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1. Abstract  

 

1.1 Abstract 

 

I have received the Ph.D. degree in Electronics and Telecommunications in 2008, from 

the Technical University of Cluj-Napoca, Romania. In 2003, I joined the Department of 

Communications at "Politehnica" University of Timisoara, where I currently hold the position 

of Associate Professor (since 2013). My activity is carried out in the framework of the 

Intelligent Signal Processing Adelaida Mateescu Research Centre, at Politehnica Univ. 

Timisoara. My research interests include: signal and image processing, statistical signal 

processing, multimedia security, watermarking, wavelets, radar signal processing. 

Consequently, this thesis covers the research activities published in papers, books and 

book chapters in the period 2008-2014, which were performed after the PhD thesis.  

 

My PhD thesis was written under the guidance of Professor Monica Borda (from 

Technical University of Cluj-Napoca) and Professor Alexandru Isar (from Politehnica 

University Timisoara), with the subject of Contributions to Image watermarking in the 

wavelet domain. My research efforts in the image watermarking field were continued, for 

example I have proposed using the Hyperanalytic Wavelet domain to embed the watermark, 

or to use turbocodes for a high degree of robustness.  

 

I have co-authored research papers in the field of image denoising using the 

Hyperanalytic Wavelet transform in collaboration with  Professor Alexandru Isar, dr. Ioana 

Firoiu, Professor Dorina Isar and Professor Jean-Marc Boucher (Telecom Bretagne, Brest, 

France).  

 

I have co-authored a paper that presents the implementation of a new complex 2D 

wavelet transform, namely the Hyperanalytic wavelet transform, (HWT); this was used for 

watermarking and denoising with a better performance than other quasi shift-invariant 

complex transforms. A research preoccupation was the statistical analysis of 2D wavelet 

transforms including the 2D Discrete Wavelet Transform (DWT) and the HWT. 

 

I suggested improving the directional selectivity of the HWT by using 

Hyperanalytic Wavelet Packets Transform (HWPT). For anisotropic images, to distinguish 

between preferential directions, we have proposed to use the HWPT, and on each direction 

the smoothness is estimated via the Hurst exponent. 

 

I have improved further the Hurst exponent estimation techniques by applying a 

LASSO based regularization in the wavelet domain and I applied this estimation method to 

solve an image denoising problem where the regularity is considered to vary piecewise. 

 

We have considered the HWT coefficients being circularly distributed, with complex 

Gaussian distribution.  We computed a closed form for the Kullback-Leibler divergence for 

the Complex Generalized Gaussian  Distribution (CGGD).  

 

A new method for texture clustering based on the information-geometry tools 

(barycentric distribution for each cluster) is proposed. These activities were carried out in the 

framework of an international research project Brancusi, funded by UEFISCDI and EGIDE, 

http://shannon.etc.upt.ro/isprc
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for which I was grant director on the Romanian side. The grant director on the French side 

was Professor Yannick Berthoumieu, ENSEIRB MATMECA, Bordeaux, France. 

 

Image contrast enhancement was performed for images that were exposed to non-

uniform lightening, using a complex wavelet transform and a bivariate model for the 

coefficients. The method implies both denoising and contrast enhancement in the Double Tree 

Complex Wavelet Transform (DTCWT) domain.  

 

Recently, in the framework of an European Project (FP7-ARTRAC), I have worked in 

the field of RADAR signal processing, proposing denoising to improve probability of 

detection for the envelope detector; as well as a method to build the range-Doppler map for 

multiple targets in the automotive field. 

 

Other research activities were biomedical signal processing (electrocardiograms and 

magnetocardiograms signals), such as denoising, compression and wander baseline reduction. 

In communications we proposed methods for the reduction of the Peak-to-Average Power 

Ratio (PAPR) of the Orthogonal Frequency Division Multiplexing (OFDM) transmitted 

signal.  

