Project 6
Wind-induced Vibrations of Long-span Bridges
Motivation

- Long and slender structures
- Light weight
- Low structural damping
Wind Engineering (Design)

Introduction

Wind load/response → Wind climate → Influence of terrain → Aerodynamic effects → Dynamic effects → Criteria

Bridge Aerodynamics

- Limited Amplitudes
 - Vortex-induced Vibrations
 - Buffeting
 - Wake-induce Vibration, Rain Wind-induced Vibrations, etc.

- Instabilities
 - Galloping
 - Flutter
 - Divergence

Graph showing:
- Vertical displacement, h
- Uniform flow
- Turbulent flow
- Buffeting
- Vortex excitation
- First mode
- Higher mode
- Limited amplitudes
- Divergent amplitudes
- Wind speed, U
- Instability
- Gust response
- U_{cr}
Vortex Induced Vibrations

CONTESTABILE, Carlo
Università degli studi di Genova, Italy

KENÉZ, Ágnes
Budapest University of Technology and Economics, Hungary

PIERINO, Sonia
Università degli studi di Genova, Italy
Vortex Induced Vibrations

Vortex-induced vibrations (VIV) are resonance phenomena due to matching vortex shedding frequency and the structural frequency.

\[f_v = (0.8 - 1.2) f_n \]

Vortex Induced Vibrations

- Rectangular cross-section
- Pentagon cross-section
- Rectangular + half-circle cross-section
- Rectangular + deflectors cross-section
Results

Comparison of displacements

Maximum displacement

RMS displacement

Maximum displacement vs Velocity [m/s]

RMS displacement vs Velocity [m/s]
Conclusion

• VIV is self-limiting phenomena, not destructive
• Fatigue problems, comfort issues
• Influence of geometrical shape on VIV

Outlook
• TMD can be studied
• Moveable flaps
Buffeting analysis

ABDOLLAHI, Hossein
Daneshpajoohanan Institute of Higher Education, Iran

SHAHGHOLI, Farshad
Daneshpajoohanan Institute of Higher Education, Iran
Buffeting excitation is caused by fluctuating forces induced by inflow turbulence in the wind field.

Reference object
DYNAMICAL PROPERTIES

Structural system and discretization

- $f_V = 0.401 \text{ Hz}$
- $f_L = 0.444 \text{ Hz}$
- $f_T = 0.913 \text{ Hz}$
BUFFETING RESPONSE

Structural Response

$U=55 \text{ m/s}, \quad Tu=Tw=10\%$.

\begin{align*}
\text{RMS - Vertical Displacement} \\
\text{Tip Vertical Displacement} \\
\text{Tip Rotation}
\end{align*}
Flutter

IVANOVIĆ, Nikola
University of Belgrade, Serbia

LUČIĆ, Sanda
University of Josip Juraj Strossmayer Osijek, Croatia

ŠPIRIĆ, Stefan
University of Belgrade, Serbia
Flutter

- Coupling of vertical and torsional oscillating mode
- Aeroelastic instability at higher wind speeds
- Can cause ULS if not taken into account
Lillebælt Suspension Bridge, Denmark

- Total length 1080 m
- Steel box girder deck section

0,156 Hz

0,5 Hz

JUTLAND

FUNEN

240m 600m 240m
Methodology

Analysis Methods

1. Fully analytical
2. Forced vibrations
3. Fully coupled CFD simulation

1. Potential flow theory, analytical aerodynamic and structural model
2. Numerical aerodynamic model and analytical structural model
3. Numerical aerodynamic and structural model
Results

Forced Vibrations

Heave

Pitch

Fully coupled CFD – single slice

Critical wind velocities

\[U_{cr,\text{Theodorsen}} = 94 \text{ m/s} \]
\[U_{cr,\text{Scanlan}} = 101 \text{ m/s} \]
\[U_{cr,\text{CFD}} = 98 \text{ m/s} \]
Results

Fully coupled CFD – Multi slice
Conclusion