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1. ABSTRACT 
 
 

 
1.1. ABSTRACT 
 

In the habilitation thesis my main professional and research results achieved during the 
period 2002 – 2013 are presented. The above period follows the public presentation of my 
doctoral thesis which was in 2001. 

In the aforementioned period my main research fields were: Signal Processing, Analog-
to-Digital Converter (ADC) Testing, and Synchrophasor Measurements.  

In Signal Processing my work was focused on the parameter estimation of a sine-wave 
by both frequency-domain and time-domain methods. The frequency-domain methods used 
are the Interpolated Discrete Fourier Transform (IpDFT) method and the Energy-Based (EB) 
method. Conversely, the time-domain methods used are the sine-fitting algorithms. In ADC 
Testing I worked on the analysis of the estimation accuracy of some of the most important 
dynamic parameters of an ADC, which are the Effective Number Of Bits (ENOB) and SIgnal-
to-Noise And Distortion ratio (SINAD), achieved by means of the frequency-domain and 
time-domain sine-fitting algorithms when the sine-wave test signal is non-coherent sampled. 
In Synchrophasor Measurements my work is recent (beginning in 2011) and it is performed in 
order to find the best frequency-domain and time-domain algorithms which should be adopted 
for fast and accurate synchrophasor estimation. The used frequency-domain methods are 
based on the DFT and the used time-domain algorithms are based on Least Squares (LS) 
algorithm. 

The habilitation thesis contains three Sections. In the first Section an overview of my 
teaching and research activities is performed. Also, the achievements related to both these 
activities are revealed. In the next Section my main contributions to each aforementioned 
research field are presented in a separate subsection.  
In the first subsection the IpDFT and EB methods are separately presented. In the EB method 
both direct and indirect procedures are considered. For each method the expressions for the 
variances of parameter estimators are given. Besides, for the IpDFT method the expressions 
of the combined standard uncertainty and the PDF of the frequency estimator are given. Also, 
the criterion proposed for selection of the optimal window to be used in the IpDFT method is 
presented. Furthermore, two multipoint IpDFT methods for frequency estimation are 
described and their performances are compared. Besides, the expression of the combined 
standard uncertainty of the frequency estimator achieved by the most suited to be used in 
practice multipoint IpDFT is given. Then, the performance of the average-based IpDFT 
method is presented. Also, the effectiveness of a multipoint IpDFT method for amplitude 
estimation as compared with the IpDFT method is revealed. It should be noted that the 
multipoint IpDFT methods reduces the detrimental effect of the spectral interference due to 
the fundamental image component to the parameter estimation achieved by the IpDFT 
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method. Conversely, the results of the comparison between the theoretical means of the sum-
squared fitting and residual errors achieved by the three-parameter sine-fitting (3PSF) 
algorithm with frequency a priori estimated by the IpDFT method (3PSF-IpDFT algorithm) 
and the four-parameter sine-fitting (4PSF) algorithm are presented. In the second subsection 
the procedure used to estimate the SINAD and ENOB parameters by a sine-fitting algorithm is 
given. Then, the expressions for the mean and variance of the ENOB estimates provided by a 
sine-fitting algorithm are presented. In the third subsection the synchrophasor estimation 
results achieved by some DFT-based estimators in the case of an electrical signal with 
decaying dc offset component are presented. Then, the performance of the IpDFT 
synchrophasor estimator is presented. In all subsections computer simulations and 
experimental results are shown. The last Section of the habilitation thesis presents the 
perspectives of future works. There are specified new possible research directions in the 
aforementioned fields and a new research field.  

It is worth noticing that the main results achieved in Signal Processing field were 
published in 12 papers (all as first author) in the following prestigious measurements ISI 
journal: IEEE Transactions on Instrumentation and Measurement, Measurement, IET Science 
Measurement and Technology, Computer Standards & Interfaces, and Measurement 
Techniques.  Also, the main results achieved in ADC Testing were published in 5 papers (all 
as first author) in IEEE Transactions on Instrumentation and Measurement and Measurement 
journals. Moreover, I am coauthor of the Chapter entitled “Dynamic testing of analog-to-
digital converters by means of the sine-fitting algorithms,” of the book Design, Modeling, and 
Testing of Data Converters, which is now in press at Springer-Verlag Publisher, Germany. 
The main results achieved in Synchrophasor Measurements were published in 2 papers (one 
as first authors) in the IEEE Transactions on Instrumentation and Measurement journal. 
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1.2. REZUMAT 
 

În cadrul tezei de abilitare sunt prezentate cele mai importante rezultate profesionale şi 
ştiinţifice pe care le-am obţinut în perioada 2002 – 2013. Această perioadă urmează 
prezentării publice a tezei mele de doctorat, care a avut loc în 2001. 

În perioada mai sus amintită principalele mele domenii de cercetare au fost: Prelucrarea 
Semnalelor, Testarea Convertoarelor Analog-Numerice (CAN) şi Măsurarea Sincrofazorilor. 
 În Prelucrarea Semnalelor am lucrat la estimarea parametrilor unui semnal sinusoidal pe 
baza metodelor în domeniul frecvenţă şi în domeniul timp. Metodele în domeniul frecvenţă 
folosite au fost metoda de interpolare a transformatei Fourier discrete (metoda IpDFT) şi 
metoda bazată pe energia semnalului (metoda EB). Pe de altă parte, metodele în domeniul 
timp folosite au fost algoritmii de determinare a celui mai potrivit semnal sinusoidal. În 
Testarea CAN am analizat exactitatea de estimare a unora dintre cei mai importanţi parametri 
dinamici ai unui CAN, care sunt numărul de biţi efectivi (ENOB) şi raportul semnal-zgomot 
plus distorsiuni (SINAD) pe baza metodelor în domeniul frecvenţă şi în domeniul timp de 
determinarea a celui mai potrivit semnal sinusoidal. În Măsurarea Sincrofazorilor cercetarea 
mea este recentă (începând din anul 2011) şi are drept scop determinarea celor mai 
performanţi algoritmi în domeniul frevenţă şi în domeniul timp care să permită estimarea cu 
exactitate şi rapiditate a sincrofazorilor. Algoritmii în domeniul frecvenţă utilizaţi au fost 
bazaţi pe transformata Fourier discretă, iar în domeniul timp pe algoritmul celor mai mici 
pătrate. 
 Teza de abilitare conţine trei Secţiuni. In prima Secţiune sunt prezentate activităţile mele 
didactice şi de cercetare. De asemenea, sunt prezentate realizările pe care le-am obţinut în 
cadrul acestor activităţi. In următoarea Secţiune sunt prezentate, în cadrul unei subsecţiuni, 
cele mai importante rezultate ştinţifice pe care le-am obţinut în fiecare dintre domeniile de 
cercetare ştiinţifică menţionate anterior.  

În prima subsecţiune metodele IpDFT şi EB sunt prezentate separat. În cadrul metodei 
EB sunt folosite ambele proceduri, cea directă şi cea indirectă. Pentru fiecare dintre metode 
sunt date expresiile varianţelor estimatorilor parametrilor. În plus, pentru metoda IpDFT sunt 
date expresiile incertitudinii compuse, precum şi a funcţiei densităţii de probabilitate a 
estimatorului frecvenţei. De asemenea, este prezentat criteriul propus pentru alegerea ferestrei 
optime folosite în cadrul metodei IpDFT. În continuare, sunt descrise două metode multipunct 
IpDFT folosite pentru estimarea frecvenţei, iar performanţele lor sunt comparate. În plus, este 
dată expresia incertitudinii compuse a estimatorului frecvenţei furnizat de cea mai potrivită 
metodă multipunct IpDFT pentru a fi utilizată în practică. Apoi, performanţele metodei 
IpDFT pe baza mediei sunt prezentate. De asemenea, eficienţa unei metode multipunct IpDFT 
pentru estimarea amplitudinii în raport cu metoda IpDFT este pusă în evidenţă. Trebuie 
remarcat faptul că metodele multipunct IpDFT sunt folosite pentru a reduce efectul nedorit al 
interferenţei spectrale din partea componentei imagine a fundamentalei asupra estimării 
parametrilor pe baza metodei IpDFT. Pe de altă parte, sunt prezentate rezultatelor comparării 
mediilor teoretice ale sumelor pătratelor erorilor de potrivire şi reziduale obţinute pe baza 
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algoritmilor de potrivire cu trei parametrii estimaţi (algoritmul 3PSF), în care frecvenţa a fost 
a priori estimată pe baza metodei IpDFT (algoritmul 3PSF-IpDFT) şi de potrivire cu patru 
parametrii estimaţi (algoritmul 4PSF). În subsecţiunea a doua este prezentată procedura 
folosită pentru estimarea parametrilor SINAD şi ENOB ai unui CAN pe baza unui algorithm 
de determinare a celui mai potrivit semnal sinusoidal. Apoi, sunt date expresiile mediei şi 
varianţei estimatorului ENOB obţinut pe baza acestei proceduri. În subsecţiunea a treia sunt 
prezentate rezultatele estimării sincrofazorilor obţinute folosind o serie de estimatori bazaţi pe 
DFT în cazul în care semnalul electric conţine o componentă de decalaj exponenţială. Apoi, 
este prezentată performanţa estimatorului sincrofazorului obţinut pe baza algoritmului IpDFT. 
În toate subsecţiunile sunt prezentate rezultate obţinute prin simulare şi pe cale experimentală. 
Ultima Secţiune a tezei de abilitare prezintă perspective ale dezvoltării viitoare. Sunt 
prezentate noi posibile direcţii de cercetare în domeniile specificate anterior, precum şi un nou 
domeniu de cercetare. 
 Trebuie menţionat faptul că principalele rezultate ştiinţifice obţinute în Prelucrarea 
Semnalelor au fost publicate în 12  articole (toate ca prim autor) în următoarele prestigioase 
reviste ISI de măsurări: IEEE Transactions on Instrumentation and Measurement, 
Measurement, IET Science Measurement and Technology, Computer  Standards & Interfaces 
şi Measurement Techniques. De asemenea, principalele rezultate ştiinţifice obţinute în 
Testarea CAN au fost publicate în 5 articole (toate ca prim autor) în cadrul revistelor IEEE 
Transactions on Instrumentation and Measurement şi Measurement. Mai mult, sunt coautorul 
Capitolului intitulat “Dynamic testing of analog-to-digital converters by means of the sine-
fitting algorithms,” al cărţii intitulate Design, Modeling, and Testing of Data Converters, care 
este, în momentul de faţă, în curs de publicare la Editura Springer-Verlag, Germania. 
Principalele rezultate ştiinţifice obţinute în Măsurarea Sincrofazorilor  au fost publicate în 2 
articole (unul ca prim autor) în cadrul revistei IEEE Transactions on Instrumentation and 
Measurement.   
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2. TEHNICAL PRESENTATION  
 

 
2.1. OVERVIEW OF ACTIVITY AND RESULTS, 2002 – 2013 
 
  
 The title of my PhD thesis was “Contributions to the Analog-to-Digital Converters Testing”. I 
presented the thesis at “Politehnica” University of Timişoara in 2001. After my thesis I worked in 
three research fields, which are: Signal Processing, Analog-to-Digital Converter (ADC) Testing, and 
Synchrophasor Measurements. In these fields, during the period 2002 – 2013, I published more than 
60 papers, among which 19 papers (18 as first author) in the following prestigious ISI measurement 
journals: IEEE Transactions on Instrumentation and Measurement, Measurement, IET Science 
Measurement and Technology, Computer Standards & Interfaces, and Measurement Techniques.  
In the first two research fields I worked in principal with Professor Dominique Dallet with the 
Laboratoire d’Intégration du Matériau au Systèm (IMS), University of Bordeaux, France, and with 
Professor Dario Petri with the Department of Industrial Engineering, University of Trento, Italy. In 
Synchrophasor Measurement field I worked with Professor Dario Petri and the members of his 
research team. The papers written in collaborations can be found using the following personal web 
pages of the Professor Dominique Dallet:    
http://www.ims-bordeaux.fr/IMS/pages/pageAccueilPerso.php?email=dominique.dallet 
and the Professor Dario Petri: 
http://disi.unitn.it/users/dario.petri 

In the Signal Processing field I worked on the parameter estimation of a sine-wave by means of 
both frequency-domain and time-domain methods. Two frequency-domain methods were analyzed, 
which are the Interpolated Discrete Fourier Transform (IpDFT) method and the Energy-Based (EB) 
method. Conversely, the analyzed time-domain methods were the three-parameter sine-fitting (3PSF), 
the four-parameter sine-fitting (4PSF), and the multi-harmonic sine-fitting (MHSF) algorithms.  

A great part of my research work was dedicated to the IpDFT method. That method is often used 
in practice since it allows us to compensate both the spectral leakage effect due to the finite duration of 
the observation interval and the picket-fence effect due to the granularity between adjacent DFT 
samples. Moreover, it is very simple to understand and to apply. In the IpDFT method the cosine 
windows are often adopted. In particular, when the Maximum Sidelobe Decay (MSD) windows, also 
known as class I Rife-Vincent windows, are adopted the IpDFT parameter estimators are provided by 
simple analytical expressions. I derived the analytical expressions for the H-term MSD window 
coefficients (H  2) [Belega 05a] and its Discrete-Time Fourier Transform (DTFT) [Belega 07a]. One 
of my most important contributions to the IpDFT method was the derivation of the expressions for the 
variances of the parameter estimators in the case of a sine-wave corrupted by an additive white noise 
[Belega 09a]. Also, the expression of the frequency estimation error due to the spectral interference 
from the fundamental component was derived [Belega 12a], [Belega 09b]. Furthermore, when the 
MSD window is adopted two constraints for the integer part of the acquired sine-wave cycles and the 
number of analyzed samples were derived to ensure an accurate estimation of the frequency by the 
IpDFT method [Belega 09c]. Also, the expression of the combined standard uncertainty of the 
frequency estimator was derived [Belega 10a]. Based on that expression a criterion for selection of the 
optimal MSD window to be adopted was proposed [Belega 11a]. Moreover, the expression of the 
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Probability Density Function (PDF) of the frequency estimator provided by the IpDFT method was 
derived when some commonly used cosine windows are adopted [Belega 12a].  

To reduce the detrimental effect of the spectral interference from the fundamental image 
component to the parameter estimates achieved by the IpDFT method, which occurs at small number 
of acquired sine-wave cycles, the multipoint IpDFT methods should be used. A novel multipoint 
IpDFT method for frequency estimation was proposed [Belega 08a] and another one, already proposed 
in the scientific literature, was generalized for a higher window order [Belega 10a]. Both above 
multipoint IpDFT methods are based on the MSD windows and use an odd number of selected DFT 
samples. It has been shown that both these methods exhibit almost the same effectiveness in reducing 
the contribution of the spectral interference on the estimated frequency, but the latter one involve more 
simple mathematical expressions [Belega 10b]. For that method the expressions for the estimation 
errors due to the spectral interference from the fundamental image component and the variance were 
derived in the case of a sine-wave corrupted by an additive white noise [Belega 10a]. Then, using 
these expressions the combined standard uncertainty of the frequency estimation was derived [Belega 
10a]. Also, the accuracy of the average-based IpDFT method for frequency estimation was analyzed 
[Belega 13a]. Furthermore, a multipoint IpDFT method for amplitude estimation, already proposed in 
the scientific literature, was generalized for a higher window order [Belega 09d]. That method is based 
on the MSD windows and uses an odd number of selected DFT samples. The expression of the 
estimation errors due to the spectral interference from the fundamental image component was derived 
and compared with that of the IpDFT method. 
 EB method is also often used because it is very simple to understand and to apply, and it 
provides accurate estimates of sine-wave parameters using very simple formulas. My work on the EB 
method was focused on the analysis of the effect of the algorithm error, spectral interference from the 
fundamental image component, and additive white noise superimposed to the sine-wave on the 
frequency and amplitude estimations [Belega 12b]. Also, the root mean square (rms) of the frequency 
and amplitude estimation error achieved taking into account all three contributions above were derived 
[Belega 12b]. The amplitude was estimated by both direct and indirect procedures. In the indirect 
procedure the amplitude is estimated by means of the frequency estimate achieved a priori by the EB 
method. The overall rms values of the amplitude estimation errors achieved by both above approaches 
were compared through computer simulations and experimental results [Belega 12c].  
It should be noted that the statistical performance of the amplitude IpDFT estimator was compared 
with that of the amplitude EB estimator achieved by direct procedure through both computer 
simulations and experimental results in the case of a noisy harmonically distorted sine-wave [Belega 
10c]. 
Furthermore, the performance provided by the three-parameter sine-fitting (3PSF) algorithm with 
frequency estimated by the IpDFT algorithm (3PSF-IpDFT algorithm) and the four-parameter sine-
fitting (4PSF) algorithm when estimating the noise power of a sine-wave corrupted by white Gaussian 
noise was investigated. To this aim, the expressions for the expected sum-squared fitting and residual 
errors were derived assuming that the number of analyzed samples is sufficiently large [Belega 12d].  
The aforementioned results achieved to the considered frequency-domain and time-domain methods 
are presented in subsection 2.2. 
 After my doctoral thesis, which was focused on the ADC testing, I worked on the ADC dynamic 
testing in multi-tone mode [Belega 04]. It was shown that in that mode the accuracy of the used sine-
wave test signals can be smaller than that of the sine-wave test signal used in the single-tone mode, 
and the required accuracy of the used sine-waves decreases as the number of tones increase. Then, I 
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analyzed the estimation accuracy of the ADC dynamic parameter Effective Number Of Bits (ENOB) 
achieved by means of the beat test using the IpDFT method [Belega 05b]. Furthermore, the selection 
of the optimal window to be used in the spectral analysis based on the EB method was investigated for 
both single-tone and dual-tone modes [Belega 07b]. It was defined a novel performance parameter 
which allows us to choose the optimal window which should be adopted in the aforementioned ADC 
test. Then, the performances of the frequency-domain and time-domain sine-fitting algorithms when 
estimating ENOB parameter were analyzed [Belega 11a], [Belega 11b]. In the former sine-fitting 
algorithms the parameters of the ADC output signal are estimated by the frequency-domain methods, 
whereas in the latter algorithms by the time-domain methods. As frequency-domain methods were 
used the IpDFT and EB methods, whereas as time-domain methods were used the 3PSF-IpDFT and 
the 4PSF algorithms. It is worth noticing that the frequency-domain sine-fitting algorithms are novel 
procedures proposed to scientific community for the ADC testing by our research team. It was shown 
through both computer simulations and experimental results that the frequency-domain sine-fitting 
algorithms provide the same accurate ENOB estimates as the time-domain sine-fitting algorithms, but 
the required processing effort is much lower. Another important contribution is the derivation of the 
expressions for the mean and the variance of the ENOB estimator provided by a sine-fitting algorithm 
in the case of an ideal ADC and an ADC affected by harmonics, spurious tones, and additive white 
Gaussian noise [Belega 13b]. Also, a constraint for the frequency used in the 3PSF algorithm for 
accurate estimation of the ENOB was derived [Belega 07c].  
It is worth noticing that I am author of the book entitle “Analog-to-Digital Converter Testing” (2004), 
which is the first Romanian book dedicated to the ADC testing. Also, I am coauthor of the Chapter 
entitled “Dynamic testing of analog-to-digital converters by means of the sine-fitting algorithms,” of 
the book Design, Modeling, and Testing of Data Converter, which is now in press at Springer Verlag 
Publishing House. Moreover, I was scientific director of the following national grants supported by 
National University Research Council, Ministry of Education and Research (CNCSIS), Romania, 
focused on the ADC testing: Dynamic Testing of Analog-to-Digital Converters in Multi-Tone Mode 
(2004), Dynamic Characterization and Modelling of Analog-to-Digital Converters Used in High 
Speeed Data Comunications (2006), and New Methods for Dynamic Characterization of High 
Resolution Analog-to-Digital Converters (2007). The instruments and computers acquired for the 
experimental setups of the above grants were used to equip a laboratory from my Department.   
The results specified above related to the sine-fitting algorithms are presented in subsection 2.3. 
I began the work in the Synchrophasor Measurement field relative recent, in 2011. The first works 
were focused on the parameters estimation of an electrical signal in transient conditions, which 
contains the decaying dc offset. The behavior of the full-cycle DFT phasor estimator during transients 
has been analyzed. The theoretical expressions of the DFT-phasor estimator were derived in the case 
when the observation interval contains both an abrupt variation in the fundamental component 
amplitude and/or phase [Petri 11]. Using the achieved results, the worst-case phasor amplitude error 
during the whole estimation transient was determined [Petri 11]. The knowledge of the behavior of the 
phasor amplitude estimator during transients allows us to detect whether the disturbance contains or 
not a significant decaying dc offset. Furthermore, it was shown that the full-cycle DFT phasor 
estimator is sensitive to both harmonics and wideband noise and the accuracy is smaller in the 
transient conditions (with decaying dc offset) than in the steady state conditions (without decaying dc 
offset [Belega 11c]. The following works were focused on the synchrophasor estimation accuracy 
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provided by the frequency-domain and time-domain algorithms. The analyses were performed under 
steady state, dynamic, and transient conditions. The considered test conditions comply with the IEEE 
Standard C37.118.1-2011 about synchrophasor measurements for power systems. The used frequency-
domain algorithms were the classical DFT-based algorithm, the IpDFT algorithm, and the four-
parameter model (4PM) and six-parameter model (6PM) algorithms [Belega 13c], [Barchi 13a]. In the 
latter two algorithms firstly the dynamic phasor is approximated by its Taylor’s series expansion 
truncated to the Kth order term (K  1) and then the DFT of the approximated phasor is calculated. In 
the 4PM and 6PM algorithms K = 1 and K = 2, respectively. Conversely, the phasor components can 
be estimated by applying the Least Squares (LS) or the Weighted Least Squares (WLS) algorithms to 
the above approximated phasor. The accuracy of the phasor estimator achieved by both above 
algorithms, called LS-based or WLS-based estimators, were analyzed. Some of the above achieved 
results on the synchrophasor estimation are presented in subsection 2.4. 
It is worth noticing that for 11 papers published in the ISI journals during the period 2007-2010, I 
received from the CNCSIS the Prizes for Research Results.             
The experience gained in the aforementioned research fields was very useful for my teaching activity 
in several disciplines: Measurement Techniques, Sensors and Transducers (second year, undergraduate 
level), Electrical and Electronic Measurements (first year, undergraduate level), and Digital Signal 
Processors and Acquisition Systems (first year, graduate level). I wrote the books entitled Electrical 
and Electronic Measurements (2005) and Measurement Techniques, Sensors and Transducers. 
Practical Applications (2010) as support for the first two disciplines. Furthermore, I wrote the problem 
books, entitled Electrical and Electronic Measurements. Problems, which is used also as support for 
the above specified disciplines. In that book there exist several problems related to the statistical 
performance of the IpDFT method. 
 I am reviewer for the following ISI foreign journals: IEEE Transactions on Instrumentation and 
Measurement (from 2008), IET Science Measurement and Technology (from 2009), Measurement 
(from 2011), Digital Signal Processing (from 2012), IEEE Transactions on Power Delivery (from 
2013), and IET Signal Processing (from 2013). Untill now I performed 73 reviews for the above 
journals, in which 57 were for the IEEE Transactions on Instrumentation and Measurement journal. 
For that activity I received from the IEEE Instrumentation and Measurement Society for two times the 
Prizes: Recognition as one of Transactions “Outstanding Reviewers of 2009” and “Outstanding 
Reviewers of 2012”, respectively. 
Also, I was reviewer for several conferences, such as IEEE Instrumentation and Measurement 
Technology conference (IMTC), International Measurement Confederation (IMEKO) TC4 conference, 
IEEE International Symposium on Circuits and Systems (ISCAS). 
 Furthermore, it should be noted that in 2010 and 2013, I was selected by Thomson Reuters to 
participate at the Academic Reputation Survey, data from which supports the Times Higher Education 
World University Ranking.  
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2.2. CONTRIBUTIONS TO SIGNAL PROCESSING FIELD 
 
 
2.2.1. FREQUENCY-DOMAIN METHODS 
 
A. Windowing Approach 
   
 In that subsection the parameters often used in the derived expressions are defined. Moreover, 
my contributions to the expressions of these parameters are presented. 

We consider a discrete-time sine-wave x(m) of frequency f, amplitude A, and initial phase , 
achieved from a continuous-time sine-wave sampled at frequency fs, i.e., 

  
    ,2,1,0,2sin  mfmAmx   (1) 

 
The frequency f represents the ratio between the continuous-time waveform frequency fx and the 
sampling frequency fs. It is assumed smaller than 0.5 to satisfy the Nyquist theorem. When M samples 
are acquired, we can write: 
 

,
M

l
Mf

ff
s

x  
  

(2) 

 
where l and  (0.5    < 0.5) are respectively the integer and the fractional parts of the number of 
acquired sine-wave cycles . It should be noticed that  represents also the sine-wave frequency 
expressed in bins and it is usually evaluated by estimating l and  separately. When the sampling 
process is coherent we have  = 0 [Ferrero 92]. Otherwise, if a non-coherent sampling occurs, we have 
  0 [Ferrero 92]. That case is very common in practical applications due to the lack of 
synchronization between the sine-wave and sampling frequencies. In this case the spectral leakage 
phenomenon occurs. It can be reduced by windowing the acquired signal [Marple 87], [Harris 78], i.e. 
by analyzing the sequence xw(m) = x(m)w(m), m = 0, 1,…, M – 1, where w() is the adopted window, 
which usually belonging to the cosine class [Harris 78], [Nutall 81], [Offelli 90a]. The H-term cosine 
window is defined as: 
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











1

0

1,,1,0,2cos1
H

h
h

h Mm
M
mhamw   

 
(3) 

 
where ah, h = 0, 1,…, H  1, are the window’s coefficients. 
 The Discrete Fourier Transform (DFT) of the signal xw(m) is given by: 
 

       1,,1,0,
2

  MkekWekW
j

AkX jj
w    

(4) 

 
where W() is the Discrete-Time Fourier Transform (DTFT) of the window w(), which is given by: 
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For  << M and enough high values of M, we have [Nuttall 81]: 
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It should be noticed that the second term in (4) represents the image part of the spectrum. 
The coefficients of the most commonly used two-term (H = 2), three-term (H = 3), and four-term (H = 
4) cosine class windows are given in Table 1 [Nuttall 81], [Offelli 90a]. These windows are:  

- Maximum Sidelobe Decay (MSD) windows:  
- Minimum Sidelobe Level (MSL) windows; 
- Rapid Sidelobe Decay with Minimum Sidelobe Levels (RSD-MSL) windows; 
- Minimum Error Energy (MEE) windows.    
It should be noted that the MSD windows are known also as class I Rife-Vincent windows [Rife 

70], the two-term MSD window is known also as Hann window, and the two-term Minimum Sidelobe 
Level (MSL) is known also as Hamming window [Nuttal 81]. Some interesting window features listed 
in Table 2 are: peak sidelobe level, sidelobe level decaying rate, Normalized Peak Signal Gain 
(NPSG), Normalized Noise Power Gain (NNPG), Equivalent Noise BandWidth (ENBW), Equivalent 
Noise BandWidth of the squared window (ENBW0), and minimum Scalloping Loss (SL), which is 
reached at  = 0.5 (SL(0.5)) [Harris 78]. The parameters NPSG, NNPG, and ENBW have the 
following expressions [Harris 78], [Belega 07b], [Belega 12c]: 
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(10) 

 
The parameter ENBW0 is defined as [Petri 02], [Novotný 07]: 
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In [Belega 12c], we derived the expressions of the nominator of (11) for H = 2, 3, and 4, which are:  
- for H = 2: 
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- for H = 3: 
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- for H = 4: 
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(14) 

 
The parameter SL is defined as [Harris 78]: 
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Table 1. Coefficients of some commonly used two-, three-, and four-term cosine windows.  

