Project 6 Wind-induced Vibrations of Long-span Bridges

Motivation

- Long and slender structures
- Light weight
- Low structural damping

Bauhaus University Weimar Modelling and Simulation of Structures

Wind Engineering (Design)

Vortex Induced Vibrations

CONTESTABILE, Carlo Università degli studi di Genova, Italy

KENÉZ, Ágnes Budapest University of Technology and Economics, Hungary

> PIERINO, Sonia Università degli studi di Genova, Italy

Vortex Induced Vibrations

Vortex-induced vibrations (VIV) are resonance phenomena due to matching vortex shedding frequency and the structural frequency.

Motion of the Alconétar Bridge (upper) and its parameters (right) [1]

[1] Tajammal Abbas (2016), PROJECT 6: WIND-INDUCED VIBRATIONS OF LONG-SPAN BRIDGES, Bauhaus Summer School 2016

Vortex Induced Vibrations

Rectangular cross-section

Pentagon cross-section

Rectangular + half-circle cross-section

Rectangular + deflectors cross-section

Comparison of displacements

Optimazied shape – Halfcircle

Conlusion

- VIV is self-limiting phenomena, not destructive
- Fatigue problems, comfort issues
- Influence of geometrical shape on VIV

Outlook

- TMD can be studied
- Moveable flaps

Buffeting analysis

ABDOLLAHI, Hossein Daneshpajoohan Institute of Higher Education, Iran

SHAHGHOLI, Farshad Daneshpajoohan Institute of Higher Education, Iran

DEFINITION AND REFERENCE OBJECT

Buffeting excitation is caused by fluctuating forces induced by inflow turbulence in the wind field.

Reference object

DYNAMICAL PROPERTIES

BUFFETING RESPONSE

Bauhaus University Weimar Modelling and Simulation of Structures

BUFFETING RESPONSE

Bauhaus University Weimar Modelling and Simulation of Structures

Flutter

IVANOVIĆ, Nikola University of Belgrade, Serbia

LUČIĆ, Sanda University of Josip Juraj Strossmayer Osijek, Croatia

> ŠPIRIĆ, Stefan University of Belgrade, Serbia

Flutter

- Coupling of vertical and torsional oscilating mode
- Aeroelastic instability at higher wind speeds
- Can cause ULS if not taken into account

Reference Object

Lillebælt Suspension Bridge, Denmark

- 1. Potential flow theory, analytical aerodynamic and structural model
- 2. Numerical aerodynamic model and analytical structural model
- 3. Numerical aerodynamic and strucural model

Forced Vibrations

Fully coupled CFD – single slice

Critical wind velocities

 $U_{cr,Theodorsen} = 94 \text{ m/s}$ $U_{cr,Scanlan} = 101 \text{ m/s}$ $U_{cr,CFD} = 98 \text{ m/s}$ Results

Fully coupled CFD – Multi slice

Conclusion

