  We also mention that all of the three band-
gaps present partially bounded wave operational regime, useful for filter application. The above 
observation is more relevant for open structure where radiation is possible, but it allows better 
understanding of the physics of the propagation of the electromagnetic field. Furthermore, we note the 
flatness of the second mode. It is an effect of a lumped resonator internal to the unit cell, which does 
not feel, or feel in a weak manner the external periodic boundary condition. Similar behavior has been 
observed in other comparable situations. Here, the mode feels the external boundary conditions in a 
weak manner, due to presence of the vias which increase the mutual coupling between adjacent cells.  
 In this way, the initial goal of finding a multi-band patterned surface with a simple pattern etched 
on the unit cell has been achieved. Next we follow the influence of some geometrical parameters on 
the positions and widths of the EBG's. 
 We have considered some variations of the structure. The first parameter we have varied has been 
the dimension a of the central patch, Fig. 49 (a), by considering five equidistant points between 0.3 
and 0.5 mm. The variations of the limit frequencies versus the design parameter a are presented in Fig. 
51. An EBG is comprised in between two curves indicated by the same type of markers. While the 
lower limit of the first EBG, the upper limit of the second EBG and both limits of the third EBG 
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Fig. 49. (a) Basic cell: top view. (b) Side view. (c) HIS. 
Fig. 50. DD for the case a=0.35 mm 
and t2=0.1t1.Inset: CAD model 
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remain approximately constant, the upper limit of the first EBG and the lower limit of the second vary 
almost linearly, allowing for a convenient design. The second EBG becomes particularly large for 
a=0.5 mm: 15.73 GHz, between 11.94 and 27.67 GHz (79%, or 86.5% if the central frequency is 
considered as the geometric mean of the limits). 
  
 

 
 
 
 The simulation results on the influence of the parameter t2 are listed in Table 4. The widths w of the 
EBG's diminish when t2 increases. This is an expected behavior, similar to that exhibited by the 
"mushroom" structure. However, a larger value of t2 is necessary when additional electronic lumped 
components have to be mounted on the patch plane in order to accomplish various functions, such as 
additional filtering or control. 
 

Table 4. Limits and widths of the EBG's for various positions of the upper metallic plane. 
 fm1 

[GHz] 
fM1 

[GHz] 
wEBG1 
[GHz] 

fm2 
[GHz] 

fM2 
[GHz] 

wEBG2 
[GHz] 

fm3 
[GHz] 

fM3 
[GHz] 

wEBG3 
[GHz] 

t2=0.5t1 8.17 11.97 3.80 17.99 21.15 3.16 44.50 45.54 1.04 
t2=0.3t1 7.84 12.22 4.39 17.47 24.59 7.13 44.34 46.89 2.55 
t2=0.1t1 6.67 11.88 5.22 15.00 28.79 13.79 44.17 46.18 2.01 

 
 Results obtained by considering the original dimensions listed in above but various positions of 
vias are presented in Table 5. The first row in Table 5 corresponds to the DD in Fig. 50 and has been 
added for comparison. The limits and widths of the EBG's can be modified by 1..2 GHz. This is not 
very much, however it is significant and can be used as some kind of "fine tuning". 
 The PBG surface we have proposed may find applications in multiband, wideband, microstrip 
filters and in sensor applications.   
 

Table 5. Limits and widths of the EBG's for various positions of the vias. 
via 1 
[mm] 

via 2 
[mm] 

fm1 
[GHz] 

fM1 
[GHz] 

wEBG1 
[GHz] 

fm2 
[GHz] 

fM2 
[GHz] 

wEBG2 
[GHz] 

fm3 
[GHz] 

fM3 
[GHz] 

wEBG3 
[GHz] 

(–0.15,0) (0.85,0) 6.67 11.88 5.22 15.00 28.79 13.79 44.17 46.18 2.01 
(0,0.15) (0.85,0) 6.71 12.17 5.45 15.17 28.17 12.99 44.49 46.27 1.78 
(0.15,0) (0.85,0) 6.77 12.77 6.00 15.62 27.29 11.67 44.19 46.05 1.86 
(–0.15,0) (0.85,0.5) 6.60 11.60 5.00 14.97 29.20 14.21 45.53 46.34 0.81 

 
 

Fig. 51. Variation of EBG's versus the dimension a of 
the central patches. The limits of an EBG are indicated 
with similar markers. 
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 The structure introduced in [11_04_M] has been further investigated due to its properties with 
potential applications in fixed and switchable filtering [11_05_M]. The investigation detailed in the 
following regards the effect of the variation of the dielectric constant of the upper, thinner layer. It is 
expected that a small change in the material parameters reflects in a highly sensible manner, allowing 
the construction of selective filters or sensors with advanced performances.  
 In a practical realization, dielectrics present in the device can be chosen from a wide range of 
materials with various dielectric constants. In order to simplify the analysis, here the dielectric 
constant of the bottom layer has been maintained constant, and only that of the top layer has been 
varied. In particular, the dielectric constant of the lower layer has been fixed to εr1=3.5, while that of 
the upper layer has been scanned in the interval from 1 to 13. This quite large variation allows for 
individuating frequency ranges where the behavior of the structure excited with electromagnetic 
signals exhibits abrupt changes, if any. Furthermore, knowledge of the behavior on large frequency 
ranges is useful in the design of wideband surface wave launchers. 
 DD's for integer values of εr2 between 1 and 13 and also for εr2=εr1=3.5 have been calculated as 
shown above, for positive wave-numbers corresponding to propagation along the x direction. The 
DD's for the bounds of the interval are reported in Figs. 52 and 53. 
 The light lines (LL's), also represented on Figs. 52 and 53, mark the difference between slow and 
fast waves. Fast waves are evanescent in the case of open structures and may be used for the 
construction of leaky wave antennas [rogers_05]. The situation is however different in closed 
structures. The slopes of the LL's have been calculated relying on the effective dielectric constant 
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which corresponds to a PPW with the two layers of dielectric, but without patches and subject to 
magnetic rather than periodic conditions on the lateral walls. Therefore, this choice is appropriate for 
the quasi TEM fundamental mode.  
 

 
 

Fig. 53.  DD for εr2=13, featuring 6 EBG's. Modes 
are marked as in Fig. 2. Modes 3 and 4 are (almost) 
degenerate. 

Fig. 52. DD for εr2=1, featuring 4 EBG's. The 
LL is also represented. 
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 The corresponding values of the effective dielectric constant for two different ratios between the 
thicknesses of the layers, 0.1 and 0.3 respectively, are reported in Fig. 54. A further observation that 
can be made based on the reported data regards the dynamic of the effective value of the resulting 
dielectric constant, i.e. the lower the ratio, the higher is the excursion of the effective value of the 
dielectric constant. The higher variation enriches the possible application range, and demonstrates the 
statement in the previous section on the performances of the EBG characteristics. 
 Since the dielectric constants of the upper and lower layer are different in general, the structure 
cannot support a TEM fundamental mode, but it does support a quasi TEM one. An exception is the 
case εr1=εr2, also considered in simulations, when the middle (patch) layer is surrounded by a 
homogeneous dielectric and when a TEM fundamental mode may be supported. Investigation around 
this point has been deepened. 
 The structure we have introduced present DD's rich in EBG's: 4 for εr2 =1 and 6 for εr2=13 
respectively. The number of EBG's for the rest of the cases is in between these two values. The EBG 
limits have been calculated by the difference between the minimum frequency of the upper mode 
fmin,n+1 and the maximum frequency of the lower one fmax,n. The variations of these quantities versus εr2 
for the relevant modes are represented in Fig. 55, regardless of the fact that an EBG exists or not for 
the particular value of εr2. An EBG exists if fmin,n+1> fmax,n. 
 The EBG's present in all situations and situated in regions of slow waves are in between modes 1 
and 2 and modes 2 and 3 respectively. All curves have similar shapes.  Central frequency and band 
width decreases when the dielectric constant of the top layer increases. 
 As shown above, the obtained results have potential applications in multi-band planar filter design 
and in sensor devising. 
 In [11_09_M] we have proposed a filter built with a lattice entering the construction of a PPW and 
having three or four EBGs. We have considered several variations for the unit cell geometry and have 
chosen the one that provides the largest EBGs. We have determined the positions in frequency of the 
EBGs and studied the variations of these positions when the dielectric filling the wave guide was 
changed.  
 The design of the unit cell and the CAD models of the structures we have considered are reported 
in Fig. 56. In the CAD models, the upper metal plane entering the structure of the PPW has been 
removed for a better visualization. The unit cell is square shaped, with dimensions Dx=Dy=2.5 mm and 
it is composed, from bottom to top, of a metal (ground) plane, a material with dielectric constant 
εr1=3.5 and height h1=1.8 mm, a patch plane (the patches are etched in the upper copper plane of a 
microstrip board), another material of dielectric constant εr2 and height h2=0.1h1, and the removed 
upper metal plane.  
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 The patch pattern of the unit cell comprises three rectangular, concentric shapes, with parallel 
sides. The inner shape is connected to the ground plane through a metalized via V2. The two other 
patches are hollow. The outer one is connected to the ground plane through two metalized vias V2 and 
V3. All vias have radii of 0.1 mm. 

 
 
 The dimensions of the patches result from the following coordinates of the points represented in 
Fig. 1 with respect to the reference system Oxyz (all values are in mm): A(0.35;0.75), B(0.55;0.85), 
C(0.65;0.95), D(0.75;1.05), E(1.15;1.15) and obviously F(1.125;1.125). The positions of the vias are 
given by V1(0.95;0), V2(0;0) and V3(−0.95;0). 
 The DD of this structure, with the above presented geometric parameters, is reported in Fig. 57 (a). 
The frequencies of the first seven modes are represented versus the normalized wavenumber 
corresponding to propagation in the x direction, kxDx, which ranges between 0 and π. The straight, 
oblique line is the light line (LL) corresponding to (1). The LL separates slow waves from fast waves. 
In the case of open structures (upper metal plane absent), fast waves are leaky. 
 The DD in Fig. 57 (a) shows the existence of three EBGs, between modes 1 – 2, 2 – 3 and 3 – 4 
respectively, of which the middle one is quite large, approx. 10 GHz. Nevertheless the lower one is 
narrower than we would like, the possibility of obtaining three EBGs has been demonstrated. 
 The result of an attempt to obtain a better result, by lowering the space between the inner patch and 
the middle one, by moving A to (0.45;0.75) and keeping the symmetries is reported in Fig. 57 (b). The 
situation has not improved: the main influence of the modification being at the higher order modes. 
 Another alteration of the original idea has been to remove one of the vias. The DD corresponding 
to the unit cell of Fig. 56 with via V3 removed is presented in Fig. 57 (c) and this time the lower EBG 
has resulted large enough. Consequently, we have chosen this solution as final. 
 One parameter that may be considered being modified in the presented design is the dielectric 
constant εr2 of the upper material. As shown above, unlike magnetic ones, low-loss materials with a 
wide range of dielectric constants are readily available. The interest in using higher dielectric 
constants stems from possibilities of scaling, electric energy concentration and miniaturization, as 
higher dielectric constants reduce wavelength. As an example, the DD for the presented structure but 
with an upper dielectric layer with εr2=5 is reported in Fig. 57 (d). As expected, the three EBGs 
occupy now lower positions in the frequency domain, and the second and third EBGs are wider. 
Furthermore, a fourth, narrow EBG has appeared between modes 4 and 5. 
 The variations of the frequency limits that define the EBG versus the dielectric constant of the 
upper layer are represented in Fig. 58. We have denoted by fmini and fmaxj the minim and maximum 
frequencies of mode i and j respectively. 
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Fig. 56. Design of the unit cell and CAD models (three and two vias). 
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(a) (b) 

(c) (d) 

Fig. 57. DDs (a) First unit cell with three vias; (b) Second unit cell with three vias; (c) Unit cell 
with two vias, εr2=1; (d) Unit cell with two vias εr2=5. 

Fig. 58. Limit frequencies of EBGs versus the 
dielectric constant of the upper layer. 
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 A novel geometry of unit cells relying on printed technology and featuring full DD exhibiting an 
unusual large number of electromagnetic band-gaps (EBGs) has been proposed in [12_02_M]. The 
printed patch consisted of a filter like geometry, meandered around the symmetry center of the unit 
cell and  has been connected to the ground plane by three collinear vias, locally increasing the loading 
inductances; the multiple resonances the structure exhibits determined the limits of the band-gaps. In 
particular, as many as seven EBGs have been proven to exist in between every two consecutive modes 
from the first eight ones in the case of one directional propagation. The same phenomenon has been 
attested for 2D propagation, where four EBGs have been proven to exist between the first five modes 
in the case of arbitrary directed propagation in the main plane of the structure. The 2D scanning 
required for building up the full DDs has been realized by computer simulation with dedicated 
software - CST. The small differences in band limits between the 1- and 2-D cases reflect small 
amount of anisotropy, since in the present study the symmetry of geometry has been approximately 
maintained. The wide range of mono-modal behavior recommends the structure for applications 
requiring selective filtering, e.g. direct incorporation into antenna feeders. As of the best of the 
authors' knowledge, geometries with similar electromagnetic properties have not been reported in the 
scientific literature up to the time of the publication of the [12_02_M]. 
 A novel structure that consists of a patterned, periodic surface impressed on one side of a single- 
layer, grounded dielectric board and connected to the ground plane by three vias has been considered. 
The patterned surface is covered with a second layer of dielectric material, metallized on the opposite 
side to the interface where the periodic pattern is positioned. 

 The geometry with corresponding dimensions of the considered unit cell is presented in Fig. 59, 
where the upper metal plane has been removed for a clearer rendering. The grounded dielectric layer, 
of height h1=1.6 mm, has a dielectric constant εr1=3.5. The shape of the unit cell is square in the 
horizontal plane, dx=dy=2.5 mm. (These dimensions have been considered for illustration purpose 
only, without targeting any particular application at this point.) Extending the square shape of the unit 
cell to a rectangular one corresponds to introducing an additional degree of freedom that can be 
efficiently exploited if properly considered. The patch is of spiral shape, facilitating multiple 
resonances; it is composed of several rectangular sub-patches, whose dimensions are listed in Table 6, 
according to the numbering in Fig. 59.  

 
Table 6. Sub-patch dimensions 

Sub-patch x limits [mm] y limits [mm] 
1 −0.35; 0.35 −0.75; 0.75 
2 0.25; 0.35 −0.85; −0.75 
3 −0.55; 0.35 −0.95; −0.85 
4 −0.65; −0.55 −0.95; 0.95 
5 −0.55; 0.55 0.85; 0.95 
6 0.55; 0.65 −1.05; 0.95 
7 −0.75; 0.65 −1.15; −1.05 
8 −1.15; −0.75 −1.15; 1.15 
9 −0.75; 0.75 1.05; 1.15 
10 0.75; 1.15 −1.15; 1.15 

 
 Looking at the geometry from a different point of view, the metallization, previously called patch, 
can be seen as a meandered sequence of a finite number of transmission lines with different lengths 
and widths: such an approach better accounts for the presence of  multiple resonances. One notes that 
the meandering and 2D periodicity change the coupling between the various parts of the resonators 
with respect to the linear arrangement and, consequently, the resonance frequencies. 

 Because of the presence of the two closing continuous, metallic plates, the patch prevalently acts as 
a parallel-plate capacitance. In the periodic arrangement, the coupling between the various cells is 
mainly capacitive [siev_99, rogers_05]; hence a resonant behavior is quite difficult to be reached 
because of the very low inductance present in the configuration. On the other hand, it has been shown 
that an inductive behavior can be augmented by using vias [rogers_05]. Therefore, three collinearly 
positioned vias, each of radius r=0.1 mm, have been added to the initial planar patch. The vias are 
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located parallel to the x axis along the mid-line and at the centers of the sub-patches as shown in Fig. 
59 and connect the patch to the ground plane. The simple collinear, equi-space disposition of the vias 
has been chosen mainly to reduce the complexity: the spatial arrangement of such reactive loads 
represents a further degree of freedom for application driven design. Results reported below 
demonstrate that the inductive loading remains quite similar if vias are moved along the y axis, but this 
placement alters the symmetry of the unit cell. 

The increased number of vias with respect to a usual "mushroom" configuration will result to be 
responsible for achieving a large number of EBGs. In fact, simulations (not shown) we have 
performed with only two vias present have resulted in a lower number of EBGs.  
 We note, that a similar kind of configuration has also been considered in [kam_08] - explicitly a 
spiral-based, inductance-enhanced structure, with a patch featuring varying metallization bandwidth, 
connected to the ground plane through a central via - for a different application, namely multichip 
module packages. Consequently, the authors of the cited reference have been interested in the lower 
frequency band behavior of the device. Although the unit cell consudered in [kam_08] is not 
symmetric, the existence of two EBGs between the first three modes on the ΓXMΓ border of the first 
irreducible Brillouin zone has been demonstrated. In our case, we have increased the number of vias, 
in order to enhance the inductive character of the structure at higher frequencies and used a different 
pattern for the metallization. Furthermore, we considered both 1D DDs for waves propagating along 
the x direction and 2D DDs for waves propagating in an arbitrary direction, this latter extension being 
motivated by the lack of symmetry of the unit cell. 
 

 

 

 
 

 In the numerical analysis, the characteristics of the upper layer (indicated by subscript 2 in Fig. 59), 
i.e. height and εr, have been taken as parameters. In particular, a height t2=0.1t1 has been considered 
since it has been previously demonstrated that it guarantees a broad-band performance [rogers_05]. 
The relative dielectric constant εr2 has been varied, and results for two different values of this 
parameter are presented below. 

The DD corresponding to the first eight proper modes of the periodic structure with the unit cell of 
Fig. 59, for a value εr2=10 of the dielectric constant of the upper dielectric layer is reported in Fig. 60. 
 The diagram has been computed along 21 equi-spaced points between 4.5o and 175.5o  and the 

Fig. 59. Unit cell: CAD model (top), patch 
with numbered sub-patch decomposition  
(bottom) 
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Fig. 60. 1D dispersion diagram, the first eight 
modes and light line. 
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result has been spline interpolated. 
 Only waves propagating along the x direction (according to  the reference frame shown in Fig. 59) 
have been considered. The horizontal axis represents the normalized wavenumbers kkdx and the 
vertical axis represents the corresponding modes frequencies. The light line (LL), separating slow and 
fast modes, and corresponding to propagation of plane waves through an effective medium 
characterized by (1) is also represented on Fig. 60. EBGs are considered to spread between the 
maximum frequency of mode i, denoted fMi, and the minimum frequency of mode i+1, denoted fm,i+1. 

By inspection of Fig. 60, existence of EBGs between every two consecutive modes can be observed. 
The flat, quasi  phase independent dispersion curves correspond to high Q resonators, which can be 
represented by pairs of capacitances and inductances that are internal to the unit cell. The limits and 
widths of the EBGs are reported in Table 7, together with similar results corresponding to the case 
when the leftmost via in Fig. 59 is shifted along the negative y axis by 0.55 mm. Such a shift is an 
example of parameterization of the structure. 

 
Table 7. Limits and widths of EBGs: propagation along x axis 

i fM,i [GHz] fm,i+1 [GHz] EBG Width [GHz] 
1 7.68 (7.69)* 10.20 (10.12) 2.52 (2.43) 
2 11.28 (10.34) 13.03 (13.17) 1.75 (2.83) 
3 13.39 (13.45) 17.76 (17.53) 4.37 (4.08) 
4 17.80 (17.86) 24.04 (23.60) 6.24 (5.74) 
5 25.23 (25.01) 29.53 (29.47) 4.30 (4.46) 
6 31.44 (31.39) 32.05 (34.57) 0.61 (3.18) 
7 37.41 (37.75) 38.26 (38.12) 0.85 (0.37) 

*) Values in parentheses correspond to the shifted position of the first via 
 
One can further note that every single pass-band is defined by a single mode, i.e. a very large 

frequency band of mono-modal  characteristics of the structure can be efficiently exploited for 
dispersion engineering applications, e.g. self-collimation [matt_07], super lens, super prisms 
[enoch_03] and propagation control [notomi_00]. 

The next considered problem has been finding whether this property, namely the existence of a large 
number of EBGs, extends to waves propagating along other directions. The patch in Fig. 59 is not 
symmetrical with respect to either x or y axis, although the lack of symmetry is quite reduced. 

Nevertheless, we considered that a simple evaluation of the DD along a spectral triangle, such as 
ΓXMΓ, is not sufficient and proceeded to a full 2D propagation analysis. Since the procedure of 
calculating the DD is computationally extremely time-consuming, the analysis is restricted to the 
determination of the first five modes. This choice guarantees a shorter computational time, since the 
mesh required for the lower frequency characterization is less dense with respect to the previous case. 
For this second set of investigations, a value of εr2=30 has been considered, which in turn increases the 
discretization details, i.e. number of mesh cells. The DD has been calculated on a 24×24 points grid, 
between −172.5o and 172.5o on both the x and y directions. The result is reported in Fig. 61. The 
lowest, highlighted triangular contour is the spectral one referred above. Its projections on the 
frequency surfaces are also represented. 

Again EBGs may be observed between every two consecutive modes; the limits and widths of these 
EBGs are listed in Table 8, while the corresponding limits on the ΓX line are reported in Table 9 
allowing a quantitative comparison of the band limits between the 1- and 2-D characterizations. As it 
can be observed, the difference between the minimum and maximum values of the boundaries are 
quite similar, at least for the first three modes, a clear indicator of the low anisotropy. Secondly, by 
comparing the data in Tabels 7 and 9, one can note that the increase of the relative dielectric constant 
from 10 to 30 reflects in narrower  band-gaps.  

We also note that the fundamental mode of the considered structure is TEM, i.e. with zero cut-off, 
with a relatively large band-width, not allowing the mitigation of low frequency noise. Modification of 
the geometrical and material parameters, similarly to the solution presented in [12_01_M], allows  
finding appropriate structures for this application. Moreover, we note that the presented passive 
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structure allows for insertion of active devices in a similar manner as recently discussed in [11_01_M]. 
 

Table 8. Limits and widths of EBGs: arbitrary propagation. 
i fM,i [GHz] fm,i+1 [GHz] EBG Width [GHz] 
1 7.44 9.68 2.24 
2 10.92 12.65 1.73 
3 13.09 17.17 4.08 
4 17.84 23.31 5.47 

 
 

Table 9. Limits and widths of EBGs: second experiment, propagation along x axis. 
i fM,i [GHz] fm,i+1 [GHz] EBG Width [GHz] 
1 7.29 9.85 2.56 
2 10.92 12.65 1.73 
3 13.07 17.17 4.10 
4 17.30 23.31 6.01 

 
 

 
 
 
 If different values of geometrical or material parameters are chosen, the DDs are expected to look 
different from the reported ones. This fact will be exploited in the future, after carrying out parametric 
studies (and by taking into consideration other degrees of freedom),  for multi-band filter design that 
fits requirements of various applications. Another direction for applications is in the field of dispersion 
engineering, by taking advantage of the shape of the 2D DD. 
 

Fig. 61. 2D dispersion diagram, the first five modes. 
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Fig. 62. (a) Basic cell: top view. (b) Side view. (c) HIS. 

C. Switched Surfaces 
 In order to obtain switched patterned surfaces, electronic control elements have to be introduced for 
altering the geometry. We have tested various geometries of the patches in order to devise EBG 
structures with convenient switched frequency properties.  
 A parametric study of a high impedance surface built in microstrip technology is reported and the 
feasibility of an electronically switched parallel-plate waveguide is demonstrated in [10_03_M]. Full 
wave electromagnetic simulation is used for obtaining relevant parameters and for operation 
demonstration. 
 The geometry of the unit cell is presented in Figs. 62 (a) and (b). The dimensions we used have 
been: Dx=Dy=2.5 mm, p=2.25 mm, t1=1.6 mm, t2=0.5t1. The internal radii of the two vias have been set 
to r=0.1 mm. In order to electrically separate the patch plane and the ground plane, slots have been 
inserted around the vias in the ground plane with interior radii of 0.25 mm and exterior radii of 
0.4 mm. The dielectric constant of the microstrip substrate has been set to 1 3.5ε = , while the space in 
between the board and the upper plane is filled with air facilitating the insertion of the diodes. The 
HIS, obtained by the periodic repetition of the unit cell, is presented in Fig. 62 (c), where the diodes 
have not been drawn. 