Window H a0 a1 a2 a3 

Max. sidelobe decay (msd2) 0.5 0.5   

Min. sidelobe level (msl2) 

 
2 

0.53836 0.46164   

Max. sidelobe decay (msd3) 0.375 0.5 0.125  

Rapid sidelobe decay with min. 
sidelobe level (rsd-msl3) 

0.40897 0.5 0.09103  

Min. sidelobe level (msl3) 0.4243801 0.4973406 0.0782793  

Min. error energy (mee3) 

 
 
3 

0.408960 0.499247 0.091793  

Max. sidelobe decay (msd4) 0.3125 0.46875 0.1875 0.03125 

Rapid sidelobe decay with min. 
sidelobe level (rsd-msl4) 

0.338946 0.481973 0.161054 0.018027 

Min. sidelobe level (msl4) 0.3635819 0.4891775 0.1365995 0.0106411 

Min. error energy (mee4) 

 
 
4 

0.350139 0.48526 0.149889 0.014712 
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Table 2 Some important features for some commonly used two-, three-, and four-term cosine windows.  

Window Peak sidelobe 
(dB) 

Decay rate 
(dB/octave) 

NPSG NNPG ENBW ENBW0 SL(-0.5) 

msd2 31.47 18 0.5 0.375 1.5 1.9444 0.8488 

msl2 43.19 6 0.53836 0.3964 1.3676 1.8223 0.8186 

msd3 46.74 30 0.375 0.2734 1.9444 2.6265 0.9054 

rsd-msl3 64.19 18 0.40897 0.2964 1.7721 2.4139 0.8866 

msl3  71.48 6 0.4243801 0.3068 1.7037 2.3290 0.8775 

mee3 60.86 6 0.408960 0.2961 1.7703 2.4160 0.8861 

msd4 60.95 42 0.3125 0.2256 2.3100 3.1673 0.9313 

rsd-msl4 82.60 30 0.338946 0.2442 2.1253 2.9220 0.9192 

msl4 98.17 6 0.3635819 0.2612 1.9761 2.7277 0.9067 

mee4 84.18 6 0.350139 0.2517 2.0529 2.8320 0.9133 

 
The H-term MSD window (H  2) has the most rapidly spectrum sidelobe decaying rate among 

all the cosine windows of a given number of terms H [Nuttall 81]. In [Belega 05a], I derived the 
analytical expressions for the coefficients of the H-term MSD window (H  2), which were not given 
before in the scientific literature. That derivation is presented in the following. 
 
Proposition 1: The coefficients ah, h = 0, 1,…, H – 1, of the H-term MSD window (H  2) are given by 
the following expressions: 
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in which   !!/! ppmmC p

m  . 
 
Proof:  
The coefficients of the H-term MSD window must satisfy the following conditions [Nuttall 81]: 
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The coefficients ah, h = 0, 1,…, H – 1, given by (16) are the coefficients of the H-term MSD window 
if they satisfy the following conditions, imposed by (17) – (19): 
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Based upon the equality pq

q
p
q CC  we have: 

.2

2

22
22

0
22

22

22

1

0
22

2

0
22

1

0
22

2

0
22

1

0
22

1
22

2

0
22























































H
H

h

h
H

H

Hh

h
H

H

h

h
H

H

h

hH
H

H

h

h
H

H

h

h
H

H

h

h
H

H
H

H

h

h
H

C

CCCCCCCC
 

Thus, the condition (20) is fulfilled. 
We can write: 
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The last sum is equal to zero [Coşniţă 72]. Thus, the condition (21) is fulfilled. 
We have: 
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which implies: 
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The last equality is equal to zero [Coşniţă 72], which ensures that the condition (22) is fulfilled. 
Since all conditions (20) – (22) are fulfilled it follows that the Proposition 1 is true. 

 
Based on the expressions of the H-term MSD window coefficients (H  2) in [Belega 09a], we 

derived the analytical expressions for the parameters NPSG, NNPG, ENBW, and SL() of that window. 
These expressions are much simple than (8) – (10), and (15), which are given before in the scientific 
literature, since they depend only on the window’s number of terms, H. They are: 
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 Furthermore, based on the derived expressions for the coefficients, in [Belega 07a], we derived 
the analytical expression of the DTFT of the H-term MSD window (H  2). That derivation is 
presented here.  
 
Proposition 2: The DTFT of the H-term MSD window (H  2) is given by the expression:  
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Proof: 
By substituting (16) in (7) we achieve: 
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We have the following equality:  
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The above equality can be proved by multiply first each side by x  h (h = 0, 1,…, p) and then is given 

to x the values  h. To put in evidence the necessity of the term 2
2 2/ xC p

p  in the left side of the above 

equality each side is multiplied by x2
 and then is given to x the value zero. 

By replacing the equality (29), with p = H  1, in (28) we achieve for W() the expression (27). 
 

Fig. 1 shows the DTFT spectrum of the msd2 and msl2 windows (Fig. 1(a)) and the msd3, rsd-
msl3, and msl3 windows (Fig. 1(b)).  
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(a) (b) 

Fig. 1. DTFT spectrum of the: (a) msd2 and msl2 windows, and (b) msd3, rsd-msl3, and msl3 windows.  
 

If the frequency signal-to-noise ratio is higher than 20 dB, the integer part l of the acquired sine-
wave cycles can be determinate with very high probability by applying a maximum search procedure 
to the discrete spectrum samples |Xw(k)|,   k = 1, 2, …, M/2 – 1 [Offelli 92]. Thus, the sine-wave 
frequency  and the fractional frequency  are estimated with the same uncertainty.  
 
 
B. Interpolated DFT Method 
 

Frequency-domain methods based on the DFT are characterized by robustness toward signal 
model inaccuracies and low computational effort. On the other hand, they have inherent limitations 
due to the spectral leakage effect due to the finite duration of the observation interval and the picket-
fence effect due to the granularity between adjacent DFT samples [Marple 86], [Offelli 90b],    
[Ferrero 92]. A frequency-domain procedure often used to compensate both above effects is the       
so-called Interpolated Discrete Fourier Transform (IpDFT) method [Rife 70], [Jain 79], [Grandke 83], 
[Petri 90], [Offelli 90b], [Schoukens 92], [Offelli 92], [Belega 09a], [Belega 12a]. That method 
provides accurate sine-wave parameter estimates, it is very simple to understand and to apply, and it is 
well suited for real-time applications. Moreover, in particular, when the MSD windows are adopted 
the IpDFT parameter estimators are provided by simple analytical expressions.  

 
1) Parameter estimation 
 

In the following the estimation of the sine-wave parameters , A, and , by the IpDFT method is 
presented. The expressions of the parameter estimators will be used in our further derivations. 

To estimate  by the IpDFT method, the ratio  of the two maximum DFT spectrum samples is 
determined: 
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where i = 0 if |Xw(l  1)| >  |Xw(l + 1)| and i = 1 if |Xw(l  1)| <  |Xw(l + 1)|. 
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In practice the number of acquired sine-wave cycles and the number of samples are usually quite high 
(e.g.   15 and M  512). Thus, the effect of the spectral interference from the image component on 
the spectrum samples close to the peak (that is for k = – 1, 0, and 1) is negligible [Offelli 92],    
[Belega 12a], and (4) becomes: 
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By using (31), the expression (30) becomes: 
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 Based on (30), an estimate of  can be derived by inverting the relationship (32) [Offelli 90b], 
[Belega 12a]:  
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where the function g(·) depends on the adopted window. 
The function g() is often approximated in least squares sense by a polynomial [Offeli 90b]. However, 
if a MSD window is used analytical expression for the function g() can be easily achieved by replaced 
(27) in (32) [Belega 09a]: 
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 From (31) the amplitude A can be estimated as: 
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which for the particular case of the H-term MSD (H  2) is given by [Belega 09a]: 
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 From (31) and (5) it follows that the phase  can be estimated by: 
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where sign(z) is the sign function of z, that is equal to 1 when z < 0, to 0 when z = 0, and to 1 when    
z > 0.  

The estimators ipip l  ˆˆ  , ipÂ , and ip̂  represent the parameters of the sine fit returned by the 

IpDFT method based on the H-term cosine window. 
 
 
2) Variances of the parameter estimators 
 
 In [Offelli 92], there were derived the expressions for the variance of the sine-wave parameter 
estimators provided by the IpDFT method based on the H-term cosine window. However, these 
expressions are complicated and relatively difficult to apply. Hence, in [Belega 12a], we derived more 
simple analytical expressions for the above estimators and also, in [Belega 09a],  for the particular 
case in which the H-term MSD window is adopted. The derivation of these expressions is given in the 
following. 

Let us assume now that the integer part l is high enough to ensure that the contribution of the 
spectral interference due to the image component on the estimator (33) is negligible. Moreover, in 
order to model real-life situations, we assume that a stationary white noise with zero mean and 

variance 2
n  is added to the discrete-time sine-wave (1).  

 

 Variance of the estimator ip̂  

By applying the law of uncertainty propagation [GUM 95] to expressions (33) and (30) we 
obtain, respectively: 
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and: 
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where 1 is the correlation coefficient between two adjacent DFT spectrum samples |Xw(j)| and |Xw(j + 

1)|, and 2
wX is the variance of a DFT spectrum sample |Xw(j)|, given by [Petri 02], [Novotný 06], 

[Novotný 07]: 
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The correlation coefficient 1 is given by [Novotný 07]: 
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in which NNPG is given by (9). 
By using (39) – (41) and (31), the expression (38) becomes: 
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where  and W(·) are provided by (32) and by (5), respectively. 

In [Belega 09a], we derived, for the particular case of the H-term MSD window (H  2), the 
expression of correlation coefficient 1: 
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Based on (25) – (27), (31), and (43), the expression (38) becomes:   
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(44) 

 

 Variance of the estimator ipÂ  

According to the uncertainty propagation law [GUM 95], the variance of the estimator (35) is 
given by: 
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the variance 2
wX is given by (40) and  the variance 2

,ˆ nip
 by (42), and   ipw JX  ˆ,  is the correlation 

coefficient between |Xw(l)| and ip̂ . 

With good approximation, (45) can be written as: 
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From (40) and (42) it follows that, for the values of M commonly used in practice (e.g. M  128), the 
first term in the right hand side of (47) prevails on the others. Thus, with high accuracy we have: 
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Now, using (40), (10), and (15) we obtain: 
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 Variance of the estimator ip̂  

 
The variance of the estimator (37) is given by [Offelli 92]: 
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where 2

,ˆ nip
 is given by (42) and 2

 is the variance of the arg[Xw(l)], which is given by [Offelli 92], 

[Novotný 07]: 
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By replacing (51) in (50) the variance of the estimator ip̂ becomes: 
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3) Combined standard uncertainty of the estimator ip̂  

 
 In [Belega 12a], we derived the expression for the combined standard uncertainty of the 
estimator ip̂ , which was not given before in the previous works focused on this subject. Furthermore, 

in [Belega 12a], we verified the accuracies of the derived expressions through computer simulations. 
The derivation of the combined standard uncertainty expression and the performed computer 
simulations are presented in the following.    

We consider that the discrete-time sine-wave (1) is corrupted by a stationary white noise with 

zero mean and variance 2
n . From (35) and (37) it follows that in the IpDFT method the amplitude and 

the phase are estimated by means of the fractional frequency estimator ip̂  returned by (33). Hence, 

their estimation accuracies depend on the estimation accuracy of the ip̂ . Expressions (4) and (30) 

show that the estimator ip̂  is affected by the image component, whose effect is particularly 

significant when the number of acquired signal cycles   is small. Also, the estimator ip̂  is affected 

by the wideband noise. Thus, the fractional frequency can be expressed as: 
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where siip ,̂ and nip ,̂ are the contributions of the spectral interference and wideband noise to the 

estimator ip̂ .  

According to (4) and (30) the contribution of the spectral interference depends on the adopted 
window, the integer and fractional parts l and , and the sine-wave phase . Thus, we can write: 
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In [Belega 12a] and [Belega 09b], we shown that when the MSD, MSL, RSD-MSL windows are 

adopted the following relationships occurs: 
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(55) 

 
where p is a function of both  and , i.e. p = p(, ), and for a given value of , p is an almost 
sinusoidal function of  with amplitude equal to 1. 
In the following we will derive the expression of the error siip ,̂ . The Taylor series expansion of the 

expression (33) truncated at the first-order term provides: 
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Using (32) and (55), the ratio  can be expressed as: 
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in which  represents the effect of spectral interference, which is given by: 
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Since      iWilW 112  and |p|  1, the above expression can be approximated as: 
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Comparing (32) and (57), we achieve: 
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in which  is given by (58). 
By replacing (59) in (56) we obtain: 
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(60) 

 
Since |p|  1, it follows that the maximum of siip ,̂  is given by:  
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(61) 

 
Since  siip ,̂  is proportional to p, it follows that it is an almost sinusoidal function of . Hence, the 

rms value of  siip ,̂ is 2/max_,ˆ,ˆ sisi ipip   .  
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In particular, if the H-term MSD window (H  2) is adopted, in [Belega 09b], we derived the 
expression of max_,ˆ siip , which is given by: 
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(62) 

 
Fig. 2 shows the values of max_,ˆ siip  returned by computer simulations and (62) for the three-term 

(Fig. 2(a)) and four-term (Fig. 2(b)) MSD, RSD-MSL, and MSL windows. The integer part l was 
varied in the range [H + 1, 50] with a step equal to 1, while  was fixed to 0.2. For each value of l, 
100 values equally spaced in the range [0, 2) rad were taken for the sine-wave phase . The number 
of acquired samples M was set equal to 1024. The function g(·) was derived a priori by fitting the 
inverse function of (33) using a polynomial of degree 7. In order to make negligible the contribution of 
the spectral interference, the function g(·) was determined assuming M = 4096 and l = 313. The 
fractional frequency  was varied in the range [0.5, 0) with a step of 1/50. For each value of  the 
sine-wave phase  was chosen at random in the range [0, 2) rad.  

 

  
(a) (b) 

Fig. 2. max_,ˆ siip versus   for   =  0.2 and (a) three-term and (b) four-term MSD, RSD-MSL, and MSL 

cosine windows. Values returned by (62) are represented by continuous lines, while values returned by 
simulations are represented by crosses.  

 
Fig. 2 shows that the agreement between the simulation and theoretical results is very good. 

Furthermore, the maximum of the spectral interference contribution decreases as the window sidelobe 
decay rate increases. Thus, for a given H, the smaller and the higher spectral interference contributions 
are achieved when the MSD window and the MSL window are adopted, respectively. 

The expression for the Cramér-Rao Lower Bound (CRLB) for unbiased  estimators due to 
wideband noise is [Offelli 92], [Kay 93]: 
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Thus, from (42) and (63) it follows that the statistical efficiency 

ip
E̂ of the fractional frequency 

estimator (33) is: 
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(64) 

 
Fig. 3 shows the theoretical and simulated statistical efficiency 

ip
E̂  as a function of  for the same 

windows as in previous figure. The sine-wave amplitude A was set to 1, the integer part l of the 
acquired sine-wave cycles was chosen equal to 123, and the number of acquired samples M was set to 
1024. The sine-wave was corrupted by a uniform noise modelling the quantization performed by an 
ideal 12-bit Analog-to-Digital Converter (ADC) with Full-Scale Range (FSR) equal to 5. Non-
coherent sampling was studied and the fractional frequency  was varied in the ranges [0.5, 0) and  
(0, 0.5) with a step of 1/40. The sine-wave phase  was chosen at random in the range [0, 2) rad. For 
each value of , the efficiency 

ip
E̂ was evaluated using 10,000 records. The function g(·) was 

determined as in the previous figure, by considering both positive and negative values of .  
  

  
(a) (b) 

Fig. 3. Efficiency 
ip

E̂
versus   for (a) three-term and (b) four-term MSD, RSD-MSL, and MSL cosine 

windows. The theoretical and simulation results are represented by continuous lines and circles, respectively.  
 

Fig. 3 shows a very good agreement between simulation and theoretical results. Moreover, for a given 
value of H, the best and the worst statistical efficiencies are achieved when the MSL window and the 
MSD window are adopted, respectively. It can be seen also that the statistical efficiency 

ip
E̂ is an 

even function of . It should be noted that the same behavior as in Fig. 3 is achieved in the case of 
both uniform and Gaussian noise. 
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The uncertainty contributions leading to (62) and (42) are clearly due to different physical 
phenomena, so they can be considered statistically independent. Thus, according to [GUM 95], the 
combined standard uncertainty of the fractional frequency estimator ip̂  or of the 

deviation   ip
ip

ˆ
ˆ is: 
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in which max_,ˆ siip and 2

,ˆ nip
 are given by (61) and (42), respectively.  

It is worth noticing that the values of 
ip ˆ  provided by (65) decreases as H decreases, whereas (61) 

shows that 
max_,ˆ siip

 decreases as H increases. Thus, there exists a value of H that ensures a minimum 

value for 
ip ˆ , i.e. an optimal number of terms Hopt. For the MSD window the maximum of the 

combined standard uncertainty, maxîp is reached at  = 0.5. Based on the above observations in 

[Belega 11a], we proposed a criterion for the selection of the optimal MSD window to be used in the 
IpDFT method, i.e. for determination of Hopt. This is presented in the following.  Let us define 
  ,maxˆ

qn
ipH  

 as the value of maxîp achieved using the H-term MSD window when n = q, where 

q is the ideal quantization noise of the ADC of the used acquisition board. Then, since n  q, the 
following proposition holds [Belega 11a]: 
 
Proposition 3: If

qnipqnip
HH     )()( maxˆ1maxˆ , then 

nipnip
HH   )()( maxˆ1maxˆ  for any n  q. 

 
This implies that the optimal MSD window to be used in the IpDFT method can be selected by means 
of the following two-step procedure: 
- if ,)()( maxˆ3maxˆ2 qnipqnip

    then Hopt = 2, that is the optimal MSD window is the two-term 

or Hann window. 
- if ,)()( maxˆ3maxˆ2 qnipqnip

      then we continue the comparison by increasing  the value of 

H until ,)()( maxˆ1*maxˆ* qnipqnip
HH     H = 3, 4,…. The first value of H satisfying the previous 

relationship provides the optimal MSD window, that is Hopt = H*. 
For values of l used in practice (e.g. l  15) we usually obtain Hopt = 2 or 3.  
 
 
4) Probability density function of ip̂  

 
It is well known that the statistical behavior of a random variable – and so the quality of the 

estimator – is completely described by its Probability Density Function (PDF). In [Belega 12a], we 
derived the expression of the PDF of the estimator ip̂ , which was not derived before in the scientific 
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literature. Moreover, in that paper the accuracy of the derived expression of PDF was verified by 
means of both computer simulations and experimental results. All these derivations are presented in 
the following.   

It is worth noticing that in practical applications we often suppose to repeatedly acquire the sine-
wave signal (1) using a non-coherent sampling. In such a situation, while the fractional frequency  
assumes a constant value, the unknown phase  can be modelled as a random variable uniformly 
distributed in the range [0, 2) rad. Based on the behavior of p it follows that the contribution siip ,̂  of 

the spectral interference can be modelled as a random variable with a U-shaped PDF [Wagdy 89]: 
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Since   is fixed, the contribution nip ,̂ due to the wideband noise exhibits a normal distribution 

with standard deviation equal to 
ip ˆ  [Offelli 92]. Thus, from the statistical theory it is well known 

that the PDF of n,̂ is given by: 
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(67) 

 
The PDF 

ip ˆ  of the estimator ip̂  is simply a shifted version of the PDF 
ip


ˆ of the deviation 

ip̂ . Since the random variables siip ,̂  and nip ,̂ are statistically independent, from the statistical 

theory [Widrow 96] it is well known that this latter PDF can be derived by the convolution of their 
respective PDFs siip ,̂ and nip ,̂ , which are provided by (66) and (67), respectively. Thus, we obtain: 
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(68) 

 
which can be evaluated by using numerical methods.  
We verified the accuracy of (68) through both computer simulations and experimental results. Thus, 
Fig. 4 shows the simulated and theoretical PDF 

ip


ˆ as a function of the deviation 
ip̂  when the 

integer part l of the acquired sine-wave cycles is equal to 6 (Fig. 4(a)) and 34 (Fig. 4(b)), respectively. 
The rsd-msl3 window was adopted. The sine-wave was characterized by A = 1 and  = 0.3 when l = 6 
and  = 0.2 when l = 34.  The sine-waves were corrupted by a white Gaussian noise with zero mean 
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and variance 2
n such that the corresponding Signal-to-Noise Ratio (SNR) was 65 dB. For each value of 

l, 50,000 runs were performed by choosing the sine-wave phase   at random in the range [0, 2) rad. 
The function g(·) was determined as in the simulations related to Fig. 2. The theoretical behavior of 

ip


ˆ was achieved by a numerical integration of (68) performed by the trapezes formula. The 

histogram of 
ip̂  estimates obtained by simulation was properly scaled in order to achieve a PDF 

estimate.  
 

  
(a) (b) 

Fig. 4. PDF 
ip


ˆ achieved by simulation and by (68) versus 

ip̂  when: (a)  = 0.3 and l = 6 and (b)  = 0.2 

and l = 34. The rsd-msl3 window was adopted. 
 
Notice the good agreement between the simulation and theoretical results. The same behavior was 
achieved also when other windows were adopted and both uniform and Gaussian noise is used.  
In the experimental runs the sine-waves were supplied by an Agilent 33220A signal generator and 
were acquired using a 12-bit data acquisition board NI-6023E, developed by National Instruments. 
The FSR and the sampling frequency were set to 10 V and 100 kHz, respectively. The sine-waves 
were characterized by an amplitude A = 2 V and a frequency equal to 619 Hz and 3.3 kHz, 
respectively. Considering records of M = 1024 samples, these frequencies correspond to a value of l 
equal to 6 and 34, respectively. The rsd-msl3 window was adopted. For each frequency 10,000 records 

were acquired and the related ip̂  estimates were determined. Fig. 5 shows the estimation error PDFs 

achieved both from experimental data and expression (68). In particular, the histogram of 
ip̂  

estimates obtained experimentally was properly scaled in order to obtain a PDF estimate. The 
theoretical PDF was achieved by numerical integration of (68). In the experimental data, the value of  
returned by the four-parameter sine-fitting (4PSF) algorithm was used as a reference because of its 
very high accuracy. The initial parameters of the algorithm were estimated by means of the IpDFT 
method based on the rectangular window [Bilau 04]. The algorithm iterations were stopped when the 
magnitude of the differences between the values estimated in two consecutive iterations was less than 
10-6 for any estimated parameter. 
Fig. 5 shows that the estimates achieved by experimental data strongly agree with theoretical results. 
Moreover, Fig. 5 looks very similar to Fig. 4 since both simulation and experimental results were 
achieved using almost the same SNR value. 
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(a) (b) 

Fig. 5. PDF 
ip


ˆ achieved by experimental data and by (68) versus 

ip̂  when the sine-wave frequencies were: 

(a) 619 Hz and (b) 3.3 kHz. The rsd-msl3 window was adopted. 
 
 
C. Multipoint Interpolated DFT Methods 
 

To reduce the detrimental effect of the spectral interference from the fundamental image 
component to the parameter estimates achieved by the IpDFT method, which occurs at small number 
of acquired sine-wave cycles, the Multipoint IpDFT (MIpDT) methods should be used [Agrež 00], 
[Agrež 07], [Belega 08a], [Belega 10a], [Belega 10b], [Agrež 02], [Belega 09d]. Our contributions to 
these approaches are presented in the following.  
 
1) Frequency estimation 
 

The errors of the spectral interference from the fundamental image component on the frequency 
estimation achieved by the IpDFT method can be reduced by using a suitable window function 
[Belega 09c]. However, they still high, especially at small number of acquired sine-wave cycles. A 
further reduction of these errors can be performed by increasing the number of spectrum interpolation 
points, i.e. by using the MIpDFT methods [Agrež 00], [Agrež 07], [Belega 08a], [Belega 10a],   
[Belega 10b]. In [Belega 08a], we proposed a novel MIpDFT method for frequency estimation, which 
will be called MIpDFT1 method in the following. Moreover, in [Belega 10a], we generalized the 
MIpDFT method proposed in [Agrež 00] in order to use that method for any MSD window. That 
method will be called MIpDFT2 method in the following. Both MIpDFT1 and MIpDFT2 methods are 
based on the MSD windows and use an odd number of selected DFT samples. Also, in [Belega 10b] 
we compared by means of computer simulations the effectiveness in reducing the detrimental effect of 
the spectral interference and the statistical performances of both MIpDFT methods in the case of 
multi-frequency signals. The above contributions are presented in the following.  
 
  MIpDFT1 method 
 

From (55) the DFT spectral line |Xw(l)| can be written as: 
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     ,
2

lWAlX w    (69) 

 
in which the first term is the short-range leakage contribution of the window spectrum weighted by 
A/2, while the second one, (l), is due to the long-range spectral leakage of the image part of the 
signal. As we already specified the term (i) is either a positive or negative real-valued quantity. 
Moreover, it decreases for increasing values of its arguments and takes values with opposite signs in 
adjacent frequency bins.  

In order to estimate  by the MIpDFT1 method when the number of interpolation points is 2J + 
1, the following ratio HJ ~12  is determined [Belega 08a]: 
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(70) 

 
It should be observed that in the numerator and denominator of the ratio HJ ~12  appears the J-order 

finite differences of (l  i) and (l + i), respectively, which are equal to [Coşniţă 72]: 
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As specified above (i) takes values with opposite signs in adjacent frequency bins. Thus, by 
summation the influences of the long-range leakage tails are reduced. Hence, the following equalities 
practically holds true: 
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By replacing the above expressions in (70) we achieve: 
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Using (27) the above relationship becomes: 
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(76) 

 
After some calculus the numerator of the above expression is given by: 
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In the following we demonstrate the equality 
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where x is a real number. 
After some calculus the above equality becomes: 
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(79) 

 
To prove the equality (79), first each side is multiplied by H + i + x, i = 0, 1, 2,…, J - 1 and then are 
given to x the values  (H  i). Thus, we obtain: 
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The above equality is true since the left side is the coefficient of xJ – i – 1 of the product of the binomials 
(1+ x)2H – 2 (1 + x)J and the right side is the coefficient of xJ – i – 1of the binomial (1 + x)2H  + J – 2 . 