 

I am an IEEE member since 2003, reviewer for several journals and Technical 

Program Committee (TPC) member for prestigious international conferences. In April-June 

2011 I was invited researcher at Lab. Intégration du Matériau au Système, ENSEIRB 

Bordeaux and in Sept-Oct. 2009 I was Invited Professor at "Lab. Intégration du Matériau au 

Système", Universite Bordeaux I, where I awarded an EGIDE scholarship for research (Oct. 

2009).  

I am currently Scientific Secretary for the Scientific Bulletin of "Politehnica" 

University of Timisoara, Transactions on Electronics and Communications (2006-) and I 

served as Publication chair for the IEEE International Symposium of Electronics and 

Telecommunications, editions 2014, 2012 and 2010 and member in the organizing committee 

for editions 2004, 2006 and 2008. In 2012 and 2014 I was also a Session Chair at the ISETC 

symposium. In 2002 and 2004 I received a Diploma for Excellence in Research from the 

Dean of the Faculty of Electronics and Telecommunications.  

I was reviewer for the following journals:  
 2006 IEEE Trans. on Information Forensics and Security, 

 2007-2008, 2011-2012 IEEE Trans. on Multimedia, 

 2009-2010 IEEE Trans. on Signal Processing, 

 2010-2011, 2013 IEEE Trans. Image Processing  

 2007-2008 EURASIP Journal on Information Security, 

 2007-2010 IET Information Security,  

 2008 Research Letters in Electronics, Elsevier 

 2008 Journal of Systems and Software Elsevier,  

 2008-2013 Signal Processing Elsevier 

 2013 IET Radar, Sonar & Navigation 

 2013 Physical Communication  

 Acta Technica Napocensis 

I was a TPC member and reviewer for the following conferences:  
 22nd European Signal Processing Conference,EUSIPCO 2014,September 1-5, 

2014,Lisbon, Portugal  

 21st European Signal Processing Conference, EUSIPCO 2013, Marrakech, Morocco, 

9-13 September 2013  

http://shannon.etc.upt.ro/bulletin/
http://shannon.etc.upt.ro/bulletin/
http://conference.etc.upt.ro/isetc2014/
http://conference.etc.upt.ro/isetc2014/
http://mc.manuscriptcentral.com/tifs-ieee
http://mc.manuscriptcentral.com/tmm-ieee
http://mc.manuscriptcentral.com/tsp-ieee
http://mts.hindawi.com/
http://mc.manuscriptcentral.com/iet-ifs
http://mts.hindawi.com/
http://ees.elsevier.com/jss
http://ees.elsevier.com/sigpro
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 20th European Signal Processing Conference, EUSIPCO 2012, Bucharest, Romania, 

27-31 August 2012  

 18th EUNICE Conference on Information and Communications Technologies 

EUNICE 2012, 29-31 August 2012, Budapest, Hungary  

 4th IEEE International Workshop on Information Forensics and Security, WIFS 2012, 

Tenerife, Spain, December 2-5, 2012  

I was a reviewer for the following conferences:  
 ICASSP 2014, IEEE International Conference on Acoustics, Speech, and Signal 

Processing,May 4-9, 2014 - Florence, Italy  

 ISCAS 2014 IEEE International Symposium on Circuits and Systems, 1-5 june 2014, 

Melbourne, Australia  

 21st European Signal Processing Conference, EUSIPCO 2013, Marrakech, Morocco, 

9-13 September 2013,  

 11-th International Symposium on Signals, Circuits and Systems, July 11-12, 2013, 

Iasi, Romania.  