 

 
 In order to gain some insight on the properties of the underlying HIS, the DD has been found by 
electromagnetic simulation (as shown above) and the result is reported in Fig. 63. The diodes and slots 
were not present in this experiment and the first five modes have been considered. The light lines are 
also represented in Fig. 63 and the EBG is indicated, between modes 1 and 2. The obtained limits of 
the EBG have been [16.09; 27.18] GHz, resulting a width of 11.11 GHz. If only modes having 
frequencies below the frequency corresponding to the light line for the same wave-numbers are 
considered, then the upper limit of the EBG extends to about 30 GHz. However, we have chosen to 
consider a global EBG, regardless of the slow or fast character of the waves. 
 A second simulation involved the influence of the patch dimension on the characteristics of the 
EBG. The q dimension of the patch has been kept constant at 1.8 mmq = , while the p dimension has 
been varied by considering six equidistant points between 1.5 and 2.25 mm. The positions of the vias 
vary with respect to the cell, but their relative positions with respect to the patch do not. The results 
are reported in Figs. 64 and 65, parameterized by three values for the radius of the vias. 
 The simulations have been performed only for the ΓX edge of the Brillouin zone, so that results 
apply for waves propagating along the x direction. As Fig. 64 shows, the maximum value of the EBG 
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Fig. 64. EBG width in versus the p patch 
dimension. 

width is obtained for the circular configuration 1.8 mma b= = , while the central frequency decreases 
with the increase of  a. 
 

  

  
 
 Such a behavior may be explained in terms of a circuit model [rogers_05]. Circuit models are 
useful for predicting the EBG characteristics with a certain degree of approximation, but with a low 
calculation complexity. Although finding such a model is beyond our scope, some remarks may be 
appropriate. 
 The model devised in [rogers_05] for PPW built with HIS with rectangular patches and central vias 
is composed of two sections of transmission line and a shunt LC branch circuit. The inductance L 
depends on the vias dimensions, while the capacitance C is determined by the overlapping surfaces of 
the patch and upper metallic wall. Both parameters depend mainly on surface: L varies according to 

( )lnα α− , 2 2/ xr Dα π=  and does not depend on p, while C decreases with r2 and increases with p. In 

our case, the mutual inductance M of the vias must also be taken into account. M decreases when p 
increases, as the distance between vias increases, but its dependence on r may be neglected [grov_73]. 
These variations explain the behavior of the EBG parameters reported in Figs. 64 and 65. 
 The decrease in central frequency with the increase of p is determined mainly by the increase of the 
capacitance. Additionally, the presence of a maximum value for the EBG width may be foreseen if we 
mentally extrapolate the graphs in Fig. 64. For p=0 (no patch) the structure becomes a PPW with two 
parallel layers of dielectric between two metallic planes, which clearly does not present an EBG. The 
same situation occurs for p=2.25 mm, when adjacent patches are in contact and the rows of patches 
become metallic strips between two metallic planes. Therefore, the shapes of the curves in Fig. 64 are 
explained once we know that EBGs exist for some patch dimension and so does the maximum. 

Fig. 66. DD for the HIS modified by inserting 
slots in the ground plane. Inset: CAD model. 
 

Fig. 65. Central frequency versus the p patch 
dimension. 

Fig. 63. DD for the HIS without slots and 
diodes. The radii of the vias: r=0.2 mm. 
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Fig. 67. DD for HIS with slots and 
diodes. Inset: CAD model. 

 As we have already mentioned, some switching elements must be inserted in order to obtain a 
tunable device. It is advisable to use the same structure that has been relied upon for obtaining the 
EBG in order to bias the devices; therefore, a possible solution relies on the interruption of the DC 
path between patches and ground. We have tested the influence of slots around the vias in the ground 
plane. The CAD model of the considered structure is reported in the inset of  Fig. 66, where the upper 
metallic plane has been removed for illustration purposes. On the corresponding DD represented in 
Fig. 66, the presence of the EBG may be remarked between modes 2 and 3, covering the interval 
[24.47; 27.41] GHz and having a total width of 2.94 GHz (a larger width by more than 100% is 
obtained if only the region below the light lines in the DD is considered) . Then we have performed a 
simulation of the case when diodes connect adjacent patches, as can be seen in the CAD model 
reported in the inset of Fig. 67. The forward biased diodes are modeled as small metallic 
parallelepipeds; when the diodes are not biased, they are supposed to be absent in the CAD model. A 
possible influence might be a slight increase in the fringe capacitance between patches in this case, 
with the consequence of some modifications of the EBG properties. 
 

 
 
 
 When the diodes are biased, a direct metallic connection between patches exists, so that a new 
propagation mode is introduced. As this is indeed the case can be seen form Fig. 67, where the DD is 
reported. By comparing the DDs of the two states of the diodes (Figs. 66 and 67), the new TEM 
propagation mode can be observed. One can note that the phase velocity of the additional mode is 
equal to the speed of light, indicating that it propagates in the air-filled region. Therefore, depending 
of the bias, the surface is in one of two states: with or without EBG. 
 Some criticism may be addressed to the proposed scheme. The diodes bias is accomplished through 
the plane containing the patches, so that diodes are in a series connection, a solution with well known 
drawbacks such as weak reliability and current limited by one of the diodes if the current-voltage 
characteristics are not matched. Nevertheless, the absence of a biasing network makes the structure of 
easy fabrication. 
 In this work, we have demonstrated the feasibility of a new tuneable surface in a PPW, and the 
proposed solution of easy manufacturing geometry fulfils this requirement. Other solutions, involving 
separate bias for each diode are presented below. 
 The HIS we have introduced in [10_05_M] presents several EBG's, so it may be used as a multi-
band filter. If intended for use as a single filter, the HIS may play the role of a band-pass or band-stop 
filter. We have determined the position of the EBG's by means of full-wave simulation in view of 
finding the DD. We have been interested in the propagation properties of electromagnetic surface 
waves along one of the directions parallel with the sides of the patches, so that we have calculated the 
DD only for the ΓX edge of the first irreducible Brillouin zone in the 2D wave-number space. This 
corresponds to propagation along the x direction defined in Fig. 68. We have adapted the introduced 
structure to a switched application. 
 The initial configuration of the HIS we have introduced and tested is also presented in Fig. 68. The 
following dimensions have been chosen: Dx=Dy=2.5 mm, a=0.35 mm, b=0.6 mm, c=1.1 mm and 
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t1=1.6 mm. The vias have equal radii, of 0.1 mm and are centered at points (–0.15 mm, 0) and 
(0.85 mm, 0) respectively. This dimensions are kept throughout all the rest of the simulations, unless 
specified differently. The structure is scalable so that the results obtained here can be extrapolated to 
other dimensions and frequency bands. The dielectric constant of the substrate of the microstrip circuit 
board has been ε1=3.5. 

 

 
 The most interesting feature of the DD is the presence of three EBG's, Fig. 69. The DD in Fig. 69, 
featuring the first eight propagation modes, has been obtained for an air space t2=0.1t1. Normalized 

wave-numbers 
2

[rad]x x x
x

k D D
π

λ
=  are represented on the horizontal axis. The CAD model of the 

main period is reported in the inset of the figure, without the upper metallic plane. The light line (LL) 
is also represented on Fig. 69.  
 We have repeated the experiment for two other distances between the patches and the upper 
metallic plane: t2=0.3t1 and t2=0.5t1. The positions in frequency of the EBG's and their widths are 
reported in Table 10. While the widths of EBG1 and EBG2 diminish with the increase of the air layer 
thickness, the width of EBG3 first increases, then decreases. The behavior of EBG1 is consistent with 
the prediction of circuit models devised for the EBG of the "mushroom" structure [siev_99]. The 
behavior of higher frequencies EBG's need more sophisticated models in order to be predicted. This 
may be subject of future work.  
 

Table 10. Position and widths of the EBG's 
 t2=0.1 t1 t2=0.3 t1 t2=0.5 t1 

fm1 [GHz] 6.67 7.84 8.17 
fM1 [GHz] 11.88 12.22 11.97 

BW1 [GHz] 5.22 4.39 3.80 
fm2 [GHz] 15.00 17.47 17.99 
fM2 [GHz] 28.79 24.59 21.15 

BW2 [GHz] 13.79 7.13 3.16 
fm3 [GHz] 44.17 44.34 44.50 
fM3 [GHz] 46.18 46.89 45.54 

BW3 [GHz] 2.01 2.55 1.04 
 
 The graph of Fig. 69 indicates that the HIS behaves like a multi-band band-stop filter. It may also 
be used as a band-pass filter e.g. in the range of frequencies in between the upper frequency of EBG1 
and the lower frequency of EBG2. 
 Table 10 shows that favorable values for the EBG parameters are obtained for t2=0.1t1, so that this 
value should be used for simple filtering applications. However, we intend to test the structure for the 
case when electronic components, such as diodes, are mounted on the side of the board containing the 
patches. Therefore, in the next simulations, the larger value t2=0.5t1 has been chosen. 
 The CAD model of the first variation we have considered is reported in the inset of Fig. 70: we 
have removed one of the sides of the shape that surrounds the patch. The DD is presented in Fig. 70. 

Fig. 68. (a) Basic cell: top view. (b) Side view. (c) HIS. 
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Only two EBG's are present. The first one is in the range [8.30 11.58] GHz, having a width of 
3.28 GHz and the second one occupies the frequency range [18.31 21.07] GHz having a width of 
2.76 GHz. By comparing these values with the last column of Table 10, we see that the parameters of 
the EBG's have been modified. This result should have been expected, as both the fringe capacitance 
between patches and the capacitances between the patch plane and the metallic planes have been 
modified. 
 
 

  
 
 The next two experiments involve the influence of the second via on the DD. The CAD model in 
the inset of Fig. 71 shows the absence of the second via combined with an extension of the hollow 
patch up to the sides of the unit cell, i.e. c=Dx/2. The consequence on the DD, presented in the same 
figure, is the disappearance of the EBGs, caused by the existence of a direct metallic path along the 
middle layer of the structure, which give rise to a TEM mode. If however the old value of c is used 
(the patch surrounding the central on not extended), two EBGs are obtained (Fig. 72): [17.84, 
21.02] GHz (3.17 GHz width) and [44.82, 45.50] GHz (0.68 GHz width). This result will be used for 
devising a switched surface. 
 Finally some modifications less extended in the space of the unit cell have been tested: two small 
patches placed as shown in the insets of Figs. 73 and 74. The patches are 0.1 mm wide along the y axis 
and have a length of 0.3 mm parallel to the x axis. They are placed along the symmetry axis of the 
initial patches in the first case, while the second small patched is displaced by –0.5 mm in the y 
direction in the second case. Another distinction stems from the fact that the second via has not been 
considered in the first situation and it is present in the second one. The EBG in the DD of Fig. 73 is 
between [33.10, 36.63] GHz, having a width of 5.53 GHz. The EBGs in Fig. 74 are [7.95, 11.84] GHz 
(3.89 GHz width); [17.93, 21.15] GHz (3.22 GHz width) and [44.57, 45.52] GHz (0.95 GHz width, 
not represented explicitly in the figure). 
 The simulation results presented above show that, a wide range of HISs with various parameters of 
the EBGs may be constructed with minor modifications of the original structure. A special attention 
worth the structures in Figs. 72 and 73. The small patches in Fig. 72 may be thought to model biased 
diodes, while these small patches are absent in Fig. 73, which can be thought as a situation modeling 
unbiased diodes. Therefore, by means of biasing diodes, the structures in the two figures can be 
switched. In a practical situation, the HISs are of finite extent. The bias voltage may be applied 
between the input hollow patch and the output one, so that the series connection of diodes is connected 
to the supply voltage. This is the reason why we considered the situation when the second via in a 
basic cell is absent: otherwise the supply voltage source would have been short-circuited. 
 

Fig. 69. DD for the basic structure. 
Fig. 70. DD – lower metallic patch removed. 
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 The HIS we have introduced above has been demonstrated to feature three EBGs and therefore 
may be used as a multi-band band-stop filter or as a band-pass filter. We have shown that the 
parameters of the EBGs can be modified by means of small geometric alterations of the original 
structure so that an electronically switched surface with interesting frequency related properties can be 
obtained from the original structure. 
 A novel HIS built in microstrip technology that is used as one face of a PPW in view of switched 
filtering applications has been reported in [11_06_M]. The structure presents several EBGs. Diodes 
are used as switching elements and the structure itself may be used for applying the bias voltage to the 
switching elements, i.e. no additional circuit elements are inserted. When diodes are switched on, we 
have shown that a low-frequency EBG is introduced, changing the low-frequency properties from 
band-stop to band-pass. As expected, EBGs situated at higher frequencies are also affected. The 
introduced new structure is inspired by the well-known "mushroom" one, but presents several 
differences, as a large number of off-center vias, or two patches of circular symmetry.  We describe 
the development process step-by-step and provide appropriate CAD models and DD for the 
intermediate and the passive configurations for a better understanding. 
 A unit cell of a HIS, having a square shape with sides Dx=Dy=2.5 mm, is presented in Fig. 75. It is 
realized on a microstrip board with a thickness t1=1.6 mm and a substrate with dielectric constant 
εr1=3.5. The circular patch on the upper face of the board has a radius c=1.05 mm. The surface is 
obtained by a 2D periodic repetition of the unit cell. A metal plate is supposed to be placed above the 
HIS at a distance t2=0.5t1 in order to create a PPW. Four vias, each with radii r=0.1 mm connect the 

Fig. 71. DD – via 2 removed and external 
patch extended to the size of the unit cell. 

Fig. 72. DD – structure from Fig. 2 with 
via 2 removed. 

Fig. 73. DD – basic structure completed 
with biased diodes. 

Fig. 74. DD – basic structure completed 
with two small patches. 
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patches to the ground plane. Results for similar structures with more general elliptical patches and a 
variable number of grounding vias have been reported in the preceding section. The corresponding 
DD, having a typical shape [siev_99], and the CAD model are reported in Fig. 76. 
 

  
 
 In the present analysis only propagation along the positive x direction (Fig. 75) has been 
considered, avoiding in this way to be trapped by any symmetry breaking effect on the 2D dispersion 
characteristics, when this latter is not fully computed. The normalized wave-number on the horizontal 
axis of Fig. 76 is kxDx. Two EBGs are present, one between 16.29 GHz and 27.19 GHz, and a 
narrower one between 53.21 and 54.81 GHz. 
 In order to stop propagation of surface waves starting with zero frequency, a direct metal path 
between the upper and lower metallic planes must be present reducing the number of independent 
metalisation from two to one. A solution is to replace the central grounding via with a metallic pin that 
connects the patch to the upper metal plate. This design also improves the mechanical stability of the 
structure, whose DD is presented in Fig. 77. It can be seen that a multi-band frequency behavior is 
obtained. The lower EBG ranges from DC to 22.94 GHz. The other three EBGs are in the ranges 
26.70-28.83 GHz, 34.47-37.44 GHz and 57.16-57.76 GHz respectively. 
 As a next step we have split the patch in two: a circular one with smaller radius surrounded by a 
second annular patch with the aim of obtaining a switch, i.e. introducing some space where the 
switches can be accommodated. In the above operation the inner radius of this latter is larger than the 
radius of the inner circular patch. The resulting geometry is shown in Fig. 78. Fig. 78 (b) shows the 
side view of the structure with the original central via, while Fig. 78 (c) shows the central via replaced 
by the pin. The switching device is a diode connected as shown in Fig. 78 (c). When the diode is 
switched on, a DC path between the metal plates is present, so that waves are prevented to propagate 
starting from zero frequency. When the diode is switched off, the connection between the two external 
plates is interrupted, and low frequency to zero cut-off wave does propagate.  
 The proposed solution further allows for the bias voltage to be applied by means of the upper and 
lower metal plates entering the structure of the PPW, so that there is no need of additional biasing 
circuitry that might alter the high frequency behavior of the device. 
 The electromagnetic characteristics and behavior of the HIS is presented next. The study is 
enriched with the preliminary analysis of one of the many parameters on the control of the position 
and width of the band-gap. 

Fig. 75. Unit cell of a "mushroom" HIS with 
circular patch and four vias. 
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Fig. 76. DD for "mushroom" HIS with circular patch 
and four vias. Inset: CAD model (with removed 
cover metallic sheet for better visualization). 
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 For full-wave analysis, the presence of the biased diode has been simulated by a small metal prism, 
which is absent when the diode is not biased [matek_09], as reported in the insets of Figs. 79 and 80. 
All geometrical and material parameters are those from the previous section allowing direct 
comparison between results. The radii a and b from Fig. 78 (a) have been chosen for demonstration as 
0.35 mm and 0.65 mm respectively. 

 
 
 In Fig. 79, the DD corresponding to the absence of the diode is reported. Three EBGs may be 
identified: from 13.73 to 25.79 GHz (12.06 GHz wide), from 33.29 to 39.41 GHz and from 42.45 to 
45.79 GHz. In Fig. 80, the DD corresponding to the presence of the diode is displayed. The following 
five EBGs are obtained: from DC to 20.79 GHz, from 21.48 to 27.99 GHz, from 36.64 to 39.63 GHz, 
from 44.10 to 45.81 GHz and from 54.55 to 54.82 GHz.  
 A special attention worth the lowest frequency EBGs in the two situations considered above. When 
diodes are switched on, a narrow pass-band exists between 20.79 and 21.48 GHz, while when diodes 
are switched off, the first EBG listed above is present and covers this pass-band. Therefore, the surface 
is switched from a pass-band to a stop-band behavior around 21 GHz with a guard of more than 7 GHz 
in the lower frequencies range and more than 4 GHz in the high frequencies range.  

Fig. 77. DD for HIS with circular patch, three vias 
and pin. Inset: CAD model (with removed cover 
metallic sheet for better visualization). 
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Fig. 78. (a) Unit cell: top view. (b) Side view. (c) Side view with central via replaced by pin. 
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 In order to change the limits of the EBGs for design issues, several geometrical parameters and the 
number of vias may be varied. This investigation will be subject to future work. However some insight 
is provided here in Fig. 81 which reports the limits of the EBGs when only the value of radius of the 
inner patch a is varied between 0.25 and 0.55 mm and the diode is supposed to be present: f0 denotes 
the upper limit of the first EBG, while fmi and fMi, i=1..3 denote the limits of the other EBGs (the 
second EBG is not present for a=0.25 mm and the fifth EBG is not considered as being very narrow). 
The upper limit of the first EBG varies between 20.66 and 21.25 GHz. Although the variation is 
conveniently linear, the range is quite small, so the other solutions, such as varying the number of vias, 
might be considered in this case. However the third and fourth EBG's vary significantly, so that the 
radius a may be considered as a design parameter for multi-band applications. 
 We have just demonstrated that a narrow-band pass-band filter could be switched on and off by 
controlling the biasing voltage of the diodes. 
 A novel, multi-element unit cell in parallel plate PPW has been proposed and analyzed both in its 
passive and active configurations for 1D propagation [11_11_M]. The passive configuration consisted 
of up to three concentric rings,  some of them being connected to the closing metallic planes by a 
variable number of vias. The large number of stop-bands the structure has been proven to exhibit is 
due to the different resonances of the various constituent elements. The active counterpart obtained by 
insertion of diodes between different rings allows for real-time modifying of the electromagnetic 

Fig. 79. DD for HIS with two circular patches, three 
vias and pin. Inset: CAD model (with removed 
cover metallic sheet for better visualization). 

Fig. 80. DD for HIS with two circular patches, three 
vias pin and diode. Inset: CAD model (with 
removed cover metallic sheet for better 
visualization). 

Fig. 81. EBG limits versus inner patch radius – 
diode connected. 
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response of the unit cell, consisting of change in the number and characteristics of the stop-bands and 
in the in-band behavior. The biasing through the vias represents an elegant and efficient solution 
avoiding the need of the presence of any biasing network. Sensibility of the structure to the  
geometrical dimensions, to the material properties and to the number of vias have been in depth 
investigated by dedicated numerical software based on finite integration technique of the Maxwell’s 
equations. The DDs have been obtained by standard approach, considering the eigen-solution of the 
homogeneous problem with appropriate periodic boundary conditions in 2D. Filters for cognitive radio 
systems, or multi-objective sensors are just some of the possible applications for this unit cell, with 
versatile electromagnetic properties. 
 Like all the PPWs we have considered, a metamaterial surface plays the role of one wall and a 
metal plane plays the role of the other wall, Fig. 82 (a) [11_11_M]. The metamaterial relies on a 
microstrip board with a textured pattern on one side, which faces the interior of the PPW. The other 
side of the board, a continuous metal plane acting as ground for the patterned surface, ensures the 
electromagnetic insulation of the device. The unit cell of the textured face contains two or three 
circularly shaped, concentric metal patches, Fig. 82 (b). External patches are connected to the lower 
ground plane through one, two or three metalized vias. A unique feature is provided by the fact that 
the upper metal plane is connected to the central patch plane by a metal pin. This fact provides a direct 
DC path between the metal planes when the two patches are electrically connected, ensuring rejection 
of low frequencies, while the structures considered in the cited literature are high pass. 
 

 
 
 The electric connection between the two patches may be switched ON or OFF by diodes, changing 
in this way the frequency response from low-pass to high-pass. The bias of the diodes is applied 
through the metal walls, thus avoiding the presence of an additional biasing network that might perturb 
the electromagnetic behavior of the device. Furthermore, as discussed below, the frequency response 
for both states of the diode has a multi-band structure. This characteristic allows increasing the 
selectivity of a sensor, or device sensors with multiple observables. 
 The importance of knowledge of the change in the behavior of the structure versus various 
geometrical and material parameters is of fundamental importance in the design activity [rajo_07]. We 
present such a study by varying the number of vias connecting the external annular patch to the ground 
plane and the radius of the inner circular patch. Creation of new materials [she_05] allows for 
increased flexibility in design. The variation of their dielectric properties to different external 
solicitations can be used for monitoring or sensing applications. Therefore, we have also tested our 
structure by filling the space in between the patch plane and the upper metal plane with materials of 
various dielectric constants. 
  In the last two decades, the advent of CAD systems dramatically decreased experiment costs in 
microwave industry and education [gupta_02]. In this context, we have simulated again the proposed 
structure by means of a commercial software [CST] that relies on the finite integration technique for 
solving the Maxwell equations [weil_77, weil_08]. As shown above, the incorporated eigenmode 
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Fig. 82. Inhomogeneous PPW (a) and patterned surface (b). 
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solver allows for the determination of the DD. Therefore, the frequency behavior of the proposed 
device is reported in terms of DDs.  
 Since computation of the DD is a numerically onerous task, we have mentioned that many 
published papers [siev_99, tav_07, abhari_03, rogers_05, zhang_08] are dedicated to finding circuit 
models for electromagnetic structures similar to that we have proposed here. Such models are intended 
for easy prediction (i.e. without the needs of dedicated computation resources and reduced time 
required to obtain the electromagnetic responses) of EBGs positions in frequency and their 
bandwidths. Although acceptably accurate, the cited models are generally employed for predicting a 
smaller number of EBGs than up to five, like in our case. A circuit model able to predict four EBGs 
could be quite complicated in terms of number of reactive elements and circuit topology. Furthermore, 
circuit models are reliable when the involved wavelengths are large in comparison with the unit cell 
dimensions. The advantages in computation time motivate research for circuit models, which will be 
also a future goal for our investigation. However, it is worth to note that the drawback represented by 
the changing circuit characteristics with the geometry limits the flexibility of such approach. When 
accurate band structure is needed, full-wave simulation has to be chosen [rajo_07, rajo_09]. For the 
moment, results obtained by full-wave electromagnetic simulation that we present here in tabular and 
graphic forms may be considered accurate enough for current design activity and for validation of 
circuit model to be looked for in the future. 
 The CAD model of a unit cell of the PPW with three patches is presented in Fig. 83 (a). The unit 
cell dimensions, defined in Fig. 83 (b), where the two-patch unit cell is reported are Dx=Dy=2.5 mm. 
The microstrip board, of height t1=1.6 mm, is built with a dielectric material of dielectric constant 
εr1=3.5. Three concentric patches, one circular of radius 0.35 mm, the second one annular of internal 
radius 0.5 mm and external radius 0.65 mm and the third one equally annular, of internal radius 
0.75 mm and external radius 1.15 mm generate the texture of the HIS. Three vias, of radii 0.1 mm, 
connect the outer patches to the ground. A pin, of radius of 0.1 mm, connects the inner patch to the 
upper metal plane, situated at a distance t2=0.8 mm above (the upper metal plane is not represented in 
order to increase visibility). The space in between the patch plane and the upper plane is filled with a 
material of dielectric constant εr2. The whole structure is mechanically compact, due to the pins. 
 