Then, to put in evidence the necessity of J
JC in the left side of the equality (79), each side of this 

equality is multiplied by H – 1 – x and then to x the value (1  H) is given. Thus, we obtain: 
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The above equality is true since the left side is the coefficient of xJ of the product of binomials                      
(1+ x)2H – 2 (1 + x)J and the right side is the coefficient of xJ of the binomial (1 + x)2H  + J – 2 . 
Thus, the equality (79) is true. 
By replacing x =  in (79), the numerator of the expression (76) becomes: 
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(82) 

 
By using the same procedure is proved that the denominator of the (76) is given by 
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From (82) and (83) the ratio HJ ~12  is given by: 
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Thus, the estimator of the fractional frequency is the solution of the following equation: 
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For some particular values of J  the estimator HJ ~12  is given by analytical expressions: 
- for J = 1 (three-point interpolation) we have: 
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- for J = 2 (five-point interpolation) H

~
5  is given by: 
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- for J = 3 (seven-point interpolation) we achieve: 
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  MIpDFT2 method 
 
To estimate  by the MIpDFT2 method based on the H-term MSD window (H  2) when the number 
of interpolation points is 2J + 1, the following ratio HJ 12  is determined [Belega 10a]: 

- for 1  J  H  1 (i.e. for interpolation points inside the windowed sine-wave spectrum main lobe) 

HJ 12  is given by: 
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- for  J  H, HJ 12  is given by: 
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in which s is equal either to 1 if |Xw(l + 1)| > |Xw(l  1)| or to 1 if |Xw(l + 1)| < |Xw(l  1)|.  
Notice that the numerator of (90) contains the differences between the symmetrical pairs of 
components |Xw(l  i)| weighted by  2
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outside the spectrum main lobe. In fact, when the considered pair is outside the spectrum main lobe, 
the sign associated with one of the components |Xw(l  i)| or |Xw(l + i)| is negative because of the W(i  
) value, so their, summation is considered in (90). In addition, the obtained results are multiplied by 
(1)is in order to obtain a quantity with the same sign as the differences between the components 
inside the spectrum main lobe. A similar observation holds also for the denominator of (90).  
Thus, using (69), the differences ((l + i)  (l  i)) appear in the numerator of HJ 12  . Conversely, 

the 2J- order finite difference of (l  J): 
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appear in the denominator of HJ 12  . When  is high enough, the terms (l  i), i = 0, 1,…, J are 

close to each other and thus the differences ((l + i)  (l  i)) are very small and    lJlJ 2 . 

This implies that the influence of the terms (i) on HJ 12  is negligible. Thus, using (27), in [Belega 

10b], we determined the expressions of the numerator and the denominator of HJ 12  : 
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From the above rations it follows that the fractional frequency  can be estimated by:  
 

  .1ˆ
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It is worth noticing that for J = 3 we have .ˆ~
33 HH     

 In [Belega 10b], we compared the effectiveness of both MIpDFT1 and MIpDFT2 methods in the 
case of the following multi-frequency signal: 
 

 

1,,1,0,2sin2sin

2sin2sin

4
44

43
33

3

2
22

21
11

10







 








 










 









 




Mmm
M

lAm
M

lA

m
M

lAm
M

lAAmx










 

 
(95) 

 
in which A0 = 0.1, A1 = 2, A2 = 0.5, A3 = 0.07, A4 = 0.1, 1 = 0.4 rad, 2 = 0.8 rad, 3 = 1.2 rad, 4 = 1 
rad, l1 = 5, l2 = 19, l3 = 42, l4 = 125, and M = 1024. Also, 1 = 2 = 3 = 4 = , where  varies in the 
range (0.5, 0.5) with a step of 0.04. For each value of δ the phases 1, 2, 3, and 4 were uniformly 
distributed in the range [0, 2) rad and 1000 runs were done. The maximum of the modulus of the 
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estimation error of k, |Δk|max occurring during the variation of phases was retained. Fig. 6 shows the 
errors |Δk|max (k = 1, 2, 3, 4) obtained by both MIpDFT methods and the IpDFT method as a function 
of  when the three-term MSD window is adopted. In the MIpDFT methods three- and five-point 
interpolation were considered. 
 

  
(a) 1 (b) 2 

  
(c) 3 (d) 4 

Fig. 6. Errors |Δk|max as a function of  when the three-term MSD window is used. δk is estimated by the 
MIpDFT1 method  (‘*’-five-point interpolation, ‘x’-three-point interpolation), the MIpDFT2 method (‘o’-five-

point interpolation, ‘Δ’-three-point interpolation), and the IpDFT method (‘+’). 
 
In Fig. 6 it can be see that both MIpDFT methods reduce the systematic errors as the number of points 
involved in the interpolation increases (i.e. J increases). The results obtained for three-point 
interpolation are the same since the k estimator is the same in both methods. For five-point 
interpolation the MIpDFT methods have almost the same effectiveness in the reduction of systematic 
errors of k (k = 1, 2, 3) estimates, but the MIpDFT2 method slightly increases the 4 estimation 
accuracy. Both MIpDFT methods have a higher effectiveness in the reduction of systematic errors of 
k estimates than the IpDFT method. Nevertheless, it was proven by simulation that the systematic 
errors decrease as H increases. In addition, the accuracy of the δk estimates depends on the mutual 
frequency component span [Belega 08a]. To avoid spectral interferences from the nearby components 
it is necessary to fulfil this relationship: (lk+1 – lk) > 2H +1, k = 0, 1,…, K, in which l0 corresponds to 
the DC component and K is the number of multi-frequency signal components [Belega 08a]. 
Moreover, we compared the statistical performance of the MIpDFT1 and MIpDFT2 methods using the 
above multi-frequency signal corrupted by an additive white Gaussian noise with zero mean and n 
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standard deviation. n was established as a function of the SNR, which varied in the range [40, 100] dB 
with a step of 10 dB. The values of k were set as follows: 1 = 0.1, 2 = 0.4, 3 = 0.3, and 4 = 0.25. 
For each SNR, 100 value sets for the phases 1, 2, 3, and 4 uniformly distributed in the range [0, 2) 
rad were generated. For each set, 1000 runs were performed and the maximum bias of k was 
calculate. The three-term MSD window was adopted and three- and five-point interpolation were 
considered in both MIpDFT methods. Fig. 7 shows the magnitude of the absolute value of the bias of 
δk estimates obtained by both MIpDFT methods and the IpDFT method.  
 

  
(a) 1 (b) 2 

  
(c) 3 (d) 4 

Fig. 7. Magnitude of the absolute value of the bias of the δk estimates as a function of SNR when the three-term 
MSD window is used. δk is estimated by the MIpDFT1 method (‘*’-five-point interpolation, ‘x’-three-point 

interpolation), the MIpDFT2 method  (‘o’-five-point interpolation, ‘Δ’-three-point interpolation), and the IpDFT 
method (‘+’). 

 
In Fig. 7 it can be see that the results obtained for three-point interpolation are the same and for five-
point interpolation the results obtained by both MIpDFT methods are very close. When the MIpDFT 
methods are used, for a given value of J, the accuracy of δk estimates depends on the position of the 
frequency component (i.e. on lk) and on SNR. In addition, for a given J, the accuracy of the δk 
estimates depends, as for a signal without noise, on the mutual frequency component span. 
For large lk, the errors due to the spectral interferences become smaller than the errors due to the noise 
and so, the accuracy of δk estimates is practically unchanged (see Fig. 7(d)). This behavior is also 
obtained for small SNR < 40 dB. For this reason the MIpDFT methods are well suited to be used when 
lk is not so large and for relative greater SNR (i.e. for signal corrupted with relative small power noise). 
In these cases more accurate estimates are achieved. 
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Fig. 8 shows the statistical efficiency in respect to the corresponding CRLB of 3 estimators provided 
by both MIpDFT methods and the IpDFT method as a function of 3. SNR was set to 70 dB. 3 varies 
in the range [0.5, 0.5) with a step of 1/25. The phases of the components were set as follows: 1 = 0 
rad, 2 = /3 rad, 3 = 3/4 rad, and 4 = /6 rad. For each 3, 5000 runs were done.  
 

 
Fig. 8. Statistical efficiency of the 3 estimators provided by the MIpDFT1 method (‘*’-five-point interpolation, 
‘x’-three-point interpolation), the MIpDFT2 method (‘o’-five-point interpolation, ‘Δ’-three-point interpolation), 

and the IpDFT method (‘+’) as a function of 3. Continuous line represents the theoretical results.  
 
In Fig. 8, it can be observed that when the MIpDFT methods are used the statistical efficiency 
decreases as the number of interpolation points increases. Also, it can be observed that for five-point 
interpolation the MIpDFT2 method is slightly more efficient than the method MIpDFT1 for || close to 
0.5. Moreover, it should be remarked that for || values close to zero the three-point IpDFT methods 
provide more accurate estimates than the IpDFT method [Belega 08b]. This behavior was obtained 
also for the 1, 2, and 4 estimates. Simulations were carried out for different values of phases k (k = 
1, 2, 3, 4), amplitudes Ak (k = 1, 2, 3, 4), and SNR between 30 and 80 dB and a similar behavior as in 
Fig. 8 was always achieved.  
 As it can be observed that the MIpDFT2 method has almost the same effectiveness in reducing 
the spectral interference from the image component as the MIpDFT1 method, but the related fractional 
frequency estimator has a more simple analytical expression. Hence, in [Belega 10a], we analyzed the 
accuracy of the estimator HJ ̂12  . To this aim, we derived the expression for the combined standard 

uncertainty of the estimator HJ ̂12  , which was not derived in the previous works focused on the 
MIpDFT2 method. That derivation is given in the following.  
Observing that the parameters H and J appear in (92)-(94) only as the single term (H + J), the 
following conclusions can be drawn when the number of interpolations points 2J + 1 is higher than or 
equal to 3 [Belega 09e]: 
 The  estimator obtained by the H-term MSD widow and (2J + 1) – point interpolation is equal to 
the one derived by the two-term MSD window and (2J + 2H  3)-point interpolation: 
 

.ˆˆ
232212    HJHJ  (96) 
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In particular, from (96) it follows that these two estimators are affected by the same interference error 
from the image component and exhibit the same wideband noise sensitivity. Thus, the use of the two-
term MSD window with a suitable number of interpolation points allows us to achieve the same 
accuracy as the H-term MSD (H  3). 
 The  estimator obtained by the H-term MSD widow and (2J + 1)-point interpolation is equal to the 
one derived by the (H + J – 1)-term MSD window and three-point interpolation: 
 

.ˆˆ
1312   JHHJ   (97) 

                               
From (97) it follows that both these estimators are affected by the same interference error from the 
image component, that is: 
 

sisi JHHJ ,, 1312 
   (98) 

 
and the same standard uncertainty due to the wideband noise component: 
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In [Belega 09f], we shown that the interference error siJH ,13 

   is phase dependent and exhibits a sine-
wave like behavior with amplitude:  
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and power   .2/2

max_,13 siJH 
  Also, in [Belega 09f], we derived the expression for the standard 

uncertainty nJH ,ˆ
13  due to the wideband noise, which is:  
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The uncertainty contributions leading to (100) and (101) are clearly due to different physical 
phenomena, so they can be considered statistically independent. Thus, according to [GUM 95], the 
combined standard uncertainty of the MIpDFT2 normalized frequency estimator obtained with the H-
term MSD window and (2J + 1) interpolation points is: 
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Besides, we compared the accuracy of the combined standard uncertainty
HJ  ˆ

12 
 as a function of the 

number of used interpolation points through by both computer simulations and experimental results. 
Fig. 9 shows the combined standard uncertainty returned by the MIpDFT2 method for the different 
number of interpolation points and the IpDFT method as a function of . The combined standard 
uncertainty related to the IpDFT method is

ip ˆ , and it is given by (65). The amplitude of the sine-

wave was equal to 2 and the phase  was chosen at random in the range [0, 2) rad.  The normalized 
frequency   was varied between 3.5 and 20.5 with a step of 1/25. The sine-wave was corrupted by an 
additive Gaussian noise with zero mean and standard deviation n, chosen in such a way that the SNR 
was equal to 70 dB. For each value of , 1000 runs of M = 1024 samples each were performed and the 
standard uncertainty of the normalized frequency estimates was evaluated. Both the IpDFT method 
and the MIpDFT2 method with 3, 5, and 7- point interpolation were used. The maximum number of 
interpolation points was equal to 7 to avoid the use of the DC component as an interpolation point. 
The two-term MSD window was adopted in both methods. The most accurate estimator is marked 
with black solid line.   
   

 
Fig. 9. Combined standard uncertainty returned by the MIpDFT2 and the IpDFT methods as a function of 

acquired number of cycles . In the MIpDFT2 method, 3, 5, and 7-point interpolation are used. The sine-wave is 
corrupted by an additive Gaussian noise and the SNR is 70 dB. The two-term MSD window and M = 1024 are 

used. 
 
From Fig. 9 we can see that when  is less than 4.7 bins the best estimator is almost always the one 
with 7-point interpolation. Conversely, minimum combined uncertainty is achieved almost for any 
frequency by using the 5-point or the 3-point interpolation when  is between about 4.7 and 7.8 bins or 
it is larger than 7.8 bins respectively. 
In the experimental runs the sine-waves were obtained from an Agilent 33220A signal generator by 
setting the amplitude to 2 V and the frequencies to 0.50, 0.60, 0. 73, 0.85, 0.91, 1.05, 1.20, 1.33, 1.40, 
1.55, 1.62, 1.77, 1.90, 2.00, 2.15, and 2.20 kHz, respectively. It should be noted that the adopted 
generator employs a 14-bit Digital-to-Analog Converter (DAC). The signals were acquired using a 12-
bit data acquisition board NI-6023E. The FSR and the sampling frequency were set to 10 V and to 
119.05 kHz, respectively. For each frequency 500 runs of M = 1024 samples each were performed and 
the standard uncertainties of the normalized frequency estimates were evaluated. Both the IpDFT 
method and the MIpDFT2 method with 3, 5, and 7 interpolation points were considered and the two-
term MSD window was adopted. The values of the integer part l of the number of acquired sine-wave 
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cycles were between 4 and 19 bins with a step of 1 bin, whereas the fractional part  assumed values in 
the range (0.1727, 0.4931) bins.  
The effective number of bits (ENOB) of the acquisition board was about 11.1 bits. Thus, we can state 
that the power of the noise superimposed to the generated sine-wave is quite close to the power 
introduced by a 12 bit ideal quantizer, although the effective bits do not allow us to conclude whether 
the dominant noise is due to wideband noise or nonlinearity. 
The combined standard uncertainties of the normalized frequency estimates obtained by both the 
IpDFT method and the MIpDFT method with 3 and 5 interpolation points are shown in Fig. 10 as a 
function of . Moreover, the behavior of the ratios 

ipH   ˆˆ /
3

 and 
ipH   ˆˆ /

5
are reported in Fig. 11 as 

a function of . Any combined standard uncertainty was determined both experimentally and by using 
(65) and (102) assuming an ideal 12 bit quantization.  
 

 
Fig. 10. Combined standard uncertainties 

ip ˆ , 
H

 ˆ
3

 , and 
H

 ˆ
5

 determined both experimentally and by (65) 

and (102) as a function of acquired number of cycles . The theoretical results are determined assuming the sine-
wave corrupted by only the ideal quantization noise of the 12 bits acquisition board. 

 
 

  
(a) (b) 

Fig. 11. Ratios 
ipH   ˆˆ /

3
 (a) and 

HH   ˆˆ
35

/  (b) determined both experimentally and by (65) and (102) as a 

function of acquired number of cycles . The theoretical results are determined assuming the sine-wave 
corrupted by only the ideal quantization noise of the 12 bits acquisition board. 
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Figs. 10 and 11 show that the experimental and theoretical results are quite close to each other. This 
confirms the fact that the superimposed wideband noise is mainly due to quantization. Moreover, the 
optimal number of interpolation points achieved from the experimental and simulation results is the 
same for the majority of considered signal frequencies. For the remaining frequencies the experimental 
and theoretical uncertainties are very close (see Fig. 10).  
 

A particular three-point IpDFT method is the so-called average-based IpDFT method [Andria 89], 
[Novotný 06], [Belega 13a]. This method estimates the frequency of a sine-wave by the average of the 
two estimates achieved using the IpDFT method. In [Andria 89], was analyzed through computer 
simulations the effect of the additive wideband noise on the normalized frequency estimation when the 
classes I, II, and III Rife-Vincent windows are adopted. A general expression for the variance of the 
normalized frequency estimator provided by the average-based IpDFT method based on the MSD 
windows was derived in [Novotný 06]. In [Belega 13a], I analyzed the contribution of the spectral 
interference from the fundamental image component on the frequency estimation achieved by the 
average-based IpDFT, aspect which was not previously analyzed. Also, I derived a much simple 
expression for the variance of the frequency estimator than in [Novotný 06]. Furthermore, I derived 
the expression for the combined standard uncertainty of the frequency estimator provided by the 
average-based IpDFT method. I verified the accuracy of the derived expressions by means of 
computer simulations and the effectiveness of that method through both computer simulations and 
experimental results. The most important part of that work is presented in the following.  

To estimate the fractional part  by the average-based IpDFT method when the H-term MSD 
window (H  2) is used the following ratios i, i = 1, 2, are determined: 
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By neglecting the effect of the spectral interference from the image component, from (27) we obtain: 
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From (104), using (27) it follows that the fractional part  can be estimated either by 1 or 2, which 
are given by:  
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The estimator provided by the average-based IpDFT method is the average of the 1 and 2 [Andria 
89], [Novotný 06]: 
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Using (103) after some calculations the following expression of avg̂ can be achieved [Andria 89]: 
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In [Belega 13a], I derived the expression of the contribution of the spectral interference from the 

spectral interference of the fundamental image component to the estimator avg̂ , which is given by: 
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where p is defined as in (55). Thus, the error siavg ,ˆ

, is an almost sinusoidal function of  with 

amplitude equal to: 
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and its rms value is equal to 2/max_,ˆ
, siavg .  

We consider that the discrete-time sine-wave (1) is corrupted by a stationary white noise with 
zero mean and variance 2

n . In this case the estimator avg̂  is affected by both the spectral interference 

from the fundamental image component and the wideband noise. 
Also, in [Belega 13a], I derived a much simple expression for the variance of the estimator avg̂ due to 

a stationary white noise of zero mean and variance 2
n superimposed to the discrete-time sine-wave 

than in [Novotný 06], which is:  
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where 1 = 1(|Xw(j)|, |Xw(j + 1)|) and 2 = 2(|Xw(j  1)|, |Xw(j + 1)|) are the correlation coefficients 
between the DFT spectral lines |Xw(j)| and |Xw(j + 1)| and the DFT spectral lines |Xw(j  1)| and |Xw(j + 
1)|, respectively. The correlation coefficient 1 is given by (43), whereas 2 was derived in [Belega 
08b] and have the expression:   
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Since the contributions from the spectral interference and additive wideband noise are from two 
different physical phenomena, they can be considered statistically independent and according to 
[GUM 95], the combined standard uncertainty of the normalized frequency estimator provided by the 
average-based IpDFT method is given by: 
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where max_,ˆ

, siavg and 2
,ˆ navg

 are given by (109) and (110), respectively. 

I verified the accuracies of the relationships (109), (110), and (112) by means of computer simuations. 

Moreover, I compared the combined standard uncertainty of the estimator avg̂ with those of the 

estimators provided by the three-point IpDFT2 method and the IpDFT method through both computer 
simulations and experimental results. For the latter two methods the expressions of the combined 
standard uncertainties are given by (102) and (65), respectively. Fig. 12 shows the theoretical 
expressions of the combined standard uncertainties achieved by all above methods as a function of  
when the two-term MSD window is adopted. The sine-wave was corrupted by a Gaussian noise with 
zero mean and variance corresponding to a SNR equal to 60 dB (Fig. 12(a)) and 90 dB (Fig. 12(b)), 
respectively. The frequency  was varied in the range [2, 10] with a step of 1/20.  
 

  
(a) (b) 

Fig. 12. Theoretical combined standard uncertainties achieved by all considered methods versus  when the two-
term MSD window is adopted and SNR is equal to (a) 60 dB and (b) 90 dB. 

 
From Fig. 12 it can be seen that when the effect of the spectral interference is much higher than that of 
the wideband noise for each  there exist an interval of negative values of   in which the average-
based IpDFT method outperforms the other methods. In this case for  values close to zero both the 
average-based and the three-point IpDFT methods provides almost the same estimates, which are more 
accurate than those provided by the IpDFT  method. For the remaining  values, that are positive ones, 
the three-point IpDFT method outperforms the other methods. The upper limit value of  up to which 
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the above described behavior is achieved increases as SNR increases. It is equal to 6 when SNR = 60 
dB and to 16 when SNR = 90 dB.  
Moreover, it was observed that when both spectral interference and wideband noise contributions are 
important, which occurs for 6 <   14 when SNR = 60 dB and for 16 <   45 when SNR = 90 dB, for 
positive values of   the three-point IpDFT2 method provides more accurate estimates than the other 
methods and for negative and null values of  the estimates provides by both the average-based IpDFT 
method and the three-point IpDFT2 method are almost the same, and more accurate than those 
provided by the IpDFT method. For  > 14 when SNR = 60 dB and for  > 45 when SNR = 90 dB the 
effect of the wideband noise is much higher than that of the spectral interference. In this case the 
IpDFT method provides the best estimates, except the situations in which the values of   are close to 
zero, where the other methods performed the best.  
In the experimental runs the sine-waves were supplied by an Agilent 33220A signal generator and 
acquired using a data acquisition board NI-6023E. The full scale range and the sampling frequency 
were set to 10 V and 100 kHz, respectively. Two set of frequencies were considered. In the first set the 
sine-waves frequencies were varied between 250 and 340 Hz with a step of 10 Hz in order to obtain 
different values of   in the range (2.5, 3.5), and in the second set between 630 and 740 Hz with the 
same step in order to obtain different values of  in the range (6.5, 7.5). The amplitude of all sine-
waves was equal to 2 V. For each frequency value 1000 runs of M = 1024 samples each were 
performed and the variances of the normalized frequency estimator provided by all considered 
methods were calculated. The two-term MSD window was adopted in all methods. It should be 
noticed that the parameter SIgnal-to-Noise And Distortion ratio (SINAD) estimated by means of the 
IpDFT method for the frequencies of the second set was about 60 dB. The variances achieved by the 
considered methods for both frequency sets are depicted in Fig. 13 as a function of , estimated by its 
mean value achieved using the three-point IpDFT2 method. 
  

  
(a) (b) 

Fig. 13. Variances of the normalized frequency estimators provided by the average-based IpDFT method,the 
three-point IpDFT2 method, and the IpDFT method versus  for the (a) first and (b) second set of sine-wave 
frequencies. The value of  was estimated by its mean value achieved using the three-point IpDFT2 method. 

 
For the achieved values of , Fig. 13 looks similar to Fig. 12(a) since both experimental and 
simulation results were achieved using close SNR values. Thus, in Fig. 13(a) it can be seen that for 
negative values of   the average-based IpDFT method provides more accurate estimates than the 
three-point IpDFT2 method, for values of  very close to zero the estimates provided by the above two 
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methods are almost the same, and for positive values of  the three-point IpDFT2 method provides 
more accurate estimates than the average-based IpDFT method. Fig. 13(b) shows that for negative and 
close to zero values of  both average-based and three-point IpDFT2 methods provide almost the same 
accurate estimates, and for positive values of   the three-point IpDFT2 method provides the best 
estimates. In all situations shown in Fig. 13 the estimates provided by both average-based and three-
point IpDFT2 methods are more accurate than those provided by the IpDFT method.    
 
 
2) Amplitude estimation 
 

One of the most efficient MIpDFT methods for amplitude estimation was proposed in        
[Agrež 02]. That MIpDFT method is based on the rectangular and Hann windows and use an odd 
number of selected DFT samples. In [Belega 09d], we performed a generalization of that method in 
order to use any MSD window in that MIpDFT method, which is presented in the following.  
We consider that the H-term MSD window (H  2) is adopted and the number of interpolation point is 
equal to 2J + 1 (J  1). Based on the observation that the 2J-order finite difference of (l  J), 

 JlJ 2 , given by (91), is much smaller than |(l)|, and using (31) the following equality is 

fulfilled: 
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Based on (113) we proposed the following amplitude estimator: 
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By replacing (93) in (114) we achieve: 
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 Furthermore, in [Belega 09d], we derived the expression of the amplitude estimation error due to 
the spectral interference from the fundamental image component. That expression is: 
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in which p is defined as in (55). 
From the above expression it follows that the maximum of the error siAHJ ,12 

 is given by : 
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From (117) the ratio between the maximum amplitude estimation errors achieved for (2J + 1) and    
(2J + 3)-point interpolation and the same H is given by: 
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and the ratio between the maximum amplitude estimation errors achieved for windows with (H + 1) 
and H terms and the same  number of interpolation point, J, is given by:  
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If l is high enough (for example l  6) from (118) and (119) it follows that the errors due to the 
spectral interferences decrease as the number of interpolation points, J, increases and the number of 
terms of the adopted window, H, increases.  

Also, we analyzed through computer simulations the statistical performance of the MIpDFT method 
in the case of the multi-frequency signal (95) corrupted by white Gaussian noise of zero mean and 
variance .2

n  The multi-frequency signal was characterized by: A0 = 0.1, A1 = 2, A2 = 0.5, A3 = 0.07, 

A4 = 0.1, l1 = 5, l2 = 13, l3 = 24, l4 = 125, 1 = 0.1, 2 = 0.4, 3 = 0.3, 4 = 0.25, and M = 1024. The 
phase components 1, 2, 3, and 4 are uniformly distributed on [0, 2) rad. n was established as a 
function of the SNR, which varies in the range [40, 100] dB with an increment of 10 dB. For each SNR 
the worst bias of Ak estimations (worst case) occurring during the phase variation is retained. Each 
time 1000 runs are done to calculate the mean value. Fig. 14 shows the magnitude of the absolute 
value of the bias of the Ak estimates as function of SNR. Ak was estimated by MIpDFT method (3 and 
5-point interpolation) and the IpDFT method. When the MIpDFT method was used, k (k = 1, 2, 3, 4) 
were estimated by the MIpDFT1 method (see previous subsection). The three-term MSD window was 
adopted.  
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(a) A1  (b) A2 

  
(c) A3 (d) A4 

Fig. 14. Magnitude of the absolute value of the bias of Ak (k = 1, 2, 3, 4) estimates as a function of SNR obtained 
by the MIpDFT method (‘o’-5 point interpolation, ‘*’-3 point interpolation) and the IpDFT method (‘x’). 