 13th International Conference on Optimization of Electrical and Electronic Equipment 

OPTIM 2012, May 24-26, 2012, Brasov, Romania,  

 2nd IEEE International Conference on Information Science and Technology, ICIST 

2012, 23- 25 May 2012, Wuhan, China  

 IEEE International Symposium on Electronics and Telecommunications, Timisoara, 

November 15-16, 2012, ISETC 2012  

 Statistical Signal Processing Workshop, 28-30 June 2011, Nice, France, SSP 2011  

 IEEE International Symposium on Electronics and Telecommunications, November 

11-12, 2010, Timisoara, ISETC 2010,  

 8-th International Symposium on Signals, Circuitsand Systems, ISSCS 2007, Iasi, July 

12-13,2007  

Grants (director):  
 2011-2012 - bilateral program Brancusi EGIDE/ANCS, Romanian Director, 

"Classification de textures fondée sur la théorie des ondelettes hyper-analytiques et les 

copules", French Director: Prof. Yannick Berthoumieu grant no. 510/31.03.2011, 

period 2011-2012, partners UPT, IPB-ENSEIRB MATMECA, funded by ANCS-

UEFISCDI and EGIDE  

 2004-2006 – national grant TD, CNCSIS code 47, Digital watermarking for still 

images in the transform domain funding by CNCSIS  

Grants (member):  
 2014- ongoing, Quality of Services Improvement for GNSS Localisation in Constraint 

Environment by Image Fusing Techniques (IMFUSING), Contract with European 

Space Agency, ESA, nr. 4000111852/14/NL/Cbi, contractor UPT, subcontractor 

Thales Alenia (2014) 

 2014- ongoing, SEOM SY4Sci Synergy - Ocean Virtual Laboratory (OVL), Contract 

with European Space Agency, ESA, nr. 4000112389/14/I-NB, contractor 

OceanDataLab, subcontractor UPT 

 2011-2014 – FP7 EU program, Advanced Radar Tracking and Classification for 

Enhanced Road Safety ARTRAC  

 2013-2014 – PC7 EU program, Advanced Radar Tracking and Classification for 

Enhanced Road Safety ARTRAC, funded by UEFISCDI 

 2009-2011 – national grant – The use of wavelet theory for decision making, funded 

by CNCSIS, ID 930, 2009-2011 

 2007-2009 – national grant, Improvement of research & development basis in the field 

of communications at the Faculty of Electronics and Telecommunications, Politehnica 

http://shannon.etc.upt.ro/isprc/context
http://shannon.etc.upt.ro/isprc/context
http://artrac.org/
http://artrac.org/
http://shannon.etc.upt.ro/isprc/artrac/
http://shannon.etc.upt.ro/isprc/artrac/
http://shannon.etc.upt.ro/cercetare/CNCSIS_Idei/cncsisID.htm
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Univ. of Timisoara, funded by ANCS, CAPACITATI PN II, 2007-2009, 

77/CP/II/13.09.2007  

 2005-2007 – national grant, Performance increase of digital receptors using wavelet 

theory, funded by CNCSIS, code 637/A/CNCSIS 

 2004-2006 – national grant, Modern methods for image analysis and image 

processing, 2004-2006, funded by CNCSIS 

 2011-2012 – member of target group Doctoral School in support of research in the 

European context ("Scoala doctorala in sprijinul cercetarii in context european"), 

POSDRU program 21/1.5/G/13798 2010-2012 

Scholarships:  
 Oct. 2009 -EGIDE scholarship for research, LAPS, Bordeaux, France 

 Sep. 2005-ECRYPT scholarship, Summer School for Multimedia Security, University 

of Salzburg, Austria, 21-24 Sept. 2005 

Awards:  
 2012: Nominated for the Information Forensics and Security Technical Committee 

IEEE 

1.2 Rezumat 

 

Am primit titlul de doctor în Electronică şi Telecomunicaţii în 2008, de la 

Universitatea Tehnică din Cluj-Napoca, Romania. Din 2003, sunt încadrată ca şi cadru 

didactic şi de cercetare la Departamentul de Comunicaţii din cadrul Univ. Politehnica 

Timisoara, unde sunt în prezent Conferenţiar (din 2013). Activitatea mea se desfăşoară în 

cadrul Centrului de Cercetare de Prelucrarea Inteligentă a Semnalelor Adelaida Mateescu din 

cadrul aceleasi instituţii. Preocupările mele includ, dar nu sunt limitate la: prelucrarea 

semnalelor şi a imaginilor, prelucrarea statistică a semnalelor, securitatea multimedia, 

watermarking (marcare transparentă), wavelete (undişoare), prelucrarea semnalelor radar.  