 
 
 In the context of filtering applications, we are interested in propagation along the x direction. The 
DD corresponding to εr2=1 (simply air) and εr2=5 are represented in Figs. 84 and 85 respectively. The 
DDs illustrate the frequencies of the first seven proper modes versus normalized wave-numbers kxDx. 
The EBGs are emphasized and light lines (LLs) are also represented. LLs separating fast waves from 
slow waves have been drawn corresponding to plane waves propagating through a medium with an 
effective dielectric constant defined and motivated in [rogers_05] (see (1)). 

Fig. 83. (a) Cad model of the unit cell with three vias and three patches and upper metal plane 
removed for better rendering. (b) CAD model for unit cell with two patches and up to three vias, 
upper metal plane removed and definition of geometric dimensions. 
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 Since the positions and widths of the EBGs are quite different in the two considered situations, the 
dielectric constant of the upper material layer may be used for varying the frequency characteristics of 
the structure. From a dispersion engineering point of view, it is interesting to note that mode 4 in Fig. 
85 features negative group velocity. 
The frequency limits of the EBGs versus the dielectric constant of the upper material layer are 
reported in Fig. 86. The EBGs are defined between the maximum frequency of mode i and minimum 
frequency of mode i+1, which are marked similarly. 
 

 
 

 
 It may be concluded that, while the lowest frequency EBG has a rather constant width, but various 
positions in frequency, the parameters of the higher frequency ones have important variation, 
providing flexibility in filter and sensor design. The highest frequency EBG occurs only for a limited 
range of the considered dielectric constant. 
 

  
 
 An active version of the structure considered above can be obtained by a diode, inserted in between 
the patches which may be switched ON or OFF, by applying appropriate DC potentials to the metal 
plates. Like we did before, the ON state of the diode is simulated by the small metal prism in Fig. 83 
(a), while the "OFF" state corresponds to the absence of the prism. This simplified model has been 
considered mainly to check the possibility of changing the resonant response of the structure.  
 The DD of the device having only one via (via 82 in Fig. 2 (b)), an air upper layer εr2=1 and diodes 
switched on is reported in Fig. 87. The first 8 proper modes have been considered. Normalized wave-
numbers kxDx are represented on the horizontal axis. Five EBGs are present, the lower frequency one 
starting from zero frequency due to the direct DC path between the upper metal plate and the ground 
plane. When the diode is switched OFF, the DD in Fig. 88 is obtained (see the inset for the CAD 
model). Four EBGs are now present, the structure allowing modes with low frequencies to pass. The 
filtering properties are switched in the lower frequency range from band-pass to band-stop following 

Fig. 87. DD and CAD model for the structure 
with one via and diode on εr2=1.  
 

Fig. 86. Frequency limits of the EBGs versus the 
dielectric constant of the upper material layer. 

Fig. 85. DD for the three-patch structure, εr2=5. 
The CAD model is reported in Fig. 2 (a).  

Fig. 84. DD for the three-patch structure, εr2=1. The 
CAD model is reported in Fig. 2 (a) . 
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switching OFF the diode. The positions of the upper frequency EBGs are different in the two figures, 
i.e. after switching the diode. LLs corresponding to propagation of TEM waves in free space are also 
represented in Figs 87 and 88, in order to mark the difference between slow and fast waves. 
 The positions and dimensions of the EBGs for various numbers of vias is a question of interest for 
design. Simulations similar to those leading to Figs. 87 and 88 have been performed with two vias 
present (via 1 and via 2) and all three vias present, for both states of the diode. The results are reported 
in Table 11, showing that frequency limits for different modes can increase or decrease with the 
number of vias. 
 Another set of simulations have investigated the influence of the radius of the inner patch. Results 
for two other values than the initial one are also reported in Table 11 [11_03_M]. 
 As shown above, the possibility of choosing in a wide range of materials makes an important 
opportunity by increasing flexibility in filter design. The DD associated to the structure having an 
upper layer of dielectric material with εr2=10 is presented in Fig. 89 (the diode is switched ON, as in 
following simulations regarding the effect of the dielectric constant). By comparing Figs. 87 and 88, 
one can see that, as expected, the DD is shifted towards lower frequencies. Surface waves do not 
propagate any more through air. Accordingly, the LL in Fig. 85 has been drawn corresponding to 
waves propagating through a medium with an effective dielectric constant, as shown above. 
 
 

Table 11. Limits of the EBGs [GHz] 

 
 
 
 

  
 
 
 The variations of the frequency limits of relevant modes versus the dielectric constant of the upper 
layer are represented in Figs. 90 and 91. Again shift towards lower frequencies with the increase of the 
dielectric constant has been observed. However, the presented graphs also give quantitative results that 
can be used for tuning the structure to practical requirements. 

Modes 0-1 1-2 2-3 3-4 4-5 5-6 7-8 
1 via, diode on 16.2317.24-24.47  43.08-44.2148.81-50.17 54.39-56.01 
1 via, diode off  9.40-17.55   39.49-44.1147.52-47.90 51.53-54.28 
2 vias, diode on 19.2820.30-25.22  43.74-46.63  
2 vias, diode off  12.39-22.32 33.49-34.9841.74-46.43  
3 vias, diode on 20.7921.48-27.99 36.64-39.6344.10-45.85 54.55-54.82 
3 vias, diode off  13.73-25.79 33.29-39.4142.46-45.79  
3 vias, diode on, a=0.45 mm 20.9721.27-28.06 33.57-39.6543.51-45.58  
3 vias, diode off, a=0.45 mm  12.82-25.8228.14-28.2433.29-39.4142.37-44.96 52.567-52.568
3 vias, diode on, a=0.50 mm 21.0921.30-28.09 33.34-39.6643.33-44.74 54.57-54.74 
3 vias, diode off, a=0.50 mm  12.20-25.8626.98-28.2633.30-39.4042.34-43.67  

Fig. 88. DD and CAD model for the structure with 
one via and diode off, εr2=1.  

Fig. 89. DD and CAD model for the structure 
with one via, diode on and εr2=10.  
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 The presented results are intended for design of high frequency filters to be employed in advanced 
systems or high sensibility sensor applications. 
 

  
 
 We have introduced two versions of switched surfaces that rely on the same basic configuration of 
the PBG [11_02_M]. The control elements are diodes that are placed either on the upper plane or on 
the ground plane of a microstrip board. Additionally, the structure is covered with a metallic plane at a 
certain distance above, so that an inhomogeneous PPW is obtained. The frequency parameters of the 
EBGs are determined in the two states of the diodes by full wave simulation, using the commercial 
field solver [CST]. The behavior of the surface is tested by means of the DD on the first irreducible 
Brillouin zone. 
 The basic structure consisted of a 2D periodic pattern impressed on one side of a microstrip board, 
having a square shaped unit cell, Fig. 92. The unit cell contained a square inner patch, connected to the 
ground plane through a metallic via, and an outer patch around the first one. The via has been placed 
in an eccentric position in order to increase the design flexibility by changing position if needed 
[gao_06]. However, the situation of the via has not been changed during the simulations reported in 
this paper. 
 The geometrical dimensions with respect to the reference system in Fig. 92 are: Dx=Dy=2.5 mm, 
a=3.5 mm, b=0.6 mm, c=1.1 mm and the via has been placed at point (–0.15 mm,0). The lower 
metallic plane has been situated at a distance t1=1.6 mm, the space in between the patch plane and the 
ground plane being filled with a material having a dielectric constant εr=3.5. The upper plane has been 
placed at a distance t2=0.5t1 from the patch plane, the space in between being filled with air. 
 We have been interested in propagation of surface waves along the x direction, so that the DD has 
been calculated on the ΓX edge of the first Brillouin irreducible zone, Fig. 93, where the light line is 
also represented. The PBG surface we have introduced presents two EBG's: 
EBG1=[17.84; 21.02] GHz, having a width of 3.17 GHz and a narrow one, 
EBG2=[44.82; 45.50] GHz, having a width of 0.68 GHz. These EBGs have been considered between 
adjacent modes, regardless of their propagating or evanescent character. 
 The diodes have then been connected as shown on Fig. 92. In a practical setting, the surface is of 
finite dimensions, so that diodes are connected in series and the bias voltage is applied at the two ends 
of the structure. The outer patches provide a dc path between diodes.  
 In order to find the DD in this case, the diodes have to be modeled for the electromagnetic solver. 
Following the same idea from [matek_09], diodes have been considered as small metallic prisms, as 
shown on the CAD model in the inset of Fig. 94, where the DD of the structure is reported. Only one 

Fig. 90. Frequency limits of the modes that define 
the first two EBGs. The lowest frequency of the 
first EBG is zero. 

Fig. 91. Frequency limits of the modes that 
define the upper two EBGs (in between modes 4 
and 5 and modes 5 and 6). 
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EBG appears when the diodes are biased. However, its width is larger than in the case when the diodes 
are unbiased, EBG=[33.10; 36.63] GHz, having a width of 5.53 GHz.  
 

 
 
 
 EBG1 is comprised between the first two modes of propagation, while EBG2 and EBG are 
comprised between modes 4 and 5. Therefore, it may be concluded that, following switching of 
diodes, EBG1 vanishes, while EBG2 is switched to EBG, which is wider and translated towards lower 
frequencies. 
 While the proposed structure accomplishes the function of switching EBG's, the diodes are 
connected in series. A malfunction of one element affects all elements connected behind it. A solution 
that circumvents this drawback is presented next. 
 Another solution for the unit cell geometry is presented in Fig. 95. The control elements have been 
moved to the ground plane and another via has been added between the outer patch and the ground 
plane. The center of the via has been situated at point (0.85 mm,0). The additional via presents a 
reactance that changes the EBGs with respect to the previous solution. However, its main role has 
been to provide a dc path between the outer patch and the ground plane when the control elements are 
biased. In order to break this dc path for the case when the diodes are not biased, a slot has been 
placed around the end of the via in the ground plane, having a width of 0.1 mm. 
 

  
 
 The supply voltage has been applied to the outer patches by means of the small rectangular patches 
represented in Fig. 95 (a). The direction of the supply path is orthogonal to the direction of 
propagation. This solution allows for a selective switch of the diodes, which provides flexibility for 
applications. However, simulations have been performed only for the case when all diodes are biased 
at once. 
 

Fig. 94. DD, diodes biased. Inset: CAD 
model. 

Fig. 93. DD, diodes unbiased. Inset: CAD 
model. 

Fig. 92. (a) Unit cell: top view. (b) Side view. (c) HIS. 

(c) 

Lower plane (Cu) 

(b) 

Upper plane (Cu) 
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 The DD corresponding to the HIS with unbiased diodes is reported in Fig. 96. As it can be seen 
from the CAD model represented in the inset of the figure, the ground plane is not connected to the 
outer patches in this case. The DD shows the existence of three EBGs: the first one, between modes 1 
and 2, is very narrow, [17.61; 17.68] GHz, having a width of 0.073 GHz. The second EBG is between 
modes 2 and 3, [20.65; 24.35] GHz, having a width of 3.71 GHz, while the third one is between 
[46.08; 47.64] GHz, with a width of 1.56 GHz. 
 When the diodes are biased, the slots are shorted by metallic prisms in the CAD model, as 
represented in the inset of Fig. 97. Two EBGs are present. The first one, between modes 1 and 2, 
[7.96; 11.57] GHz, having a width of 3.61 GHz may be considered to be switched on from the 
corresponding small EBG of the previous case. The second one, between modes 2 and 3 
[17.71; 21.82] GHz, having a width of 4.10 GHz corresponds to the second EBG from the case when 
diodes are unbiased, but it is wider and translated towards lower frequencies. The third EBG of the 
previous case is switched off. This behavior is consistent with the results presented above. 
 The second solution allows for a selective choice of the rows of unit cells that are switched. This 
might provide flexibility in controlling the positions of the EBGs.  
 

  
 
 The solutions for switched patterned surfaces we have proposed have potential applications in 
construction of filters with switched or tunable characteristics and in devising sensors with modifiable 
sensitivity.  
  
 

Fig. 97. DD for HIS with slots, diodes 
biased. Inset: CAD model, back view. 

Fig. 96. DD for HIS with slots, diodes 
unbiased. Inset: CAD model. 

(a) via 1  

via 2  

(b) via 1  

via 2 
and slot 

Fig. 95. (a) Unit cell with two vias and slot: top view. (b) Back view. 
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2.3. Magnetic Fluid Bearings 
 
 In the period 2001-2003, the calculation of the restoring force in magnetic bearings has been a 
research interest. The problem arise following development of magnetic fluids applications at UPT: 
[ant_1990], [ant_1987], [des_1992], [popa_1999], [popa_1997].  
 The magnetic bearing with poles placed on the stator has been conceived by R. E. Rosensweig 
[ros_1978]. The restoring force has been investigated analytically, in a plane-parallel approximation of 
the magnetic field, in [ber_1971], [des_1989]. A numerical approach can be found in [bla_1988].  
 When the poles are placed on the shaft, the levitation force has been determined analytically, by 
using again a plane-parallel approximation for the magnetic field, in [01_01_M], [01_05_M], and 
numerically in [gre_2003].  
 In [02_01_M], the problem of evaluating the restoring force in a magnetic bearing with poles 
placed on the stator has been revisited, using a plane-meridian model for the magnetic field. The same 
approach, i.e. the plane-meridian model, has been used in [03_01_M] for the case when the poles are 
placed on the shaft. 
 The reason for calculating the restoring force by two different models has been the necessity of 
validating the predictions. The results of our studies have shown that the predictions provided by the 
two models were sufficiently close on the range of parameters where the approximations for both 
model were holding. 
 We present here only the part of the work were we have contributed. Therefore, the calculation of 
the restoring force with a plane-parallel model for the case of poles placed on the stator will be 
skipped. 
 
A. Rotor with Alternating aaaaapoles, Plane-Parallel Approximation 
 We start with the calculation of the force acting on a rotor with alternating poles in a plane-parallel 
approximation [01_01_M]. The expression of the force can be used for the optimal geometrical design 
of the bearing, and for gathering information about the influence of various magnetic quantities on the 
force. 
 The sketch of the bearing with alternating poles on the rotor is presented in Fig. 1. The 
displacement between the rotor axis and the stator axis is denoted by ∆. The magnetic liquid is 
considered as a linear medium of permeability µl and it fills the space between the rotor and the stator. 
In order to obtain information on the dependency of the force that acts on the rotor and the geometrical 
dimensions of the bearing, we have adopted the model of  Fig. 2. The magnetic field is considered to 
be plane-parallel. 
 

 
Fig.1 – Bearing with alternating poles on the rotor.  a) Cross sectional view; b) top 

view; 1: rotor; 2: magnetic poles; 3: magnetic fluid; 4: stator. 
 
 The permanent magnet is supposed to have a radial permanent magnetization Mp of zero 
divergence, and of rectangular shape on the surfaces r = r2 and r = r1  (Fig.3b). 
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Fig.2 – Mathematical model for the calculation of the magnetic field.  
 
 With the notations of Fig.3.a, by taking into account the cylindrical symmetry of the field Mp and 
the fact that divMp = 0,  there results Mp2 2π r2 lp = Mp1 2π r1 lp, and 
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where Mp2  and Mp1 are the permanent magnetizations at r =  r 2  and r =  r 1.  
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Fig.3 – a) Magnetized permanent magnet in radial direction; b) rectangular shape of 
the magnetization. 

 
 
 In the four domains of the bearing represented in Fig. 2, the scalar magnetic potential VH satisfies a 

Laplace equation: ∇2VHi = 0, 4,1=i  since divB = 0, curlH = 0, divMp = 0 and B = µH+µ0Mp  in 

medium 2, B = µl H  in the magnetic liquid 3, B = µ0H in media 1 and 4. 
The variables separate, and the solution of the Laplace equation takes the form 
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 In media 1 and 4 the field is attenuated and, by tacking into account the expressions (3) and (3’) for 
Mp, we shall use solutions of the shape 
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 The integration constants will be determined from interface conditions on the surfaces S12 (y = 0), 
S23 (y1 = hp), S34 (y2 = hp+h1: continuity of potentials and normal components of the magnetic 
induction. We have 

( ) ( )1 20 0

12 1 2
1

0 0

,

on :
;

m

H Hy y

H H
r

y y

V V

S V V
M

y y
µ

= =

= =

 =

 ∂ ∂   

− = −   ∂ ∂   

 

( ) ( )
1 1

1 1

2 3

23 2 3
2

,

on :
;

m l

H Hy y y y

H H
r r

y y y y

V V

S V V
M

y y
µ µ

= =

= =

 =

 ∂ ∂   

− =    ∂ ∂   

 

( ) ( )
2 2

2 2

3 4

34 3 4

,

on :
.

l

H Hy y y y

H H
r

y y y y

V V

S V V

y y
µ

= =

= =

 =

 ∂ ∂   

=    ∂ ∂   

 

With (5) we obtain 

( )

( ) ( )
( )

1 2 3 1 2 3 1

2 2
2 1 3 4 1 5

2 2
2 1 3 4 1 5 2 1

2 2
4 2 5 6 4 2 5 6

, ,

,

,

, ,

m

m l

l

r

r r

r

C C C C C C m

C C C C

C C C C m

C C C C C C

µ

ε ε

µ ε µ ε ε

ε µ ε

= + − − = −

+ = +

− − − =

+ = − = −

 

(6)

where we have denoted 1 01 02
1 2 1 1 2, ,   and  .pk h k h M M

e e m m
k k

ε ε ε= = = =  

 For magnets that do not polarize temporarily (µrm = 1), the constants are 
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 We can calculate now the field intensities 
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 At equilibrium, the force that acts on the rotor is opposed to the force that acts on the stator, and 
has the expression [ros_1978] 
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where Σ0 is the interface surface between the magnetic fluid and the rotor, and 34dd nS S=  is the 
surface unit vector oriented outwards the magnetic fluid, Fig.4. 
 If the magnetic fluid is linear, of susceptivity χml, we have 
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 As a consequence, the force (9) that acts on the rotor can be written 
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Fig. 4 – Definition of integration surface and normal, unit vectors.  

 We shall calculate the force that acts on a length of λ/2, Fig.4. As ( ) ( ) ynn yty ut 2234 = , and on the 

symmetric face ( ) ( )( )ynn yty ut −= '
2

'
234 , we obtain the resulting tension 
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where y2 = hp+h1  and y’2 = hp+h2, Fig.4. By using (10), there results 

( ) ( )2 2 2 2
0 3 3 ' 3 3 '

1
,

2
l

l

r
n yr y y x xH H H H

µ
µ µ

−
 = − − + − t u  

(12)

where the unprimed components refer to the surface y2, the primed components refer to the surface y’2, 
and all the components are associated to points from the fluid (medium 3). 
 With (8) we have 
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where C’4  and C’5 have the values (4) with ε1 and ε2 substituted with ε’ 1 = ε1  and 
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 After integration, the force on a length of  λ/2 becomes 
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where we have used  
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 The following first order geometrical approximations hold, Fig.5: 
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1 2sin , sin ,h hδ ∆ θ δ ∆ θ= + = − where ∆ is the displacement, and 3 2r rδ = − ; there results h1 –

 h2 = 2∆ sinθ = 2∆’, with ∆’ = ∆ sinθ, and, since h1 = h2 – 2∆’, we have y’2 = hp+h2 = hp+h1 –
 2∆’ = y2 – 2∆’. 

 
Fig.5 – Geometrical parameters definition.  

  
By substituting y’2 in (13) we obtain 
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 For the constant C4 in (7) we shall use the approximation 

1 2 1 1 2 1
4 2 2 2 2 2 2

1 2 2

( 1)( ) ( 1)( )
.

( 1) ( 1) ( 1)
rl rl

rl rl rl

m m m m
C

µ ε µ ε
ε µ ε µ ε µ

− − − −
= ≅ −

− − + +
 

(15)

 There follows 

4 ' 1 2 1
4 4 5 5' , ' .

1
k

rl

m m
C C e C C∆ ε

µ
−≅ ≅ ≅ −

+
 

(16)

 After the substitution of these values into (14) we have 
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 We shall calculate now the force *F  that acts on the unit length of the rotor in order to reduce the 

displacement, by integrating (17) in the direction of hmax, whose orientation is defined by u , Fig.5 
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 The series expansion of the integrand yields 
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 If we denote by I2i the integral under the summation, and integrate by parts, we get 

222 2
12

−
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I  and as I0 = π, we obtain 
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terms (19) becomes 
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 We shall restrict ourselves to the first two terms of the series, consider the maximal displacement ∆ 
= δ, and substitute m1 and m2. We get, for the resulting force, the expression 
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 By denoting hp = αδ, we have r2 = r1+αδ. The substitution of M01 from (3') yields 
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where 
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(23)

 It follows from (22) and (23) that the force on the unit length of the rotor, at maximum 
displacement, depends on the geometrical dimensions of the system, on the square of the permanent 
magnetization, and on the permeability of the fluid.  

 For l0 = lp/2, we have lp = λ/3 and ,
2
3

2
sin p =

lk
 and (23) becomes 
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(24)

 
 As an example, in order to find optimal dimensions for the permanent magnet in Fig. 1, we have 
represented U from (24) as a function of k and α, for r1 = 1 cm, and δ = 0.1 cm. As shown in Fig. 6, 
the maximum is U = 0.1115 cm, and it occurs for k = 9.74 rad/cm  and α = 3.57. If  r1 = 5 cm, δ = 0.1 
cm, the maximum occurs at k = 7.929 rad/cm, 754.5=α  and its value is U = 0.7137 cm. 
 
 

 

Fig.6 – The function U.  
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B. Poles on the Stator, Plane-Meridian Model 
 
 The purpose of this work has been to obtain values of the restoring force when a plane-meridian 
model is used for approximating the magnetic field [02_01_M]. The results have been compared to 
those obtained with the plane-parallel model. 
 The plane-meridian approximation is physically better than the plane-parallel one. However, 
numerical evaluation of integrals must be done in the final expression of the restoring force. 
Consequently, our results are presented in a graphical form. 

 The geometrical configuration of the bearing is represented in Fig. 7. Region 1 corresponds to the 
shaft, built of a non-magnetic material, the magnetic fluid, of relative permeability µl, is situated in 
Region 2, and the permanent, ring shaped magnets are situated in Region 3. We admit the simplifying 
assumptions that the bearing is very long, and the exterior poles of the permanent magnets have no 
influence on the field within the magnetic liquid. Furthermore, the permanent magnets do not 
magnetize temporarily, their relative permeability is 1rmµ = , so that the restoring force is strongest, 

and the permanent magnetization is in a radial direction ρ= uM pp M , with a square shaped spatial 

variation, of spatial period λ. We shall consider only the first harmonic of the magnetization in the 
form 

 ( ) 2
sin ,m

p

M
kz kρ

π
ρ λ

= =M u  
(25) 

We have selected the above form for Mp in order to have a solenoidal field 0=⋅∇ pM . 

 First, we calculate the magnetic field intensity in region 2. Due to the cylindrical symmetry, the 
field has a radial symmetry in every plane perpendicular to the axis of the shaft. Next, we calculate the 
restoring force that acts on the unit length of the shaft when it is displaced (Fig. 8). For this purpose 
we apply the plane-meridian approximation, by admitting that, at every point from the surface of the 
shaft, the magnetic field corresponds to a non-displaced shaft, having a radius larger (or smaller) than 
the true one with the value of the displacement in the direction of the point with respect to the shaft 
axis. 
 Finally, we present in a graphical form the variation of the restoring force as a function of various 
parameters. 
 
 
 

 
Fig. 7. Geometry of the bearing. Region 1: shaft; region 2: magnetic liquid; region 3: 

cylindrical magnets. 
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Fig. 8. Displacement ∆ of the shaft and the restoring force. 