 
From Fig. 14 it can be seen that for a given J, different results are obtained for the values of lk. Hence, 
it follows that for a given J, the accuracy of Ak estimations depends on the position of the frequency 
component (i.e. on lk). It can also be observed in Fig. 14 that for a given J the accuracy of Ak estimates 
increases as SNR increases. This behavior is due to the fact that as SNR increases the influence of the 
noise on the of Ak estimates decreases and so, the achieved estimates are more accurate. Moreover, for 
a given J, the accuracy of Ak estimates depends on the mutual frequency separation of components 
span. To avoid spectral interferences from the nearby components, it is necessary to fulfill this 
relationship: (lk+1 – lk) > 2H +1, k = 0, 1,…,K, in which l0 corresponds to the DC component and K is 
the number of multi-frequency signal components [Belega 08a]. 
For high lk the errors due to the spectral interference become smaller than those due to noise and so, 
the accuracy of Ak estimates is practically unchanged (as in Fig. 14(d)). Thus, the MIpDFT method is 
well suited when lk is not too high and for relative greater SNR (i.e. for signals corrupted by a relative 
small power noise). 
Moreover, we evaluated the statistical efficiency of the amplitude estimator provided by the MIpDFT 
method in respect to the corresponding CRLB as the function of the number of interpolation points. It 
has been shown that for the same MSD window the statistical efficiency decreases as the number of 
interpolation point increases. 
 
 
 



48 

D. Energy-Based Method 
 

Another frequency-domain method often used in the applications is the so-called Energy-Based 
(EB) method. That method is very simple to understand and to apply. Besides, it provides accurate 
sine-wave parameter estimates using very simple formulas [Petri 90], [Offelli 90a], [Solomon 94], 
[Petri 02], [Benetazzo 92], [Novotný 07], [Belega 12b], [Belega 12c]. In [Belega 12b], we observed 
that the estimation errors achieved when the EB method is used are due to independent phenomena, 
that are the algorithm error, the interference from other spectral components of the signal, and the 
wideband noise superimposed to the signal. Then, we separately analyzed each above contribution on 
the frequency and amplitude estimation when the three- and four-term MSD, RSD-MSL, MSL, and 
MEE windows are used in [Belega 12b] and [Belega 12c], respectively. It is worth noticing that 
usually two-term windows are not used in the EB method since the related algorithm error is quite 
high.  These analyses, which were not performed in the previous works on this subject, are presented 
in the following.    
 
1) Frequency estimation 
 
The estimator for the parameter   provided by the EBM is [Petri 90], [Offelli 90a]: 
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Notice that only (2H + 1) DFT samples centered around the spectrum peak are considered. For   0, 
all of them, except one, fall inside the window spectrum main lobe. This choice ensures a good 
tradeoff between algorithm uncertainty, algorithm selectivity of nearby spectral components, and 
computational effort. Notice that the denominator of (120) is the sum of the square modulus of all the 
considered DFT samples, while at the numerator the same quantities are multiplied by their frequency 
distance (expressed in bins) from the spectrum peak (located in l) before to be summed up. 
 
a) Effect of algorithm error 
 
We consider at first a pure sine wave and assume that the effect of the spectral interference from the 
fundamental image component on the eb̂ estimator (120) is negligible, as occurs when the number of 

acquired sine-wave cycles  is high enough. In this case, using (31), the relationship (120) can be 
written as: 
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Thus, the  estimation error due to the algorithm is approximately given by: 
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From (122) it follows that the algorithm error alg,êb  is an odd function of  and the algorithm 

estimates exactly the sine-wave frequency, that is lg,ˆ aeb  (0) = 0, in the case when   = 0 (coherent 

sampling).  Fig. 15 shows the absolute value of that error achieved by (122) and computer simulations 
as a function of  , for 0 <  < 0.5, and the considered cosine windows. The sine-wave phase  was 
uniformly distributed in the range [0, 2) rad. The integer part l was equal to 513 and the number of 
acquired samples was M = 8192. The fractional part   of the acquired sine-wave cycles was varied in 
the range [0.01, 0.5) with a step of 0.01.  
Fig. 15 shows that the theoretical and simulation results are in very good agreement. Also, from Fig. 
15 it follows that the maximum of the algorithm error, maxlg_,ˆ aeb , is reached for a value alg_max, 

which depends on the adopted window. Moreover, such fractional frequencies differ from the values 
of   associated to the maximum amplitude estimation error [Belega 07b]. The values of alg_max and 

maxlg_,ˆ aeb achieved for the above considered three- and four-term cosine windows are reported in 

Table 3.  
 
 

  
(a) (b) 

Fig. 15. Absolute value of the algorithm error alg,êb achieved by (122) and computer simulations versus   for 

some commonly used (a) three-term and (b) four-term cosine windows. The theoretical and simulation results 
are represented by continuous lines and crosses, respectively.  
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Table 3. Values of alg_max and maxlg_,ˆ aeb for some commonly used three- and four-term cosine windows. 

Window H alg_max maxlg_,ˆ aeb  

Max. sidelobe decay (msd3)  0.50 2.77E5 

Rapid sidelobe decay with min. sidelobe 
level (rsd-msl3) 

0.39 4.65E8 

Min. sidelobe level (msl3)  0.25 1.47E5 

Min. error energy (mee3) 

 
 
 
 
3 

 0.25 1.18E6 

Max. sidelobe decay (msd4)  0.50 1.02E6 

Rapid sidelobe decay with min. sidelobe 
level (rsd-msl4) 

 0.41 3.45E9 

Min. sidelobe level (msl4)  0.25 8.03E8 

Min. error energy (mee4) 

 
 
 
 
4 

 0.25 2.01E9 

 
The results reported in Table 3 show that, when the three-term cosine windows are considered, the 
smallest maximum algorithm error is provided by the rsd-msl3 window. Conversely, when the four-
term cosine windows are used, the optimal choice with respect to the algorithm error is the mee4 
window. 
 
 
b) Effect of spectral interference from the image component  
 
We assume now a pure sine-wave and consider the effect of the spectral interference from the image 
component on the eb̂ estimator (120), that is:  
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From (4), (31), and (120) it follows that for a given window such an effect depends on the sine-wave 
phase , the integer part l, and the fractional part   of the number of acquired sine-wave cycles. 
We shown by means of computer simulations that for   0, the error ieb s,̂  exhibits a sine-wave like 

behavior with respect to the signal phase. Thus, when considering a pure sine-wave with a phase 
uniformly distributed in the range [0, 2) rad, the effect of spectral interference ieb s,̂  can be modeled 

as a random variable with zero mean and standard deviation: 
 

,2/max_,ˆ,ˆ sisi ebeb 
   (124) 

 
where max_,ˆ sieb  represents the maximum of (123) with respect to the signal phase. 
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Fig. 16 shows max_,ˆ sieb achieved for  = 0.2 and the above considered three- and four-term cosine 

windows. All the values of l belonging to the ranges represented in abscissa were considered. For each 
of them, 200 equidistant values in the range [0, 2) rad were taken for the sine-wave phase. 
 

  
(a) (b) 

Fig. 16. Maximum interference error max_,ˆ sieb as a function of the integer part l of the number of acquired 

sine-wave cycles, for  = 0.2 and commonly used (a) three-term and (b) and four-term cosine windows. 
 
As expected, Fig. 16 shows that max_,ˆ sieb decreases as the number of the acquired sine-wave cycles 

increases. Moreover max_,ˆ sieb decreases as the decay rate of the window sidelobes increases. In 

particular, max_,ˆ sieb is minimum when using the MSD windows, while the largest errors are achieved 

if the MSL and MEE windows are adopted. In fact these later windows have a sidelobe decay rate of 
only 6 dB/octave (see Table 2). 
 
c) Effect of wideband noise  
 
We assume that the integer part l of the number of acquired sine-wave cycles is high enough that the 

eb̂ estimator is virtually not affected by the spectral interference from the image component. 
Moreover, in order to model common real-life situations, we assume that a stationary white noise with 

zero mean and variance 2
n  is added to the digitized sine-wave. In this case, for values of   not too 

small, we derived the expression of the estimator mean, which is: 
 

.ˆ]ˆ[ lg,aebebE    (125) 

 
in which E[] represents the expectation operator.  
Moreover, we derived the expressions of the estimator variance, which is given bellow: 
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where NNPG is given by (9), the coefficients bi by: 
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and (i, j) is the correlation coefficient between the spectral samples |Xw(l + i)| and |Xw(l + j)|  
[Novotný 07]: 
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in which d = |i – j|.  
A very important conclusion drawn from (126) is that the variance 2

,ˆ neb
  depends only on the window 

used.  
Using (63) and (126) it follows that the statistical efficiency 

eb
E̂

 of the EB method with respect to the 

corresponding unbiased CRLB is:  
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(129) 

 

In Fig. 17 the statistical efficiencies 
eb

E̂
 achieved by (129) and computer simulations is depicted as a 

function of  for all considered windows. The sine-wave amplitude A was set to 2, the integer part l of 
the acquired sine-wave cycles was set to 73, and the sine-wave phase  was chosen at uniformly 
distributed in the range [0, 2) rad. The number of acquired samples M was set to 1024. The sine-wave 
was corrupted by a Gaussian noise with zero mean and standard deviation corresponding to a SNR of 
50 dB. The fractional part   of the acquired sine-wave cycles was varied in the range [ 0.5, 0.5) with 
a step of 1/33. For each value of , 10000 runs were performed and the efficiency 

eb
E̂

was calculated. 

 Fig. 17 shows a very good agreement between the theoretical and the simulation results. It should be 
noted that behaviors very similar to those reported in Fig. 17 were always achieved for different values 
of A, l, SNR, and using both uniform and Gaussian noise.  
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(a) (b) 

Fig. 17. Efficiency 
eb

E̂
 achieved by (129) and computer simulations versus   for commonly used (a) three-

term and (b) four-term cosine windows. The continuous lines are obtained from (129), while the circles represent 
the simulation results. 

 
 
From the above figure it follows that for a given data record, the estimator standard deviation 

eb ˆ  

increases as the window order H increases. Moreover, for a given window order, the MSL and the 
MSD windows provide the best and the worst statistical efficiency, respectively. 
 
 
d) rms error of the frequency estimates 
 
From the results derived above, we evaluated the rms error of the EBM frequency 
estimate, 


 eb

eb

ˆ
ˆ , when applied to a single data record of M samples. To this aim, all the three 

contributions previously analyzed, and we can write:  
 

nsiaeb
ebebeb ,ˆ,ˆlg,ˆ

ˆ


   (130) 

in which neb ,̂  represents the estimation error due to wideband noise. 

In order to model common real-life situations the phase of the input sine-wave is assumed unknown. 
Accordingly, the contribution of the spectral interference error sieb ,̂  to the rms error of 

eb̂   is 

provided by the corresponding rms value sieb ,̂ . Conversely, the contribution of the algorithm error 

lg,ˆ aeb  is fixed, since it depends only on the estimated parameter .  

The three contributions in (130) result from three different phenomena, which is the algorithm, the 
spectral interference, and noise. Thus, they can be considered statistically independent and the rms 
error of  can be expressed as:    
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It is worth noticing that the results derived in the previous subsections show that one of the terms in 
the square root can be negligible, depending on the values of l and SNR. 
We verified the accuracies of the derived expressions through computer simulations. Moreover, we 
compared using both computer simulations and experimental results the overall accuracies of the sine-
wave fractional frequency estimator provided by the EB method, IpDFT method, and four-parameter 
sine-fitting (4PSF) algorithm [Std. 1057], [Händel 00], [Bilau 04] .  
The parameters of the sine-wave used in computer simulations were A = 2, l = 99, and  uniformly 
distributed in the range [0, 2) rad. The fractional part   of the number of observed periods was varied 
in the range [0.5, 0.5) with a step of 1/33. The sine-wave was digitized by means of an ideal 12-bit 
bipolar ADC with FSR = 10. For each value of , 1000 runs of M = 1024 samples each were 
performed and both the mean value and the standard deviation of the  estimators provided by all the 
considered methods were evaluated. The rsd-msl3 window was adopted in the EB method, while the 
msd2 window was used in the IpDFT method. The initial estimates required by the 4PSF algorithm 
were achieved by means of the IpDFT method based on the rectangular window [Bilau 04] and the 
iterations were stopped when all the differences among related parameters estimated in two 
consecutive steps were smaller than 10-6. Fig. 18 shows the absolute values of the bias and the mean 
(Fig. 18(a)), and the standard deviation (Fig. 18(b)), of the  estimators provided by all the considered 
methods.  
 

  
(a) (b) 

Fig. 18. Absolute values of (a) the bias (bottom graphs) and the mean (upper graphs), and (b) the standard 
deviation of the  estimators provided by all the considered methods versus .   

 
The results reported in Fig. 18 show that: 

 for all the considered estimators, the absolute values of the bias are small as compared to the 
related standard deviation and very close each other (see Fig. 18(a) and (b)); 

  the estimators provided by the 4PSF algorithm and the EB method have the smallest and the 
highest standard deviation respectively; however, the standard deviations of all estimators are 
relatively close each other (see Fig. 18(b)); 

 the standard deviation of each estimator is negligible with respect to the related mean value (see 
both Fig. 18(a) and 18(b)). 

Thus we can conclude that, for most practical applications, all the considered methods provide almost 
the same frequency estimation accuracy. 
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In the experimental setup the sine waves were supplied by an Agilent 33220A signal generator. They 
were characterized by an amplitude of 2 V and frequencies 5.3, 8.9, 12.1, 15.7, 19.3, and 23.1 kHz, 
respectively. The signals were acquired using a 12-bit data acquisition board NI-6023E. The FSR and 
the sampling rate were set to 10 V and 100 kHz, respectively. For each frequency, 1000 runs of M = 
1024 samples were acquired and the mean value and the standard deviation of the estimators provided 
by the EB method, the IpDFT method, and the 4PSF algorithm were computed using the same figures 
employed in the computer simulations. Fig. 19 shows the mean value (Fig. 19(a)) and the standard 
deviation (Fig. 19(b)) for each estimator as a function of frequency.   
As we can see, the achieved results confirm the conclusions already drawn from computer 
simulations: the returned values are very close (see Fig. 19(a)), the standard deviations provided by all 
methods are relatively close each other (see Fig. 19(b)), even though the 4PSF method exhibits the 
smallest one, and the standard deviation of each estimator is negligible compared with its mean value 
(see Figs. 19(a) and 19(b)).            
 

  
(a) (b) 

Fig. 19. (a) Mean value and (b) standard deviation of the  estimators provided by all the considered 
methods versus the sine-wave frequency. 

 
 
2) Amplitude estimation 

 
The EB method allows us to estimate the amplitude A using two different procedures: direct and 

indirect procedures.   
 
 Direct procedure 
 
In this case the amplitude A is estimated as [Petri 90], [Offelli 90a]: 
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where NNPG is given by (9). 
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 Indirect procedure 
 
By neglecting the effect of the image component of the spectrum, the amplitude A can be estimated 
from (31) as: 
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(133) 

 

where eb̂ is the estimator of the fractional frequency   provided by EB method, given by (120).  
We separately analyze the specific effects of the algorithm error, the spectral interference from the 
image component, and the wideband noise on the accuracy of the amplitude estimators provided by 
the direct and the indirect procedures. 
 
a) Effect of algorithm error  
 
Let us assume a pure sine-wave. By neglecting the effect of the spectral interference from the image 
component on the estimated amplitude the accuracy of both procedures can be evaluated as shown in 
the following. 
 
 Direct procedure 
Using (31) the amplitude estimator given by (132) can be expressed as: 
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Thus, the relative amplitude error due to the algorithm is given by: 
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 Indirect procedure 
Using (31) the amplitude estimator (133) can be expressed as: 
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where the estimator lg,

ˆ
aeb due to the algorithm error, is given by (121).  

In this case the relative amplitude error due to the algorithm is given by: 
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When coherent sampling occurs, i.e. when  = 0, we have AAA aiebadeb  lg),(lg),(
ˆˆ , which imply d, alg 

= i, alg = 0. Moreover, since |W(·)| is an even function, it follows that both |d, alg| and |i, alg| are even 
functions.  
Fig. 20 shows the absolute value of the relative errors d, alg and i, alg as a function of  for the 
considered three- and four-term cosine windows. The fractional frequency   was varied in the range 
[0.5, 0) with a step of 0.01. 
 

  
(a) (b) 

  
(c) (d) 

 
Fig. 20. (a) Absolute value of the relative errors d, alg and i, alg versus   for (a), (b) the three-term and (c), (d) the  

four-term cosine windows. 
 

When the direct procedure is employed the errors |d, alg| decrease as || decreases. Thus, the maximum 
of the |d, alg| is reached for  = 0.5. Moreover, it can be seen that the errors |d, alg| decrease as the 
window order increases. The best accuracy is achieved when the MEE windows are adopted. Indeed 
they minimize the spectral leakage energy outside the spectrum main lobe [Offelli 90a]. The worst 
accuracy occurs when the MSD windows are adopted. Conversely, when the indirect procedure is 
employed, the value of   for which |i, alg| is maximum depends of the adopted window. Among the 
three-term cosine windows, the rsd-msl3 window provides the best accuracy. In particular, by 
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comparing Figs. 20(a) and 20(b) we can see that the smallest error is achieved when the indirect 
method and the rsd-msl3 window are adopted. Fig. 20(d) shows that the mee4 or the rsd-msl4 
windows provide the most accurate results, depending on the value of . Specifically, for || > 0.25, 
the best results are provided by the mee4 window. Moreover, for ||  0.45 or ||  0.15, the indirect 
procedure based on the mee4 or the rsd-msl4 windows provide the smallest relative estimation error. 
For the remaining values of , the most accurate estimates are provided by the direct procedure based 
on the mee4 window.    
 
b) Effect of the spectral interference from the image component 

We assume a pure sine-wave, but consider a non negligible spectral interference from the image 
component. Hence, the relative amplitude error due to the spectral interference is given by:  
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and  
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for the direct and the indirect procedure, respectively. Notice that the above errors depend on the 
values of l, , and . In practice in order to avoid the spectral interference from DC component we 
need to ensure that l  2H + 2. 

It was shown through computer simulations that the errors d,si and i,si exhibits a sinusoidal 
behavior with respect to the sine-wave phase. Thus, assuming a phase  varying at random in the 
range [0, 2) rad, the effect of the spectral interference can be modelled as a random variable with 
zero mean and standard deviation: 
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where d, si_max and i, si_max are the maximum of (138) and (139) with respect to the signal phase, 
respectively. 
Fig. 21 shows the maximum values of d, si_max and i, si_max as a function of  for all the considered 
three- and four-term windows. The number of acquired sine-wave cycles  was varied in the range 
[5.5, 100.4] with a step of 0.1, when considering three-term windows, and in the range [5.5, 50.4], 
always using the same step, when the four-term cosine windows are adopted. The number of acquired 
samples was M = 1024. For each value of  the phase  was varied in the range [0, 2) rad with a step 
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of /50 rad. For each value of the integer part l, the maximum of the d, si_max and the i, si_max, achieved 
for all the considered values of   in the range [0.5, 0.5) is shown in the figure. 
As we can see, the maximum of d, si_max and i, si_max decreases as the decay rate of the window sidelobe 
increases. Moreover, the most accurate results are achieved with the direct procedure.  
 

  
(a) (b) 

Fig. 21. Maximum of errors d, si_max and i, si_max versus   for commonly used (a) three-term and (b) four-term 
cosine windows. Both the direct procedure (continuous lines) and the indirect procedures (dotted lines) are 

considered. 
 
 
c) Effect of the wideband noise 

We assume that the integer part of the acquired sine-wave cycles is high enough that the effect of the 
spectral interference on the estimated amplitude can be neglected. Moreover, in order to model 
common real-life situations, we corrupt the sine-wave signal by an additive white Gaussian noise with 

zero mean and variance 2
n . In the following the expressions for the statistical efficiency of the 

amplitude estimators provided by the two considered procedures are derived. 
 
 Direct procedure 
  
The variance of the estimator (132) is given by [Petri 02], [Novotný 97]: 
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where ENBW0 is given by (11), with the numerator given by (12) and (13) for H = 3 and H = 4, 
respectively. 
Since the single-tone CRLB for unbiased amplitude estimators is given with very good accuracy by 
[Offelli 92], [Kay 93]:  
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the statistical efficiency of the estimator dÂ  is:  
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 Indirect procedure 

Using a similar derivation as for the variance of the amplitude estimator provided by the IpDFT 
method, since the variance 2

wX is much higher than the variance 2
,ˆ neb

 , almost the same expression 

for the variance of the amplitude estimator provided by the EB method using the indirect procedure is  
achieved, which is given by:  
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Using (143) and (145), the statistical efficiency of the estimator )(
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iebA  results: 
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From (144) and (146) it follows that the ratio between the statistical efficiencies of the two considered 
procedures is: 
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It is worth noticing that 1/
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iebdeb AA EE for any value of  in the range [0.5, 0.5) and all the 

considered three- and four-term cosine windows. Thus, the indirect procedure provides a statistically 
more efficient amplitude estimator than the direct procedure. In particular, the minimum and the 
maximum values of the ratio 
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respectively. 
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As we already specified the expression (145) holds also for the IpDFT method. When the SNR is 
smaller than about 70 dB, very accurate estimates can be achieved by applying the IpDFT method 
based on the two-term MSD window. In fact, when the IpDFT method based on the MSD windows is 
applied, the corresponding algorithm error is negligible [Belega 12a]. Conversely, the EB method 
requires the use of a three-term cosine window even though SNR  70 dB because the algorithm error 
associated to the two-term cosine windows is too high. Hence, in these situations, the IpDFT method 
provides a higher statistical efficiency than the EB method.    
Fig. 22 shows the statistical efficiencies 

)(
ˆ

debAE and 
)(

ˆ
iebAE  as a function of  obtained by both (144), 

(146) and computer simulations. The sine-wave amplitude A was set to 2, the integer part of the 
acquired sine-wave cycles l was equal to 93, and the number of acquired samples M was set to 1024. 
The sine-wave phase  was chosen at random in the range [0, 2) rad. The sine-wave was corrupted by 
a Gaussian noise with zero mean and standard deviation corresponding to a SNR of 50 dB. The 
fractional frequency  was varied with a step of 1/33 and for each value of , 5000 runs were 
performed. 
 

  
(a) (b) 

Fig. 22. Statistical efficiencies
)(

ˆ
debAE and 

)(
ˆ

iebAE obtained by the theoretical expressions (lines) and computer 

simulations (circles) versus   for commonly used (a) three-term and (b) four-term cosine windows. Both the 
direct procedure (continuous lines) and the indirect procedures (dotted lines) are considered.  

 
As we can see, the agreement between theoretical and simulation results is very good.  Moreover, Fig. 
22 shows very clearly that, for a given window, the indirect method provides a higher statistical 
efficiency. Many other simulations were performed for different values of A, l, SNR, using both 
uniform and Gaussian noise. Behaviors similar to those reported in Fig. 22 were always achieved. 
 

d) rms error of the amplitude estimates 

Taking into account all the contributions analyzed above we can write: 
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where nA deb ,ˆ
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 and nA ieb ,ˆ
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  represent the amplitude estimation errors due to wideband noise related to 

direct and indirect procedures, respectively. 
The three different contributions in (150) and (151) can be considered statistically independent. Indeed 
they are due to distinct phenomena (that is the algorithm, the spectral interference, and noise). Thus, 
by choosing at random the sine-wave phase, the rms of the estimation errors AA debA deb
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respectively. In the above expressions the different contributions are evaluated by using the 
expressions (138) - (142), and (145).  
In particular, when SNR  60 dB and high values of l are considered, as often occurs in practice, the 
contribution due to noise prevails over the others. Thus, the analysis performed in the previous 
subsection shows that the indirect procedure provides more accurate results. 
We verified the accuracies of the expressions (152) and (153) through computer simulations. The 
overall effect of the algorithm error and the spectral interference was firstly investigated.  Specifically, 
the accuracy of (152) and (153) were verified by means of a pure sine-wave signal. Fig. 23 shows the 
values of )(

)(
ˆ

debArms  and )(
)(

ˆ
iebArms   provided by the expressions (152) and (153) and by computer 

simulations as a function of . The sine-wave amplitude A was set to 2 and the number of acquired 
sine-wave cycles  was varied in the range [4, 10] with a step of 1/20. The number of acquired 
samples was M = 1024. For each value of , 1000 runs were considered by choosing the sine-wave 
phase  at random in the range [0, 2) rad. Results corresponding to coherent sampling are null and 
are not reported in the figure.  
As we can see, the agreement between theoretical and simulation results is very good. 
Also, it is of interest to know the behavior of the )(
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ˆ

debArms  and )(
)(

ˆ
iebArms   for high values of l. 
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(a) (b) 

  
(c) (d) 

Fig. 23. RMS of the amplitude estimation errors )(
)(

ˆ
debArms  and )(

)(
ˆ

iebArms   provided by the theoretical 

expressions (lines) and computer simulations (crosses) versus   for commonly used (a), (b) three-term and (c), 
(d) four-term cosine windows. Only the algorithm error and the spectral interference are considered and both the 

direct procedure and the indirect procedures are employed. 
 
Therefore, in Fig. 24, the values of )(

)(
ˆ

debArms   and )(
)(

ˆ
iebArms  , provided by the expressions (152) 

and (153) and by computer simulations, are depicted as a function of l for all the considered windows. 
The same signal and simulation parameters used in the previous figure were employed, except that the 
integer part l was varied in the range [6, 80] with step of 2 and the fractional part  was set to 0.5. 
Also, Fig. 24 shows a very good agreement between theoretical and simulation results. When the 
three-term cosine windows are adopted, if the integer part of the acquired sine-wave cycles, l, is quite 
small, the direct procedure based on the mee3 window exhibits the smallest sensitivity to the algorithm 
error and the spectral interference from the image component. Conversely, the indirect procedure 
based on the rsd-msl3 window provides the best accuracy if a quite large number of sine-wave cycles 
is acquired. Using the four-term cosine windows, the minimum sensitivity to the algorithm error and 
the spectral interference is achieved by the direct procedure based on the mee4 window.  
Further simulations were performed by considering the effect of all estimator uncertainty 
contributions. Also, in this case the agreement between theoretical and simulation results is very good.  
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(a) (b) 

Fig. 24. The values of )(
)(

ˆ
debArms  and )(

)(
ˆ

iebArms   provided by the theoretical expressions (lines) and 

computer simulations (crosses) versus l  for commonly used (a) three-term and (b) four-term cosine windows. 
Only the algorithm error and the spectral interference are considered and both the direct procedure (continuous 

line) and the indirect procedures (dotted line) are employed. 
 

Moreover, the overall accuracies of the considered amplitude estimation procedures were compared by 
means of experimental results. In the experimental runs the sine-waves were supplied by an Agilent 
33220A signal generator and acquired by a 12-bit data acquisition board NI-6023E. The Full Scale 
Range, FSR, and the sampling frequency were set to 10 V and 100 kHz, respectively.  
In Fig. 25 variances of the estimators )(

ˆ
debA  and )(

ˆ
iebA  are depicted as a function of the fractional 

frequency  when the three-term and the four-term cosine windows are adopted. The amplitude of the 
signals was set to 4 V and the related frequencies were varied between 2.10 and 2.19 kHz with a step 
of 10 Hz in order to obtain different values of . The achieved value for l was 22. For each frequency 
value 1000 runs of M = 1024 samples each were performed and the variances of the two amplitude 

estimators )(
ˆ

debA  and )(
ˆ

iebA were calculated. The fractional frequency  was estimated by using the 

mean value of the estimates returned by the EB method based on the rsd-msd3 window. 
The variance of the estimator )(

ˆ
iebA  achieved when the msl3 window is adopted is not reported in Fig. 