Prin urmare, aceasta teză cuprinde activitatea mea de cercetare publicată în lucrări, 

cărţi şi capitole de cărţi din perioada 2008-2014, efectuate după teza de doctorat.  

 

Mi-am scris teza de doctorat sub îndrumarea d-nei Profesoare Monica Borda (de la 

Universitatea Tehnică din Cluj-Napoca) şi a d-lui Profesor Alexandru Isar (de la 

Universitatea Politehnica Timişoara). Aceasta a avut subiectul Contribuţii la marcarea 

transparentă a imaginilor în domeniul transformatei wavelet. Eforturile mele de cercetare în 

acest domeniu, al marcării transparente a imaginilor au continuat în mod natural şi după 

teză, de exemplu, am propus folosirea domeniul transformatei wavelet hiperanalitice pentru 

inserarea marcajului, sau folosirea turbocodurilor, pentru creşterea robusteţii marcajului.  

 

Sunt autor şi co-autor al unor lucrări ştiinţifice în domeniul eliminării zgomotului din 

imagini folosind transformata mai sus menţionată, transformata wavelet hiperanalitică, în 

colaborare cu dl. Profesor Alexandru Isar, dr. Ioana Firoiu, d-na Profesor Dorina Isar şi dl. 

Profesor Jean-Marc Boucher (Telecom Bretagne, Brest, France).  

 

Sunt co-autor al unei lucrări care prezintă implementarea unei noi transformate 

wavelet 2D complexe, şi anume transformata wavelet, (HWT); aceasta a fost folosită cu 

succes în marcarea transparenta şi eliminarea zgomotului în imagini, cu performanţă 

superioară comparativ cu alte transformate complexe cvasi-invariante la translaţii. O 

preocupare de cercetare a fost de asemenea analiza statistică a transformatelor wavelet 2D 

incluzand transformata wavelet discreta bidimensională (DWT) precum şi HWT. 

http://shannon.etc.upt.ro/isprc
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Am propus îmbunătăţirea selectivităţii directionale a transformarii HWT folosind 

transformata  Hyperanalytic Wavelet Packets Transform (HWPT). Pentru a distinge intre 

direcţii preferenţiale în imagini anisotropice, am propus folosirea HWPT, şi pe fiecare direcţie 

se estimează regularitatea (netezimea) folosind exponentul Hurst. 

 

În continuare, am imbunătăţit tehnicile de estimare a exponentului Hurst, aplicând o 

tehnică de regularizare bazată pe LASSO în domeniul wavelet şi am aplicat această metodă 

de estimare pentru rezolvarea unei probleme de eliminare a zgomotului din imagini, unde 

regularitatea variază pe porţiuni.  

 

Am considerat coeficienţii HWT ca fiind distribuiţi circular conform cu distribuţia 

complexă Gaussiană generalizată. Am calculat o formă explicită pentru divergenţa 

Kullback-Leibler în cazul distribuţiei complexe Gaussiene generalizate (CGGD).  

 

Am propus o noua metodă de clasificare a texturilor bazată pe distribuţia baricentrică 

pentru fiecare grup sau cluster. Aceste activităţi s-au desfăşurat în cadrul grantului 

internaţional de cercetare Brâncusi, finanţat de UEFISCDI şi EGIDE, la care am fost director 

pe partea Română. Directorul de grant pe partea Franceză a fost d-l. Profesor Yannick 

Berthoumieu, ENSEIRB MATMECA, Bordeaux, Franţa. 

 

Îmbunătăţirea contrastului în imagini a fost făcută pentru imagini expuse la 

iluminare neuniformă, folosind o transformată wavelet complexă, şi un model bivariat pentru 

coeficienţi. Metoda implică folosirea a două tehnici deodată şi anume, îmbunătăţirea 

contrastului precum şi eliminarea zgomotului în domeniul transformatei wavelet complexe cu 

arbore dublu (DTCWT).  