 
 The equations that govern the magnetic fields in the three regions of Fig. 1 are 1 0 1µ=B H , 

2 0 2lµ µ=B H , ( )3 0 3 pµ= +B H M , 0, 0, 1..3i i i∇ × = ∇ ⋅ = =H B . There follows that the Hi are 

potential fields Hii V−∇=H , and the field potentials satisfy the Laplace equations 3..1,02 ==∇ iVHi . 
The interface conditions on the separation surfaces [Sij] between Regions i and j, which result from 

0,0 =⋅∇=×∇ BH SS , are 
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 In the cylindrical coordinates ( ), ,zρ θ , the Laplace equation independent of θ reads 
2 2

2
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1
0H H H

H

V V V
V

zρ ρ ρ
∂ ∂ ∂∇ = + + =
∂ ∂ ∂

. After substitution, division with RZ, and separation, one obtains 

the equations 
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ρ ρ ρ
+ = ±  and 

2
2

2

d

d

Z
n Z

z
= ∓ , where n is a constant to be determined later. The 

change of variable ρx n=  in the first equation turns it in a modified Bessel equation: 
2

2

d 1 d
0

d d

R R
R

x x x
+ − = , with the general solution ( ) ( ) ( )1 0 2 0I KR x A x A x= + , where In and Kn are the 

modified Bessel functions of the first and second kind respectively, and of order n. The second 
equation has the general solution ( ) ( )1 2cos sinZ C nz C nz= + .The separation of variables can be 

applied by putting ( ) ( )HV R Z zρ= .  

 By taking into account the interface conditions (26) and the fact that K0(x) decreases exponentially 
with x, and it has an infinite value at x=0, we shall try solutions of the form: 
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(27) 

 After imposing the interface conditions (26) and by taking into account that ( ) ( )0 1I ' Ix x=  and 

( ) ( )0 1K ' K 'x x= −  [abr_1964] we obtain: 
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 The last equation implies kn = . For the determination of the constants, the following linear system 
of equations results: 
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where we have used the notations 
 ( ) ( )I , Kmn m n mn m nI kR K kR= =  (29) 

 The solutions of (4) are 
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(30) 

 Next, we are interested in the magnetic field intensity in Region 2. From (27) and the above 
consequences there results 
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(31) 

 The force that acts on a cylindrical region of side surface 21 SSSl ∪∪=Σ  (Fig. 7) is 
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where Mn is the normal component of the magnetization, and n is the normal unit vector directed 
towards the interior of the surface Σ. Since the liquid is linear, for reasons of symmetry, the integrals 
over the side faces S1 and S2 cancel each other. The expression of the restoring force becomes 
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 It follows that the magnetic liquid acts on the shaft with a pressure:  
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 The substitution of the calculated intensities yields 
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 We are interested in the average pressure p~  on a spatial period. By taking into account that 
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(35) 

 Consider two points on the shaft, situated in a plane perpendicular on its axis, and opposed on a 
certain diameter, as in Fig. 8. In order to apply the plane-meridian approximation in he way we have 
defined it above, we consider that the average pressure 12

~p , in a direction given by an angle θ, can be 

obtained by taking the difference between the values that result by substituting in (35) first 2ρ ρ= , 

and then 1ρ ρ= . For a given displacement ∆, the average pressure is function only of the angle θ, 
since, from simple geometrical arguments, we have:  
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 If the shaft displacement ∆ is small, 1R∆ << , then the following first order geometrical 
approximations can be used: 
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 We obtain the following expression for the average pressure: 
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(38) 

 By considering the geometrical symmetry, the average restoring force on the unit length of the 
shaft that acts in the opposite direction of the displacement can be calculated from  

 ( )/ 2

1 120
2 sin dF R p

π
θ θ θ= ∫ ɶ  (39) 
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 The analytical evaluation of (39) requires integration of squares and products of modified Bessel 
functions. We present next the results of a numerical evaluation of (39). The numeric approach is 
facilitated by the fact that modified Bessel functions are smooth. 
 We have represented in Fig. 9 the restoring force as a function of the displacement ∆ of the shaft 
with respect to the axis of the bearing. The parameter is the permeability of the magnetic liquid, and 
the chosen geometrical dimensions and magnetization are relevant in a practical situation. Note that 
the plane-meridian model predicts an increase of the force with the displacement. 
 The restoring force as a function of the maximum displacement 2 1R Rδ = − and the spatial period 

of the permanents magnets λ is represented in Fig. 10. The other parameters are those of Fig. 9. It can 
be seen that the surface is smooth and flat in the considered range of geometrical dimensions. These 
features are favorable for the stability of the optimal design (in view of a maximum restoring force). In 
the considered case, the maximum force N/cm2≅F  occurs for 0.06 cmδ ≅  and 0.5 cmλ ≅ . 
 In Fig. 11, the optimal spatial wavelength that ensures a maximum force, for a previously chosen 
value of the maximum displacement, is represented. The other constructive parameters are listed again 
for convenience. 
 

 
Fig. 9. Restoring force as function of the displacement. 

 

 
Fig. 10. Restoring force as function of the maximum displacement and the wavelength for 

R1=1 cm, M=1000 A/cm, µl=1.1. 
 
 Figs. 12 and 13 correspond to Figs. 9 and 10, but are derived from the plane-parallel model of the 
magnetic field [des_1989]. The expression of the restoring force in the cited reference is 
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where µm is the relative permeability of the permanent magnet, a value that we shall take equal to 1 (in 
fact, the modified Bessel function I1 appears in its series representation in the cited reference). Since 
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the first order geometric approximations (37) have been used in deriving (40), we had to restrict 
ourselves to a smaller range for δ in the calculations. The rest of the parameters are identical, in order 
to facilitate the comparison, although M has a different meaning in the two models. 
 

 
The magnitude of the force in Fig. 12 is remarkably close to the one in Fig. 9. The shape of the curve 
is different: the plane-parallel model predicts a maximum of the force for a value slightly smaller than 
δ, since, at ∆δ = , when at the contact line between the shaft and the bearing there exists no magnetic 
liquid, the plane-parallel model cannot be applied. 
 Fig. 13 cannot be directly compared to Fig. 10, since the ranges of δ are different in the two 
situations. One can notice however that the optimum design is also stable in the case of the plane-
parallel model.  
 In Fig. 14, the optimum wavelength as a function of the maximum displacement δ, predicted by the 
two models, for the same range of δ is represented.  The coincidence of the shapes of the two curves, 
as well as of the order of magnitude (within 10..12%) can be observed. The almost linear dependence 
between λmax and δ simplifies the design of the bearing. 
 
 
 
 

 
Fig. 12. Force as a function of the displacement in the plane-parallel model. 

 
 

 
Fig. 11. Optimum value of the wavelength as function of the maximum displacement. 
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Fig. 13. Force as a function of the displacement and wavelength, in the plane-parallel 

model, for R1=1 cm, M=1000 A/cm, µl=1.1, µm=1. 
 

 
Fig. 14. Optimum wavelength as function of the maximum displacement. 1 – plane-
meridian model; 2 – plane-parallel model. R1=1 cm, M=1000 A/cm, µl=1.1, µm=1. 

 
 The purpose of the calculations we have reported above has been finding the optimum design of the 
bearing with magnetic fluid and alternating poles. In order to evaluate the restoring force, we have 
used a plane-parallel model and a plane-meridian model. A numerical computation of the magnetic 
field has been used in the cited references. The results obtained with these methods have been 
concordant. 
 The restoring force depends on the square of the magnetization. Consequently, an efficient 
construction must use permanent magnets with high magnetization. The force increases with the 
permeability of the magnetic liquid. Use of magnets with high temporary magnetization is not 
recommended, since it decreases the field in the magnetic liquid, and the levitation force. 
 For a given geometry of the cylinders, and given parameters of the magnetic liquid, there exists an 
optimum spatial wavelength of the permanent magnets, that determines a maximum restoring force, 
and that can de determined with the results presented here or in [des_1989]. The value of the 
wavelength is not critical, since the shape of the surface representing the restoring force in function of 
the maximum displacement and spatial wavelength of the permanent magnets is smooth and flat 
around its maximum. 
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C. Poles on the Shaft, Plane-Meridian Model 
 The purpose of the next calculation is to report the results obtained with a plane-meridian 
approximation of the magnetic field in the bearing with magnetic poles placed on the shaft, and to 
compare them to the results provided by the plane-parallel model. Of the two, the plane-meridian 
model is more realistic, and some first order geometric approximations that have been used in the 
other case are not necessary. However, the plane-parallel model provides a simple and closed-form 
formula for the calculation of the force. 
 After the calculation of the magnetic field, the second order levitation force on unit length is 
determined by means of a perturbation method. The field is determined analytically, and the integrals 
that appear in the expression of the force are calculated by quadratures. The results are presented in a 
graphical form, and can be used for the design of the bearing. 
 The geometry of the bearing is similar to the one in Fig. 1 and it is repeated in Fig. 15 in order to 
reveal the coordinates. Region 1 corresponds to the shaft, which is built of a non-magnetic material. 
 The permanent magnets, of relative permeability µm, placed on the shaft, are contained in Region 2, 
and are supposed not to magnetize temporarily. The magnetic liquid, of relative permeability µl, is 
situated in Region 3, and the stator, built of a non-magnetic material, is situated in Region 4. 
 

 
Fig. 15. Geometry of the magnetic bearing. 

 
 For keeping the derivation simple, the bearing is supposed very long, and the displacement of the 
magnetic poles are supposed not to influence the field in the magnetic liquid. As shown above, the 
permanent magnetization is a solenoidal field, of radial direction ρ= uM pp M , and it has a 

rectangular shape of spatial period λ. By denoting with piM  the magnetization of the poles at 

, 1..2ir iρ = = , it can be shown that 2211 rMrM pp = , and, by denoting the length of the poles with pl , 

the amplitude of the first harmonic of the magnetization is 0

4 2
sin , 1..2,

2
p

i pi

kl
M M i k

π
π λ

 
= = = 

 
. We 

will denote mArMrM == 202101 , which is obviously also the product between the magnetization and 
the radius at every point of the poles. From the waveform of the permanent magnetization, only the 
first harmonic will be considered, of the shape (25), which is repeated here for convenience: 

 sin( )m
p

A
kz ρρ

=M u . 
(41)

 The magnetic field intensity will be calculated for the case when the stator and the shaft are 
coaxial, so that the problem has a cylindrical symmetry. The mathematical model for the calculation of 
the field is represented in Fig. 16. For determining the restoring force on the unit length of the shaft 
when displaced, a perturbation method will be applied, Fig. 17. For this purpose, in the plane-meridian 
approximation, it is supposed again that, at every point from the surface of the stator, the magnetic 
field corresponds to a non-displaced shaft, but for a radius of the stator larger or smaller than the real 
one with an amount equal to the displacement of the shaft in the direction of the given point. 
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Fig. 16. Mathematical model for the bearing. 

 The equations that determine the magnetic field in the four regions (Fig. 15) are 101 HB µ= , 

( )2 0 2m pµ µ= +B H M , 3 0 3lµ µ=B H , 4 0 4µ=B H , 0, 0, 1..4i i i∇ × = ∇ ⋅ = =H B . There results 

i HiV= −∇H , and the potentials HiV  satisfy the Laplace equations 3..1,02 ==∇ iVHi . The interface 

conditions on the surfaces ijS   , between regions i and j, that result from 0,0 =⋅∇=×∇ BH SS , are: 
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Fig. 17. Geometry of the bearing when the shaft is displaced. F is the restoring force. 

 In the cylindrical coordinates ( ), ,zρ θ , the Laplace equation independent of θ  reads 
2 2

2
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1
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∂ ∂ ∂

. Following a method analog to the one used in the case of poles 

placed on the stator, the variables can be separated ( ) ( )HV R Z zρ= . After substitution, division of the 

obtained equation with RZ, and separation, the following two equations result: 
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= ∓ , n being a constant to be determined. After substituting x nρ=  in the first equation, 
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a modified Bessel equation is obtained: 0
1

2

2

=−+ R
dx
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xdx

Rd
, with the general solution 

1 0 2 0( ) I ( ) K ( )R x A x A x= + , where In and Kn are the modified Bessel functions of the first and second 
kind respectively, and order n. The second equation has the general solution 
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 As explained in the preceding case, the solutions must be of the form 
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H

H

H

V A x nz

V C x C x nz

V D x D x nz

V E x nz

 =


=  +   


=  +   
 =

 

(43)

 Now the interface conditions (42) must be imposed. By tacking into account that )(I)('I 10 xx =  

and )('K)('K 10 xx −= , we obtain kn =  and 

 

01 1 01 2 01

11 1 11 2 11
1

1 02 2 02 1 02 2 02

1 12 2 12 1 12 2 12
2

1 03 2 03 03

1 13 2 13 13

I I K 0

I I K

I K I K 0

I K I K

I K K 0

I K K 0,

m
m m

m
m m l l

l l

A C C

A
A C C

kr

C C D D

A
C C D D

kr

D D E

D D E

µ µ

µ µ µ µ

µ µ

− − =

 − + = −

 + − − =

 − − + =



+ − =
 − + =

 

(44)

where we have denoted 
 ( ) ( )nmmnnmmn krkr KK,II == . (45)

 The solutions of interest, for Region 3, of (44) are 

 

1
1

2

03 13
2 1

03 13

,

1
,

1 l
l

A
D

A

I I
D D

K K
µ

µ

=

 
= + −  

 
(46)

with 

 02 02 0112 1 11 2
1

02 12 11 02 01 11 12

K K KK K1
,

1 I I I I 1 I I I
m

m
m m

M M
A

k k

µ µ
µ µ

    
= + − + +    − −     

 

 

02 l 0112 11
2 m

02 12 01 11
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03 13 02 12

01 03 13 0211 12

01 11 03 13 12 02

K µ µ KK K
A µ µ µ

I I µ 1 I I

µ µ I I K K
µ

µ 1 K K I I

K I I KK K1
µ µ µ µ .

(µ 1)(µ 1) I I K K I I

m
l m

m

m
l

l

m l l m
m l

 −= + + + −  

 −
− + − −  

   
− + + +   − −    

 

(46')

 Now the magnetic field intensity in Region 3 can be determined: 
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

3 3
3 3

1 0 2 0 1 0 2 0

1 1 2 1 1 0 2 0

[ I ' K ' ]sin [ I K ]cos

[ I K ]sin [ I K ]cos .

H H
H z

z

z

V V
V

z

D k k D k k kz kD k kD k kz

k D k D k kz k D k D k kz

ρ

ρ

ρ

ρ
ρ ρ ρ ρ
ρ ρ ρ ρ

∂ ∂
= −∇ = − − =

∂ ∂
= − + − + =

= − − − +

H u u

u u

u u

 

(47)
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 The force that acts on a cylindrical region of the shaft can be obtained by integration on the surface 

21 SSSl ∪∪=Σ  (Fig. 15), and it is given by (32) which is repeated here 

 
2

0 02

H
nM

MdH ds
Σ

µ
  

= +  
  

∫ ∫F n� , 
(48)

where nM  is the normal component of the magnetization, and n is the unit normal vector directed 
inwards the volume bounded by Σ . For reasons of linearity and symmetry, (48) reduces again to 

 ( )2 2
0 3

1
,

2 l

l
l zS
H H dsρ

µµ µ−= + =∫F n H H , 
(49)

and the integrand is in fact the pressure p that acts on lS , and it is numerically equal with the pressure 

that acts on the shaft. The average pressure on a spatial period 
0

1
p pd

λ
λ

λ
= ∫ɶ  can be determined after 

the substitution of (47) and some calculations: 

 

( ) ( ) ( )
( ) ( ) ( )

0 2 2
1 1 2 1

0 2 2
1 0 2 0

1
[ I K ]

4
1

[ I K ] .
4

l l

l

p k D k D k

k D k D k

µ µ µ
ρ ρ

µ µ
ρ ρ

−
= − +

−
+

ɶ

 
(50)

 In order to apply the perturbation method, two points opposed on the same diameter of the stator 
must be considered, Fig. 17. In the plane-meridian approximation, the resulting mean pressure 12

~p , in 
a direction given by the angle θ , can be obtained by taking the difference between the values given by 
(50) after the substitutions 2ρ ρ= , and 1ρ ρ= . The mean pressure is a function of the displacement 
∆  and the angle θ  as 

 
2 2 2
1 3 3

2 2 2
2 3 3

2 sin ,

2 sin .

r r

r r

ρ ∆ ∆ θ
ρ ∆ ∆ θ

= + +

= + −
 

(51)

 In the plane-parallel model, it has been considered that 3r∆ << , so that some first order 
geometrical approximations could be used: 

 1 3

2 3

sin ,

sin .

r

r

ρ ∆ θ
ρ ∆ θ

≅ +
≅ −

 
(52)

 Finally 
 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

( )

2 2

12 1 1 2 2 1 2 1 1 1 2 1 1

2 2

1 0 2 2 0 2 1 0 1 2 0 1

0 2

I K I K

I K I K ,

1
, .

4
l l

l

p P D k D k D k D k

Q D k D k D k D k

P
P k Q

θ ρ ρ ρ ρ

ρ ρ ρ ρ

µ µ µ
µ

=  −  −  −  +   

+  +  −  +    

−
= =

ɶ

 

(53)

 The restoring force on unit length can be obtained from (53) by integration: 

 ( )/ 2

3 120
2 sinF r p d

π
θ θ θ= ∫ ɶ . (54)

 We present the results obtained when the force is evaluated according to this expression compared 
to the results from the plane-parallel model. 
 The expression of the restoring force derived from the plane-parallel model, for a unity value of the 
magnet permeability, which determines a maximum value for the force in function of this parameter) 
is (20). This expression may be simplified by noticing that the infinite summation can be expressed in 
terms of I1: 

 

( )
( )

( )( )

( )

22
1

0 3 2 132
1 2

2 1 1

1
2 1 exp

1

exp 2 I (2 )

l lm

l

A r
F r k r r

r r

k r r k

µ µ
πµ

µ

∆

−  
= − − × 

+  

× − −  

 

(55)
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 In order to highlight the differences and the coincidences between the results predicted by the two 
models, we represented in Fig. 18 the variation of the unit length restoring force versus the maximum 
displacement of the shaft 3 1r rδ = − , for some values of the other parameters we have used previously. 
The curve derived with the plane-meridian model is drawn with solid line, while the one derived with 
the plane-parallel model is dotted, a convention we respect in the following figures too. The 
differences are larger for extreme values of the displacement, and around the maximum of the force. 
However, these differences have moderate values: the maximum value of the force is 6.48 N/cm, for a 
displacement of 0.05 cm in the plane-meridian model, while for the plane-parallel model the values 
are 5.82 N/cm, and 0.07 cm respectively. 

 
Fig. 18. Restoring force in function of the maximum displacement. 

 For a given bearing, the values of the restoring force for various displacements of the shaft, are 
represented in Fig. 19. Differences between the predictions of the two models increase with the 
increase of the displacement, when the magnetic field becomes more intense. Other calculations show 
that the differences increase with the spatial period of the magnetic poles too. 
 The graphs in Fig. 20 are used for finding the optimal value of the spatial period in the case of a 
bearing with given geometrical dimensions. The plane-meridian model gives a value of 1.08 cm, and a 
maximum force of 12.35 N/cm. The corresponding values for the plane-parallel model are 0.89 cm 
and 11.80 N/cm. Differences are moderate in this case too. 

 
Fig. 19. Restoring force in function of the displacement, for a given bearing. 

 
 In order to get some insight about the variation of the restoring force around its maximum, in the 
plane-meridian model, we have represented it in Fig. 21 as a function of the spatial period and the 
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maximum displacement. The radius of the shaft, the height of the poles, the relative permeabilities, 
and Am are as in the last two figures. It can be seen that the saddle shape of the function around the 
maximum is quite flat, a fact that is advantageous for the design, as the parameters can be 
approximated roughly around their optimum values. This is also a feature of the plane-parallel model. 
 The results of the calculations we have reported can be used for finding the optimal set of 
parameters that provide a maximum restoring force. We have compared the predictions of the two 
models: plane-parallel and plane-meridian. The plane-meridian model is more realistic, but its 
application requires a computer program for integrals quadrature. The plane-parallel model is less 
rigorous, but the closed form formula for the force it provides is simple. 
 From a qualitative point of view, both models predict the same shapes of the dependencies of the 
restoring force on various geometrical parameters. There exists an optimal point when the force is 
maximum, and the variation of the force around it is quite small, providing the possibility of rough 
approximations for the parameters. 
 From a quantitative point of view, there exist some differences between the two predictions, which 
can be neglected when the design must not be highly precise. When the approximations used for the 
plane-parallel model do not hold true (for example, the maximum displacement of the shaft much 
smaller than the interior radius of the stator), the plane-meridian model must be selected. 
 

 
Fig. 20. Restoring force versus spatial period of the poles. 

 
 

 
Fig. 21. Restoring force in function of the maximum displacement and the spatial period of 

the poles. 
 
  The presented results are useful for the optimal design of magnetic fluid bearings. 
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2.4. Spectral Analysis 
 
A. Closed Form Expression of the Small Sample Variance of a Frequency Estimator 
 In many situations, a signal consisting of a single tone corrupted by additive white noise is 
available, and the frequency of the tone must be estimated. This problem has applications in 
communications, radar, sonar, measurements, adaptive control, speech processing etc [stoica_97], and 
it belongs to the wider class of spectrum estimation problems [kay_81]. Both complex and real signals 
have been considered in the literature. As maximum likelihood (ML) estimators perform very well but 
are not computationally efficient [rife_74, ken_87], various estimation algorithms have been proposed 
(see [tret_85, kay_89, fitz_94, luise_95, kim_96, ros_06, fu_07] for the complex case and [ken_87, 
sakai_84, chan_03, sav_03, so_04] for the real case). It is known that efficient methods designed 
for real-time estimation of the frequency of complex signals cannot be applied to the real case 
[lui_08], which is considered here. 