25(b) since it is too much higher than the variances related to the use of the other windows. Indeed, in 
the considered setup, the effect of the algorithm error and the spectral interference is significant, as we 
can derive from Figs. 21 and 24. Besides, also the variance of the estimator )(

ˆ
iebA  corresponding to the 

mee3 window is quite high because of the same reason. The remaining results show very close 
behaviors. Indeed, the amplitude estimation error is mainly due to wideband noise. Moreover, as 
expected, Fig. 25 shows that the indirect procedure provides a lower estimation variance than the 
direct procedure. 
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(a) (b) 

  
(c) (d) 

Fig. 25. Variances of the estimators (a) )(
ˆ

debA  and (b) )(
ˆ

iebA  versus  achieved by means of experimental results 

when the (a), (b) three-term and (c), (d) four-term cosine windows are adopted. 
 

In [Belega 10c], we compared through both computer simulation and experimental results the 
accuracy of the amplitude estimates achieved by the IpDFT method with that of the EB method and 
the multi-harmonic sine-fitting algorithm proposed in [Ramos 06] in the case of a harmonically 
distorted signal corrupted by a white stationary noise. The simulated signal was affected by the 2nd, 
3rd, 4th, and 5th harmonics of a amplitudes A2 = 8Q, A3 = Q, A4 = 0.2Q, and A5 = 0.05Q, in which Q is 
the ideal code bin width of an 16-bit bipolar ADC, with a Full Sale Range (FSR) equal to 5. The 
amplitude of the fundamental was A1 = 2, the number of the acquired samples M was 4096, the integer 
part related to the fundamental l1 was 213, and the sampling frequency was 51 kHz. The signal was 
corrupted only by the ADC quantization noise, which was modelled as an uniformly distributed 
additive noise. The fractional part 1 related to the fundamental was varied in the range of [0.5, 0.5), 
with a step of 1/30. For each value of 1, the phases of the harmonics were uniformly distributed in the 
range of [0, 2) rad and the mean and the standard deviation values of A2, A3, A4, and A5 estimates 
achieved by the considered methods in 1000 runs were computed. The two-term MSD window was 
adopted in the IpDFT method. When the EB method was used, the locations of the harmonic 
components in the signal spectrum were found by means of the IpDFT method based on the two-term 
MSD window. In the EB method the four-term MEE window was used. In the multi-harmonic sine 
fitting method the initial frequency was estimated by the IpDFT method based on the rectangular 
window [Bilau 04]. The algorithm iterations were stopped when the magnitude of the differences 
between the frequency deviations estimated in two consecutive iterations was less than 10-6. Fig. 26 
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shows the mean and the mean plus or minus the standard deviation of the A3, A4, and A5 estimates 
obtained by the considered methods as a function of 1. 

 

  
(a) (b) 

 
(c) 

Fig. 26. Mean and mean plus or minus the standard deviation of the (a) A3 estimates , (b) A4 estimates, and (c) A5 
estimates obtained by the IpDFT method (’o’), the energy-based method (‘*’), and the multi-harmonic          

sine-fitting method (‘x’) as a function of 1.   
 

From the results shown in Fig. 26 it follows that the estimation accuracy achieved by the IpDFT 
method is slightly smaller than that achieved by the multi-harmonic sine-fitting algorithm, and higher 
than that achieved by the EB method.  
In the experimental runs the sine-wave were achieved from an Agilent 33220A signal generator. The 
signal was characterized by: A0 = 2 V, A1 = 2 V, and f1 = 171 Hz. The ADS1258EVM-PDK system 
with the ADCPro software was used for signal acquisition. This system contains an 24-bit delta-sigma 
converter (ADS1258) optimized for fast multi-channel, high-resolution measurements systems, with a 
maximum channel scan rate of 23.7 kHz. ADS1258 was used in unipolar mode with FSR equal to 5 V. 
The sampling frequency of the ADS1258 was set to 1.92 kHz. The number of acquired samples was 
4096. In the IpDFT method the three-term MSD window was adopted and in the EB method the four-
term MEE window was adopted. The multi-harmonic sine-fitting algorithm was used as in the 
simulations, but the first ten harmonics were considered. The mean and the standard deviation values 
of the first ten harmonic components during 200 runs were computed. The achieved results are given 
in Table 4. 
 

 



67 

Table 4. Experimental results obtained using the ADS1258EVM-PDK system. 

IpDFT method EB method Multi-harmonic sine-fitting  
algorithm 

 

Mean  
(LSB) 

Std. dev.  
(LSB) 

Mean 
(LSB) 

Std. dev. 
(LSB) 

Mean 
(LSB) 

Std. dev. 
(LSB) 

2nd harmonic 213.49 3.53 213.68 4.11 213.31 2.76 
3rd harmonic 53.24 3.11 53.71 3.57 52.97 2.36 
4th harmonic 30.60 3.74 31.67 4.14 30.48 2.85 
5th harmonic 38.51 3.43 39.15 3.91 38.37 2.52 
6th harmonic 13.00 2.99 17.58 7.06 12.68 2.43 
7th harmonic 36.76 3.26 38.14 3.80 36.71 2.45 
8th harmonic 10.80 2.99 15.59 4.59 9.74 2.20 
9th harmonic 9.63 2.88 15.02 3.56 8.37 2.80 

10th harmonic 7.60 2.49 12.73 2.53 5.00 2.42 
 
As in simulations, from the results shown in Table 4, it follows that the results achieved by the IpDFT 
method are much closer to those achieved by the multi-harmonic sine-fitting method than the results 
achieved by the EB method. Also, it can be observed that for small harmonics the EB method provide 
less accurate estimates as compared with the multi-harmonic sine-fitting algorithm and the IpDFT 
method.  
 
 
2.2.2. TIME-DOMAIN METHODS 
 
 

The parameters of a sine-wave component can be accurately estimated by using sine-fitting 
algorithms [Std. 1057], [Std. 1241]. They are based on the minimization of the squared residual error, 
i.e. the difference between a generic sinusoidal signal and the available output data. The current IEEE 
Standards 1057 and 1241 concerning dynamic testing of digitizing waveform recorders and ADCs 
recommend two sine-fitting algorithms. They are named according to the number of the parameters to 
be estimated, which are the three- and the four-parameter sine-fitting algorithms.  

In the three-parameter sine-fitting (3PSF) algorithm the frequency is assumed to be known and the 
minimization problem is solved by means of a simple linear least squares approach. Conversely, in the 
four-parameter sine-fitting (4PSF) algorithm all the sine-wave parameters are assumed to be unknown 
and a nonlinear least squares approach is needed. The performance of both 3PSF and 4PSF algorithms 
related to robustness, accuracy of the starting values, number of iterations, and convergence speed 
have been deeply analyzed in the scientific literature [Händel 00], [Händel 08], [Bilau 04], [Fonseca 
04], [Chen 07], [Chen 08]. Also, the effects of noise [Händel 00], [Andersson 06], [Moschitta 05], and 
harmonics [Deyst 95] on the accuracies of the returned results have been investigated. In [Andersson 
06] a decision criterion whether to use the 3PSF or the 4PSF algorithm has been derived by using the 
parsimony principle [Söderström 89]. To this aim, the algorithm accuracy has been expressed in terms 
of the expected sum-squared residual error and evaluated in the case of a sine-wave corrupted by white 
Gaussian noise. When the 3PSF algorithm is of concern, the expected sum-squared residual error was 
determined by assuming that the signal frequency took a fixed value. In particular, it has been shown 
that the 3PSF algorithm exhibits a higher accuracy when the sine-wave frequency is known with very 
low uncertainty [Andersson 06]. An extension of the results derived in [Andersson 06] is performed in 
[Andersson 05] in order to derive a criterion for model order selection.  
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It is worth noticing that neither the IEEE Standard 1057 nor Standard 1241 provide any 
recommendation about how determining the sine-wave frequency to be used in the 3PSF algorithm 
[Std. 1057], [Std. 1241].  It has been shown in [Belega 11a], that the Effective Number Of Bits 
(ENOB) of an ADC can be accurately evaluated when the sine-wave frequency is estimated by means 
of the IpDFT method based on the MSD windows. Therefore, in [Belega 12d], we compared the 
performance of the 3PSF algorithm adopting the sine-wave frequency returned by the IpDFT method 
(called in the following the 3PSF-IpDFT algorithm) with that of the 4PSF algorithm when estimating 
the noise power of a non-coherently sampled sine-wave corrupted by a white Gaussian noise. For this 
purpose, we derived the expressions related to the fitting errors under the assumption that the number 
of analyzed samples is large enough, which ensures also that the IpDFT frequency estimator bias can 
be neglected. In the following we present that derivation. 

Let us consider that the sine-wave (1) with the offset d is corrupted by a white Gaussian noise r(·) 
with zero mean and variance 2

r . Thus, the achieved signal can be expressed as: 
 

          1,,2,1,0,2sin  MmmrdfmAmrmxmy   (154) 

 
The parameters of the sine-wave x(·) can be accurately estimated by applying the 3PSF or the 4PSF 
algorithm to the M analyzed samples. The best fit is achieved by selecting the parameters that 
minimize the sum-squared residual error: 
 

 ,ˆ1 1

0

2

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
M

m

mr
M

  
(155) 

 
in which the residual error  r̂  represents the difference between the analyzed data and the 
corresponding sine-fit values: 
 

      1,,1,0,ˆˆ  Mmmxmymr   (156) 

 
where: 

  1,,1,0,ˆˆˆ2sinˆˆ 





  Mmd

M
mAmx   

(157) 

is the fitted sine-wave, while ̂ , Â , ̂ , and d̂ are the estimated sine-wave parameters.  
Defining the fitting error as:  
 

      1,,1,0,ˆ  Mmmxmxme   (158) 

 
from (154), (156), and (158) we have:  
 

      1,,1,0,ˆ  Mmmemrmr   (159) 

 
In order to analyze the algorithm accuracy, we consider the expected value of both the sum-squared 
residual and the sum-squared fitting errors. This latter quantity is defined as: 
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(160) 

 
The expression of the sum-squared fitting error was derived in [Belega 11a], and it is: 
 

  ,
23

2
2

1 2
222222

2
1

0

2


 


 








 




A
AAme

M
A

d

M

m

 
(161) 

 
where: 

.ˆ,ˆ,ˆˆ,ˆ ddAA dA       (162) 

 
are random variables modeling the estimation errors. 
It is known that the parameter estimators provided by the 3PSF and 4PSF algorithms are 
asymptotically efficient [Kay 93]. Thus, if the sine-wave frequency estimator adopted in the 3PSF 
algorithm is asymptotically unbiased and the number of analyzed samples is large enough, by taking 
the expectation of (161), we obtain: 
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where 2
Â , 2

̂ , 2
̂ , and 2

d̂  represent the variances of the considered estimators. 

Since the phase   of the sine-wave (154) at the time reference (that is for m = 0) is related to the phase 
0 at the center of the observation interval (that is for m = M/2) by: 
 

  0 , (164) 

 
and the estimators of the phase 0 and the frequency  are uncorrelated [Offelli 92], [Kay 93], we 
have: 
 

     ,2
ˆ

2
   EE    (165) 

 
and: 
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ˆ

22
ˆ

2
ˆ
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Using (165) and (166), (163) becomes:  
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Since M is large, the estimator variances provided by the sine-fitting algorithms almost attain the 
related single-tone CRLB [Offelli 92], [Key 93], [Händel 10], that is (for frequency and amplitude 
they are also given in (63) and (143), respectively): 
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By replacing (168)-(170) in (167), the following expression for the expected sum-squared fitting error 
provided by the 3PSF algorithm is achieved: 
 

  .
6

3 2
ˆ

222
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M
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(172) 

 
Conversely, by replacing (168)-(171) in (167), the following expression for the expected sum-squared 
fitting error provided by the 4PSF algorithm is obtained: 
 

  .4 2

4 M
E r
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(173) 

 
It should be noticed that when the frequency value used in the 3PSF algorithm is fixed and affected by 
a constant error  , by using similar arguments as above, it can be shown that (172) still holds, but 

the variable 2
̂  should be substituted by 2

 .  

From (172) and (173), it follows that E[3]  E[4] as soon as the following constrain is fulfilled:  
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(174) 

 
Observe that the right term in (174) equals the single-tone unbiased CRLB,  CR

2
̂ , for the normalized 

frequency estimator (see (171)). Thus, if  CR
2
ˆ

2
ˆ    , both the 4PSF and the 3PSF algorithms provide 

the same expected sum-squared fitting error. Conversely, if a non-efficient frequency estimator is 
used, the 4PSF algorithm outperforms the 3PSF algorithm. That conclusion can be explained as 
follows. The 4PSF algorithm fits the available data by simultaneously considering all the sine-wave 
parameters and the resulting expected sum-squared fitting error is given by (173). Conversely, the 
3PSF algorithm separates the fitting process into a frequency estimation problem followed by a linear 
parameter estimation process. Obviously, if the frequency is known the frequency estimation step is 
not required. In particular, if the true value of the frequency is exactly known, the expected sum-
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squared fitting error associated with the 3PSF algorithm is equal to Mr /3 2 , which is smaller than the 
one related to the 4PSF algorithm. However, frequency estimation is always needed in practice. 
Hence, the fitting accuracy of the 3PSF algorithm is less than or the same as the one associated with 
the 4PSF algorithm. Specifically, the same accuracy is achieved only when an efficient frequency 
estimator is adopted.  
From (155), (159) - (162), it follows that the expected sum-squared residual errors provided by the 
3PSF-IpDFT and the 4PSF algorithms are expressed by: 
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and 
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It is worth to observe that the above expressions agree with the results reported in [Andersson 06] 
using the parsimony principle [Söderström 89].   
In particular, if the frequency estimator ̂  is consistent and the number of analyzed samples is large 

enough, from (172) and (173) we have that   2
3 rE    and   2

4 rE   , respectively. Thus, (175) 
and (176) become:  
 

     ,2
43 rEE      (177) 

 
which shows that both algorithms provides an asymptotically unbiased estimator of the noise power.  
Furthermore, we compared the accuracy of the 3PSF-IpDFT algorithm based on the MSD windows 
with that of the 4PSF algorithm. From (44) it follows that the minimum and the maximum values 
of  ˆ  occur when  = 0.5 and  = 0, respectively. For the two-term MSD window these values are: 
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Thus, from (171) and (178) we have:  
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which, from (172), implies that E[3]  E[4]. So, the 4PSF algorithm provides a more accurate sine-
wave fitting than the 3PSF-IpDFT algorithm based on the Hann window. Moreover, from (172) and 
(178) we achieve: 
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which is between about 40% and 100% larger than the fitting error associated to the 4PSF algorithm.  

Finally, observe that for values of M used in practice (e.g. M  256),   2
3 rE   and the expression 

(177) holds. Thus, the 3PSF-IpDFT algorithm based on the Hann window can provide noise power 
estimates as accurate as the 4PSF algorithm. 

Also, we verified through both computer simulations and experimental results the accuracies of 
the expressions derived above. Moreover, we analyzed the behavior of the PDF of the sum-squared 
residual error .  
Fig. 27 shows both the simulated and the theoretical expected sum-squared fitting errors provided by 

the 3PSF-IpDFT algorithm and the 4PSF algorithm, normalized to Mr /2 , as a function of . The 
theoretical values were determined by means of (172) and (173), respectively. The parameters of the 
sine-wave were A = 1,  = /3 rad, d = 0.02, and l = 37, while the number of analyzed samples was M 
= 512 and the SNR, was 30 dB. The fractional frequency deviation  was varied in the range [0.5, 
0.5) with a step of 0.05 and 10,000 runs were performed for each value of . The two-term MSD 
window was adopted in the 3PSF-IpDFT algorithm. In the 4PSF algorithm the parameter initial values 
were estimated by means of the IpDFT method based on the rectangular window [Bilau 04] and the 
iterations were stopped when the absolute value of the difference between each parameter estimates 
achieved in two consecutive iterations was smaller than 10-6. This threshold was always attained in no 
more than three iterations and no significant accuracy improvement was obtained by considering 
smaller thresholds. 
 

 

Fig. 27. Simulated and theoretical expected sum-squared fitting errors returned by the 3PSF-IpDFT and the 4PSF 
algorithms for M = 512, A = 1, and SNR = 30 dB. In the IpDFT method the two-term MSD window was adopted.   
 
The very good agreement between theoretical and simulation results shows by Fig. 27 confirm the 
accuracies of the expressions (172) and (173). Observe that, the expected sum-squared fitting error 
provided by the 3PSF-IpDFT algorithm depends on the value of   and is always higher than the 
variance returned by the 4PSF algorithm, as predicted by the theoretical analysis. 
Fig. 28 shows the ratio between the simulated expected sum-squared residual errors achieved by the 
3PSF-IpDFT and the 4PSF algorithms as a function of   for M = 2k, with k = 7 – 12. The same signal 
parameters used in Fig. 27 were considered. 
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Fig. 28. Ratio between the expected sum-squared residual errors provided by the 3PSF-IpDFT and the 4PSF 

algorithms versus . Simulation results achieved using a data record length M = 2k, with k = 7 - 12.  
 
According to the results shown in Fig. 28, the expected sum-squared residual errors returned by the 
3PSF-IpDFT and the 4PSF algorithms differ by less than 1.5% soon as M  256. 
The estimated PDFs of the sum-squared residual errors associated with both sine-fitting algorithms are 

depicted in Fig. 29 once normalized to the noise power 2
r . They were obtained by considering 

100,000 data records of M = 4096 samples each, and dividing the horizontal axis into 100 slots of 
equal width. The same signal parameters employed in Fig. 27 were used, but with  = 0.2. A Gaussian 

PDF with mean 2
r  and variance equal to the corresponding CRLB, that is Mr /2 4 [Key 93], is also 

reported in Fig. 29 for a visual comparison.  
 

  
(a) (b) 

Fig. 29. Estimated PDF of the sum-squared residual error provided by (a) the 3PSF-IpDFT algorithm and (b) the 

4PSF algorithm. The record length is M = 4096. A Gaussian PDF with mean 2
r  and variance Mr /2 4  is also 

reported.  
 

As we can see, for the considered value of M, both sine-fitting algorithms provide an almost normal 
and efficient estimator of the noise power. 
In the experimental runs the signals were provided by an Agilent 33220A signal generator. The data 
were acquired using a 12-bit data acquisition board NI-6023E. The full scale range and the sampling 
frequency were set to 10 V and 100 kHz, respectively. Several sine-waves with amplitude 2 V and 
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frequency 3.7, 5.8, 7.7, 10.5, 13.1, 17.3, 20.7 kHz were generated. For each frequency value 5000 
records of M = 256, 1024, or 4096 samples were acquired and processed by using the 3PSF-IpDFT 
and the 4PSF algorithms implemented as for Fig. 27. Fig. 30 shows the ratio between the average sum-
squared residual errors achieved from experiments as a function of the input frequency. The mean 
value of the ENOB estimates achieved by applying the 3PSF-IpDFT algorithm for M = 1024 was 
about 11.1 bits for all the considered frequencies. Thus, the overall noise power is about four times the 
quantization noise power.  
As we can see in Fig. 30, the obtained results strongly agree with the previous theoretical analysis. 
 

 

Fig. 30. Ratio between the average of the experimental sum-squared residual errors provided by the 3PSF-IpDFT 
and the 4PSF algorithms versus the sine-wave frequency. Experiments performed using a data record length M = 

256 (‘x’), 1024 (‘o’), or 4096 (‘*’). 
 
The experimental PDFs of the sum-squared residual errors returned by either the 3PSF-IpDFT and 
4PSF algorithms are depicted in Fig. 31. The signal frequency was 5.2 kHz and 10,000 records of M = 
1024 samples each were considered. A Gaussian PDF with mean and variance estimated from the 
experimental data is also reported for enabling a simple visual verification of the Gaussian behavior. 

 

  
(a) (b) 

Fig. 31. Estimated PDF of the sum-squared residual errors provided by (a) the 3PSF-IpDFT algorithm and (b) 
the 4PSF algorithm. The sine-wave frequency is 5.2 kHz and the record length is M = 1024. A Gaussian PDF 

with mean and standard deviation determined from the experimental data is also reported.  
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2.3. CONTRIBUTIONS TO ADC TESTING FIELD 
 
 
 In this subection my contributions to the Analog-to-Digital Converter (ADC) testing by means of 
the frequency-domain and time-domain sine-fitting algorithms are presented. 
 
 
2.3.1. FREQUENCY-DOMAIN AND TIME-DOMAIN SINE-FITTING ALGORITHMS 
 

The overall dynamic performance of an ADC is evaluated by means of different parameters. 
Two of the parameters mostly used are the SIgnal-to-Noise And Distortion ratio (SINAD) and the 
Effective Number Of Bits (ENOB) [Std. 1241], [DYNAD 01]. The first one is defined as the ratio 
between the rms value of the adopted test sine-wave and the rms value of the overall ADC output 
noise. Conversely, the ENOB represents the number of bits of an ideal ADC with a quantization error 
rms value equal to the rms value of the overall output noise of the ADC under test. This last parameter 
is used very often since it provides an easy to understand figure of an ADC dynamic performance [Std. 
1241]. The sine-fitting algorithms are a very powerful tool for estimating these parameters. They 
operate either in the time-domain or in the frequency-domain in order to determine the best sine fit to 
the output signal of an ADC fed with a pure sine-wave. Then, the parameters of interest are estimated 
by evaluating the power of the residual signal. To this aim the current Standards for ADC dynamic 
testing – the IEEE Standard 1241 [Std. 1241] and the European Project DYNAD [DYNAD 01] – 
suggest the use of time-domain sine-fitting algorithms, which are based on the application of the least 
squares approach. They are the three-parameter sine-fitting (3PSF) algorithm and the four-parameter 
sine-fitting (4PSF) algorithm, respectively (see § 2.2.2). Due to the least squares approach the above 
algorithms are robust with respect to non-coherent sampling, and provide accurate estimates. Besides, 
they are simple to implement.  
In [Belega 11a] and [Belega 11b], we shown that among different frequency-domain sine-fitting 
algorithms, those based on the Interpolated Discrete Fourier Transform (IpDFT) method or the 
Energy-Based (EB) method provide accurate ENOB and SINAD estimates. In the following, they are 
called FSF-IpDFT algorithm and FSF-EB algorithm, respectively. It is worth noticing that in          
[Belega 11a], we used for the first time in the scientific literature a frequency-domain sine-fitting 
algorithm for ADC testing, that was the FSF-IpDFT algorithm. The FSF-IpDFT and the FSF-EB 
algorithms are very attractive to be used since they exhibit a smaller computational complexity than 
the 3PSF and 4PSF algorithms, and are very simple to understand and to apply.    

 
 

A. Procedure Used to Estimate the SINAD and ENOB Parameters 
 

In the following, after the definitions of the used parameters, we present the procedure employed 
to estimate the parameters SINAD and ENOB of an ADC by means of a sine-fitting algorithm. 

We consider an N-bit ADC with full-scale range FSR, fed with a pure sine-wave. Ideally, to test 
all the ADC output codes, the sine-wave amplitude should be equal to FSR/2, while the sine-wave 
offset should be zero for bipolar ADCs and FSR/2 for unipolar ADCs. The signal obtained at the ADC 
output can be expressed as follows: 

 



76 

      1,,2,1,0,2sin)( 







 MnnrBn

f
fAnrnsny

s

in   
(1) 

 
where A, fin, , and B are, respectively, the amplitude, the frequency, the phase, and the offset of the 
output sine-wave s(·), M is the number of samples acquired with sampling frequency fs, whereas r() is 
the ADC output noise, which represents the overall error introduced during conversion and includes 
the effects of random noise, fixed pattern errors, nonlinearities (e.g. harmonic or spurious 
components), aperture uncertainty, etc. The frequency fin is usually chosen smaller than fs/2 to satisfy 
the Nyquist theorem. The ratio between fin and fs can be expressed as: 
 

,
M

J
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f

s
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where J and  (0.5    < 0.5) are respectively the integer and the fractional parts of the number of 
recorded sine-wave cycles . It is worth noticing that  represents also the sine-wave normalized 
frequency expressed in bins and it is usually evaluated by estimating J and  separately. It is well-
known that  = 0 corresponds to the so-called coherent sampling, whereas   0 corresponds to non-
coherent sampling [Ferrero 92].  The latter mode often occurs in practice due to lack of 
synchronization between sine-wave and sampling frequencies.  
Usually the value of J can be determined exactly by means of (2) when enough accurate estimates for 
fin and fs are available, or by using a maximum search routine applied to the DFT samples of the ADC 
output spectrum. Thus, from (2) it follows that the estimation uncertainties of  and  coincide. 
All the sine-fitting algorithms estimate the SINAD and ENOB parameters through the following steps 
[Std. 1241], [Petri 13]: 
 
1. Acquire M consecutive samples of the ADC output signal y(n), n = 0, 1, 2,…, M – 1. 
 
2. Determine the best sine fitting of the ADC output sequence y(): 
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where Â , ̂ , ̂ , and B̂ are respectively the amplitude, normalized frequency, phase, and offset of the 

best fitting sine-wave. In particular, to achieve ̂ , only an estimate of , ̂ , is needed since  ˆˆ  J .  
The above parameter estimates can be determined by means of time-domain or frequency-domain 
methods [Std. 1241], [DYNAD 01], [Belega 11a], [Belega 11b].  
 
3. Evaluate the residual signal: 
 

      1,,1,0,ˆˆ  Mnnsnynr   (4) 

 
4. Evaluate the residual rms value: 
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5. Determine the SINAD and ENOB parameters as: 
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where 2

q  is the variance of the quantization error of an ideal quantizer, which is usually assumed 

uniformly distributed [Std. 1241], that is  
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where Q is the theoretical code bin width of the ADC under test.  
It is worth noticing that when the input sequence can be described as a zero-mean, uniform and 
stationary random process, the quantization noise can be modeled as additive white noise, uniformly 
distributed over the range (Q/2, Q/2), and uncorrelated with the input [Kollár 94], [Widrow 96].  
It is well known that a linear relationship exists between the ENOB and SINAD (in dB) [Std. 1241]: 
 

  .76.102.6  ENOBdBSINAD  (9) 

 
Due to (9) we limit our analysis to the ENOB parameter only without any loss of generality.  
 
 
 
B. Sine-Fitting Algorithms Accuracy Comparison 

  
In [Petri 13], we compared the accuracy of the sine-fitting algorithms based on the IpDFT and EB 
methods with those achieved by the 3PSF and 4PSF algorithms through both theoretical and 
simulation results. To this aim, we derived the expressions of the expected sum-squared fitting and 
residual errors for each above algorithms. The analysis was performed assuming that the overall ADC 
output noise can be modelled as a zero mean white Gaussian noise. This comparison is presented in 
the following. 
In [Belega 12d], we derived the expression of the expected sum-squared fitting error, which is given 
by: 
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where 2

Â , 2
̂ , 2

ĉ
 , and 2

B̂  represent the variances of the estimators provided by the considered sine-

fitting algorithms for signal amplitude, fractional frequency, phase at the center of the observation 
interval (that is for n = M/2), and offset.  
In the following, the above expression will be evaluated for each of the considered algorithms. 
 
 Sine-fitting based on the IpDTF or EB methods 
 
When the IpDFT or the EB methods are employed, the offset was estimated as [Belega 11a], [Belega 
11b]: 
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where Yw() is the Discrete Fourier Transform (DFT) of the windowed ADC output signal yw(), where 
w() is the window used with the Normalized Power Signal Gain NPSG, given by ((8) in §2.2.1.A). 
The variances of the estimators Â , ̂ , c̂ , and B̂ provided by the IpDFT or the EB methods are given 
by [Belega 11a]: 
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where ENBW and SL() are respectively the Equivalent Noise BandWidth and the Scalloping Loss of 
the used window, and are given in §2.2.1.A by (10) and (15), respectively,. 
Using (12) - (14), expression (10) becomes: 
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Thus, the expected sum-squared fitting error that occurs when using the IpDFT method can be 
expressed as: 
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where 2

ˆip is given by ((42) in §2.2.1.B). 

It is worth noticing that the minimum and the maximum values of 2
ˆip  are reached for  equal to 0.5 

and 0, respectively [Belega 12a]. Conversely, SL() assumes its maximum value (equal to 1) for  = 0, 
but it remains very close to it for  0.5   < 0.5. Hence, the minimum and the maximum values of the 
E[ip] are reached for  equal to 0.5 and 0, respectively. 
Similarly, the expected sum-squared fitting error when using the EB method can be expressed as: 
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in which the variance 2

ˆeb is given by ((126) in §2.2.2): 

Since 2
ˆeb does not depend on , the minimum and the maximum values of E[eb] are reached for  

equal to 0 and 0.5, respectively. 
It is worth noticing that the selection of the optimal window to be used in the FSF-IpDFT algorithm 
can be performed by the criterion proposed in [Belega 11a] and presented in §2.2.1.B. Conversely, the 
selection of the optimal window to be used in the FSF-EB algorithm can be performed based on the 
performance parameter defined in [Belega 11b]. That parameter is the maximum number of bits 
NOBmax above which the absolute value of the ENOB estimation error, |ENOB|, is smaller than a give 
threshold (e.g. 0.1 bits) [Belega 11b]. 
 
 3PSF and 4PSF algorithms 
 
The expected sum-squared fitting error for the 3PSF algorithm is given by ((172) in §2.2.2): 
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We showed in [Belega 07c], that accurate ENOB estimates can be achieved if the normalized 
frequency error   ˆ satisfies the following constraint: 
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The above constraint can be satisfied when  is estimated by the IpDFT method [Belega 8d]. In this 
case in (18) we have 2

ˆ
2
ˆ ip   . Also, the minimum and the maximum values of the E[3p] are reached 

for  equal to 0.5 and 0, respectively. 
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Conversely, the expected sum-squared fitting error for the 4PSF algorithm is given by ((173) in 
§2.2.2): 
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By comparing the expressions (16), (17), (18), and (20), it follows that: E[4p] < E[3p] < E[ip] < 
E[eb]. Thus, the time-domain sine-fitting algorithms provide more accurate sine-wave fitting than the 
frequency-domain sine-fitting algorithms. In particular, the best accuracy is provided by the 4PSF 
algorithm, while the worst accuracy is achieved by the FSF-EB algorithm. 
However, the above expressions show that the expected sum-squared fitting error is always 
proportional to Mr /2 . Hence, for values of M used in practice, it is negligible with respect to the 

noise variance .2
r  This implies that for any sine-fitting algorithm, the expectation of the residual mean 

square value results very close to the noise variance: 
 

.]ˆ[ 22
rrmsrE   (21) 

 
To confirm the above expressions, we reported both theoretical and simulation results for the ratio 
   ME r // 2  in Fig. 1 as a function of   for all the considered sine-fitting algorithms. The input sine-

wave was characterized by the following parameters: A = 5,  = /3 rad, and B = 0.02. It was 
corrupted by additive Gaussian noise with zero mean and variance 2

r chosen in such a way that the 

Signal-to-Noise Ratio (SNR) is equal to 60 dB. The integer part J was set to 37. The fractional part  
was varied in the range [0.5, 0.5) with a step of 1/20. For each value of , 10,000 runs of M = 512 
samples each were performed. In the 3PSF algorithm and the FSF-IpDFT algorithm, the two-term 
Maximum Sidelobe Decay (MSD) window or Hann window was used, while the FSF-EB algorithm is 
based on the three-term Rapid Sidelobe Decay with Minimum Sidelobe Level (RSD-MSL) window 
[Belega 11b]. The initial values used in the four-parameter algorithm were estimated through the 
IpDFT method based on the rectangular window [Bilau 04], while the iterations were stopped when 
the relative distance between the frequency values estimated in two consecutive iterations was smaller 
than 10-6. 
Fig. 1 shows that the agreement between theoretical and simulation results is very good.  
Moreover, we reported in Fig. 2 both theoretical and simulation results of the ratio 22 /]ˆ[ rrmsrE   as a 

function of .  The adopted parameters were exactly the same as in the previous figure.  
As we can see, the ratio 22 /]ˆ[ rrmsrE   is always very close to 1. Indeed, the contribution of the fitting 
error to the residual signal is negligible, as suggested by the above theoretical analysis. 
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Fig. 1. Ratio    ME r // 2  provided by theoretical (continuous line) and simulation (crosses) results versus . 
The number of acquired samples was M = 512. 

 

 

Fig. 2. Ratio 22 /]ˆ[ rrmsrE   provided by simulation results (circles) versus . The number of acquired samples was 
M = 512. 

 
Moreover, we have compared the processing effort related to each sine-fitting algorithm. All the 

considered sine-fitting algorithms were implemented in MATLAB running on a portable computer 
with a CPU clock rate of 2 GHz, 2046 MB RAM memory, and equipped with a Microsoft Windows 
Vista operating system. Choosing M = 512, the average computational time required to determine a 
single residual mean square value 2

r̂msr  for a given value of   was equal to 0.47, 0.57, 0.74, and 1.28 
ms, for the FSF-IpDFT, FSF-EB, 3PSF, and 4PSF algorithms, respectively. Thus, the FSF-IpDFT and 
the 4PSF algorithms exhibit the smaller and the highest processing burden, respectively. The same 
conclusion holds regardless the number of acquired samples. Thus, the FSF-IpDFT algorithm is a 
good choice when dealing with ENOB estimation.  
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C. Statistical Performance of the ENOB Estimator  
 

In [Belega 13b], we performed a whole statistical description of the ENOB estimator provided by 
a sine-fitting algorithm, which was not available before in the scientific literature. For this purpose the 
expressions for the bias and variance of the ENOB estimator were derived in the case of an ideal ADC 
and an ADC affected by harmonics, spurious tones, and additive white Gaussian noise. These 
derivations are given in the following.    

From (7), the expectation and the standard deviation of the ENOB estimator result: 
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In order to determine an accurate expression for )]ˆ([log 2

2 rmsrE  and )]ˆ([log 2
2 rmsrstd , we consider a 

general function z = f(x), in which x is a random variable and f(·) is a derivable function. We have 
[Petri 02]: 
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in which x = E[x]. 
Now, considering z = f(x) = log2(x) and 2

r̂msrx  , we obtain: 
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and 
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where ]ˆ[ 2

rmsrE , ]ˆ[ 2
rmsrstd , ]ˆvar[ 2

rmsr are respectively the expectation, the standard deviation, and the 

variance of the random variable .ˆ2
rmsr  

Using (22) and (26) the expectation of the ENOB estimator is expressed as: 
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from which the expression of the bias can be easily derived: 
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By replacing (27) in (23) we finally achieve:  
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It is worth noticing that (29) and (30) hold regardless the characteristics of the overall ADC output 
noise r().  
In the following we assume that the ADC output can be expressed as: 
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(31) 

 
where Ak, fk, and k are respectively the amplitude, the frequency, and the phase of the k-th ADC 
output tone (either harmonic or spurious tone), K is the number of tones, and w() is a wideband noise, 

which can be modeled as a white noise with zero mean and variance 2
w . We can reasonably assume 

that the different ADC output noise components are uncorrelated. Thus, we have:  
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is the ratio between the power of the tones and the wideband noise power.    
For this case, in [Belega 13b], we derived the expressions for the expectation and variance of the 
residual rms value 2

r̂msr , which are: 
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Using (33), (34) and (35) become: 
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By replacing (36) and (37) into (29) and (30), the expressions for the bias and the standard deviation 
of the ENOB estimator become: 
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In particular, simulation results showed that, for any considered ADC resolution, the estimator bias 
(38) is always between about 1/M and 4/M when white noise only affects the ADC output. Even lower 
values were achieved when the ADC output noise contains significant harmonics and/or spurious 
tones.  Thus, from (38) and (39) it follows that the ENOB estimator is consistent since both its bias and 
standard deviation tend to zero as M increases.  
In addition, we can see that the ratio between the bias and the standard deviation is proportional to 

M/1 . Hence, for values of M commonly adopted in practice (e.g. M  256), the estimator bias is 
negligible. For this reason, it will be no further analyzed.  
In the specific case of ideal ADCs, the harmonics and the spurious tones are null, while w() is due to 
quantization and exhibits a uniform distribution. Thus, we have [Papoulis 89]: 
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In practice the wideband component w() is always due to both quantization and other noise sources, 
usually normally distributed. If the power of the exceeding noise is significant as compared to the 
quantization noise, then w() itself can be assumed normally distributed [Bertocco 00], and we have 
[Papoulis 89]:  
 

.3][ 44
wwE   (42) 

 
Hence, (39) provides: 
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(43) 

 
Expression (43) shows that the ENOB estimator standard deviation decreases as the contribution of 
harmonics and spurious tones to the overall ADC output noise increases. In particular, the maximum 
value of the standard deviation is reached at t = 0 and it is equal to: 
 

.02.1][
^

M
ENOBstd   

(44) 

 
By comparing the above expression to (41) it follows that when the noise w() of an ADC is white 
Gaussian and the tones are null the ENOB estimator exhibits a higher standard deviation than an ideal 
ADC since in the first case the power of the overall noise is higher than the power of the quantization 
noise. 
Since the first term in the right hand side of (7) is a constant, the statistical behaviour of any ENOB 
estimator is completely described by the Probability Density Function (PDF) of the random variable 

 22
2 ˆ/log

2
1

rmsr r  . It is known that, when M is high enough, the residual rms value 2
r̂msr  is almost 

normally distributed, unbiased, and exhibits a variance close to the related Cramér-Rao Lower Bound 
(CRLB) [Kay 93], [Belega 12d]. Hence, by linearization of (7), we can conclude that the ENOB 
estimator is asymptotically unbiased, efficient, and normally distributed. Thus, we can conclude that it 
is a statistically optimal estimator. In [Belega 13d], we verified these aspects by means of computer 
simulations. Fig. 3 shows the estimated PDF of the variable  for an ideal bipolar 12-bit ADC with 
FSR = 5 when the 3PSF (Fig. 3(a)) or the 4PSF (Fig. 3(b)) algorithm is employed. Also, the PDF of a 
Gaussian random variable with zero mean and standard deviation (41) are depicted in Fig. 3 for a 
visual comparison. The phase of the ADC input signal was /3 rad, the offset was 0.02, the number of 
observed cycles was 73.2, and M = 4096 samples were acquired. In the 3PSF algorithm the normalized 
input frequency was estimated by means of the IpDFT method based on the Hann window. In the 
4PSF algorithm the initial parameters were estimated by means of the IpDFT method based on the 
rectangular window [Bilau 04]. The iteration stopping condition required that the magnitude of the 
difference between two consecutive estimates was smaller than 10-6 for each parameter. That 
constraint was always fulfilled with no more than three iterations. The estimated PDFs were achieved 
using 50,000 realizations and dividing the horizontal axis in 100 slots of equal width. Curves similar to 
those depicted in Fig. 3 are reported in Fig. 4, but considering an ADC output corrupted by a second 
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harmonic, a third harmonic, a spurious tone with frequency equal to 4.5fin, and white Gaussian noise. 
The amplitudes of the tones (set in the ratio 4:1:2), and the noise variance were fixed to achieve 0.75 
lost bits respectively, thus resulting in an ADC with ENOB = N  1.5 = 10.5 bits. The harmonics and 
the spurious tone phases were chosen at random in the range [0, 2) rad. Besides, the PDF of a 
Gaussian random variable with zero mean and standard deviation (41) is shown in Fig. 4 for a visual 
comparison. 
Both Figs. 3 and 4 show that, for the considered number of acquired samples, the random variable   
is almost normally distributed. Besides, we performed many other simulations using different values 
for ADC resolution, ENOB, and number of acquired samples. The same behaviour depicted in Figs. 3 
and 4 was always achieved when values of M used in practice and accurate initial sine-wave parameter 
estimates were employed. Also, the estimated PDFs resulted closer to a normal distribution as M 
increases. Thus, we can conclude that, for the values of M commonly used in practice (e.g. M  256), 
the ENOB estimator is almost Gaussian, unbiased, and efficient, i.e. it is a statistically optimal 
estimator. 

  

 
(a) (b) 

Fig. 3. Estimated and theoretical PDFs of the random variable  related to the 3PSF (a) or the 4PSF (b) 
algorithm. Ideal bipolar 12-bit ADC. Number of acquired samples M = 4096.   

 

 
(a) (b) 

Fig. 4. Estimated and theoretical PDFs of the random variable  related to the 3PSF (a) or the 4PSF (b) 
algorithm. Bipolar 12-bit ADC with ENOB = 10.5 bits. Lost bits are equally due to tones and white Gaussian noise. 

Number of acquired samples M = 4096.  
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Moreover, in [Belega 13b], we verified the accuracy of the expressions derived above through both 
computer simulations and experimental results.  
Fig. 5 shows the simulated and the theoretical values of the ENOB estimator bias achieved for an ideal 
(Fig. 5(a)) and a non-ideal (Fig. 5(b)) bipolar ADC as a function of the ADC resolution N. For the 
non-ideal ADC, 1.5 lost bits equally due to both wideband noise and tones were considered. The same 
tones as in the previous figure were considered and their amplitudes were set in the same ratio. The 
sine-wave offset was 0.02 and the number of observed cycles was 123.2. The ADC resolution varied 
with a step of 2 bits in the range [6, 20] bits for the 3PSF algorithm or in the range [6, 24] bits when 
the 4PSF algorithm was employed. In the former case, the ADC resolution was bounded to 20 bits due 
to the limited input frequency estimation accuracy provided by the IpDFT method based on the Hann 
window. The theoretical bias was determined by applying (38) in which the value of ]ˆ[ 2

rmsrE returned 
by simulations was used. For each value of the ADC resolution, 10,000 runs of M = 1024 samples 
each were generated by varying at random the phases of the sine-wave, the harmonics, and the 
spurious tone. 

 

 
(a) (b) 

Fig. 5. ENOB estimator bias achieved by simulations (crosses) and by the theoretical expressions (continuous 
lines) versus ADC resolution: (a) ideal and (b) non-ideal ADCs. 

 
As we can see, the agreement between simulations and theory is very good. Also, the 3PSF algorithm 
exhibits a lower bias. 
Also, Fig. 6 shows the ratio between the standard deviations of the ENOB estimator returned by 
simulations and by the theoretical expressions (41) and (43), respectively for ideal (Fig. 6(a)) and non-
ideal (Fig. 6(b)) ADCs. Both the simulations and the signal parameters were chosen as in Fig. 5. As 
we can see, the theoretical results are very close to the values returned by simulations. We observe 
also that the ENOB estimator standard deviations provided by the 3PSF and the 4PSF algorithms are 
very close. 
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 (a) (b) 

Fig. 6. Ratio between the ENOB estimator standard deviations returned by simulations and by the theoretical 
expressions versus the ADC resolution for ideal (a) and non-ideal (b) ADCs.  

 
The accuracies of the proposed expressions were also verified by means of experimental results. The 
sine-waves were supplied by an Agilent 33220A signal generator and acquired using a 12-bit data 
acquisition board NI-6023E. The FSR and the sampling rate were set to 10 V and 100 kHz, 
respectively. The sine-waves were characterized by an amplitude of 5 V and frequencies equal to 3.1, 
7.9, 12.3, 17.5, 22.1, and 26.7 kHz. For each frequency value, 1000 runs of M = 1024 samples were 
acquired, and the standard deviation of the ENOB estimates returned by the 3PSF and the 4PSF 
algorithms were determined. The algorithm parameters were chosen as above. The ratios between the 
ENOB estimator standard deviations returned by experimental results and expressions (30) are 
reported in Fig. 7(a) as a function of the input sine-wave frequency. Also, the ratios between the 
experimental results and the expressions (43) and (44) are reported in Fig. 7(b) for the 3PSF algorithm. 
The values of ]ˆ[ 2

rmsrE  and ]ˆvar[ 2
rmsr  used in (30) were determined experimentally. In (43) the 

wideband noise power was estimated as the difference between the rms residual value and the power 
of the first ten highest noise spectral lines, which were estimated by using the IpDFT method based on 
the Hann window. 
 

 

(a) (b) 
 

Fig. 7. Ratio between the ENOB estimator standard deviations returned by experimental results and by (a) (30) 
and (b) (43) and (44) versus the input sine-wave frequency. 
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Fig. 7(a) clearly confirms that (30) agrees very well with the experimental results. Notice also from 
Fig. 7(a) that the standard deviations of both the 3PSF and the 4PSF algorithms are almost equal. Fig. 
7(b) shows that the experimental ENOB estimator standard deviation is close to the value returned by 
(53) only for input signal frequencies quite smaller than the sampling frequency. Indeed, for 
frequencies up to 17.5 kHz, the wideband noise dominates the residual signal power. Conversely, at 
higher frequencies the power of harmonics and spurious tones on the ADC output is significant. Thus, 
as expected the ENOB estimator standard deviation decreases and (44) provides overestimated results. 
From Fig. 7(b) it follows that the results provided by (43) are quite close to experimental data.  
 
 
2.3.2. APPLICATIONS OF THE SINE-FITTING ALGORITHMS TO REAL DATA  
 
In [Petri 13], we applied the above sine-fitting algorithms to data acquired using a 12-bit data 
acquisition board NI-6023E. The FSR and the sampling frequency were set to 10 V and 100 kHz, 
respectively. The sine-waves were provided by a signal generator Agilent 33220A. The signal 
amplitude was set to 5 V, while the frequency was varied in the range [14.70, 14.79] kHz with a step 
of 10 Hz. The achieved value of J was equal to 151. According to the criterion presented in §2.2.1.B), 
the Hann window was used for the 3PSF and the FSF-IpDFT algorithms, while the three-term RSD-
MSL window was adopted for the FSF-EB algorithm [Belega 11b]. The parameters used in the 4PSF 
algorithm were the same as in Fig. 1. For each value of , 1000 runs of M = 1024 samples each were 
performed. The mean and the standard deviation of the ENOB estimates achieved by all the considered 
sine-fitting algorithms are reported in Table 1 for different values of the fractional frequency .  The 
values of the fractional frequency   reported in Table 1 represent the mean value returned by the 
IpDFT method.  
 
Table 1. ENOB mean and standard deviation achieved at different values of   by all the considered sine-fitting algorithms. 

FSF-IpDFT algorithm FSF-EB algorithm 3PSF algorithm 4PSF algorithm  
mean 
(bits) 

std. dev. 
(bits) 

mean 
(bits) 

std. dev. 
(bits) 

mean 
(bits) 

std. dev. 
(bits) 

mean 
(bits) 

std. dev. 
(bits) 

-0.471 10.685 0.042 10.683 0.043 10.686 0.042 10.687 0.042 
-0.368 10.687 0.045 10.685 0.045 10.689 0.045 10.689 0.045 
-0.266 10.690 0.054 10.688 0.055 10.691 0.054 10.691 0.054 
-0.163 10.684 0.043 10.683 0.043 10.685 0.043 10.686 0.043 
-0.061 10.686 0.040 10.684 0.040 10.687 0.040 10.687 0.040 
0.041 10.682 0.034 10.681 0.034 10.683 0.034 10.684 0.034 
0.144 10.680 0.030 10.678 0.030 10.681 0.029 10.682 0.030 
0.246 10.681 0.028 10.679 0.029 10.682 0.028 10.683 0.028 
0.349 10.683 0.029 10.681 0.029 10.684 0.029 10.684 0.029 
0.451 10.679 0.029 10.677 0.029 10.680 0.029 10.681 0.029 

 
Coherently with the theoretical results, Table 1 shows that the standard deviations are negligible with 
respect to the mean values, which are always very close to each other regardless the value of . This 
implies that harmonics did not significantly affect the accuracy of the ENOB estimates provided by the 
3PSF and the 4PSF algorithms. Moreover, it is worth noticing that the maximum relative difference 
between the experimental standard deviations and the values returned by (30) when ]ˆ[ 2

rmsrE  

and ]ˆ[ 2
rmsrstd  are determined from the acquired data, is less than 0.39% for all the considered 

algorithms.  



90 

The mean and the standard deviation values of the ENOB estimates returned by the considered sine-
fitting algorithms are reported in Table 2 for different values of the input sine-wave frequency. For 
each value of , 1000 runs of M = 1024 samples each were performed.  
 
Table 2. ENOB mean and standard deviation achieved at different frequencies by all the considered sine-fitting algorithms. 

FSF-IpDFT algorithm FSF-EB algorithm 3PSF algorithm 4PSF algorithm fin 
(kHz) mean 

(bits) 
std. dev. 

(bits) 
mean 
(bits) 

std. dev. 
(bits) 

mean 
(bits) 

std. dev. 
(bits) 

mean 
(bits) 

std. dev. 
(bits) 

3.1 10.837 0.031 10.836 0.031 10.837 0.031 10.838 0.031 
7.9 10.790 0.031 10.789 0.031 10.791 0.031 10.792 0.031 
12.3 10.699 0.033 10.698 0.033 10.699 0.033 10.700 0.033 
17.5 10.544 0.030 10.543 0.030 10.544 0.030 10.545 0.030 
22.1 10.391 0.021 10.390 0.021 10.391 0.021 10.391 0.021 
26.7 10.264 0.021 10.263 0.021 10.264 0.021 10.265 0.021 

 
As expected from the theoretical results, the standard deviation is much smaller than the mean value 
and, at each considered frequency, all the achieved results are very close to each other.  This implies 
that the effect of harmonics on the ENOB estimates provided by the 3PSF and the 4PSF algorithms is 
negligible. The maximum relative difference between the experimental standard deviation and the 
value returned by (30) is less than 0.40% for all sine-fitting algorithms. 
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2.4. CONTRIBUTIONS TO SYNCHROPHASOR MEASUREMENT FIELD 
 
 
 My contributions to the Synchrophasor Measurement field are on the phasor estimation by the 
Discrete Fourier Transform (DFT) algorithm at off-nominal frequency in transient conditions in the 
absence or presence of the decaying dc offset component in the electrical signal and on the 
synchrophasor estimation by frequency-domain and time-domain algorithms under steady state, 
dynamic, and transient conditions. The above conditions comply with the IEEE Standard C37.118.1-
2011 about synchrophasor measurements for power systems. In the following my most important 
contributions in both above research directions are presented.  
 
 
2.4.1. DFT PHASOR ESTIMATOR IN TRANSIENTS CONDITIONS 
 

In power system networks protective relays are required to identify any disturbance occurring in 
transmission lines. For this purpose the fundamental frequency component is usually extracted by 
removing all the unwanted components by means of suitable filtering algorithms. Several algorithms 
have been proposed in the scientific literature to this aim [Phadke 09], [Benmouyal 95], [Gu 00], 
[Sidhu 03], [Guo 03], [Kang 09], [Yu 06]. Among them, the most popular one is the DFT, which 
provides an accurate estimate of the phasor of the fundamental component when applied to a steady-
state periodic signal coherently sampled. A thorough analysis of the behaviour of the DFT Phasor 
Estimator (DFT-PE) during transients is very important since it provide useful and prompt information 
about the effect of a disturbance on the analyzed power system signal. In [Petri 11], we performed 
such analysis, which was not available before in the scientific literature. In that work a closed form 
expression of the full-cycle DFT-PE was derived in the case when the observation interval contains 
both an instantaneous variation in the fundamental component amplitude and/or phase, and a decaying 
dc offset. The accuracy of all the derived expressions was extensively verified by means of computer 
simulations. The achieved results are presented in the following. 
When an instantaneous disturbance occurs, the analyzed power system signal x(n) can be modeled as 
[Bertocco 92]: 
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(1) 

 
in which S represents the disturbance time, while xpre(·) and xpost(·) are respectively the pre- and post-
disturbance segments of the signal.  
We assume that the pre-disturbance segment xpre(·) contains only the fundamental frequency 
component, characterized by amplitude A1 and phase 1, and that the observation interval contains 
exactly one signal period. Thus we have: 
 

  1,,2,1,0,2cos2 11 





  Snn

N
Anx pre   (2) 

 
where N  represents the number of  analyzed samples.  
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The post-disturbance segment of the signal xpost(·) can be expressed as [Benmouyal 95], [Gu 00], 
[Sidhu 03], [Guo 03]: 
 

        ,2,1,,  SSSnnxnxnxnx dcchgprepost  (3) 

 
where xchg (·) represents an instantaneous change in the fundamental component amplitude and/or 
phase, while xdc(·) is a decaying dc offset. Since the decaying dc offset exhibits a relatively wideband 
spectrum, it provides a significant contribution to the DFT-PE uncertainty. Conversely, signal 
harmonics do not affect the DFT-PE because of the coherent sampling assumption. As a consequence, 
they are not considered in the following. 
We can model the different component in (3) as follows:  
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and [Gu 00]: 
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in which B1 and 1 are the amplitude and the phase of the fundamental component change, while A0 
and  are respectively the amplitude and the time constant of the decaying dc offset. For the 
convenience of notation, this latter quantity is expressed as a pure number representing a fraction of 
the sine-wave period and we define  1exp .  
It is well-known that the full-cycle DTF-PE of a signal x(·) evaluated over a sliding observation 
window containing the samples x(r), …, x(r + N  1)  is given by [Phadke 09]: 
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(6) 

 
The behaviour of the estimator (6) when a disturbance occurs during or before the observation interval 
was analyzed.   
 