 We have also introduced some frequency estimations techniques that will be reviewed below and 
we have proposed closed-form expressions for estimators based on a small number of samples. 
 In a first contribution [06_04_S], we have considered a frequency estimation method, called 
reformed Pisarenko harmonic decomposer (RPHD) [so_02_1, so_02_2, so_04]. In the cited 
references, a closed form, asymptotically unbiased frequency estimator has been proposed and 
analyzed, based on the linear prediction (LP) property of sinusoidal signals, and on a modified least-
squares (LS) cost function. The same frequency estimator has been derived in [sav_03] from a 
constrained notch-filter point of view. 
 In our contribution we have derived a closed-form expression of the RPHD variance, based on the 
same variance analysis technique used in [So_04, Chan_03]. We obtained a much more convenient 
formula as compared to [So_04].  
 In single frequency estimation, the following signal model is used [So_04]: 
 

( ) ( ) ( ) ( ) ( )0cos , 1,2,...,x n s n q n n q n n Nα ω ϕ= + = + + =                               (1) 

 
where ( )0, 0, ,  and α ω π ϕ∈  are the unknown amplitude, frequency and phase of the sinusoid, and 

( )q n  is a zero-mean white noise, which is supposed Gaussian. The sinusoid is linearly predictable 

from the past samples: 
 

( ) ( ) ( ) ( )02cos 1 2s n s n s nω= − − − ,                                              (2) 

 
a fact that allows to define an error function 
 

( ) ( ) ( ) ( ) ( )2cos 1 2e n x n x n x nλ= − − + − ,                                    (3) 

 
where λ is the parameter to be determined.  
 In order to obtain an asymptotically unbiased frequency estimator a modified error function is 
defined in [so_04] as follows: 
 

( ) ( )
( )( )

.
2 2 cos 2

e n
nε

λ
=

+
                                                      (4) 

  
The corresponding LS cost function is 

( ) ( )
( )( )

2

3

.
2 2 cos 2

N

N

n

e n
J λ

λ
=

=
+∑                                                     (5) 
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 Solving 
( )

0NdJ

d

λ
λ

=  yields [so_02_1, so_02_2, so_04]: 

( ) ( )22 cos cos 0,N N NA B Aλ λ− − =                                                (6) 

 
where 

( ) ( )( ) ( )
3

2 1 ,
N

N

n

A x n x n x n
=

= + − −∑                                            (7) 

and 

( ) ( )( ) ( )( )2 2

3

2 2 1 .
N

N

n

B x n x n x n
=

= + − − −∑                                          (8) 

The root of (6) that provides the estimate is 
2 28

* .
4

kN kN kn
k

kN

B B A

A
ρ

+ +
=                                                      (9) 

The frequency estimate, which is denoted by 0ω̂ ,is computed as 

( )1
0ˆ cos *ω ρ−= .                                                     (10) 

 
 The variance analysis technique [so_04] is based on defining a second order polynomial 

 

( ) 22 N N Nf A B Aρ ρ ρ= − −                                                  (11) 

and utilize the following formulas 
 

{ }
( ){ }

( ){ }( )
( )0

2

2

cos

var *
'

E f

E f
ρ ω

ρ
ρ

ρ
=

≈                                               (12) 

( ) ( )
( )0 2

0

var *
ˆvar

sin

ρ
ω

ω
≈ .                                                              (13) 

 By using 
  

0cos( )ρ ω=                                                                   (14) 

and (11) there results 
 

( ) ( ) ( ) ( ) ( )2 2 2 2 2
0 0 0 0cos 2 2cos cos 2 cosN N N Nf A A B Bρ ω ω ω ω= − +                            (15) 

 

( ) ( )0' 4cos N Nf A Bρ ω= − .                                              (16) 

  

In order to compute the variance of 0ω  using (12) and (13), the values of { }NE A , { }NE B , { }2
NE A , 

{ }N NE A B , and { }2
NE B  are required. The computation is presented below. The result is 

 

}{ ( )( ) ( )2
02 2, 1 cosNE A N Nα β ω= − + − ,                                    (17) 

 

}{ ( )( ) ( )2
02 2, 1 cos 2NE B N Nα β ω= − + − ,                                  (18) 
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{ } ( )( ) ( )22 4 2
02 2, 1 cosNE A N Nα β ω= − + −  

( ) ( ) ( ) ( )( )2 2
0 0[4 10 4 12 cos 2 2, 1 2 cos 2q N N Nα σ ω β ω+ − + − + − +    

( ) ( ) ( )2 2, 2 2 3, 1 3, 2 ]N N Nβ β β+ − + − + −  

                     ( )4 4 10q Nσ+ − ,                                        (19) 

 

                   }{ ( )( ) ( ) ( )24
0 02 2, 1 cos cos 2N NE A B N Nα β ω ω= − + −        

      ( ) ( ) ( )( )2 2
0 0[ 4 14 cos cos 3q Nα σ ω ω+ − +           

( ) ( )( ) ( )
( ) ( ) ( )0

0
0

cos 2
2 2, 2 3, 1 4 3, 2 cos ]

cos
N N N

ω
β β β ω

ω
+ − + − + − ,        (20) 

}{ ( )( ) ( )22 4 2
02 2, 1 cos 2NE B N Nα β ω= − + −        

     ( ) ( ) ( ) ( )( )2 2
0 0[4 4 4 cos 4 8 2, 1 2 cos 2q N N Nα σ ω β ω+ + − + − +    

  ( ) ( ) ( ) ( )( )016 2, 2 16 3, 1 8 3, 2 1 cos 2 ]N N Nβ β β ω− − − − + − +     

           ( )4 4 8q Nσ+ − ,        (21) 

where 

  ( ) ( )( ) ( )( ) ( )( )
( )

2

1

0 2 1 0 2 1
1 2 0

0

sin 1 cos 2
, cos 2

sin

k

n k

k k k k
k k n

ω ω ϕ
β ω ϕ

ω
=

− + + +
= + =∑ .     (22) 

 By using (12)…(21) and after denoting the signal-to-noise ratio 
 

2

22 q

SNR
α
σ

= ,                                                           (23) 

we obtained the closed-form variance formula of the RPHD single-tone frequency estimator as 
 

     { } ( )( ) ( ) ( ) ( )( ) ( )
( )( ) ( )

0
0 2 2

0

2 2 cos 2 2, 1 2 2, 2 3, 1 3, 2
ˆvar

2 2 2, 1 sin

N N N N

SNR N N

ω β β β β
ω

β ω

+ + − − − + − + −
≅

− + −
   

 
( ) ( ) ( ) ( )

( )( ) ( )( ) ( )

2 2
0 0

222 2
0 0

2 5 cos 2 2 4 cos

2 2 2, 1 2 cos 2 sin

N N

SNR N N

ω ω

β ω ω

− + −
+

− + − +
.                               (24) 

 
 The shape of the variance in (24) is more convenient and it has a simpler structure when compared 
to the original results presented in [So_04]. In that paper, an asymptotic form of the variance is also 
considered. That form can be approached by making 0β =  in (24): 

{ }
( ) ( )0 2 2

0

1
ˆvar

2 sin
asympt

SNR N
ω

ω
≅

−
 

                 
( ) ( ) ( ) ( )

( ) ( )( ) ( )

2 2
0 0

222 2
0 0

2 5 cos 2 2 4 cos

2 2 2 cos 2 sin

N N

SNR N

ω ω

ω ω

− + −
+

− +
                                         (25) 

 
Minor differences are probably caused by small calculation errors in the original work. 
 We present now the derivation. We outline the main steps that we used in computing the values of 

{ }NE A , { }NE B , { }2
NE A , { }N NE A B , and { }2

NE B .  

 We use (1), (2) , (7), and (22) in order to get  

1 2 3N A A AA T T T= + + ,                                                           (26) 
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where  

( ) ( )( )2 2
1 0 0

3

2 cos cos 1
N

A

n

T nα ω ω ϕ
=

= − +∑  

   ( )( ) ( )2
02 2, 1 cosN Nα β ω= − + − ,                                            (27) 

 ( )( ) ( ) ( ) ( ) ( )( )2 0 0

3

cos 1 2cos 1 2
N

A

n

T n q n q n q nα ω ϕ ω
=

= − + − + + −∑ ,                   (28) 

and 

( ) ( ) ( )( )3

3

1 2
N

A

n

T q n q n q n
=

= − + −∑ .                                         (29) 

As ( )q n  is white, with zero mean, we have 

( ){ } ( ) ( ){ } 20; n
m qE q n E q n q m δ σ= = .                                       (30) 

There results { } { }2 3 0A AE T E T= = , { } { }1 1N A AE A E T T= = and (17). 

 In order to calculate { }2
NE A , we note that, due to (30), we have { } 0 for Ai AjE T T i j= ≠ . Therefore 

{ } { } { }2 2 2 2
1 2 3N A A AE A T E T E T= + + .                                             (31) 

We evaluate now the second and the third term in the RHS of (31). 
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( ) ( ) ( ) ( )( )}
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α ω ϕ

ω

α ω ϕ ω ϕ

ω

ω

=

= = +

= − +

× − + −
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× − + + −

× − + + −

∑

∑∑  

By performing the multiplications and by using (30) there results 
 

{ } ( )( ) ( )( )

( )( ) ( )( )
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02 2 2 2 2
2 0

3

2
0 0

2 1 1
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1 cos 2 1 2
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N
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E T
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E q n q m E q n q m

ω ϕ
α ω σ σ

α ω ϕ ω

ω

ω

=

= + = +

+ − +
= + +

+ + − + + −

× − − +

+ − + −

∑

∑∑  

 
Using again (30) we get 
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{ } ( )( ) ( )( )

( ) ( )( ) ( )( )

( ) ( )( )

( ) ( )
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2 2 2
2 0
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0 0 0
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0
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α σ ω ϕ ω
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β ω β

−
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=
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∑

∑

( ) ( )          2 3, 1 3, 2 ].N Nβ β+ − + −

              (32) 

Then 
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3
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N E q n q n

N
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σ

=

= = +

−

=

= − + − −

+ − − + − −
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∑

∑∑

∑

                     (33) 

With the use of (27), (31), (32), and (33) we obtain (19). 
We now consider (1), (2) , (8), and (22) in order to get 

1 2 3N B B BB T T T= + + ,                                                          (34) 
where 

( )( ) ( )2
1 02 2, 1 cos 2BT N Nα β ω= − + − ,                                  (35) 

( )( )

( ) ( ) ( )( ) ( )( )
2 0

3

0

4 cos 1

         cos 2 1 ,

N

B

n

T n

q n q n q n

α ω ϕ

ω
=

= − +

× + − − −

∑
                               (36) 

and 

( ) ( ) ( ) ( ) ( )( )2 2 2
3

3

2 2 2 2 1
N

B

n

T q n q n q n q n q n
=

= + − + − − −∑ .                      (37) 

 
Using (30) yields as before { } 1N BE B T= , (17) and 

 

{ } { } { }2 2 2 2
1 2 3N B B BE B T E T E T= + + .                                                 (38) 

 
We have 
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{ } ( )( ) ( )( )

( )( ) ( )( )
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By performing the multiplications and by using again (30) we get 
 
 

{ } ( )( ) ( )( )

( )( ) ( )( )( )
( ) ( ) ( ){ }

( ) ( ) ( ){ } ( ) ( ){ }( )
( )( ) ( )( )
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3 1
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16 2cos 1
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              16 cos 2 2 cos
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              cos 1 1 2 ]

           8 2 2, 1 cos 2 2

  

N

B q

n

N N
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q

n
E T
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E q n q m

E q n q m E q n q m

N N

ω ϕ
α σ ω

α ω ϕ ω

ω

ω

α σ β ω

=

= = +

+ − +
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= − + − +

∑

∑∑

( ) ( )( ) ( )

( )( ) ( )( ) ( )
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2 2 2
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1

2 2
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            16 cos 2 2 cos 2 cos

              32 cos 2 1 2 cos cos .

N

q

n

N

q

n

n

n

α σ ω ϕ ω ω

α σ ω ϕ ω ω

−

=
−

=

+ + +

− − + +

∑

∑

 

 
 
After some manipulations there results 

{ } ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

2 2 2
2 0 0

0

[4 4 4 cos 4 8 2, 1 2 cos 2

              16 2, 2 16 3, 1 8 3, 2 1 cos 2 ].

B qE T N N N

N N N

α σ ω β ω

β β β ω

= + − + − +

− − − − + − +
             (39) 

For the last term in (34) we have 
 

{ } ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( )

2 4
3

2 2 2

3 1

2 2 2

4

4 2

              2 { 2 2 2 2 1

              2 2 2 2 1 }

           4 2 .

B q

N N

n m n

q

E T N

E q n q n q n q n q n

q m q m q m q m q m

N

σ

σ

= = +

= −
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× + − + − − −

= −

∑∑              (40) 

 
 With the use of (35), (38), (39), and (40) we obtain (21). 
 We now consider (26)...(29) and (34)...(37) in order to obtain 
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{ } 1 2 3N N C C CE A B T T T= + + ,                                                     (41) 

where 

( ) ( ) ( )( )24
1 0 0cos cos 2 2 2, 1CT N Nα ω ω β= − + − ,                                   (42) 

( )( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )( )

2
2 0 0

3 3

0

0

4cos 1 cos 1

         { 2cos 1 2

         cos 2 1 },

N N

C

n m

T n m

E q n q n q n

q m q m q m

α ω ϕ ω ϕ

ω

ω

= =

= − + − +

× − + + −

× + − − −

∑∑
                             (43) 

and 

( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
3

3 3

2 2 2

{ 1 2

         2 2 2 2 1 }

      0

N N

C

n m

T E q n q n q n

q m q m q m q m q n

= =

= − + −

× + − + − − −

=

∑∑
                        (44) 

 
The last equality in (44) follows from (30). 
The quantity defined in (43) can be calculated as follows 

( )( ) ( )( )( )

( )( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( )( )

( ) ( ) ( )( )

2
2 0 0

3 3

2
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2 2
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3

2

2 2
0 0 0

3

2 cos 2 2 cos

         4cos 2 1 2cos 1

      4 cos 2 cos 2 1 2 cos

         4 cos cos 2 2 cos 2 .

N N

C

n m

N

q

m

N

q

m

T m n m n

q n q m q n q m

m

m

α ω ϕ ω

ω ω

α σ ω ω ϕ ω

α σ ω ω ϕ ω

= =

−

=
−

=

= + − + + −

× − − + −

= − + +

+ + +

∑∑

∑

∑

 

After some straightforward transformations we get 

( ) ( ) ( )( )

( ) ( )( ) ( )
( ) ( ) ( )

2 2
2 0 0

0
0

0

[ 4 14 cos cos 3

cos 2
        2 2, 2 3, 1 4 3, 2 cos ].

cos

C qT N

N N N

α σ ω ω

ω
β β β ω

ω

= − +

+ − + − + −
                (45) 

With the use of (41), (42), (44), and (45) we obtain (20). 
 
 In order to confirm the expression (24) for the variance, and to compare it with its asymptotic form 
(25), we have performed some computer experiments. RPHD variances have been measured for data 

sequences we have generated using (1), with 2α = , and several values for 2qσ . In every experiment 

we computed the frequency estimate using (9) and (10) for 500 independent runs, and we evaluated 
the measured frequency variance of the RPHD method in terms of the mean square frequency errors. 
 We used for evaluation purposes the Cramer-Rao bound (CRB) for the frequency estimator of a 
single sinusoid [Kay_93]  
 

( )
2

2

2 2

24
[dB rad ]

1

qCRB
N N

σ
α

=
−

.                                                   (46) 

 
 The measured frequency variances, the theoretical frequency variances calculated with (24), the 
asymptotic forms calculated with (25), and the Cramer-Rao bounds are shown in the figures that 
illustrate the experimental results. 
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 In Fig. 1 and Fig. 2, the frequency variances of the RPHD estimator versus 0ω  are represented, for 
20,  20 dB, =0, and = /4N SNR ϕ ϕ π= =  respectively. The measured variances are very close to the 

calculated variances and fluctuate in function of frequency and phase around the curve representing 
the asymptotic variance (they are not always symmetric around 0 / 2ω π= ; ( )1 2,k kβ  is symmetric 

around 0 / 2ω π=  for 0ϕ = , but it is not for / 4ϕ π= ). 
 In Fig.3 and Fig. 4, the frequency variances versus SNR are represented, at 

0 0.2 ,  20,  =0, and = /4Nω π ϕ ϕ π= =  respectively. It can be noticed that, like for all methods, errors 
increase at low values of the SNR. By comparing the two figures, there results that the relation 
between the variance and its asymptotic expression depends on ϕ .  
 

  

  

Fig. 4. Frequency variances versus SNR at 
ω0=0.2π, N=20 and φ=π/4. 

Fig. 3. Frequency variances versus SNR at 
ω0=0.2π, N=20 and φ=0. 

Fig. 2. Frequency variances versus ω0 at 
SNR=20 dB, N=20 and φ=π/4.. 

Fig. 1. Frequency variances versus ω0 at 
SNR=20 dB, N=20 and φ=0. 
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 Fig. 5 and Fig. 6 show the frequency variances in function of N for 

0 0.2 ,  20dB, =0, and = /4SNRω π ϕ ϕ π= =  respectively. The coincidence between the measured and 
the calculated variances is remarkable again. As in the preceding experiment, it can be noticed the 
dependence on ϕ  of the relation between the variance and its asymptotic evaluation, as well as the fact 
that the differences between them can become quite large for small N. 
 In conclusion, in the contribution [06_04_S] we provided a very convenient closed form expression 
for the variance of the frequency estimator in the RPHD method of single tone frequency estimation 
from a finite set of data samples. We also derived an asymptotic form of the variance, which agreed 
with previously published results. 
 We validated our results by means of several computer experiments. Coincidence between 
experimental and calculated variances was remarkable in all cases, except for very low signal to noise 
ratios. From our experimental results, it could be seen that the relation between the variance and its 
asymptotic evaluation depended very much on the phase of the sampled sinusoid, so that quite large 
errors are possible in the case of a small number of samples. This is an argument for the usefulness of 
our closed form formula as, in common applications, a number as small as possible of signal samples 
is desired. 
 

Fig. 6. Frequency variances versus N at 
ω0=0.2π, SNR=20 dB and φ=π/4. 

Fig. 5. Frequency variances versus N at 
ω0=0.2π, SNR=20 dB and φ=0. 



 95 

B. Two-Step Procedure for Reducing Variance in Single Tone Frequency Estimation  
 A general method for decreasing the variance of a frequency estimator has been proposed in 
[07_02_S].  The procedure consists of estimating an integer multiple of the frequency and in resolving 
the induced aliasing by a two-step procedure. The general idea will be outlined below. The procedure 
is illustrated using the RPHD method for the first step, and a new generalized RPHD (GRPHD) 
method that we have introduced for the second step. We also present explicit relations needed for 
implementation and statistical analysis of the GRPHD. Results of computer experiments are reported 
in order to confirm the theory. 
 In many single sinusoid frequency estimation techniques, the estimate 01ω̂  of  the unknown 

frequency ω0 is calculated from an estimator ( )*
1 01ˆcosρ ω=  using ( )1 *

01 1ˆ cosω ρ−=  [so_04]. If the 

estimator is unbiased, the relation between the variances of 01ω̂  and *
1ρ  is ( ) ( )

( )

*
1

01 2
0

var
ˆvar

sin

ρ
ω

ω
≈ . We 

propose to generalize this procedure by finding an estimator ( )*
0ˆcosk kρ ω=  of an integer multiple kω0 

of the frequency ω0. Solving this equation yields the following roots 
 

 ( ) ( )1 1 *
0

1
ˆ 1 cos 2 , 1, 2, ...,

2
j

j k

j
j k

k
ω ρ π− −  = − + =    

 (47)

 
where we have denoted by [ ]x  the largest integer smaller than x. If we dispose of a first, rough 

frequency estimate 01ω̂ , then the second frequency estimate corresponds to 01ˆ
1

k
j

ω
π

 = +  
 

. 

 As we will show below by statistical analysis and computer experiments for the GRPHD, the 
variance of the second estimate is smaller than the variance of the first one. An a priori argument 
might be as follows. 
If he estimator *

kρ  is unbiased, its variance can be evaluated from: 
 

 

( ) ( ) ( )( ){ } ( ) ( )( ){ }
( ) ( )

2 2*
0 0 0 0

0 0 0 02 2

ˆ ˆvar cos cos cos cos

ˆ ˆ
4sin sin .

2 2

k kE k E k k

k k
E

ρ ω ω ω ω

ω ω ω ω

= − = −

  +   −  =     
     

 (48)

 
 For small k and for a good estimation (small 0 0ω̂ ω− ), we have 

 

 ( ) ( )
( )

*

0 2
0

var
ˆvar

sin
k

k k

ρ
ω

ω
≈ . (49)

 
 In frequency estimation methods such as PHD and RPHD, the variances of the frequency estimates 
are evaluated in terms of some quantities proportional to the autocorrelation function of the signal, 
calculated at lags 0, 1, and 2. As we will show later, the variance (49) can also be evaluated in terms of 
quantities proportional to the signal’s autocorrellation function, calculated at lags 0, k, and 2k. Thus, 

for a sufficiently large number of data points N, and comparatively small k, ( )*var kρ  increases much 

less with respect to ( )*
1var ρ  than the increase of the denominator in (49) with k. 

 The variance in (49) is unbounded at frequencies ki
k

iMi ...,,1,0, =π=ω , and minimum at 
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 1
, 0,1, ..., 1

2mi i i k
k

πω  = + = − 
 

. (50)

 
 In the two-step procedure, we use N data points and a method such as MC, PHD or RPHD in order 
to obtain a first estimate 01ω̂ , and to choose a value of k<<N such that the first estimate be as close as 

possible of an miω . We then refine the search by using the same N data points in order to estimate the 

( )*
0ˆcosk kρ ω= . 

 We analyzed and tested the two-step procedure by using the RPHD method for the first step, and 
the GRPHD, to be introduced below, for the second step. 
In single frequency estimation, the considered signal model is (1), repeated here for convenience: 
 

 ( ) ( ) ( ) ( ) ( )0cos , 1, 2, ...,x n s n q n q n n Nα ω ϕ= + = + + =  (51)

 
where ( )00, 0,α ω π> ∈ , and ϕ  are the unknown amplitude, frequency and phase of the sinusoid, and 

( )nq  is assumed to be a Gaussian white noise with zero mean and variance 2qσ . We denote the signal-

to-noise ratio ( )2 22 qSNR α σ= . The sinusoid is linearly predictable from the past samples according 

to: 
 

 ( ) ( ) ( ) ( )02cos 2 , 1, 2, ...s n k s n k s n k kω= − − − =  (52)

                            
a fact that suggests the definition of an error function ( ) ( ) ( ) ( ) ( )2cos 2ke n x n k x n k x n kλ= − − + − , 

where λ is the parameter to be determined. 
 However, by generalizing the RPHD method introduced in [so_04], in order to obtain an 
asymptotically unbiased frequency estimator we must define a modified error function 

( ) ( )
( )( )2 2 cos 2

k
k

e n
n

k
ε

λ
=

+
, and the corresponding LS cost function ( ) ( )2

2 1

N

kN k
n k

J nλ ε
= +

= ∑ . Solving 

( )
0kNdJ

d

λ
λ

=  yields 

 
 ( ) ( )22 cos cos 0kN kN kNA k B k Aλ λ− − =  (53)

 
where 
 

 ( ) ( )( ) ( )
2 1

2
N

kN
n k

A x n x n k x n k
= +

= + − −∑  (54)

 

 ( ) ( )( ) ( )( )2 2

2 1

2 2
N

kN
n k

B x n x n k x n k
= +

= + − − −∑ . (55)

                      
 The root of (53) that provides the estimate is 
 

 
2 2

* 8

4
kN kn kN

k
kN

B B A

A
ρ

+ +
= . (56)

 
 The above equations generalize the corresponding results from [so_04], which can be obtained by 
setting k=1. 
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 For a theoretical evaluation of the proposed two-step procedure, we calculated the variance of the 
new estimate by generalizing the analysis followed in [so_04]. The variance analysis technique is 
based on the definition of a second order polynomial motivated by (53) 
 

 ( ) 22 kN kN kNf A B Aρ ρ ρ= − −  (57)

 
on (3), and on the following formula [so_04] 
 

 { } ( ){ }
( ){ }( )

( )0

2

*
2

cos

var
'

k

k

E f

E f
ρ ω

ρ
ρ

ρ
=

≈ . (58)

 
By using ( )0cos kρ ω=  and (57) we obtain 

 

 
( ) ( ) ( ) ( ) ( )

( )
0

2 2 2
0 0 0cos

2 2
0

cos 2 2cos cos 2

cos

kN kN kNk

kN

f k A k k A B

k B

ρ ω
ρ ω ω ω

ω
=

= − +

+
 (59)

 

 ( ) ( ) ( )
0

0cos
' 4cos kN kNk

f k A B
ρ ω

ρ ω
=

= − . (60)

 

In order to compute the variance of 0ω̂  using (49) and (58), the values of { }kNAE , { }kNBE , { }2
kNAE , 

{ }2
kNBE , and { }kNkN BAE  are required. The main steps we followed in computing these terms are 

outlined at the end of this subsection, together with an argument for the unbiasedness of the estimator. 
We obtained: 
 

 

{ } ( )( ) ( ) ( )
( )( ) ( )

( ) ( )
( )( ) ( )
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0 22 2
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0
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N k k N k k

k SNR N k k N k k k

ω β β
ω

β ω
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β ω

ω ω
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− + + −
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−

− + + −

− + −
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− + + − +

     (61)

 
where 
 

 

( ) ( )( )

( )( ) ( )( )
( )

2

1

1 2 0

0 2 1 0 2 1

0

, cos 2

sin 1 cos 2
.

sin

k

n k

k k n

k k k k

β ω ϕ

ω ω ϕ
ω

=

= +

− + + +
=

∑
 (62)

 
 An asymptotic form of this variance results by formally making β=0 in (61). Due to the closed-
form, simple structure of (61), the asymptotic form brings no major simplifications. Moreover, the 
dependence of the variance on ϕ  is lost. For k=1, this asymptotic variance essentially reduces to the 
corresponding one calculated in [so_04].  
 The decrease in the calculated variances for the two-step method as compared to the one-step 
method is illustrated in Fig.7, where we have plotted the variance (61) versus frequency, for k=2, and 
3, at N=20, SNR=10 dB, and ϕ=0. We have also shown (61) for k=1 (one-step method). It is clear that, 
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for every frequency, there exist values of k>1 such that the variance provided by the two-step method 
is lower than the variance provided by the one-step method. The smallest errors correspond indeed to 
frequencies around those defined in (50). Similar results are obtained with the asymptotic form of 
(61). 
 Computer experiments have been carried out in order to evaluate the proposed two-step method by 
comparing it with the RPHD method [so_04]. 

 The data sequences for single real, noisy sinusoids were generated using (51), with 2α =  and 
ϕ=0. Different noise variances 2qσ  were chosen in order to obtain the desired SNRs. 