 Disturbance during the observation interval 
In this case the disturbance time S falls within the observation interval (that is r  S  N + r  1). Using 
(3) and the linearity of the DFT, we obtain: 
 

               ,ˆ rXrXrXrXrXrXrXrX dcitdcchgpre   (7) 

 
where the components of  X̂ , calculated also in [Petri 11], are the followings: 

X(·) is the post-disturbance steady-state component of the estimator: 
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(8) 

 
 Xt(·) is a transient signal due to the variation of the fundamental component parameters: 
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          Xi(·) is a transient signal rising because of the spectral interference due to the variation of the 
image component parameters [Bertocco 92]: 
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where: 
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is the Dirichlet kernel evaluated on a M -samples window, and 

Xdc(·), is the transform of the decaying dc offset: 
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(12) 

 
 Disturbance before the observation interval 
When the observation interval contains only post-disturbance samples (that is S  r), the linearity of 
the DFT provides: 
 

     ,ˆ rXrXrX dc  (13) 

 
where X(·) is given by (8) and Xdc(·), was also calculated in [Petri 11], and it is given by: 
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is the transform of the decaying dc offset.   
From the above results, we determine the relative estimation error in the phasor amplitude as: 
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where X(·) is given by (8). 
 
Similarly, the estimation error in the phasor angle is determined as: 
 

)].(arg[)](ˆarg[)( rXrXre   (16) 

 
Due to the terms Xt (r) and Xi (r) and the fact that the module of Xdc(r) returned by (12) is higher than 
the module of (14) we can conclude that, in general, the magnitudes of the errors in the estimated 
phasor amplitude and angle are greater when the disturbance occurs during the observation interval. 
In particular, using expressions (9), (10), and (12) the maximum value ea_max(r) of the phasor 
amplitude error can be written as: 
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where 100 /2 CAp   and p1 = B1/C1 represent, respectively, the dc-offset amplitude and the sine-wave 
amplitude variation as a fraction of the post-disturbance phasor amplitude.   
In (17) we have: 
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which is due to the change in the fundamental component parameters,  
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which is related to the spectral interference from the image component, 
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which is due to the decaying dc offset. 
Fig. 1 shows the behavior of the three components et(r), ei(r) (Fig. 1(a)) and edc(r) (Fig. 1(b)) as a 
function of (r – N) for N = 48 and S = 70.  In Fig. 1(b) different values of the time constant   of the 
decaying dc offset were considered. 
 

 
(a) (b) 

Fig. 1. (a) Components et(r), ei(r) and (b) edc(r) of the estimation error versus (r  N).  The component edc(r) is 
shown for different values of the time constant  of the decaying dc offset. The number of analyzed samples was 

N = 48. 
 
As we can see, the components et(r) and ei(r) exhibit a linear and sinusoidal behavior, respectively. In 
particular, at the beginning of the transient et(r) is almost equal to one, while it approaches zero at the 
end of the transient (that is when r is close to S  1).  
Conversely, the behavior of ei(r) is dominated by the sine function at the numerator of (11) and 
reaches a maximum value close to 1/(2) when the disturbance falls on one-fourth or three-fourth of 
the observation window (that is when r is equal to S – 3N/4  or S – N/4). Also, ei(r) is equal to zero 
when r = S – N/2.  
Fig. 1(b) shows that the maximum of edc(r) increases as the time constant  increases. Indeed, from 
(20) we achieve that such a maximum is about (1+-1/2)/(2) and occurs when the disturbance is close 
to the middle of the observation window (that is when r is about S – N/2). Moreover, for r  S the 
component edc(r) exhibits an exponential behavior with a decaying rate that decreases for increasing 
values of the time constant  . 
In Fig. 2 the behavior of the components et(r), ei(r), and edc(r) is depicted as a function of r for N = 24, 
48, and 96. The values of the disturbance time S, corresponding to the above values of N, were 46, 70, 
and 118, respectively.  
From the simulation results it follows that the number of analyzed samples N almost does not affect 
the behavior of et(r), ei(r), and edc(r). Indeed different values of N act on these components almost as a 
time scale factor, that is as an expansion or a compression of the horizontal axis. 
Finally, it is worth noticing that the worst-case error ea_max(r) is proportional to the relative magnitudes 
of the sine-wave amplitude variation p1 and of the dc-offset p0, as clearly shown by (17). Thus, it is 
reversely proportional to the amplitude of the steady-state signal C1. As a consequence, the magnitude 
of ea_max tends to be smaller when an overvoltage occurs, while it is typically larger in the case of a 
voltage dip. In any case, the estimation error during transients can be very high. 
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Fig. 2. Components et(r), ei(r), and edc(r) versus r for N = 24 (dotted line), N = 48 (continue line), and N = 96 
(dashed line). The corresponding values of the disturbance time S were equal to 46, 70, and 118, respectively. 

 
 
The DFT-PE transient behaviour and the accuracy of the expressions derived above were verified by 
means of computer simulations. For this purpose the amplitudes of the components xpre(·) and xchg(·) 
were A1 = 2/1  p.u. and B1 = 2/4.0  p.u., respectively (thus an overvoltage of 40% was considered). 
Moreover, the phases of the two sine-waves were 1 = 1 = /3 rad. The time constant of the decaying 
dc offset   was chosen equal to 2.5 sine-wave cycles. The number of analyzed samples was N = 48 
and the disturbance occurred at the sample S = 70. The value of r was varied starting from 1 with a 
step 1.  
The estimated phasor amplitude and phase are shown in Figs. 3(a) and 3(b) as a function of (r – N). 
Different values of the amplitude A0 of the decaying dc offset are considered. Both simulation results 
and the values returned by the expressions (7)-(14) are reported for comparison. As we can see, the 
agreement is very good. 
 

 
(a) (b) 

Fig. 3. (a) Phasor amplitude and (b) phase versus (r – N) for different values of the dc-offset component 
amplitude A0. The number of analyzed samples was   N = 48. The theoretical results are represented by continue 

lines, while the simulation results are marked with crosses. 
 
It is obvious from Fig. 3 that a large error may occur when the values returned by the DFT-PE during 
a transient are used to estimate the phasor of the steady-state signal. Also, when the observation 
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interval contains only post-disturbance samples, the DFT-PE error decreases with the amplitude A0 of 
the decaying dc offset, as expected. 
Moreover Fig. 3 shows that the knowledge of the behavior of the phasor amplitude estimator during a 
transient let us appreciate whether the post-disturbance signal contains or not a significant dc-offset.  
The estimated phasor amplitude and phase achieved by considering the same parameters used in Fig. 3 
except N = 96 are shown in Fig. 4. Notice that only the curves provided by the expressions (7)-(14) are 
reported since the simulation results fully agree with them.  
 

 
(a) (b) 

Fig. 4. (a) Phasor amplitude and (b) phase achieved using the theoretical expressions (7)-(14) versus (r  N) for 
different values of the dc-offset component amplitude A0. The number of analyzed samples was N = 96. 

 
It is clear that the conclusions about the DFT-PE transient behaviour that we can drawn from Fig. 4 
are the same as in Fig. 3. 
It should be noted that many other simulations were performed considering either an overvoltage or a 
voltage dip and different values of signal phases and N. Behaviors fully coherent with those reported 
in Figs. 3 and 4 were always achieved. 
 

In [Belega 11c], we analyzed through both computer simulations and experimental results the 
effect of harmonics and wideband noise on the accuracy of the phasor estimator provided by the DFT-
based algorithm proposed in [Yang 00], at off-nominal frequency when a decaying dc offset 
component is either absent or present in the acquired electrical signal. That analysis, which was not 
performed before in the scientific literature, is presented in the following.  
The electrical signal was modelled as: 
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where s() is the fundamental frequency component and d() is a decaying dc offset. The signal s() is 
characterized by rms value A1, input frequency fin, and phase 1. The signal d() is described by 
amplitude A0 and time constant . Generally, the input frequency fin differs from the nominal frequency 
f0 (which is either 50 Hz or 60 Hz) by a relative error , that is fin = (1+)f0. By sampling the fault 
signal at frequency fs = Nf0, the following discrete-time signal is achieved: 
 



98 

      ,12cos2 011
N
n

An
N

Andnsnx








 


   

(22) 

 
where  )/(exp sfN  . 

The DFT of the record x(r), x(r + 1),…, x(r + N  1) taken from the signal (22) and evaluated at the 
nominal frequency is given by: 
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where Sr and Dr are the DFTs of the components s() and d(), respectively, and 0 is the time instant at 
which the fault occurs.  
After some calculations we obtain: 
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in which KN() is the Dirichlet kernel, given by (11) 
and 
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By the DFT-based algorithm proposed in [Yang 00] we can determine the values of , A1, 1, and A0, 
by means of the DFTs Xr, Xr+1, Xr+2, Xr+3, and Xr+4 (N + 4 samples from the fault signal are acquired). 
In particular, when the acquired signal x(·) does not contain the decaying dc offset d(·), only the DFT 
outputs Xr,  Xr + 1, and Xr + 2 must be calculated (N + 2 samples must be acquired). 
We analyzed the sensitivity of the DFT-based algorithm to harmonics and wideband noise by means 
of computer simulations. In particular, the minimum, the maximum, and the mean values of the 
estimated phasor amplitude and angle were derived when a decaying dc offset component is either 
absent or present in the input signal. 
In all the simulations discussed in the following the fundamental frequency component of the signal 

(22) was characterized by rms value 211 /A  p.u. and phase 1 = /3 rad. The length of the processed 
records was N = 32.  
 
 Effect of Harmonics 
The effect of the harmonics on the phasor estimator accuracy was analyzed by adding to the signal 
(22) the following four harmonics components: 
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The parameter p was changed in order to obtain a given value for the Total Harmonic Distortion ratio 
(THD), while the harmonic phases h, h = 2, 3, 4, 5, were chosen at random in the range [0, 2) rad. 
Fig. 5 shows the results achieved for the estimated phasor amplitude (Fig. 5(a)) and phase (Fig. 5(b)) 
as a function of  for THD = 40 dB in the absence and in the presence of the decaying dc offset, 
respectively. The parameters of the decaying dc offset were A0 = 1 p.u. and  = 0.05. The relative 
frequency error  was varied in the range [0.1, 0.1] with a step of 0.01. The time instant r was set to 
19. For each value of , 1000 runs were performed and the minimum, the maximum, and the mean 
values of the estimated phasor amplitude and phase were determined. 
 

 
(a) (b) 

Fig. 5. Minimum (dashed line), maximum (dotted line), and mean (solid line) values of the estimated phasor    
(a) amplitude and (b) phase versus  for a signal corrupted by harmonics with  THD = -40 dB and r = 19. 

 
Fig. 5 shows that when the signal does not contain the decaying dc offset the estimator bias is 
negligible, that is, the mean values are almost equal to the true value. Also, the phasor estimation error 
increases with the magnitude of . In particular, the magnitude of the phasor amplitude error is smaller 
than 1% for ||  0.03, while the magnitude of the phasor phase absolute error is smaller than 3.2 deg. 
for ||  0.02. Moreover, the accuracy of the estimated phasor parameters heavily decreases when the 
decaying dc offset is present and accurate estimates are achieved only for values of  very close to 
zero. 
Fig. 6 shows the same parameters as in Fig. 5, but as a function of the first sample of the acquired 
record r, and considering for the frequency error   a value near the middle of the range considered in 
the IEEE Standard C37.118.1-2011 [Std. C37.118.1], that is   = 0.06. The time instant r was varied 
with a step of 1 and the results were achieved using the same procedure as in the previous figure.   
It can be seen in Fig. 6 that the estimation error is quite small when decaying dc component is absent. 
Conversely, during transients this error is quite high and the mean value of the estimated phasor 
parameters exhibits an oscillating behavior over time. 
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(a) (b) 

Fig. 6. Minimum (dashed line), maximum (dotted line), and mean (solid line) values of the estimated phasor    
(a) amplitude and (b) phase versus r for a signal corrupted by harmonics with  THD = -40 dB and  = 0.06. 

 
Many other simulations were performed for different values of r, , and THD values. In all situations 
behaviors similar to those reported in Figs. 5 and 6 were always achieved. In particular, simulations 
showed that the accuracy of the estimated phasor parameters decreases as THD and decaying dc offset 
amplitude A0 increases. Thus, when transients occur, the analyzed algorithm exhibits a high sensitivity 
to harmonic distortion. 
 
 Effect of Wideband Noise  
In order to model common real-life situations, we assume that a Gaussian white noise with zero mean 
and standard deviation n is superimposed to the signal (22). Thus, the Signal-to-Noise Ratio (SNR) 
associated to the signal (22) is defined as )2/(log20 110 nASNR   dB. It is known that SNR of power 
signals usually varies between 50 and 70 dB [Sidhu 99]. 
The phasor amplitudes and phases estimated when the signal (22) does not contains the decaying dc 
offset are shown in Fig. 7 as a function of , for SNR = 55 dB. The relative error  was varied in the 
range [0.1, 0.1] with a step of 0.01. The time instant r was set to 16. For each value of , 1000 runs 
were performed and the minimum, the maximum, and the mean values of the estimated phasor 
amplitude and phase were determined. 
In the absence of the decaying dc component, similarly to Fig. 5, the phasor estimator bias is 
negligible. Phasor amplitude error of magnitude smaller than 1% and phasor angle absolute error of 
magnitude smaller than 3 deg. were achieved for all values of . Conversely, the phasor parameters 
cannot be accurately estimated in transient conditions.  
The same parameters analyzed in Fig. 7 are depicted also in Fig. 8, but as a function of r, when SNR = 
50 dB and  = 0.06.   
Fig. 8 clearly shows that the estimation error is small in steady state conditions. Conversely, in the 
presence of decaying dc offset, the estimated phasor parameters mean values exhibit an oscillating 
behavior over time and the minimum and maximum values are quite different from the corresponding 
true values. Thus, large estimation errors occur.  
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(a) (b) 

Fig. 7. Minimum (dashed line), maximum (dotted line), and mean (solid line) values of the estimated phasor    
(a) amplitude and (b) phase versus  for a signal corrupted by wideband noise with SNR = 55 dB and r = 16. 

 
 

 
(a) (b) 

Fig. 8. Minimum (dashed line), maximum (dotted line), and mean (solid line) values of the estimated phasor    
(a) amplitude and (b) phase versus r for a signal corrupted by wideband noise with SNR = 50 dB and  = 0.06. 

 
Many other simulations were performed for different values of r, , and SNR values. In all situations 
behaviors similar to those reported in Figs. 7 and 8 were always achieved. In particular, simulations 
showed that the accuracy of the estimated phasor parameters decreases as SNR and decaying dc offset 
amplitude A0 increases. 
Thus, we can conclude that, when transients occur, the analyzed algorithm exhibits a quite high 
sensitivity to both harmonic distortion and wideband noise.  
Moreover, we experimentally analyzed the influence of both harmonics and wideband noise on the 
accuracy of the phasor estimator provided by the above specified algorithm. Since the signal phase 
changed during subsequent acquisitions only the accuracy of the estimated phasor amplitude was 
considered.  
The input signals were provided by two signals generators, a TG315 and an Agilent 33220A. The 
TG315 was employed for the generation of both high purity (THD  -47 dB) and harmonically 
distorted (THD  -21 dB) sine-waves. The latter signals were asymmetrically sine-waves. Conversely, 
the Agilent 33220A was employed for the generation of noise and decaying dc offset. The two 
generated signals were added by using a passive adder, composed of three 50   resistances. 
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The obtained signals were acquired by using a 12-bit data acquisition board NI-6023E. The full-scale 
range (FSR) and the sampling frequency were set to 10 V and 2 kHz, respectively. The number of 
samples used in the DFT-based phasor estimator was N = 40. 
 
 Effect of Harmonics 
The minimum, the maximum, and the mean value of the estimated phasor amplitudes when the input 
signal does not contains the decaying dc offset are shown in Fig. 9 as a function of r, in the case of 
harmonically distorted sine-waves. The relative error  was about 0.06 (that is the signal frequency 
was 53 Hz) and the THD was close to 21 dB. 
The results achieved by considering high purity sine-waves at the nominal frequency of 50 Hz (that is 
when the value of the relative frequency error  is very close to zero) are also reported in Fig. 9 as a 
reference. The amplitude of the signals was set to 1 V. For each considered signal, 1000 runs of 200 
samples each were acquired.  
 

 

Fig. 9. Minimum, maximum, and mean values of the estimated phasor amplitude versus r for a signal corrupetd 
by harmonics (THD   21 dB). The relative frequency error   was set to about 0.00 and 0.06. 

 
Fig. 9 shows that harmonics reduces the accuracy of the estimated phasor amplitude. In the considered 
set-up the deviations from the mean value achieved at the nominal frequency reach a magnitude of 
about 2%. 
The value of the estimated phasor amplitude when the signal contains a decaying dc offset component 
is reported in Fig. 10 as a function of r. Both high purity and harmonically distorted sine-waves are 
considered. The relative frequency error  is 0.06. The results achieved when acquiring a sine-wave at 
the nominal frequency and without decaying dc offset are also reported as a reference. The amplitudes 
of both generated sine-waves and decaying dc offset were set to 2 V. The time constant  was about 
16.7 ms. The value of r was varied with a step of 1 and, for each considered signal 400 samples were 
acquired. The data processing started by the first sample in which the decaying dc offset occurs, which 
was considered as the fault time. 
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Fig. 10. Estimated phasor amplitude of signals with decaying dc offset versus r for a relative frequency error  = 
0.06. Both high purity (THD   47 dB) and harmonically distorted (THD   21 dB) sine-waves are considered. 
Estimated phasor amplitude for high purity sine-waves at nominal frequency ( = 0) is depicted as a reference. 

 
Fig. 10 clearly shows that the presence of decaying dc offset strongly reduces the accuracy of the 
estimated phasor amplitude, especially for records close to the fault time. The maximum magnitude of 
the difference between the estimated amplitudes and the value achieved for a high purity sine-wave at 
nominal frequency is reached for r = 1 and it is equal to 33.9% in the presence of harmonics distortion 
and to 27.2% for sine-waves. After a full sine-wave cycle from the fault time this difference reduces to 
5.1% when harmonics occur and to 6.8% for sine-waves. So, the effect of decaying dc offset on the 
estimation accuracy is most important. 
 
 Effect of Wideband Noise  
Fig. 11 shows the behavior of the minimum, the maximum, and the mean values of the estimated 
phasor amplitude as a function of r when a steady state signal is corrupted by Gaussian noise with zero 
mean and amplitude 200 mV. Both high purity and harmonically distorted sine-waves are considered. 
The relative frequency error  is 0.06. Also the results achieved for a sine-wave at the nominal 
frequency are reported as a reference. The value of r was varied with a step of 1 and, for each signal, 
1000 runs of 200 samples each were acquired.  
As Fig. 11 shows, the effect of wideband noise on the obtained results is quite small. In the presence 
of both harmonics and noise, the magnitude of the difference between the estimated amplitudes and 
the value achieved for a high purity sine-wave at nominal frequency is about 2.6%. 
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Fig. 11. Minimum, maximum, and mean values of the estimated phasor amplitude of signals without decaying dc 
offset versus r  for a relative frequency error  = 0.06. Both high purity (THD   47 dB) and harmonically 

distorted (THD   21 dB) sine-waves are considered. Estimated phasor amplitude for high purity sine-waves at 
nominal frequency ( = 0)  is depicted as a reference. 

 
 
 
2.4.2. SYNCHROPHASOR ESTIMATION BY INTERPOLATED DFT ALGORITHM 
 

The synchronized phasor (or synchrophasor) represents the amplitude and the phase of an 
electric sine-wave signal at nominal frequency determined at instants defined by the Universal 
Coordinated Time (UTC).  Hence, its knowledge is very useful for monitoring, protection, and control 
applications in power networks. The IEEE C37.118.1-2011 Standard [Std. C37.118.1] (called simply 
Standard in the following for the sake of notation) has been specifically developed for assessing the 
performances of Phasor Measurement Units (PMUs). According to the Standard, these units sample 
the electric signal and apply suitable algorithms to the acquired data to estimate the signal phasor 
exactly in the center of the observation interval. The Reporting Rate RR of the estimated 
synchrophasor should be equal to 10, 25, and 50 for 50 Hz power systems and to 10, 12, 15, 20, 30, 
and 60 for 60 Hz power systems.  
Many algorithms for phasor estimation have been proposed in the scientific literature. They consider 
different observation interval lengths (half-, one-, two-, or more signal cycles) in order to optimize the 
trade-off between estimation accuracy and response time [Phadke 08], [Premerlani 08], [Serna 07], 
[Garza 10], [Garza 11], [Castello 11], [Castello 12], [Sidhu 05], [Yu 10], [Macii 12], [Roscoe 12], 
[Mai 10],  [Barchi 13b]. Indeed, longer observation intervals allow to achieve more accurate estimates, 
but at the cost of a reduced system responsiveness [Castello 11], [Castello 12]. Accurate sine-wave 
parameter estimates can be obtained by applying the well-known Interpolated Discrete Fourier 
Transform (IpDFT) algorithm when at least two-signal cycles are observed. In [Belega 13c], we 
investigated the accuracy of synchrophasor estimators provided by the IpDFT algorithm under both 
steady state and dynamic conditions when two- or three-cycle length observation intervals are 
considered. For this purpose, the effect on the estimation accuracy of different window functions, 
observation interval lengths, and processed DFT samples was analyzed through computer simulations. 
Among the figures of merit of the adopted window the highest sidelobe peak and the sidelobe decay 
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rate can heavily affect the accuracy of the results returned by the IpDFT algorithms. Hence, the 
performances obtained when using the Maximum Sidelobe Decay (MSD) or the Minimum Sidelobe 
Level (MSL) windows [Nutall 81] were analyzed. It is worth noticing that the IpDFT algorithm was 
not applied before to synchrophasor measurement.  The above investigations are presented in the 
following. 
We considered that the electric signal can be modeled by a sine-wave sampled at frequency fs: 
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where A, fin, and 0 are respectively the rms value, the frequency, and the initial signal phase. The 
frequency fs is assumed higher than 2fin to satisfy the Nyquist theorem. As usual, we assume that the 
number of acquired samples M is even. Thus, the sampling instants are shifted by ½ sampling period 
in order to fix the time reference exactly in the center of the observation window.  
The relationship between the frequencies fin and fs can be expressed as: 
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where l and  are respectively the integer and the fractional parts of the number of acquired signal 
cycles . The nominal frequency, fnom, is assumed to be equal to 50 Hz. In particular, the performance 
achieved when observing either two or three-signal cycles (i.e. l = 2 or l = 3, respectively) will be 
analyzed in the following. 
In order to estimate the parameters of (27) by means of the IpDFT algorithm, the signal x() is firstly 
multiplied by a suitable window sequence w(). Windows commonly adopted belong to the cosine 
class, that is:  
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where H is the number of window terms and ah, h = 0, …, H  1 are the window coefficients. 
The DFT of the windowed signal xw(m) = x(m)w(m) is then evaluated. It can be expressed as: 
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where W() is the Discrete-Time Fourier Transform (DTFT) of the window w().  
The second term in the last expression of (30) represents the image component of the sine-wave 
signal.  
After some algebra the following expression for the DTFT of the window (29) can be achieved: 
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If   << M, (31) can be accurately approximated by: 
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The IpDFT estimators for the parameters , A, and 0 of the sine-wave (27) are given in §2.2.1.B. 
When an MSL window is adopted, the function used to achieve the estimator for  is approximated in 
least squares by a polynomial of degree seven. 
When K-cycles of the sine-wave (27) are observed, windows of order H  K need to be used in order 
to control the effect of the spectral interference due to possible signal harmonics on the phasor 
estimation accuracy [Offelli 92], [Belega 12a]. In particular, two- and three-term cosine windows (that 
is H = 2 or H = 3) provide accurate results when two- or three-signal cycles are observed, respectively. 
In the following the well-known two- and three-term MSD and MSL windows will be considered 
[Nuttall 81], which are labelled as msd2, msd3, msl2, and msl3 windows (see §2.2.1.A). 
We determined the accuracy of the synchrophasor estimator components under both steady state and 
dynamic conditions specified in the Standard. Sensitivities to off-nominal frequency offsets, 
harmonics, wideband noise, and out-of-band interferences were analyzed to assess the estimation 
accuracy in static conditions. Moreover, sinusoidal amplitude and/or phase modulations, linear 
frequency ramps, and amplitude or phase step variations were considered to examine the estimator 
dynamic performances. Several simulations were performed by assuming the signal rms value A equal 

to 2/1  p.u. and a sampling frequency fs of 10 kHz. However, further simulations performed using 
lower sampling frequencies provided very similar results. Both two (that is l = 2) and three (that is l = 
3) cycle observation interval lengths were considered. As a consequence, the number of acquired 
samples was M = 400 and M = 600, respectively. The reference time was always fixed in the center of 
the observation window.  
According to the Standard, the Total Vector Error (TVE) is used to quantify the estimation accuracy 
[Std. C37.118.1]. Indeed, this figure of merit takes into account the contribution of amplitude errors, 
phase errors, and synchronization uncertainty [Std. C37.118.1], [Castello 12].  
  
a) Steady-state testing 

 
Four different sets of simulations were designed to analyze the IpDFT algorithm performance in static 
conditions.  
 
1) Off-nominal frequency offset 
 
At first the sensitivity of the synchrophasor estimator to off-nominal frequency offsets was examined. 
Fig. 12 shows the maximum TVE values achieved when considering 1000 different signal phases 0 
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chosen at random in the range [0, 2) rad. A maximum off-nominal frequency offset of 5 Hz (which 
corresponds to 10% variation in the normalized number of observed cycles 0/l = fin/fnom) was 
considered, as recommended in the Standard for M-class compliance [Std. C37.118.1].  
 

      
Fig. 12. Maximum TVE values provided by the IpDFT estimators versus the normalized number of acquired 
signal cycles /l. Algorithms are based on: two-signal cycles and the msd2 or the msl2 windows; three-signal 

cycles and the msd3 or the msl3 windows. 
 

As we can see, the synchrophasor estimation accuracy decreases when the off-nominal frequency 
offset increases. When l = 2 the msd2 window outperforms the msl2 window. Indeed, the spectral 
interference from the image component is greater in the latter case [Belega 12a]. Conversely, when l = 
3 the spectral interference from the image component is very small for both the used windows and the 
achieved accuracy is very high. However, in all the considered cases, the estimated TVE values are 
always well below the 1% threshold recommended in the Standard for both P-class and M-class 
performance.  
 
2) Additive wideband noise 
 

The effect of additive wideband noise on the synchrophasor estimation accuracy was also 
investigated. A white Gaussian noise with zero mean and variance chosen in such a way to obtain a 
SNR of 50 dB was considered, thus modeling common real life signals [Sidhu 99]. Fig. 13 shows the 
achieved maximum TVE values as a function of the ratio /l.   
By comparing the results depicted in Figs. 12 and 13 it follows that the effect of noise on the 
synchrophasor estimation accuracy is almost negligible for the two-cycle estimators while it becomes 
significant for the three-cycle estimators. However, the values of the overall TVE still remain very 
small as compared to the threshold specified in the Standard.  
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Fig. 13. Maximum TVE values provided by the IpDFT estimators versus the normalized number of acquired 

cycles /l for a signal corrupted by additive white Gaussian noise with zero mean and SNR =  50 dB.  Algorithms 
are based on: two-signal cycles and the msd2 or the msl2 windows; three-signal cycles and the msd3 or the msl3 

windows. 
 
 

3) Harmonics 
Further simulations were performed to analyze the influence of harmonics. When using the IpDFT 

algorithm, the worst case spectral interference contribution is due to the second harmonic since it is 
the closest spectral line to the fundamental component. Thus, the second harmonic amplitude was set 
to the maximum value specified in the Standard for P-class or M-class compliance, that is 1% or 10% 
of the fundamental, respectively. Fig. 14 shows the maximum TVE values achieved when 1000 
different phase values were chosen at random in the range [0, 2) rad for both the fundamental and the 
second harmonic. 

  

  
(a) (b) 

Fig. 14. Maximum TVE values provided by the IpDFT estimators versus the normalized number of acquired 
cycles /l for a signal affected by a second harmonic of amplitude equal to 1% or 10% of the fundamental.  

Algorithms are based on: (a) two-signal cycles and the msd2 or the msl2 windows; (b) three-signal cycles and the 
msd3 or the msl3 windows. 
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As expected, the accuracy of the IpDFT synchrophasor estimator decreases as the harmonic amplitude 
increases. It is worth noticing that, when l = 2, harmonic amplitude equal to 10%, and /l < 1 (that is 
the signal frequency is lower than its nominal value), the estimator based on the msl2 window 
provides a higher accuracy. Conversely, the estimator based on the msd2 window is slightly more 
accurate when /l > 1. However, both estimators are only potentially P-class compliant because the 
obtained TVE values are above the 1% threshold when the harmonic amplitude is 10%. Opposite, the 
three-cycle synchrophasor estimates related to the msl3 window outperform those based on the msd3 
window. Also, the achieved maximum TVE values are significantly smaller than those provided by the 
two-cycle estimators, so potential M-class and P-class compliance is ensured for both of them.  
More accurate synchrophasor estimates can be achieved by removing the contribution of the second 
harmonic component from the analyzed signal. To this aim, the frequency of the second harmonic 
component is estimated as twice the fundamental frequency provided by the IpDFT algorithm. Then 
the harmonic amplitude and phase are estimated by using the same algorithm and the related 
instantaneous values are evaluated and subtracted from the acquired data. The maximum TVE values 
obtained after the compensation are depicted in Fig. 15 as a function of the ratio /l in the case when 
the second harmonic amplitude is equal to 10% of the fundamental and two- or three-signal cycles are 
observed. 

 

 
Fig. 15. Maximum TVE values provided by the IpDFT estimators versus the normalized number of acquired 
cycles /l for a signal affected by a second harmonic of amplitude equal to 10% of the fundamental when the 
second harmonic contribution is removed from the acquired data. Algorithms are based on: two-signal cycles and the 

msd2 or the msl2 windows; three-signal cycles and the msd3 or the msl3 windows. 
 

By comparing the results shown in Figs. 14 and 15 it follows that the second harmonic removal 
increases the synchrophasor estimator accuracy of both two- and three-cycle algorithms. In particular, 
a TVE value lower than the 1% threshold is achieved also by the two-cycle estimators.   
 
4) Out-of-band interference 
 

To analyze the influence of out-of-band interferences on the estimated phasor, a single 
interharmonic was added to the waveform (27). According to the M-class requirements specified in 
the Standard, once the reporting rate RR is fixed, the waveform frequency fin should belong to the 
range [fnom – RR/20, fnom + RR/20], the amplitude of the interharmonic should be 10% of the 
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fundamental, and its frequency fih should be outside the pass-band (fnom – RR/2, fnon + RR/2) [Std. 
C37.118.1]. Moreover, fih should be at least down to 10 Hz and not greater than 2fin [Std. C37.118.1]. 
Fig. 16 shows the maximum TVE values achieved for interharmonic frequencies fih falling outside the 
above defined pass-band when RR = 25 and fin = fnom – RR/20 = 48.75 Hz.  
 

  
(a) (b) 

Fig. 16. Maximum TVE values provided by the IpDFT estimators versus the interfering frequency fih for a 
signal of frequency fin = 48.75 Hz affected by an interharmonic of amplitude equal to 10% of the fundamental. 
The reporting rate is RR = 25 and the analyzed frequency ranges are [10, 37.5] and [62.5, 100] Hz.  Algorithms 
are based on: (a) two-signal cycles and the msd2 or the msl2 windows; (b) three-signal cycles and the msd3 or the msl3 

windows. 
 

It is clear that both IpDFT estimators exhibit a poor out-of-band interharmonic rejection capability, 
even though slightly better performances are achieved when the MLS windows are adopted. 
Specifically, maximum TVE values smaller than the 1.3% threshold specified in the Standard are 
achieved only when interfering frequencies are higher than about 85 Hz or, when three-signal cycle  
are observed,  lower than about 15 Hz. 
Other simulations were performed by changing the signal frequency fin in the range (48.75, 51.25] Hz. 
However, results very close to those shown in Fig. 16 were always obtained. 
 
b) Dynamic testing 

Three different set of simulations were designed to model dynamic testing conditions according 
to the recommendations of the Standard.  

  
1) Modulation testing 

Modulation testing allows us to determine the phasor estimator bandwidth [Martin 11]. To this 
aim the signal (27) was modulated in both amplitude and phase, as described by the following 
expression [Std. C37.118.1]: 
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where ka and kp are respectively the amplitude and phase modulation depth factors and f is the 
modulation frequency. According to the bandwidth requirements recommended in the Standard, ka and 
kp are chosen equal to 0.1, while the frequency f was set to the maximum specified value, that is 5 Hz. 
The maximum TVE estimates achieved by considering 10,000 consecutive observations intervals 
continuously shifted sample by sample are depicted in Fig. 17 as a function of /l. 
Fig. 17 shows that the accuracy of the synchrophasor estimator decreases when the off-nominal 
frequency offset increases. Moreover, the MSD windows provide more accurate estimates than the 
MSL windows. If the signal frequency is close to its nominal value, the two-cycle estimator based on 
the msd2 window provides the best results. Conversely, when the off-nominal frequency offset is 
significant the three-cycle estimator based on the msd3 window outperform the others. It is worth 
noticing that any considered estimator is potentially both P-class and M-class compliant since the 
achieved TVE values are always smaller than the 3% threshold specified in the Standard. 
 

 
Fig. 17. Maximum TVE values provided by the IpDFT estimators versus /l when the waveform  is both 

amplitude and phase modulated with modulation depth factors ka = 0.1 and kp = 0.1 and modulation frequency f 
= 5 Hz. Algorithms are based on: two-signal cycles and the msd2 or the msl2 windows; three-signal cycles and 

the msd3 or the msl3 windows. 
 

The results achieved by performing the same analysis when phase modulation alone affects the signal 
(that is assuming ka = 0 and kp = 0.1) are reported in Fig. 18. 
As we can see, the maximum TVE values increases as the off-nominal frequency offset increases when 
the two-cycle estimators are used. Conversely, the maximum TVE values related to the three-cycle 
estimators are almost independent of the ratio /l since the interference from the image component is 
reduced to negligible values by windowing. As above, when the signal frequency is close to its 
nominal value, the two-cycle estimator based on the msd2 window provides the best results, while the 
use of the three-cycle estimator based on the msd3 window is advantageous when significant off-
nominal frequency offsets occur. As in the previous case, the maximum TVE values achieved are 
always smaller than the 3% threshold required for both P-class and M-class compliance. 
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Fig. 18. Maximum of TVE values provided by the IpDFT estimators versus /l when the waveform is phase modulated 
with modulation depth factor kp = 0.1 and modulation frequency f = 5 Hz. Algorithms are based on: two-signal cycles 

and the msd2 or the msl2 windows; three-signal cycles and the msd3 or the msl3 windows. 
 

2) Frequency ramp testing 
To analyze the frequency tracking capability of a phasor estimator [Martin 11], the following 

testing signal is suggested in the Standard : 
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where fin is equal to fnom and df  is the frequency ramp rate, which can assume values in the range       
1 Hz/s [Std. C37.118.1]. Fig. 19 shows the estimated TVE values as a function of time when df = 1 
Hz/s, considering an overall observation window duration of 5 s [Std. C37.118.1] and adopting the msd2 
or the msd3 windows.  

 

 

(a) (b) 
Fig. 19. TVE values provided by the IpDFT estimators versus time when the waveform frequency exhibits a 

linear variation with a rate 1 Hz/s starting from a nominal frequency of 50 Hz. Algorithm is based on (a) two-
signal cycles and the msd2 window or (b) three-signal cycles and the msd3 window. 
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As we can see, the TVE values steadily increase with time and smaller errors are achieved when three- 
signal cycles are observed. The maximum TVE value reached after 5 s is 0.29% or 0.034% when two- 
or three-signal cycles are observed, respectively.  
Higher maximum TVE values were obtained using the MSL windows. In particular, after an overall 
observation time of 5 s a TVE value equal to 0.44% or 0.04% is reached when two- or three-signal 
cycles are observed, respectively. Observe that all the achieved maximum TVE values are smaller than 
the 1% threshold specified in the Standard. 
 
c) Transient testing 
 

1) Amplitude and phase step testing 
Signals with amplitude or phase steps are employed to determine the response and the delay 

times of phasor estimators to sudden changes of the electric signal [Std. C37.118.1], [Martin 11]. The 
response time tr is defined as the difference between the time at which the TVE overcomes the 1% 
threshold and the time it return below this threshold, that is [Std. C37.118.1]: 
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where t is a multiple of the sampling period Ts = 1/fs. 
Differently, the delay time td  is defined as the duration of the time interval between the instant t0  in 
which a step change is applied to the input, and the time t0.5 in which the stepped parameter achieves a 
value halfway between the initial and the final steady-state values [Std. C37.118.1], i.e.: 
 

.05.0 tttd   (36) 

 
It is worth noticing that the time td can assume positive or negative values [Std. C37.118.1]. Indeed, 
since the time reference is chosen in the center of the observation interval, the synchrophasor estimator 
is affected in advance by possible changes in the electric signal parameters. 
In the following, only test results achieved by using the MSD windows are reported for the sake of 
conciseness.  
Fig. 20 shows the estimated amplitude and TVE values as a function of time when an amplitude step of 
10% [Std. C37.118.1] occurs 0.13 s after the overall observation window starting instant. The signal 
frequency was equal to fin = 50 and 55 Hz and the signal phase was 0 = /3 rad.  
Figs. 20(a) and 20(b) show that the estimated amplitude response does not exhibit overshoot or ripple 
when the signal is at nominal frequency. Conversely, a small ripple (of magnitude equal to 0.18%.) is 
present when fin = 55 Hz and two-signal cycles are observed, which is much smaller than the 5% 
threshold recommended in the Standard.  
For signals at nominal frequency, the response time tr is equal to 18.4 ms or 21.2 ms when considering 
two- or three-signal cycles, respectively. Conversely, the delay time td is close to 1.4 ms for both the 
observation interval lengths. When  fin = 55 Hz, the response time is 19.1 ms or 21.8 ms, while the 
related delay time is 1.3 ms or 1.0 ms, respectively. It is worth noticing that the response time 
slightly increases when the waveform frequency increases from 50 Hz to 55 Hz. 
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(a) (b) 

     
(c) (d) 

Fig. 20. (a), (b) Estimated amplitude and (c), (d) TVE values  versus time when the waveform exhibits an 
amplitude step of 10% and a frequency fin of 50 Hz or 55 Hz. The adopted IpDFT estimator is based on (a), (c) two-

signal cycles and the msd2 window or (b), (d) three-signal cycles and the msd3 window. 
 

All the above values are compliant with the Standard, in which a maximum value of 1.7/fnom (that is 34 
ms) for the response time and of 1/(4RR) (which reaches a minimum value of  5 ms for RR = 50) for 
the delay time is specified for both P-class and M-class of performance [Std. C37.118.1].  
Fig. 21 shows the response time tr and the delay time td as a function of the amplitude step size. 
As expected, Fig. 21(a) shows that the response time tr increases as the amplitude step size or the 
length of the observation interval increase. In particular, the response time is close to half the 
observation interval length when the amplitude step size is equal to 20%. Moreover, Fig. 21(a) shows 
that the tr values slightly increases when off-nominal frequency offsets occur. 
Fig. 21(b) shows that the delay time td is almost constant regardless of the observation interval length 
and the amplitude step size when the signal is at nominal frequency. Conversely, when fin = 55 Hz the 
delay time becomes negative and increases with the length of the observation interval. In particular, 
for amplitude steps higher than 10%, the delay times related to both the analyzed observation interval 
lengths are quite close each other. 

 



115 

  
(a) (b) 

Fig. 21. (a) Estimated response time tr and (b) delay time td versus the amplitude step size for the IpDFT 
algorithm based on two- or three-cycles and the msd2 or the msd3 window, respectively. The signal frequency fin 

is equal to 50 Hz or 55 Hz.   
 

Fig. 22 shows the ideal phase, the estimated phase, and the TVE values as a function of time when a 
phase step of /18 rad [Std. C37.118.1] occurs at 0.13 s after the overall observation window starting 
instant. The signal frequency was equal to fin = 50 Hz or 55 Hz and the signal phase was 0 = /3 rad. 
 

     
(a) (b) 

     
(c) (d) 

Fig. 22. (a), (b) Ideal and estimated phase and (c), (d) TVE values  versus time when the waveform exhibits a 
phase step of /18 rad. The adopted IpDFT estimator is based on (a), (c) two-signal cycles and the msd2 window 

or on (b), (d) three-signal cycles and the msd3 window. The signal frequency fin is equal to (a), (b) 55 Hz, or      
(c), (d) both 50 Hz and 55 Hz. 
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Figs. 22(a) and 22(b) show that, when the signal frequency is fin = 55 Hz, the estimated phase changes 
almost linearly if evaluated in the proximity of the phase step. 
When the signal is at nominal frequency, the response time tr is equal to 23.7 ms or 27.4 ms, 
respectively for the two considered observation lengths. Moreover, the response time becomes equal 
to 24.5 ms or 26.9 ms, respectively, at fin = 55 Hz. Thus, the response time is almost independent of 
the off-nominal frequency offset and always smaller than the 34 ms threshold specified in Standard for 
both P-class and M-class compliance. 
Fig. 23 shows the response time tr as a function of the phase step size, which varied in the range [0, 
20] deg. with a step of 1 deg. As above, both two- and three-signal cycles are considered and the 
signal frequency fin is equal to 50 Hz or 55 Hz, respectively.   

 

    
Fig. 23. Estimated response time tr versus the phase step size for the IpDFT algorithm based on two- or three-

signal cycles and the msd2 or the msd3 window, respectively. The frequency fin is equal to 50 Hz or 55 Hz.  
 

As expected, the response time tr increases as the phase step size or the observation interval length 
increase. Moreover, the response times are almost independent of the off-nominal frequency offset.  
 
Also, in [Belega 13c], we analyzed the effect of the possible alternatives when the two-cycle estimator 
based on the msd2 window is employed. When only two DFT samples are used, the following variety 
of alternatives has been examined: i) the maximum DFT spectrum sample (that is Xw(l) in (30)) and 
the preceding DFT sample Xw(l  1), ii) the maximum DFT spectrum sample Xw(l) and the subsequent 
DFT sample Xw(l + 1), iii) the two greatest DFT spectrum samples (as in the classical IpDFT 
algorithm). Among these choices, simulations showed that the classical IpDFT algorithm provides the 
most accurate synchrophasor estimates. 
The three-point IpDFT2 algorithm (see §2.2.1.C) was also considered.  
Fig. 24 shows the maximum TVE values provided by the classical IpDFT algorithm and the three-
point IpDFT algorithm in both steady-state and dynamic conditions. The same simulation parameter 
values used in the previous Section were considered.  
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(a) (b) 

  
(c) (d) 

Fig. 24. Maximum TVE values provided by the classical and the three-point IpDFT algorithms versus /l when 
two-signal cycles are observed and the msd2 window is adopted.  Waveform affected by (a) only off-nominal 

frequency offset, (b) a second harmonic with amplitude equal to 1% or 10% of the fundamental, (c) simultaneous 
amplitude and phase modulations, (d) phase modulation alone.  

 
As it can be seen, the three-point IpDFT2 algorithm provides slightly more accurate results only when 
the signal is simultaneously modulated in amplitude and phase and the signal frequency is close to its 
nominal value. Also, the three-point IpDFT2 algorithm and the classical IpDFT algorithm exhibit 
almost the same accuracy when only off-nominal frequency offsets or phase modulations occur. 
Conversely, the IpDFT algorithm provides more accurate results when the signal is affected by a second 
harmonic disturbance.  
Concluding, we can state that the classical IpDFT algorithm is a good choice for synchrophasor 
estimation when two-signal cycles are observed and the msd2 window is used. 
 
Also, some experiments were performed in order to confirm the simulation results obtained in steady-
state conditions. The electric signals were synthesized by means of suitable signal generators and 
acquired using a 12-bit data acquisition board NI 6023. The full-scale range and the sampling 
frequency were set to 10 V and 10 kHz, respectively. The signal frequencies were set to 45, 47, 49, 51, 
53, and 55 Hz, while the signal amplitude was equal to 2.5 V. The effect of off-nominal frequency 
offsets on the estimation accuracy was investigated by acquiring sine-waves provided by an Agilent 
33220A signal generator. Conversely, asymmetrical sine-waves provided by a TG315 signal generator 
were acquired to analyze the phasor estimator sensitivity to harmonics. The two-cycle IpDFT 
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estimator based on the msd2 window was applied to M = 400 waveform samples. For each value of the 
signal frequency an overall record of 9200 consecutive samples were acquired. The maximum TVE 
value was determined by considering 401 consecutive phasors estimated from M-length adjacent 
records obtained by shifting the observation window sample by sample. The reference values for the 
sine-wave parameters , A, and 0 were obtained by means of the IpDFT algorithm based on the msd2 
window applied to the overall record. Indeed, this algorithm returns accurate estimates when the number 
of acquired sine-wave cycles is high enough. 
The waveform THDs were estimated by means of the multiharmonic sine-fitting algorithm proposed in 
[Ramos 06] and stopping the algorithm iterations when the absolute value of the difference between 
two consecutive estimated frequency values was smaller than 110-6. The obtained THD values were 
610-3% and 8.6%, respectively. Thus, the Agilent 33220A generator provided almost pure sine-waves 
suitable for investigating the sensitivity of the proposed estimators to off-nominal frequency offsets. 
Conversely, the heavily distorted waveforms provided by the TG315 were employed to analyze the 
effect of harmonics on the phasor estimator accuracy.  
The maximum TVE values returned by the two-cycle IpDFT estimator based on the msd2 window are 
depicted in Fig. 25 as a function of the ratio /l for both analyzed waveforms. The values achieved 
when removing the second harmonic contribution from the asymmetrical sine-wave are also shown. 
 

    
 

Fig. 25. Maximum TVE values returned by the two-cycle IpDFT estimator based on the msd2 window when 
applied to sine-waves supplied by the Agilent 33220A or to the asymmetrical sine-waves supplied by the TG315 
signal generator. The values achieved when removing the second harmonic contribution from the asymmetrical 

sine-waves are also shown.  
 
As we can see, the agreement between the experimental and the related simulation results reported in 
Fig. 12 and Fig. 14(a) is quite good. Moreover, the second harmonic removal allows us to reduce the 
achieved maximum TVE value below the 1% threshold.    
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2.5. DEVELOPMENT. FUTURE WORKS. 
 
 

 
 In the future I will work also in the same research fields, which are: Signal Processing, Analog-
to-Digital Converter (ADC) Testing, and Synchrophasor Measurements.  
 
 In the Signal Processing field the next our works will be on the reduction of the detrimental 
effect of spectral interference from both image component and long range leakage on the parameter 
estimation of a sine-wave. To this aim we will work in two directions. In the first direction the works 
will be focused on finding of the most suitable weights for the Discrete Fourier Transform (DFT) 
spectrum samples involved in a multipoint Interpolated DFT (MIpDFT) method in order to achieve a 
highly effective rejection of the detrimental effect of spectral interference from the image component. 
The achieved results allow us to propose novel IpDFT method for scientific community.  Recently, in 
[Macii 12], new cosine windows, called Maximum Image interference Rejection (MIR) windows, 
have been proposed in order to effectively suppress the spectral interference from the image 
component. As compared with the classical cosine windows, at these windows the coefficients are 
determined as a function of the integer part of the number of acquired sine-wave cycles. In order to 
achieve a higher suppression of the spectral interference we will use the MIR windows in the existing 
MIpDFT methods. The achieved performance will be compared with those achieved by the novel 
MIpDFT methods specified above by means of both computer simulations and experimental results. 
Conversely, in the second direction the works will be focused on the developing of new cosine 
windows exhibiting both maximum image interference rejection and high sidelobe decay rate in  order 
to reduce as much as possible the detrimental effect of the spectral interference from both the image 
component and the long range leakage. These windows, called MIR-RSD windows, will be used in the 
IpDFT method. We will try to derive analytical expressions for the parameter estimators provided by 
the IpDFT method based on the MIR-RSD windows. The accuracies of the parameter estimators will 
be compared through theoretical, simulation, and experimental results with those achieved by the 
MIpDFT methods developed in the first research direction.  
It is well known that the harmonics affect the fitting accuracy of both three-parameter sine-fitting 
(3PSF) algorithm and four-parameter sine-fitting (4PSF) algorithm. However, in the scientific 
literature is not yet given any expression for the fitting error in the presence of harmonics. Hence, we 
will focus on the derivation of such expression. Moreover, based on the derived expression, we will 
analyze the contributions of the harmonics to the residual error.    
Also, we want to shown through an analytical expression that the non-coherent sampling has a very 
small influence on the sine-wave parameter estimates returned by a sine-fitting algorithm. 
Furthermore, in order to achieve the sine-wave parameters in real-time, we will implement the 
developed algorithm using systems based on modern Digital Signal Processors (DSPs), such as the 
TMS320C6416T DSK, which are available in my Department.  

It is worth noticing that beginning to 2013, I am member of the Working Group (WG) of the 
IEEE Standard P1451.001. That Standard, recommended practice, defines signal processing 
algorithms and data structure in order to share and to infer signal and state information of an 
instrumentation or control systems. These algorithms are based on their own signal and also on the 
transducers attached to the system. The recommended practice also defines the commands and replies 
for requesting information and algorithms for shape analysis such as exponential, sinusoidal, 
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impulsive noise, noise, and tendency. I am involved in the SG1 (Impulse, noise detection mean 
estimation, tendency, exponential, and sinusoidal patterns) and SG5 (Testing) working subgroups. 
Thus, the works to this Standard will open new research directions in the Signal Processing field.   

 
In [Belega 04] it was shown that in ADC testing in multi-tone mode the required accuracy of the 

sine-waves of the multi-tone test signal can be smaller than that of the sine-wave used in the single-
tone mode testing. Besides, a better dynamic characterization of an ADC is achieved if a multi-tone 
test signal is used instead of a single-tone test signal. Based on these observations the future works in 
the ADC Testing field will be focused on the ADC testing in multi-tone mode by means of multi-tone 
frequency-domain and time-domain sine-fitting methods. The statistical performance of the ADC 
dynamic parameter estimators achieved by the multi-tone sine-fitting methods will be investigated. 
Furthermore, we will use the IpDFT method for the estimation of Signal-to-NonHarmonic Ratio 
(SNHR), Total Harmonic Distortion ratio (THD), and Spurious Free Dynamic Range ratio (SFDR) 
ADC dynamic parameters. The statistical performance of the estimators provided by the IpDFT 
method for the above parameters will be analyzed in the case of a sine-wave corrupted by an additive 
stationary white noise. Also, the accuracy of the above estimators will be compared through 
theoretical, simulation, and experimental results with those of the estimators provided by the Energy-
Based (EB) method, which have already been analyzed in the scientific literature. 
  
In the Synchrophasor Measurement field we will work in two directions. In the first direction our 
works will be focused on the Frequency Error (FE) and Rate Of Change Of Frequency (ROCOF) Error 
(RFE) estimation by means of both frequency-domain and time-domain algorithms. In particular, it 
should be noted, that accurate RFE estimation is becoming increasingly critical for Phasor 
Measurement Units (PMUs) implementation due to the need for tracking fast frequency changes in a 
very short time. As frequency-domain algorithms will be used the DFT-based algorithm and the 
IpDFT algorithm based on cosine windows. To estimate the above parameters the DFT-based 
algorithm will be used together with the Least Squares (LS) approach [Phadke 09]. In this case we will 
analyze how the number of samples acquired in one nominal cycle of the electrical signal affects the 
estimation accuracy. When the IpDFT algorithm is applied we will analyze how the adopted window 
and the observation interval length affect the FE and RFE estimations accuracy. Conversely, as time-
domain algorithms will be used the Weighted Least Squares (WLS)-based algorithm. The accuracy of 
the FE and RFE estimates achieved by all above algorithms will be compared. Furthermore, we will 
work on the development of novel algorithms which ensure both accurate and fast estimates of the 
synchrophasor, FE, and RFE. Moreover, the algorithms developed during the future works in the 
Signal Processing field (MIpDFT methods and IpDFT method based on the MIR-RSD windows) will 
be also employed to this task. The performance of the developed P-class algorithm will be compared 
with that of the P-class algorithm suggested in the IEEE Standard C37.118.1-2011. The analysis will 
be performed under steady state, dynamic, and transient conditions, and the test conditions comply 
with the IEEE Standard C37.118.1-2011. The analysis will be performed through computer 
simulations.  
In the second direction our works will be focused on the parameters estimation of an electrical signal 
with decaying dc offset under transient conditions by means of frequency-domain algorithms. The 
achieved estimation accuracy will be verified by means of both computer simulations and 
experimental results.   
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For a proper determination of the processing efforts required by the analyzed algorithms they will be 
implemented using the systems based on DSPs.  

In the Signal Processing, ADC Testing, and Synchrophasor Measurement fields I will continue 
the cooperation with Professor Dario Petri and Professor Dominique Dallet. Also, I will involve in the 
research works the future PhD students. I intend to have PhD theses in cotutelle agreement between 
my University and the University of Trento and University of Bordeaux, respectively.   

The results achieved during the research works will be submitted for publication in prestigious 
ISI foreign journals, such as IEEE Transactions on Instrumentation and Measurements, Digital Signal 
Processing, IEEE Transactions on Power Delivery, and Measurements, and to important conferences 
focused on instrumentation and measurements, power systems, and signal processing. Also, I will 
include in my courses on Electrical and Electronic Measurements, Measurement Techniques, Sensors, 
and Transducers, and Digital Signal Processors and Acquisition Systems, some of the achieved 
results. Further, additional courses focused on the sine-wave parameter estimation and the 
synchrophasor measurement will be planned at the doctoral school level. These courses are very useful 
since they allow the doctoral students to achieve important knowledge in the above research fields, as 
a basis for their works.    
In order to achieve funding for our research works we will apply for several national and European 
grants. If it is possible, I intend to equip a laboratory with modern instruments for power 
measurements.                   
 

From the above presentation it is clear that the main works will be in the Signal Processing field. 
The achieved results will be applied to the other two research fields, especially to the Synchrophasor 
Measurement field. It is very important to use in the modern PMUs, algorithms which provide both 
accurate and fast synchrophasor, FE, and RFE estimates. Nowadays, this is a great challenge.  
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