 The first step in our method was identical with the RPHD method and gave an initial frequency 
estimate 01ω̂  that corresponded to k=1 (although any other estimation method could be used in this 
first step). The purpose of computer experiments was to prove that one can choose some k>1 for the 
second step, in order to obtain a better frequency estimate. 
 We made use of (54)-(56), and (47) with the appropriate value for j, with k=2 and 3, for finding the 
second-step GRPHD estimates. In order to evaluate the frequency estimator performances, the mean 
square frequency errors (MSFEs) were computed by averaging 500 independent runs. These measured 
MSFEs for k=1, 2 and 3 are represented in the figures that illustrate the experimental results, together 
with the corresponding variances (61). 
 In Fig. 7, the MSFEs are plotted versus ω0, for N=20, SNR=10 dB, and ϕ=0. Note that, for every 
frequency, one can choose k=2 or k=3 in order to get a better frequency estimate than in the case k=1. 
Similar results were obtained for other values of ϕ. 
 In Fig. 8, the MSFEs versus SNR are represented, at ω0=0.1π, N=20, and ϕ=0. The errors are 
smaller with the two-step method as compared with the one-step method for all values of the SNR. 
Note the excellent agreement between the calculated and experimental variances, except for very low 
values of the SNR. 
 Fig. 9 shows the MSFEs in function of N  for ω0=0.1π, SNR=10 dB, and ϕ=0. It can be noticed the 
decrease of the variance and of the MSFE for all values of N. Experiments have been performed for 
various values of ϕ, with similar results. 

 

Fig. 7. Mean square frequency errors and variances versus ω0 at SNR=10 dB, N=20, and 
ϕ=0. 

 

 

∆∆∆∆         RPHD for k=1 
����          two-step for k=2 
οοοο         two-step for k=3 
            var. by (61) for k=1 
−⋅−⋅−⋅  var. by (61) for k=2 
-------   var. by (61) for k=3 
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Fig. 8. Mean sqare frequency errors and variances versus SNR at ω0=0.1π, N=20, and ϕ=0. 

 
 

 
Fig.  9. Mean square frequency errors and variances versus N at ω0=0.1π, SNR=10 dB, and 

ϕ=0. 
 
 We present now the derivation of the mathematical expressions used above. 
The quantities AkN and BkN can be written as sums of three uncorrelated terms. For example, we can 
use (51), (52), (53) and (62) in order to get AkN=TA1+TA2+TA3, with 
 
 

 
( ) ( )( )

( )( ) ( )

2 2
1 0 0

2 1

2
0

2 cos cos

2 1, cos

N

A
n k

T k n k

N k k N k k

α ω ω ϕ

α β ω
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∑
 (63)

 
 

∆∆∆∆         RPHD for k=1 
����          two-step for k=2 
οοοο         two-step for k=3 
            var. by (61) for k=1 
−⋅−⋅−⋅  var. by (61) for k=2 
-------   var. by (61) for k=3 

∆∆∆∆         RPHD for k=1 
����          two-step for k=2 
οοοο         two-step for k=3 
            var. by (61) for k=1 
−⋅−⋅−⋅  var. by (61) for k=2 
-------   var. by (61) for k=3 
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( )( ) ( ) ( ) ( ) ( )( )2 0 0
2 1

cos 2cos 2
N

A
n k

T n k k q n k q n q n kα ω ϕ ω
= +

= − + × − + + −∑
 

(64)

 

 ( ) ( ) ( )( )3
2 1

2 .
N

A
n k

T q n k q n q n k
= +

= − + −∑  (65)

 
We have E{ TA2}=E{ TA3}=0, and E{ AkN}=E{ TA1}=TA1. 

In order to calculate E{ 2
kNA }, we note that E{ TAiTAj}=0 for i≠j. Therefore 

 

 { } { } { }2
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2
AAAkN TETETAE ++= . (66)

 
The second term in the RHS of (66) can be evaluated as follows 
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 Hence: 
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 (67)

 
 
 
 With similar calculations, the expression of the last term in the RHS of (66) can be shown to be 

{ } ( ) 42
3 104 qA kNTE σ−= , so that 
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The steps we followed in order to calculated { }kNBE  and { }2
kNBE  are similar to those presented 

above, and will be skipped for brevity. The results are 
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02 1, cos 2kNE B N k k N k kα β ω= − + + −  (69)
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 Based on the decomposition of AkN and BkN in sums of three uncorrelated terms, it can be shown 
that { } 321 CCCkNkN TTTBAE ++= , with 
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After performing the calculations we obtained 
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 The proof that ( )*
0ˆcosk kρ ω=  is asymptotically unbiased is a generalized version of the proof 

introduced in [so_04] for the case k=1. Namely, a first order Taylor series evaluation of f at *
kρ  

starting from f at ( )0cosk kρ ω=  gives 
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 The proposed solution for decreasing the errors in the estimation of the frequency of a sinusoid 
embedded in additive, gaussian white noise by means of a two-step procedure works equally well for 
other estimators than RPHD.  
 A similar study has been carried out starting from the Pisarenko Harmonic Decomposition 
[07_04_S]. A rough PHD estimation has been performed in the first step, and a multiple of the 
unknown frequency has been estimated in the second step. The variance of the PHD estimator has 
been significantly reduced in this way. 
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C. Frequency Estimation by an Iterative Procedure  

 We have proposed an iterative algorithm for estimating the frequency of a real sinusoid embedded 
in additive noise. The Pisarenko harmonic decomposer (PHD) [sakai_84, chan_03, pis_73, eri_93], 
and the reformed Pisarenko harmonic decomposer (RPHD) [so_04, so_02_a, so_02_b] are among the 
algorithms that perform well and are computationally efficient in this case.  
 The theory for both the above mentioned algorithms assumes a white noise. We have introduced an 
iterative method designed to improve the performance of the RPHD such that frequency error 
variances close to the Cramer-Rao lower bound (CRLB) are obtained for signal-to-noise ratios (SNR) 
as low as 3 dB in a few iterations [09_03_S]. An iteration consists of filtering the initial data sequence 
with a frequency selective filter whose maximum of the frequency response is at the frequency 
estimate obtained in the previous iteration and in computing a better frequency estimate based on the 
data sequence at the filter output by means of the RPHD. Although the noise in the filtered sequence is 
no more white, experiments show that the considered estimators perform well in this case too. 
 We consider again the signal model of a sinusoid embedded in white noise: 
 

Nnnqnnqnsnx ,...,2,1),()cos()()()( 0 =++=+= ϕωα             (75) 

 
where 0>α , ),0(0 πω ∈  and ϕ are the deterministic but unknown amplitude, (angular) frequency 

and phase of the sinusoid respectively, and q(n) is a zero-mean Gaussian white noise of variance 2σ . 
  The signal-to-noise ratio is 
 

2
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0
2σ
α=SNR .                                                              (76) 

  
  In order to estimate the frequency we propose the following procedure: we initialize the algorithm 
by using the RPHD for the calculation of an initial estimate 0ω̂  for 0ω ; then we start iterations such 

that, at iteration 1≥k , we filter the initial data sequence with a selective filter centered at the 
frequency estimated at iteration k-1, 1ˆ −kω , and we apply to the signal from the filter output the RPHD 

in order to calculate a new frequency estimate kω̂ . 

  The purpose of filtering the data sequence is to increase the SNR. The filtered signal contains a 
colored noise component that does not fit into the theory of the frequency estimation algorithm we have 
mentioned, so that its performance has to be tested for this case.  
  We have considered the second-order noise rejection filter with the following transfer function: 
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where ρ is a parameter close to unity in order to provide selectivity (but smaller, for stability) and, at 
each iteration k of the algorithm we have made 1ˆ −= kr ωω . 

The performance of the noise-rejection filter can be illustrated by evaluating the enhancement η of the 
SNR 

0

1

SNR

SNR=η                                                                      (78) 

 

where 
q

s

P

P
SNR

1

1
1 =  is defined at the filter output and SNR0 has been defined in (7) (we have denoted 

by P1s and P1q the signal power and noise power at the filter output respectively). For evaluation 
purposes, we consider 0ωω =r .  
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  Denoting further by )]()([
2

)( 00

2
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Ps  and 2)( σω =qP the power spectral 

densities of the signal and noise defined in (1) respectively, and by taking into account their statistical 
independence, we have 
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The integral in (79) is a simple application of the properties of the Dirac pulse, while the integral in 
(80) can be calculated by means of the residuum theory as follows.  
Let 
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With the substitution je zω =  one gets 
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The integrand has two poles inside the unit circle, namely 0

1,2
jz e ωρ ±= , as 1ρ < . The residuum in z1 
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The residuum in 0

2
jz e ωρ −=  turns out to be 2 1 *R R= − . Therefore 

( ) ( )1 2 12 2 4 Imn nI J j R R Rπ π π= = + = − . After substitution, one gets 
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 Simpler approximate expression for (79) and (80) are obtained by taking into account that 

1,1 ≅< ρρ . The above results become: 
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Finally, using (78), (81) and (82) we get 
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η
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 Equation (83) reveals an important increase of the signal-to-noise ratio if we take into account the 
range of ρ ( 1,1 ≅< ρρ ). These noise rejection properties of the filter and the fact that, due to the 
good estimation provided by the RPHD, the estimated frequency does not differ significantly from the 
true frequency are in support of an iterative procedure that consists of computing ,...2,1,ˆ =kkω  by 

using the signal at the filter output, with the previous estimate 1ˆ −kω  substituted for the parameter rω  

in the expression of the frequency response. The variance of the estimator decreases at each iteration 
as the estimated frequency approaches gradually the true frequency. These a priori arguments are 
confirmed by experimental results presented next.  
 Computer experiments have been performed in order to evaluate the proposed iterative procedure. 
For frequency estimation, at each step of the algorithm we used the RPHD method [so_04]. The data 

sequence for single real, noisy sinusoids was generated using (85) with 2=α  and 0=ϕ . 
Relatively low signal-to-noise ratios were chosen in order to prove the efficiency of the noise rejection 
filter. We compared the estimates resulted from the iterative procedure after one iteration ( 1=k ) and 

5=k  iterations, to the RPHD method (corresponding to the initialization step of the algorithm) and to 
the CRLB [kay_93]. The parameter ρ was chosen experimentally. The simulation results presented 
below are averages of 1000 independent runs. 
 The results illustrated in Figs. 10 and 11 indicate the decrease of the mean square frequency errors 
with the number of iterations. After five iterations, the estimator performance approaches the CRLB. 
The larger SNR for the situation in Fig. 10 with respect to the one in Fig. 11 allowed for a smaller 
number of signal samples. Generally, a larger value of the SNR allows for a smaller number of signal 
samples and a value of ρ closer to 1 for achieving good estimates in a low number of iterations. 
However, at large SNR's, use of iterative algorithms has no justification, as the RPHD performs 
equally well.   
  Note that the frequency dependency of the mean square error, which occurs in real sinusoid 
frequency estimation, tends to decrease with the number of iterations. 
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  The simulation results indicate that the desired performance of the algorithm is achieved in a few 
iterations. Consequently, the additional computation complexity introduced by iterations does not 
change the order of magnitude of the complexity of the original estimation method. In our examples, 
the RPHD (used at the initialization of the algorithm and then at each iteration) takes 3N-4 real 
multiplications, 4N-8 real additions and 5 other operation that are usually implemented by ROM 
accesses. Additionally, each iteration involves 2N-2 real multiplications and 2N-3 real additions for 
filtering and an RPHD. Therefore, for k iterations, the algorithm takes (5k+3)N-6k-4 real 
multiplications, (6K+4)N-11k-8 real additions and 5k+5 other operations. As shown above, a value of 
k=5 is sufficient for achieving a good performance. 
 
 

  
Fig. 10: Mean square frequency errors versus frequency 

for N=50, SNR=10 dB, ρ=0.98. 
Fig. 11: Mean square frequency errors versus 
frequency for N=100, SNR=3 dB, ρ=0.95. 

 
  In conclusion, the algorithm we have proposed started from a known, single-step method (RPHD). 
We have used that method as a first step of the algorithm, then filtered the initial data sequence with a 
frequency selective filter centered on that estimate and used again that method on the filtered data in order 
to obtain the next estimate. This process has then been iterated. 
  Filtering has been introduced in order to significantly improve the signal-to-noise ratio.  Although 
after filtering the noise is colored, experimental results show that the RPHD still provides good frequency 
estimates. 
  Experiments indicate  that this iterated procedure leads to an estimated frequency with a mean square 
error close to the CRLB, significantly improving the initial, first-step estimate in just a few iterations 
(below ten, tipically five). As the number of iterations is low, the asymptotic complexity of the algorithm 
is the same as in the initial method. 
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D. Analysis of the Iterative Frequency Estimation Algorithm 
 We have shown that the algorithm we have introduced in [09_03_S] and reviewed in the preceding 
section has connections with the constrained notch filter approach [sav_03, qui_91]. We have derived 
an asymptotic cost function and we have evaluated the bias. We have devised a procedure for 
computing the variance and compared the result to experimentally obtained data [09_04_S]. These 
results will be outlined below. 
 We consider again the signal model (75) and the definition of the SNR (76). 
 The RPHD is an asymptotically unbiased estimator, and a certain bias exists in the small sample 
case [so_04]. In the following, we will analyze the asymptotic behavior of the estimator consisting of 
the application of the RPHD to a filtered version of (75), the filter having the transfer function (77). 
We will refer to this estimator as Filtered RPHD (FRPHD). 

The signal at the filter output is 

0 0 0( ) ( ) ( ) cos( ) ( )y n r n v n H n v nα ω ϕ ψ= + = + + + ,                                          (84) 

where ( )0 0
0

j jH e H eψ ω= , and v(n) is a colored, Gaussian noise. The FRPHD consists of the 

application of the RPHD to y(n), which is equivalent to the minimization of the following cost 
function 
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with respect to λ [sav_03, so_04]. The error signal ε(n) is related to y(n) through 

( )( ) ( ) 2cos ( 1) ( 2)n y n y n y nε λ= − − + − ,                                                  (86) 

which is a filtering operation with a filter having the transfer function ( ) 1 2( ) 1 2cosG z z zλ − −= − + . 

Therefore, ε(n) is obtained from the initial signal x(n) in (75) by filtering with the cascade of G(z) and 
H(z), giving an equivalent transfer function 
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It is relevant to compare (87) to the transfer function of a constrained notch filter [sav_03]:  
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Clearly, F(z) is obtained from F1(z) by substituting the variable λ at the denominator with an estimate 
of ω0, namely ωr. It is known that the infinite impulse response (IIR) structure of the notch filter does 
not allow for obtaining a closed form expression of the estimator. Our approach relaxes one constraint, 
allowing for the application of the closed form RPHD estimator, at the cost of the necessity of a first 
coarse estimation for initializing the ωr. 

We will derive now the asymptotic form of the cost function (85). By the Wiener-Khinchin theorem, 
the asymptotic counterpart of (85) is related to the power spectral density of ε(n), denoted Pε(ω), 
through [sav_03] 
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Due to the above mentioned filtering operation, we have 

( ) 2
( ) ( ) j

xP P F eω
ε ω ω= .                                                  (90) 

The input signal power spectral density has the two statistically independent components from (75): 
( ) ( ) ( )x s qP P Pω ω ω= + . The asymptotic cost function can be split in two parts accordingly: 

( ) ( ) ( )a s qJ J Jλ λ λ= + .                                          (91) 

The calculation of the first component involves applications of simple properties of the Dirac pulse: 
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By plugging the expression of F taken from (87) we get, after some calculations: 
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Note that 0sJ ≥ , so that its minimum is reached at 0λ ω= . 
The second component of the asymptotic cost function is  
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The calculation of this integral involves complex functions, integration over the unit circle and 
residues theory [con_78]. The result is 
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The shape of the asymptotic cost function for some specific values of the parameters is reported in 

Fig. 12. Its most important feature is the presence of a well defined minimum; the value of λ at which 
the minimum occurs is the estimate of the frequency. The displacement of the estimate with respect to 
the true frequency is the bias, caused by the presence of the term Jq in the cost function (91). 

As already mentioned, the RPHD is an asymptotic unbiased estimator, but it has some bias in the 
small sample case. As experiments show that the mean square error decreases when the FRPHD is 
applied after the RPHD such that the CRLB is almost reached after a few iterations, it might be 
expected that the bias greatly decreases too. In order to test this hypothesis we performed the 
following experiment. We applied 500 times the RPHD to the data with the values of the parameters 
shown in Fig. 13 (finite sample case, N=200). We calculated the means of the estimated frequencies 
and used these values for evaluating their bias with respect to the true frequencies and for setting the 
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parameter ωr of the filter. Finally, we found the minima of the asymptotic cost function ( )N → ∞  in 

order to estimate again the frequencies (with higher precision), and used the results for calculating the 
bias with respect to the true frequencies. The results reported in Fig. 13 indicate indeed an important 
decrease of the bias and explain why it becomes insignificant after a few iterations. Note the small 
value of the SNR (−3dB) allowed by the use of the asymptotic form of the cost function. 

 
 
 

  
 
 
The variance of the RPHD estimator at the filter output when its center frequency ωr is known can 

be calculated from [so_04] 
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where { }E ⋅ denotes mathematical expectation and 
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In order to evaluate the expectations, we introduce the following functions 
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For P we have 

Fig.12. Asymptotic cost function of the FRPHD 
(one iteration);  SNR=−3 dB, ω0=4π/9, 
ωr=ω0+0.1, φ=π/8. 
 

Fig. 13. Small sample bias for the RPHD and 
asymptotic bias for the filtered RPHD (one 
iteration);  SNR=−3 dB, N=200; ξ=0.98, φ=π/8. 
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where 0 0,A Hα ψ ϕ ψ= = +  and R(n) is the correlation function of the noise at the filter output, whose 
expression can be calculated by taking the inverse Fourier transform of the power spectral density. We 
obtained 
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The expectations of AN and BN are 

{ } ( ) ( )0,1 2,1NE A P P= + , 

{ } ( ) ( ) ( ) ( )0,0 2,2 2 0,2 2 1,1NE B P P P P= + + − .                                  (100) 

 

(A closed form can be easily derived for the summation in (18).) 
Similar expressions can be obtained for Q, by taking into account that higher order moments of a 

jointly Gaussian process can be expressed in terms of R. We skip these expressions for brevity. Then, 
we have 

  { } ( ) ( ) ( ) ( )2 0,1,0,1 0,1,2,1 2,1,0,1 2,1,2,1NE A Q Q Q Q= + + +                                  (101) 

 In the same way, { }N NE A B  and { }2
NE B  can be expressed in terms of Q. 

 We applied this procedure for evaluating the variance for both the RPHD (when y must be 
substituted by x and the power spectral density is σ

2) and the FRPHD for the situation in Fig. 14 (note 
the low value of the SNR). First the variance of the RPHD has been calculated theoretically and then 
the experimental mean square error has been computed by using 500 independent computer runs (the 
small sample bias can be neglected). The results in Fig. 14 are expectable, and in agreement with 
[sO_04]. The averages of the estimated frequencies have been used for setting the ωr of the filters and 
the frequencies have been estimated again in 500 independent runs. The MSE's have been calculated 
and represented on Fig. 14, together with the variance evaluated theoretically with the procedure 
presented in this paragraph and the CRLB [kay_93]. The two results are again in good agreement and 
show how the variances of the estimations decrease when filtering is applied. 

The experiments we have performed and the theory we have developed show that the algorithm we 
have introduced provides estimates with MSE's close to the CRLB after a few iterations in the case of 
signals with low values of the SNR. Furthermore, its low complexity allows for real-time applications. 
Experiments have shown that the algorithm does not improve significantly the results obtained with the 
existing, lower complexity ones at high values of the SNR. 

We showed that our algorithm may be viewed as an extension of the constrained notch filter method, 
the difference being a larger number of degrees of freedom in choosing the filter coefficients. This 
approach also provided closed-form frequency estimators, the lack of which is a drawback of the 
constrained notch filter method.  

We calculated the asymptotic cost function and showed that the bias decreased after the filtering 
operation. We have also shown, both theoretically and experimentally, that the variances of the frequency 
estimates obtained after the filtering operation are much lower than the variances of the estimates obtained 
in the first step of the algorithm. This result confirms the experimental evidence showing that the 
variances of the estimates approach the CRLB after a few iterations of the algorithm. 
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We have tested the iterative algorithm and performed an analysis in the case transfer function of the 

filter other than (77) and obtained similar results as those presented in the last two sections [09_05_S]. 
 

Fig. 14. Mean squared errors for N=100, ξ=0.8, 
α

2=2, φ=π/8, SNR=0 dB. 
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2.5.  Sampling Theory for Multidimensional Signals 
  
 A research topic we have approached is the sampling theory of 2D signals. We have tackled both 
band-limited finite energy and periodic models. Some results are presented in this and the next 
subsections. 
 
A. Sampling Theorem for 2D Periodic Signals 
 We have approached a multi-channel sampling scheme for 2D, band-limited, not necessarily 
orthogonally periodic signals in order to obtain a generalized sampling expansion [94_02_S].  
 The well-known Shannon sampling theorem, which applies to band-limited, finite energy signals, 
has been extended by Papoulis to the mth-order generalized sampling expansion (GSE [cheung_93, p. 
86]). The initial work of Papoulis (see e.g. [pap_81]) has been further extended to multidimensional 
signals [brown_89, brown_91]. A thorough discussion of the subject can be found in [cheung_93]. 
 If the signal to be sampled is periodic, with period T, then the L2 theory does not apply. However, if 
it is band-limited, then its spectrum is discrete, with finite support and the signal can be expressed as a 
trigonometric polynomial 
 

( )
2N jk t
T

k
k N

x t c e
π

=−

= ∑ . 

 
The following sampling expansion holds [spat_87]: 
 

( ) ( ) ( )

( ) ( )
2

0

sin /

/
2 1 sin

2 1

N
E

E
n E

t T n
x t x nT

t T n
N

N

π
π=

 −  =
 − 

+  + 

∑ ,         
2 1E

T
T

N
=

+
 . 

 
The same result holds if x(t) is of finite duration and it can be expressed on the support interval as a 
trigonometric polynomial. 
 We have provided a GSE for 2D, band-limited, doubly periodic signals by generalizing the above 
sampling expansion. The idea of dealing with such signals forces one to use as a signal model a 
trigonometric polynomial as in (1) below. 
 Let us consider a 2D, band-limited, complex valued signal, defined on R2, which is doubly periodic 
(in two independent directions) 
 

( ) ( ) 12 '

N

j

R

x t a e π −

∈

= ∑ n V t

n

n                                                         (1) 

where 
 

[ ] [ ]1 1 2 2... ...NR N N N N= − × −                                                  (2) 

 
and [ ]1 2| '=V v v  is the periodicity matrix ( ( )det 0≠V ). Such a signal satisfies 

 

( ) ( ), ,x x= + ∀ ∀t t Vn t n                                                      (3) 

 
with [ ] [ ] [ ] [ ]1 2 1 2 1 11 21 2 12 22', ', ', '.t t n n v v v v= = = =t n v v  The terms from the rigt-hand side of (1) will 

be referred to as the signal's harmonic components. We shall suppose 
 

2 1 , 1..2i i iN PQ i+ = =                                                  (4) 
 

and we shall denote 
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1 2PP P= .                                                               (5) 
 
 According to Papoulis' multi-channel sampling scheme (MSS) [pap_81], the signal x(t) is, on one 
hand, the input of  linear, shift-invariant filter, H(ωωωω), and, on the other hand, it is input of P linear, 
shift-invariant filters Hk(ωωωω), k=1..P. We shall express the output y(t) of the first system in terms of the 
sampled outputs yk(t) of the P systems. We denote 
 

[ ] , , 1..2,i
ik i kQ Q i kδ = = = Q                                                         (6) 

( )12 'π −=Ω V .                                                                 (7) 

 
 Let m be some vectors with integer components [ ]1 2 ', 0.. 1i im m m P= = −m  lexicographically 

ordered. We say that the discrete-time functions gk(m), k=1..P, are independent if 
 

( )( )det 0, .. 1, 1..2k i i i ig n N N Q i+ ≠ = − − + − =n Qm .                                  (8) 

 
In the matrix defined in (8), m indexes the rows and k indexes the columns. We now state the 
following: 
 Lemma: Any discrete-time functions g(n) can be expressed on RN as a linear combination of P 
given independent functions gk(n) with coefficients φk(n) that are determined by g(n) and which are 
periodic with periodicity matrix Q: 
 

( ) ( ) ( )
1

P

k k
k

g g φ
=

=∑n n n .                                                 (9) 

 
Proof:  Equation (9) can be written 
 

( ) ( ) ( )
1

, .. 1,

0.. 1, 1..2

P

k k i i i i
k

i i

g g n N N Q

m P i

φ
=

+ = + = − − + −

= − =

∑n Qn n Qn n
                                      (10) 

 
 Since the gk are independent, the system (10) has a unique solution for every n, which defines the 
functions φk over one period. These functions can be extended over RN trough periodicity.  
 Refering to the MSS we can now establish the main theorem. 
Theorem: If the functions Hk(ΩΩΩΩn) are independent, then there exist the interpolation functions fk(t), 
k=1..P, such that the following GSE holds: 
 

( ) ( ) ( )1 1

1 Q

P

k k
k R

y y f− −

= ∈

= −∑∑
l

t VQ l t VQ l                                            (11) 

[ ] [ ]1 20.. 1 0.. 1QR Q Q= − × −                                                 (12) 

 
(yk are the sampled signals and VQ-1l are the sample points). The construction of the functions fk will 
be obtained in the course of the proof. 
 Proof: The transfer function H(ωωωω) for input signals of the shape of (1) becomes H(ΩΩΩΩn). The output 
of the single filter is 
 

( ) ( ) 12 '( )
N

j

R

y a H e π −

∈

= ∑ n V t

n

t n Ωn .                                            (13) 

 

Applying the expansion (9) to 
12 '( ) jH e π −n V tΩn  yields, for every t 
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( )12 '

1

( ) ( ) ,
P

j
k k

k

H e Hπ φ
−

=

=∑n V tΩn Ωn n t                                      (14) 

 
 By expanding φk(n,t) in a discrete-time Fourier series, we obtain 
 

( )1 12 ' 2 '

1

( ) ( ) ,
Q

P
j j

k k
k l R

H e H b eπ π− −

= ∈

=∑ ∑n V t n Q lΩn Ωn l t .                              (15) 

 
 By substituting (15) into (13) and by reversing the order of summation there results 
 

( ) ( ) ( ) ( ) 1 12 '

1

,
Q N

P
j

k k
k l R R

y b a H e π − −

= ∈ ∈

=∑∑ ∑ n V VQ l

n

t l t n Ωn  

which gives 
 

( ) ( ) ( )1

1

,
Q

P

k k
k l R

y b y −

= ∈

=∑∑t l t VQ l .                                           (16) 

 
 We shall now prove that 
 

( ) ( )1, 0,k kb b −= −l t t VQ l .                                                 (17) 

 
 Substituting t by t-VQ-1m in (15) and multiplying both sides by exp(j2πn'V-1m) yields 
 

( ) ( ) ( ) ( )11 2 '2 ' 1

1

,
Q

P
jj

k k
k R

H e H b e ππ −− +−

= ∈

= −∑ ∑ n Q l mn V t

l

Ωn Ωn l t VQ m .                       (18) 

 
Suppose QR∈m . The identification of the Fourier coefficients corresponding to exp(j2πn'Q-1m) in 

(15) and (18) (namely l=0 in (18) and l=m in (15)) gives (17) with l replaced by m. 
 By defining now the iterpolation functions through 
 

( ) ( )0,k kf b=t t                                                         (19) 

 
the proof is complete. The output of the single system is expressed in terms of he sampled outputs of 
the P systems that compose the MSS. 
 We consider now some special cases. 
 For a one-channel sampling scheme for the signal x(t) itself: H(ωωωω)=1, H1(ωωωω)=1, P1=P2=1. We shall 
denote, for this case RQ=RN' (see (12)), Q=N (see (6)), where, obviously  
 

( ) [ ] [ ]1 22 1 , , 1..2, ' 0..2 0..2i
i k NN k i R N Nδ = + = = × N .                                 (20) 

 
There results 
 

( ) ( )1 12 ' 2 '
1

'

, ,
N

j j

R

e b eπ πφ
− −

∈

= = ∑n V t n N l

l

n t l t                                             (21) 

 
with 
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( ) ( )
( ) ( )1 12 ' 1 11

,
det

N

j

R

b e S
π − −− − −

∈

= = −∑
n V t N l

n

l t V t N l
N

.                             (22) 

 
Combining (22) and (6) yields 
 

( ) ( ) ( )1 1 1

'NR

x x S− − −

∈

= −∑
l

t VN l V t N l .                                     (23) 

 
 One can notice that the sampling density is decreased P times (Pi times in each periodicity 
direction) in the case of the MSS (11) with respect to the one-channel sampling sceme (23). The 
number of samples is equal to the number of the signal's harmonic components ( )( )1 22 1 2 1N N+ +  in 

both cases.  
 A closed form for the function S can de derived in terms of the vector components using the 
formula 
 

 
( )

( )
sin 1/ 2

sin / 2

N
jnx

n N

N x
e

x=−

 +  =∑ .                                              (24) 

 
There results 
 

( ) ( )( )
( ) ( ) ( )

2
1 1 2 21 1

1 1 1 2 2

sin 2 1 / 2

2 1 sin / 2 / 2 1
i i i i

i i i i i i

N t t l
S

N t t l N

Ω Ω π
Ω Ω π

− −

=

 + + −  − =
+  + − +  

∏V t N l .                     (25) 

 
 If the periodicity directions of the signal x(t) are the t1 and t2 axes, then 
 

, , 1..2i
i kT i kδ = = V                                                 (26) 

 
and by denoting 
 

, 1..2
2 1

i
Ei

i

T
i

N
Τ = =

+
                                               (27) 

 
there results 
 

( ) ( ) ( )
( ) ( ) ( )

1 22 2 2

1 2 1 1 2 2
0 0 1

sin /
, ,

2 1 sin / / 2 1

N N
i Ei i

E E
n n i i i Ei i i

t T n
x t t x n T n T

N t T n N

π
π= = =

 −  =
+  − +  

∑∑ ∏ .                      (28) 

 
If ( ) ( )1 2 1,x t t x t= , then TE2 can have an arbitrary value and, by taking into account that 

 

( )
( ) ( ) ( )

22
2 2

0 2 2 2 2

sin /
1

2 1 sin / / 2 1

N
E

k E

t T k

N t T k N

π
π=

 −   =
+  − +  

∑ ,                                    (29) 

 
the 1D finite sampling expansion given at the beginning results. 
 The presented theorem can be easily specialized for the 1D case. 
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B. Sampling Expansion for 2D Band-Limited, Finite Energy Signals with Gaps in the Spectrum. 
 Sampling expansions for 2D signals whose spectrum supports result from integer translations of a 
parallelogram have been derived [98_03_S]. Nevertheless the spectrum of the signal could contain 
gaps, reconstruction from samples taken at the  Shannon-Landau density has been achieved. The 
framework has been again the Papoulis multi-channel sampling scheme. Potential applications include 
MRI imaging or other fields when only some portions of the images are of interest and the acquired 
signal and the original one are in a Fourier Transform relationship. 
 The general idea of this sampling procedure was not new [cheung_93] at the time of publication of 
[98_03_S]. However, we have chosen a model such that the 2D sampling vectors were not necessarily 
orthogonal and we have provided an example with interpolation functions expressed in closed-form. 
 We suppose that the image is the Fourier Transform of a finite energy, 2D, complex valued signal, 
defined on R2, and that it is concentrated on a set of parallelograms which result from some integer 
translations of a basic parallelogram P, along its sides. An example of the support of the signal 
spectrum is represented in Fig. 1 (the parallelograms are rectangles there; a closed form of a sampling 
expansion for such a signal is derived below). 
 If w1 and w2 are the (vector) sides of P, then the support of the image is: 
 

      1 1 2 2 1 1 2 2{ | , },S P k k k S k S= + + ∈ ∈ω ω                                                 (30) 
 
where  S1 and  S2 are some finite sets of integers. 
  
We denote: 
 

       1 1 2 2 1 2( ) ; ( ) ; .card S K card S K K K N= = =                                                      (31) 
 
We shall consider the 2D quantities as column vectors. 
 If ( )x t  is a signal from the considered class, we shall show that there exist N interpolation 

functions ( )kf t  such that: 
 

             
1

( ) ( ) ( ),
N

k E k E
k n

y y f
=

= −∑∑t V n t V n                                                                   (32) 

 
where y and the yk are linearly dependent on x. VE is the sampling matrix, whose expression is to be 
derived below. A prime will denote vector and matrix transposition.  
 An important result of the Information Theory states that the minimum sampling density which 
uniquely determines a finite support, finite energy signal is 2π divided by the area of the support of the 
spectrum (Shannon-Landau). We shall provide now a constructive way of achieving this sampling 
density by means of the Papoulis’ Multi-channel Sampling Scheme (MSS) [pap_81], [cheung_93]. As 
shown in the previous subsection, in the original arrangement of the MSS [pap_81], the signal ( )x t  is, 
on one hand, the input of a filter ( ),H ω  whose output is denoted ( ),y t  and, on the other hand, it is the 

input of N filters ( ),kH ω  whose outputs are denoted ( ), 0... 1.ky k N= −t  The output y can be 
expressed in terms of the samples of the yk and some interpolation functions as follows. 
 From the linear systems theory it is known that: 
 

             '
2

1
( ) ( ) ( )

4
j

S
y X H e dω

π
⋅= ∫∫

ω tt ω ω                                                       (33) 

 
(capital letters denote Fourier Transforms, e. g. ( )X ω  is the Fourier Transform of ( )x t ). 
 Consider the 2 2×  matrix: 
                       

                                   1 2[ | ],=W w w                                                                          (34) 
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and let , 0... 1l l NΦ = −  be some W-periodic functions in ω  such that: 
 

                  
1

'

0

( ) ( ) ( , ).
N

j
l l

l

H e H Φ
−

⋅

=

=∑ω tω ω ω t                                                   (35) 

 
The existence and the construction of the Φ l  result from: 
 

1
'

0

( ) ( ) ( , ),
N

j
l l

l

H e H Φ
−

⋅

=

+ = +∑ω tω Wk ω Wk ω t                                              (36) 

                                                                                        1 2,P S S∈ ∈ ×ω k  
 
where the periodicity of the lΦ  has been taken into account. (36) is an N N×  linear system of 
equations which admits a unique solution if its determinant is nonzero a. e. on P: 
 

            det[ ( )] 0 a.e. on P.kH∆ = + ≠ω Wk                                        (37) 
 
In the context of the MSS (37) is known as the independence condition (see also the preceding 
subsection). 
 From (36) the lΦ  can be calculated on P and extended to S through W-periodicity. Furthermore, 

they can be expanded in their Fourier series, with coefficients lb , for every t : 
 

              
12 '( , ) ( , ) .j

l l
n

b e πΦ
−

=∑ n W ωω t ω t                                                           (38) 

 
The substitution of (35) and (38) into (33) yields, after interchanging the order of summation and 
integration: 
 

                     
1

1
2 ( ) '

2
0

1
( ) ( , ) ( ) ( )

4

N
j

l lS
l n

y b X H e dπ

π
−

−

=

= ×∑∑ ∫∫
ω W nt n t ω ω ω .                              (39) 

            
We can introduce now the sampling matrix: 
 

                      1
1 2[ | ] 2 ( ) ',E E E Wπ −= =V v v                                                            (40) 

 
and, by using again the expression of the output of a linear system, we get: 
 

                    
1

0

( ) ( ) ( , )
N

l E l
l n

y y b
−

=

=∑∑t V n n t .                                                   (41) 

 
The bl satisfy: 
 

             ( , ) (0, ) ( ), 0... 1.l l E l Eb b f l N
∆

= − = − = −n t t V n t V n                                       (42) 
                        
 
Indeed, the substitution of t  with E−t V m  in (35) yields, after some manipulation, and by using (38): 
 

          
1

1
' 2 ( ' ')

0

( ) ( ) ( , )
N

j j
l l E

l n

H e H b e π −
−

+

=

= − ×∑ ∑ω t n m W ωω ω n t V m .                                  (43) 
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There results: 
 

                    ( , ) ( , ),l E lb b− = +n t V m n m t                                                       (44) 
 
wherefrom (42) can be obtained by making 0=n . 
 The result in (32) covers more types of gaps in the spectrum than other procedures such as band-
pass sampling [vau_91], the multi-band sampling [brown_85], and the gap sampling [hig_87]. 
 An important issue in connection to the MSS is the Cheung-Marks stability, discussed e. g. in 
[brown_91]. The results presented there can be easily transposed to our case. For example, the scheme 
presented here is stable if the determinant (37) is bounded away from 0. 
 We shall give now an example of a 2D signal with spectrum containing gaps and the corresponding 
sampling expansion at a minimum sampling density. Consider a 2D, finite energy, complex valued 
signal whose spectrum support is represented in Fig. 1. Due to the particular, rectangular shape of this 
region, the interpolation kernels f k  from (32) separate. We shall take the H and Hk as pure delays in 
the first variable, in order to express a shifted version of x in terms of its samples: 
 

                     
1

1

( ) ,

( ) , 0...3.k

j

j
k

H e

H e k

ω τ

ω τ

=

= =

ω

ω
                                                         (45) 

 

 
Fig. 1. The support of the spectrum of the signal from the example presented in 

Section III. 
 
If we choose: 
 

           1 1 2 25 3
[ , ] [ , ]

2 2 2 2
P

Ω Ω Ω Ω= − − × −                                                     (46) 

 
then: 

                      1 2{0,1,3,4}, {0}.S S= =                                                            (47) 
 
           
 
 
 
 

 

ω2 

ω1 5Ω1/2 Ω1/2 −Ω1/2 −5Ω1/2 

Ω2/2 

−Ω2/2 
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 We need the following simple algebraic identity: 
 

          43 3 3 3

4 4 4 4

1 1 1 1

( , , , ) ( , , , )( ),
a b c d

D a b c d V a b c d ab ac ad bc bd cd
a b c d

a b c d

 
 
 = = + + + + +
 
 
 

           (48) 

 
where V4 is the fourth order Vandermonde determinant. Direct application of the MSS and of (48) 
leads to: 
 

  
1 2

3

1 2 1 2 1 1 2 2
0 ( , ) 1 2 1 2

2 2 2 2
( , ) ( , ) ( ) ( ),l k

k n n

x t t x n n f t n f t n
π π π πτ τ

Ω Ω Ω Ω=

− = − × − −∑ ∑                             (49) 

 
 
where: 
 

                        

2

2

sin( )
2( ) ,

2

t
f t

t

Ω

Ω=                                                                            (50) 

 
and the fk can be obtained through the circular shift of the set {0,1,2,3} from the f0(t) listed below (51). 
 

                 

1 1 1 1
0 1 2 3

0
1 1 1 1

0 1 0 2 0 3 0

sin[ ( )] sin[ ( )]sin[ ( )]sin[ ( )]
2 2 2 2( )
( ) sin[ ( )]sin[ ( )]sin[ ( )]

2 2 2 2

t t t t
f t

t

Ω Ω Ω Ωτ τ τ τ τ τ τ τ

Ω Ω Ω Ωτ τ τ τ τ τ τ τ

− − − + − + − +
= × ×

− − − − −
 

 

              

1 1 1
1 2 3 1 2 3 1 2 3

1 1 1
0 1 2 3 0 1 2 3 0 1 2 3

cos[ ( )] cos[ ( )] cos[ ( )]
2 2 2 .

cos[ ( )] cos[ ( )] cos[( )]
2 2 2

t t t
Ω Ω Ωτ τ τ τ τ τ τ τ τ τ τ τ

Ω Ω Ωτ τ τ τ τ τ τ τ τ τ τ τ

− − + + + − + − + + − + + −
×

+ − − + − + − + − − +
                                                                                                                                                                                                                                             

                                                                                                                                                                                        
(51) 

 
The delays must be chosen such that the independence condition (37) be observed. Note that f(t) from 
(50) is the usual Shannon interpolation kernel, due to our particular choice of the region of support. 
 Another contribution to sampling of signals whose spectrums contain gaps has relied also on the 
MSS and involved derivative sampling, this time in a 1D context [02_03_S]. The work has been 
triggered by the renewed interest on the Papoulis' MSS at that time [sei_00, eld_00]. 
We have considered this time a signal havng the spectrum with the support depicted in Fig.2. We took 

the basic (angular) frequency interval 0 ,
2 2

I
Ω Ω = −  

, so that the signal spectrum support can be 

written as 0( ), { 2, 1,1,2}
k K

S I k k KΩ
∈

= + ∈ = − −∪ . 

The general MSS is represented in Fig. 4, so that we should take N=4. If the sampled outputs of the 
MSS, with ( ) 1H ω = , are supplied to the inputs of the system in Fig. 5, the original signal will be 
reconstructed at its output provided that the following orthogonality condition is observed: 
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1

0
0

2
( ) ( ) ( ), , , .

N
q

l l p
l

H q F p H p p q K I
πω Ω ω Ω δ ω Ω ω

Ω

−

=

+ + = + ∈ ∈∑                             (52) 

 
The Fk can be found from the Hk by matrix inversion, using (52). 
 

 
 

 
A sampling expansion is of the form 
 

1

0

( ) ( ) ( )
N

l l
l n

x t y nT f t nT
− ∞

= =−∞

= −∑∑                                                                            (53) 

 

where the fl are the interpolation functions and 
2

T
π

Ω
=  is the sampling period. The following steps are 

to be done for finding the fl , as we have shown above (we denote ,s j jω σ Ω= = ): 
1. Solve the system of equations 
 

[ ]
3

0

( )exp ( ) ( , ) ( ),l l
l

H s k s k t s t H s k k Kσ σ Φ σ
=

− − = − ∈∑ .                                                  (54) 

 
2. Find the fl from 
 

/ 2

/ 2

1
( ) ( , )l lf t s t d

Ω

Ω
Φ ω

Ω −
= ∫ .                                                               (55) 

 
In order to find a derivative sampling we take  
 

( )( ) , 0..3
l

lH j lω ω= = .                                                                    (56) 

 
The matrix of the system (54) can be conveniently factorized as follows 

ω 

X(ω) 

-Ω /2 Ω /2 5Ω /2 -5Ω /2 3Ω /2 -3Ω /2 

Ω  

Fig. 2. Spectrum of a bandpass 
signal. 

F0(ω) 
ys,0(t) 

Fl(ω) 
ysl(t) 

FN-1(ω) 
ys,N-1(t) 

Fig. 4. The general reconstruction diagram. N=4 in the 
example. 

x(t) 

H0(ω) 
y0(t) 

δT(t) 

Hl(ω
) 

yl(t) 

δT(t) 

HN-1(ω) 
yN-1(t) 

δT(t) 

x(t) 

x(t) y(t) 
H(ω) 

Fig. 3. The Multichannel Sampling Scheme. N=4 in 
the example. 

ys0(t) 

ysl(t) 

ys,N-1(t) 
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( ) ( )
( ) ( )
( ) ( )

( ) ( )

2 3

2 3

2 3

2 3

1 2 2 2

1 2

1

1 2 2 2

s s s

s s s

s s s

s s s

σ σ σ

σ σ σ

σ σ σ

σ σ σ

 − − −
 
 − − −

= 
+ + + 

 
+ + +  

AB  

with 
 
 

1 2 4 8

1 1 1 1

1 1 1 1

1 2 1 8

− − 
 − − =
 
 
 

A , 

2 3

2

2 2

3

1

0 2 3

0 0 3

0 0 0

s s s

s s

s

σ σ σ
σ σ

σ

 
 
 =
 
 
  

B . 

 
After performing matrix inversions we get 
 

( )
( )
( )

( )

1

2

3

4

exp 2

exp1

12 exp

exp 2

s t

s t

s t

s t

σΦ
σΦ

Φ σ
Φ σ

  −        −     =     +         +   

S ,                                                                 (57) 

 
where we have denoted 
 

2 3 2

2 3 2 3 2 3 3

2 3 2

2 3 2 3 2 3 3

2 3 2

2 3 2 3 2 3 3

2 3 2

2 3 2 3 2 3 3

1 2 3 1
2 2 4 3

8 2 2
8 8 2 2 4 6 6

8 2 2
8 8 2 2 4 6 6

1 2 3 1
2 2 4 3

T
s s s s s s

s s s s s s

s s s s s s

s s s s s s

σ σσ σ σ σ σ σ σ

σ σσ σ σ σ σ σ σ

σ σσ σ σ σ σ σ σ

σ σσ σ σ σ σ σ σ

− − + + − − + −

+ − − − + + − −

− − + + + − − + −

− + + − − − + −

 
 
 
 =
 
 
  

S
 

(T denotes here matrix transposition). 
 We can perform now the multiplications in (57) and, after reintroducing ω and Ω, we get 
 

1

2 3
2 3

exp( ) 2
( , ) {4[4cos( ) cos(2 )] [sin(2 ) 8sin( )]

12
4 2

( ) [cos(2 ) cos( )] ( ) [sin(2 ) 2sin( )]},

j t
t t t j t t

j t t j t t

ωΦ ω Ω Ω ω Ω Ω
Ω

ω Ω Ω ω Ω Ω
Ω Ω

= − + −

− − + −
 

 
 

2 2

2
3

exp( ) 2 8
( , ) { [8sin( ) sin(2 )] [cos(2 ) cos( )]

12
6

( ) [sin(2 ) 2sin( )]},

j t
t t t j t t

j t t

ωΦ ω Ω Ω ω Ω Ω
Ω Ω

ω Ω Ω
Ω

= − + −

− −
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3 2 3

exp( ) 4 6
( , ) { [cos( ) cos(2 )] [sin(2 ) 2sin( )]},

12

j t
t t t j t t

ωΦ ω Ω Ω ω Ω Ω
Ω Ω

= − + −  

 

4 3

2exp( ) 1
( , ) [2sin( ) sin(2 )].

12

j t
t t t

ωΦ ω Ω Ω
Ω

= −  

 
Now (55) must be applied to these functions in order to find the fl. Integrals of the form 

/ 2

/ 2
( ) exp( ) , 0..3lj j t d l

Ω

Ω
ω ω ω

−
=∫  must be calculated. For 0l = , the result is 

sin( / 2)
( )

/ 2

t
f t

t

Ω
Ω

= . For 

0l >   we can apply the derivative theorem [opp_83] for the Fourier transform, and we find that the 
integrals are equal to ( ) ( )lf t . Final expressions for the interpolation functions ( )lf t  can now be 
derived by direct calculation, but we will omit them for brevity. Instead we will study an example. 
 In order to get some insight in the behavior of the truncation error, we have applied (53) to the 
signal represented in fig. 1, whose expression is 
 

2

2

sin4 3 2( ) cos
2

t
t

x t
t

Ω
Ω

π
 =  
 

, 

 
and whose maximum value is 1 at t=0. 
For 2Ω π= , that gives the sampling period 1T = , we have increased 100 times the sampling rate in 
the interval [0;1]. We represented in Fig. 5 the absolute, maximum truncation error in the 
reconstructed sample points, as a function of the number of terms (the series have been truncated by 
considering only 2N+1 terms from –N to N). It can be seen that the result is satisfactory. 

 
 

Fig. 5. The truncation error. 
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C. Sampling Expansion on Lattices for Multidimensional, Multi-Band Signals 
 We have proposed a sampling theorem for finite energy, multidimensional, multiband signals, with 

sparse spectral support that does not necessarily tile N
ℝ  under translation [06_03_S]. The spectral 

support of the signal is generated by translation of a finite number of sets included in a fundamental 
region of a lattice, whose dual determines the N-dimensional sampling grid, and it is included in a 
fundamental region of a sublattice of the given lattice. We have used Papoulis' MSS in order to 
achieve the necessary sampling density. We have calculated bounds for the energy of the aliasing 
error. 
 Sampling theorems for multidimensional signals are important in Fourier imaging applications 
(sensor array imaging, synthetic aperture radar, magnetic resonance imaging), space-time sampling 
etc. This problem is also extensively covered in literature, for the case of signals having the spectral 
support included in an N-dimensional parallelepiped. The case of a rectangular sampling lattice 
[brown_89] is extended to general lattices [cheung_83], by using the MSS, and further extended to 
periodic/nonperiodic hybrids [izen_05].  
 We consider complex valued, finite energy, continuous, N-dimensional, multiband signals, whose 
spectral supports S result from translations of some finite sets, contained in a fundamental region of a 

lattice LU (an N-dimensional parallelepiped). S is contained in a fundamental region of another lattice, 

included in LU, and it does not tile N
ℝ  under translations in general. In order to achieve a sampling 

density lower than the Nyquist rate, which in this case is equal to the reciprocal of the volume of the 
parallelepiped containing S, an N-dimensional MSS is used. We thus generalize to multidimensional 

MSS the one dimensional multicoset sampling treated in [venk_00, venk_01], and we obtain an N-
dimensional smling expansion. 
 Consider an N-dimensional, complex valued, finite energy, continuous signal, with a spectral 
support S included in an N-dimensional parallelepiped. This assumption makes the lattice formalism a 

natural choice. We will use [izen_05] for definitions and properties of lattices relevant to sampling. 
 Consider a lattice LU generated by the column vectors u1, u2,...,uN and denote the corresponding 
matrix 1 2[ ... ]N=U u u u . The canonical fundamental region for LU is 
 

1

[0,1) | , 0 1 .
N

N N
i i i

i

U ν ν
=

 
 = = ∈ = ≤ < 
  

∑f f uℝ0C                                        (58) 

 

 Consider next M disjoint, connected subsets from Nℝ : { }0, 1..m m M⊂ ∈ =G C M ; each Gm 

generates by translations of vectors from LU a part Sm of the spectral support: 

 

( ),
m

N
m m m

∈

= ⊕ ⊂
p

Up ℤ∪
P

S G P                                               (59) 

 
( ⊕  denotes translation of a set of points by a vector). We suppose Pm finite and we denote 

card( )m mP=P . 
The spectral support of the signals to be sampled is given by 
 

m

m∈

=∪
M

S� S .                                                                   (60) 

  
We pack S as compactly as possible in a fundamental region of a lattice W UL L⊂ , generated by some 

vectors wi, i=1..N, and let 1 2[ ... ]N=W w w w . Without loss of generality, we can assume that the 
fundamental region is canonical, 
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1

[0,1) | , 0 1 .
N

N N
i i i

i

W ν ν
=

 
 = = ∈ = ≤ < 
  

∑f f wℝC  

 
Two-dimensional examples of this arrangement are presented in Figs. 1 and 2. 
 

  

 
 
 Fig. 7 contains the special case when the vectors wi are parallel to the ui. 
 It is known [izen_05] that there exists an N-by-N matrix L with integer elements such that 
 

=W LU .                                                                  (61) 
 

Let | det |L = L , 0'∈f C , and { }' | 'N
UA L= + ∈ = ⊕f Un n fℤ . Due to the linearity of (61) and to 

volume conservation, the set A∩ C  has L elements [izen_05], so that ,mP L m≤ ∈M . 

 Consider now a finite energy, complex valued signal, bandlimited to S, which is sampled with a 

MSS, as in Fig. 8. The P filters with the frequency responses Hk(f) are known, while the filers with 
frequency responses Yk(f), bandlimited to C, must be determined such that 0( ) ( )x x=t t  if it is possible, 

where x0(t) and x(t) are the output and input signals, having the Fourier transforms X0(f) and X(f) 
respectively. 

As the sampling signal is ( )( )
N

Tδ −

∈

−∑
n

t U n

ℤ

, with 1( )T T− −=V V  denoting the transpose V-1, i.e. the 

sampling lattice is the dual of LU, the sampling density is 1( | det |)P −U . The volume of the signal's 

f2 

f1 

u2 

u1 

C 

C0 

w1 

w2 

Fig. 7. Spectral support in two dimensions, 
when the vectors wi are parallel to the ui. 
The marked subcells belong to S. Subcells 

marked with the same pattern correspond to 
a given Pm. C0 is the parallelogram 

determined by u1 and u2. 
 

f1 

f2 

w2 

w1 

C 

u1 

u2 

f2 

f1 

u2 

u1 

C0 

G

(b) 

(a) 

Fig. 6. (a) Fundamental region of the 
lattice LU and the sets Gm. (b) 

Fundamental region of LW and the 
signal's spectrum support in two 
dimensions. 
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spectral support is 

1

( )
M

m m

i

P V

=
∑ G , where V(A) denotes the N-dimensional volume of a set A. In order to 

be able to reconstruct the signal, we must take max m
m

P P
∈

≥
M

. 

 The input-output relation in the frequency domain for the system in Fig. 8 is 
 

0

1

ˆ( ) ( ) ( ) ( ),
N

P

k k

k

X U X H Y

=∈

= − −∑ ∑
n

f f Vn f Vn f

ℤ

                                  (62) 

 
where 

 
( ), supp( ( ))ˆ ( )

0, otherwisek
H X

H
∈ =

= 


f f f
f

S
,                                               (63) 

 
 
and U is a shorthand notation for | det |U , which is equal to the volume of C0.  

 The condition 0( ) ( )X X=f f  is true in general if 
 

0

1

1ˆ ( ) ( ) ,
P

k k

k

H Y
U

δ
=

− = ∈∑ nf Un f f S ,                                                    (64) 

 
and, by tacking into account that the Yk are bandlimited to C: 

 

1

ˆ ( ) ( ) 0, \
P

k k

k

H Y

=

− = ∈∑ f Un f f C S .                                                  (65) 

 
 
 

 
 
 
We begin the analysis by finding some relevant consequences of (64). 

X(f) 

H1 Y1 

G1 

H2 Y2 

G2 

HP YP 

GP 

X0(f) 

δ (U
-1

)
T 

... ... 

Fig. 8. Multichannel sampling scheme 
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 It is known that every ∈f C  can be uniquely written as 0' , ' , N= + ∈ ∈f f Ur f r ℤC  [izen_05]. If 

∈f S , then ' m∈f G  and m∈r P  for some m∈M . By denoting − =r n p  and by taking into account 
(63), (64) becomes for each m∈M  
 

1

1ˆ ( ' ) ( ' ) , ' , , ,
P

k k m m

k

H Y
U

δ
=

+ + = ∈ ∈∑ r
pf Up f Ur f p rG P                                            (66) 

 
where we have used Kronecker's delta. 
 Consider the matrices 
 

ˆ( ') [ ] [ ( ' )],

( ') [ ] [ ( ' )],

, 1.. , ' .

m k k

m k k

m m

a H

b Y

k P

= = +

= = +

∈ = ∈

p

p

H f f Up

Y f f Up

p fP G

                                            (67) 

 
For every vector index, the lexicographic order is taken. The dimensions of these matrices are mP P×  

and mP P×  respectively. The system (66) can be written as: 

 
1

( ') ( ')
mm m PU

=H f Y f I .                                              (68) 

 
 We assume that the Hm has full row rank for each m, which in the context of the MSS is known as 
an independence condition.  

 

Then 1 1( ') ( '), ' ,m mU − −= ∈mY f H f f G                                            (69) 
 

where 1
m
−H  is a left inverse for Hm. Performing (69) for each m∈M , the ( )kY f  result for ∈f S . 

Since mP P≤ , the solution is generally non unique. In the context of one-dimensional multicoset 
sampling and reconstruction of multiband signals, an optimization procedure has been applied in order 
to find the solution that minimizes the reconstruction error [venk_00, venk_01]. Since that situation is 
a special case of ours, it can be assumed that a similar choice could be performed with the class of 
signals we have considered. 
 We study now the consequences of the system (65). There exists of course the trivial solution 

( ) 0, \kY = ∈f f C S , but (65) generally admits other solutions that also could be used as stated above. 

We remind that, due to linearity and volume conservation, for each 0'∈f C , there exist L points f from 

C of the shape '= +f f Un  (see (61)). Let these points be characterized by ( '), card( )m m L∈ =n fL L  for 

' ,m m∈ ∈f G M .  We divide the points in \C S  into two categories: the first one, denoted c
S , consists 

of points ' , ' m= + ∈f f Us f G  for some m∈M , so that ( ') \m m∈s f�L P . The second category is 

\ ( )c= ∪D C S S . 

 For c∈f S , by using the substitution ' , ' m= + ∈f f Us f G , and by taking into account (63), for every 
m∈M  (65) becomes 

1

ˆ ( ' ) ( ' ) 0, ' , , ( ') \ .
P

k k m m m m

k

H Y

=

+ + = ∈ ∈ ∈∑ f Up f Us f p s fG P L P                      (70) 

 
 We introduce the matrix 
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( ') [ ] [ ( ' )]c
m k kc= = +sY f Y f Us                                                       (71) 

 
of dimensions ( )mP L P× − , where again lexicographic order is taken for the vector index. Then (70) 
can be written in matrix form for every m∈M : 
 

,( ') ( ')
m m

c
m m P L P−=H f Y f 0 .                                                        (72) 

 

It follows that ( ')c
mY f  can be any matrix that satisfies (15) and, consequently, we have determined 

( )kY f  on Sc. 

 If ∈f D , then ˆ ( ) 0kH − =f Un  for every N∈f ℝ , as − ∉f Un S , so that the ( )kY f  can be arbitrary. 
The existence of several solutions for the reconstruction filters is due to the fact that the sampling 
density is generally higher than the reciprocal of the volume of the spectral support. However, if 

mP P=  for a certain m, then the solution of (68) is unique (provided the independence condition, 

which becomes det( ) 0m ≠H , is met). 

 We remark that, for situations like the one depicted in Fig. 7, the sets ( ')m fL  do not depend on f'. 
In order to obtain a sampling expansion for the signal x(t), with Fourier transform X(f), we take the 
inverse Fourier transform of (62) with 0( ) ( )X X=f f . Let ( )kg t  the inverse Fourier transforms of the 

signals ( ) ( ) ( )k kG X H=f f f  defined in Fig. 60, and let * denote convolution. We have 
 

1

1

1

( ) ( ) ( ) ( ) * ( )

( ) * ( ) ( ) ;

N

N

P

k k

k

P
T

k k

k

x Y X H U

y g

δ

δ

−

= ∈

−

= ∈

 
  = × − = 

    

 
 = −
 
 

∑ ∑

∑ ∑

n

n

t f f f f Un

t t t U n

ℤ

ℤ

F

 

 
Finally, there results 
 

1

( ) ( ) ( )
N

P
T T

k k

k

x g y− −

= ∈

= −∑∑
n

t U n t V n

ℤ

.                                       (73) 

 
We obtained the following 

Theorem. A finite energy, complex valued, continuous signal, defined on  N
ℝ , which has a spectral 

support in the shape of (60), sampled with the MSS of Fig. 8, with the frequency responses of the 
reconstruction filters given by (69) and (72), can be interpolated from its samples taken at points  
(U-1)Tn according to (73), if the matrix Hm defined in (67) has full row rank for each m∈M . 
 We now present bouds for the energy of theenergy (L2 norm) of the aliasing error. 
 Suppose that, caused by signal mismodeling, there exists some out of band energy in C\S. If we 

split the Fourier transform of the input signal in two terms: \( ) ( ) ( )X X X= +f f fS C S , with the two 

terms in the right hand side bandlimited to S and C\S respectively, then, due to linearity, the output 

signal can be written as 0 0 0 \( ) ( ) ( )X X X= +f f fS C S , where each term in the right hand side is the 

system output when it is driven by the corresponding term of the input.  
 Since 0 ( ) ( )X X=f fS S  by definition of the MSS, there results the following expression for the 
Fourier transform of the aliasing error: 
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0

0,
( )

( ) ( ), \
E

X X

∈
=  − ∈

f
f

f f f

S

C S
.                                                (74) 

 
The energy of the aliasing error can be obtained by integration:  
 

2

\
| ( ) |E d= ∫ f f

C S

E .                                                            (75) 

 

 For \∈f C S , we write again '= +f f Un  with ( ') ,N∈ ⊂n f ℤL  and 0' \∈f C G , m

m∈

=∪
M

G G . As 

we have shown above, for a given 0' \∈f C G , the cardinality of L(f'), i.e. the number of corresponding 

points \∈f C S   is 
 

0, ' \
card( ( '))

, 'm m

L

P

∈
=  − ∈

f
f

f

C G
L

L� G
.                                               (76) 

 
The expression of the Fourier transform of the output signal on C\S is similar to (62), except the use of 

kH  instead of ˆ kH . In terms of f' we have 
 

0

1 ( ')

( ' ) ( ' ) ( ' ) ( ' ).
P

k k

k

X U Y H X

= ∈

+ = + × + +∑ ∑
m f

f Un f Un f Um f Um
L

                        (77) 

 
We introduce the following vectors and matrices, with the vector index in the lexicographic order: 
 

0 0

( ') [ ] ( ' ),

( ') [ ] ( ' ),

( ') [ ] ( ' ),

( ') [ ] ( ' ),

( ') [ ] ( ' ),

( '), 1.. .

k k

k k

a X

b X

c

d Y

e H

k P

= = +
= = +

= = +
= = +
= = +
∈ =

n

n

n

n

n

X f f Un

X f f Un

E f E f Un

Y f f Un

H f f Un

n fL

                                                   (78) 

 
From (77) and (78) the following matrix equations are obtained 
 

0( ') ( ') ( ') ( ') ( ') ( ')U= =X f Y f H f X f A f X f , 
 

and 
 

0( ') ( ') ( ')

[ ( ') ] ( ') ( ') ( '),

= − =
= − =
E f X f X f

A f I X f B f X f
                                                      (79) 

 
where A(f') and B(f') have obvious definitions. 
We denote by MH the hermitian transpose of the matrix or vector M. We have 
 

( ') ( ') ( ') ( ') ( ') ( ') ( ') ( ') ( ')H H H H= =E f E f X f B f B f X f X f R f X f                                         (80) 
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The matrix ( ') ( ') ( ')H=R f B f B f  is hermitian, so its eigenvalues are real and positive. Let max( ')λ f  the 

maximum eigenvalue, and let max max
' \

sup ( ')λ λ
∈

=
f

f
C G

. From (80) there results after summation, 

integration over C0\G, a change of variable to C\S, and by tacking into account (75): 

 

2
max

\
| ( ) |X dλ≤ ∫ f f

C S

E .                                                         (81) 

 
 We obtained an upper bound for the energy of the aliasing error when the spectral support is not 
band limited to S, but it is however contained by C, in terms of the signal's out of band energy. 

Obviously, a similar lower bound can be obtained based on the smallest eigenvalue of R. 
 This concludes both the presentation of selected results in Sampling Theory and the Section 
dedicated to technical contributions. 
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2.6. Development 
 
 The planning of future research relies on two directions: Applied Electromagnetics and Solar 
Energy and on the interference between the two, namely antennas powered by solar energy. 
 The field of Applied Electromagnetics is planned to be developed within the Department of 
Measurement and Optical Electronics, Faculty of Electronics and Telecommunications of Timişoara 
by extending capabilities and assets of the Laboratory of Microwaves, Antennas and Electromagnetic 
Compatibility, by further cooperation with partners and finding new ones, by attracting new qualified 
personnel and by involving students in research. 
 Following personal efforts in attracting funding, the Laboratory has been equipped with a high 
performance 24 GHz Vector Network Analyzer, a high performance and two average performance 
Spectrum Analyzers, a high performance Signal Generator and a wide range of general purpose 
electronic equipment: signal generators, power supplies, measuring instrumentation and laboratory 
tools. This assets, together with general purpose computers allowed for designing and measuring 
performances of the metamaterial based devices we have devised and reported in a large number of 
publications in the last three years. For the near future, a TEM cell or an anechoic chamber and 
laboratory manufacturing facilities for microstrip boards are planned to be purchased. This will allow 
for independent development of passive structures, since, at the present time, measurements can be 
performed in our laboratory but manufacturing is realized within the facilities of our partners. 
 The future research directions in Applied Electromagnetics are planned to continue in finding new 
structures inspired from metamaterials having unusual and useful properties and applying this 
structures in filter design and realization, in sensor development and in finding new designs for power 
distribution networks of high speed digital or mixed signal integrated circuits and printed-circuit 
boards. However, the palette of applications of metamaterial inspired devices we intend to tackle is not 
supposed to be limited to the above listed ones, which we have already approached. Electronically 
controlled beam steering, holographic surfaces, dispersion engineering applications and new control 
techniques will also be considered. As the literature reviewed in the previous sections reveals, this 
research is still performed in university-based laboratories. Patents owned by large international 
corporations have been issued only in the last two or three years and industrial applications are still a 
mater of future. However, the same literature reveals that the interest in industry is constantly growing 
for metamaterial-based solutions.  
 On the other hand, scientific interest in metamaterials is growing due to the unusual properties that 
allow for propagation control of electromagnetic waves. Super-prim and super-lens effects and 
clocking are other topics that attracted the interest of researchers who published their results in non-
engineering oriented journals. Nevertheless, engineers involved in research played an important role in 
discovering and revealing these effects. This growing field of dispersion engineering is therefore very 
promising. Our contribution consisting of the creation of a periodic structure with electromagnetic 
band-gap between every two modes of propagation within the first eight ones is a very good start for 
this field. In order to be appropriately controlled, waves should be carried by a single mode. Our 
structure provides a wide variety of single mode propagation, at a wide range of frequencies. 
Furthermore, techniques such as scaling, use of multiple patches and vias and altering of geometry can 
be used for modifying the dispersion diagram in frequency in order to devise structures that meet 
specific frequency requirements.  
 It is our intention to tackle the phenomena related to wave propagation control. This involves 
considering interfaces between various periodic, quasi-periodic and homogeneous media. Since 
periodic and quasi-periodic media are man-made, finding such metamaterials with good properties is a 
generous subject of research. It is also a new subject, if viewed from our perspective. However, 
engineering applications are the reason for our research. Therefore we will target finding new 
engineering solutions, such as new designs for passive beam splitters, microwave lenses and 
holographic surfaces.  
 Devising new structures for power planes in high speed circuits in view of mitigation of parallel-
plate noise is another interesting research field, with connection to signal integrity issues and 
Electromagnetic Compatibility in general. As shown in the previous sections, we had good results 
related to this topic. Modern high-speed circuits are stacks of several metal planes separated by 
dielectric materials, which may be different, so may have different constitutive parameters. The metal 
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planes are connected by vias. The pins of the mounted devices can be connected to the metal planes 
equally through vias with metal walls. When a fast signal switch occurs at one pin, the transient 
current density in the metal walls of the vias generates an electromagnetic wave that propagates 
through the parallel-plate waveguide created by the metal walls. With many almost simultaneous 
switches, the resulting electromagnetic signals have the character of a broad-band noise, although it is 
essentially deterministic. This kind of noise is also called "simultaneous switching noise" or "ground 
bounce noise" and it can cause alteration of the power supply of the circuit, since modern MOS 
devices require low voltages. 
 An obvious solution for mitigation of the parallel-plate noise consists of embedding a 
metamaterial-based high impedance surface having an electromagnetic band-gap in the frequency 
range of the noise. Devising such a surface requires careful research for finding an optimum because 
several factors concur. First, the spectrum of the noise is low-pass. The electromagnetic band-gap can 
start from DC only if the power planes are electrically connected together, which is clearly not an 
option in this case. Therefore, the electromagnetic band-gap can only expand between two 
frequencies, the first one being required to be as low as possible and the second one sufficiently high 
to cover the whole spectrum of the noise. A periodic surface with such feature can be obtained by 
selecting large dimensions for the unit cell. However, the whole surface is of finite size due to small 
dimensions of modern circuits, so that the size of the unit cell must be as small as possible since a 
large number of unit cells are necessary in order to approximate the behavior of an infinite surface. 
Therefore, other solutions must be considered such as new designs of the metallic patches and number 
and placements of vias. 
 A second problem in design of periodic surfaces intended for mitigation of parallel-plate noise is 
coupling of signals between vias. A signal having a frequency comprised in the electromagnetic band-
gap range has an imaginary propagation constant and therefore is evanescent. However, such a signal 
can couple between vias if sufficiently close and badly positioned. The influence of vias placement is 
subject of current research.  
 Another direction in current development of devices based on metamaterials is filter construction, 
with the two alternatives: fixed and switchable or tunable. Both possibilities have been explored and 
several multi-band filters have been proposed in view of applications, especially for modern wireless 
systems. We have also tackled this field, devised new structures and performed parametric studies in 
view of meeting application dependent specifications. However, much work has to be done in the 
future in order to match the level of flexibility in design of classical solutions. Closely related is the 
problem of signal coupling. Although solutions exist, new designs are necessary for improvement. 
 We have also approached the problem of switched filters. We have proposed several structures that 
allow switching between different frequency responses, e.g. from band-pass to low-pass. Switching is 
accomplished by means of electronic control elements, such as MEMS, FETs, varactor diodes or pin 
diodes that alter the geometry of the surface and consequently the frequency response. A further 
extension consists of tunable filters that rely on modification of capacitance of varactor diodes through 
the biasing network. We have introduced novel biasing techniques and assessed the impact of the bias 
on the frequency characteristics and we intend to further develop these studies and propose new 
practical realizations. 
 Up to this moment we have not approached applications of periodic surfaces as open structures. We 
intend to do that in the future, again in both solutions: fixed and tunable. The field of applications 
extends from leaky-wave antennas to electronically steerable ones and up to holographic surfaces. 
 Successful research activity is not possible without cooperation. Up to now, we have cooperated in 
the field of Applied Electromagnetics with a team from the Budapest University of Engineering and 
Economics, with a team from the Laboratory of Antennas and Electromagnetic Compatibility (LACE) 
from the Politecnico di Torino, Italy and with the Research Group in Magnetic Fluids with the 
"Politehnica" University of Timişoara. The first one involved setting up a waveguide measuring 
systems of constitutive parameters of seeds (such as e.g. wheat) in X band in view of optimization of 
microwave heating process. The cooperation with LACE has both a teaching side and a research side. 
On one hand, within the teaching side we have sustained eight hour-courses for several years with 
topics from the S parameters applications at the Politecnico and a colleague from Italy taught eight 
hour-courses with topics from Smith chart applications and constitutive parameters. This teaching 
cooperation is in the framework of the Socrates / Erasmus European program and is continuing and 
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planned to be developed with undergraduate students and PHD students exchange. On the other hand, 
the research cooperation in the field of metamaterials had as a result the publication of more than 20 
scientific papers in refereed journals and proceedings of international conferences in the last three 
years. This very good start is supposed to be continued also in a formal framework. Besides 
applications of metamaterials listed above, the field of metamaterial-based sensors will be approached 
in the next future.  Furthermore, an enlarged cooperation is planned between the two parts and the 
Research Group in Magnetic Fluids, based on preliminary results on X-band waveguide measurement 
of constitutive parameters of materials containing nano-sized magnetite particles. Since the material is 
planar, embedding such slabs in the periodic surfaces we have studied may lead to interesting 
engineering consequences. 
 The presented research directions and topics in metamaterials and magnetic fluids, together with 
existing equipment and computing facilities constitute a sufficiently large field to accommodate full-
time researchers, doctoral students and diploma students. Funding can be ensured through national and 
European grants and contracts with economic partners in the geographical area, where automotive 
industry now uses microwave systems, transmission lines and components and is interested in signal 
integrity issues. 
 Education in the field of Applied Electromagnetics (High Frequency Techniques, Antennas and 
Propagation and Electromagnetic Compatibility) takes place both at an undergraduate and at a 
graduate level. Students are provided with specially written teaching material and an experimental 
equipment for laboratory training consisting of X band devices and measuring instruments. A normal 
enhancement of teaching facilities is expected in the future. However, technical knowledge acquired at 
the first two levels in the field of high frequency applications is not enough for performing research 
activities. Therefore additional courses must be planned at the doctoral school level. At least two 
courses have to be introduced in order to ensure a smooth transition from school activity towards 
research: 1. Microwaves, Antennas and Propagation – Advanced Topics and 2. Microwave 
Measurements. Various teaching material, existing laboratories and equipment and experience gained 
by the personnel working in the field ensures the possibility to perform this teaching activity. After 
finishing the introductory courses, doctoral students are supposed to gain experience and obtain results 
by working in the research laboratory under the supervision of and interacting with the doctoral 
supervisor and with his/her colleagues in a team-work environment. 
 Besides working with doctoral students, constant cooperation with other research teams and 
laboratories will be considered. Our experience shows that large research structures are not efficient in 
our particular situation. We will rather consider formation of small ad-hoc groups or teams created for 
solving problems and for application for grants in specific research targets. 
 From the above presentation, it is clear that the main research topics are planed to belong to the 
field of Applied Electromagnetics. However our experience in the other two fields where we have 
worked and obtained results, namely Signal Processing and Solar Energy will have an important 
impact on our future development. Signal Processing is ubiquitous in modern applications of 
Electronics and expertise gained in working in this field is planned to be applied in sensor 
construction. Moreover, filtering applications we planned to develop using metamaterials are not 
conceivable without solid knowledge and experience in Signal Processing.  
 The Solar Energy field is still in development at the "Politehnica" University of Timişoara. As 
shown in Part II, mainly practical applications have been considered. Since we are still involved in the 
team following a fruitful cooperation, we will participate to measurements and feasibility studies. A 
particular topic we have the intention to tackle provides a connection between Microwaves and Solar 
Energy: construction of Solar Energy powered equipment. Current interest is in solar energy powered 
antennas, but other systems might also be considered for this type of powering if intended to be placed 
in remote locations. In fact, this problem might be tackled from a more general point of view: find 
specific requirements and design constraints for solar energy based power supplies to be used in 
powering remote microwave systems. 
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