 

Recent, în cadrul unui grant European de tip FP7 (FP7-ARTRAC), am lucrat în 

domeniul prelucrării semnalelor radar, şi am propus folosirea tehnicii de denoising pentru a 

îmbunătăţi probabilitatea de detecţie a detectorului de anvelopă; de asemenea am propus o 

metodă de construire a matricii distanţă-Doppler pentru ţinte multiple în domeniul automotiv. 

 

Alte preocupări au fost prelucrarea semnalelor biomedicale (electrocardiograme şi 

magnetocardiograme), cum ar fi eliminarea zgomotului, compresie şi corecţie a abaterii liniei 

de bază (liniei izoelectrice). În telecomunicaţii am propus metode de reducere a raportului 

Peak-to-Average Power Ratio (PAPR) al semnalului transmis folosind OFDM (multiplexare 

cu diviziune în frecvenţă şi subpurtătoare ortogonale).  

 

Sunt membru IEEE din 2003, recenzor la mai multe reviste, membru în comitetul 

tehnic (TPC) al unor conferinţe internaţionale foarte prestigioase. În perioada Aprilie-Iunie 

2011, am fost invitată ca şi cercetător la Laboratorul Intégration du Matériau au Système, 

ENSEIRB Bordeaux iar în perioada Sept-Oct. 2009 am fost Profesor Invitat la "Lab. 

Intégration du Matériau au Système", Universite Bordeaux I, unde mi s-a acordat o bursă de 

cercetare EGIDE (Oct. 2009).  

Sunt secretar ştiinţific al Buletinului Stiinţific al Universitaţii "Politehnica" din 

Timisoara, Seria Electronica şi Telecomunicaţii (2006-) şi am fost Publication chair pentru 

Simpozionul desfăsurat la Timisoara, IEEE International Symposium of Electronics and 

Telecommunications, ediţiile 2014, 2012 şi 2010, respectiv membru în comitetul de 

organizare pentru ediţiile 2004, 2006 şi 2008. În 2012 şi 2014 am fost de asemenea Session 

Chair la simpozionul ISETC. In 2002 şi 2004 am primit Diploma de Excelenţă în Cercetare de 

la Decanul Facultaţii de Electronică şi Telecomunicaţii.  

http://shannon.etc.upt.ro/bulletin/
http://shannon.etc.upt.ro/bulletin/
http://conference.etc.upt.ro/isetc2014/
http://conference.etc.upt.ro/isetc2014/
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Am fost recenzor pentru următoarele reviste:  
 2006 IEEE Trans. on Information Forensics and Security, 

 2007-2008, 2011-2012 IEEE Trans. on Multimedia, 

 2009-2010 IEEE Trans. on Signal Processing, 

 2010-2011, 2013 IEEE Trans. Image Processing  

 2007-2008 EURASIP Journal on Information Security, 

 2007-2010 IET Information Security,  

 2008 Research Letters in Electronics, Elsevier 

 2008 Journal of Systems and Software Elsevier,  

 2008-2013 Signal Processing Elsevier 

 2013 IET Radar, Sonar & Navigation 

 2013 Physical Communication  

 Acta Technica Napocensis 

Am fost membru în comitetul tehnic şi recenzor pentru următoarele conferinţe:  
 22nd European Signal Processing Conference,EUSIPCO 2014,September 1-5, 

2014,Lisbon, Portugal  

 21st European Signal Processing Conference, EUSIPCO 2013, Marrakech, Morocco, 

9-13 September 2013  

 20th European Signal Processing Conference, EUSIPCO 2012, Bucharest, Romania, 

27-31 August 2012  

 18th EUNICE Conference on Information and Communications Technologies 

EUNICE 2012, 29-31 August 2012, Budapest, Hungary  

 4th IEEE International Workshop on Information Forensics and Security, WIFS 2012, 

Tenerife, Spain, December 2-5, 2012  

Am fost recenzor pentru următoarele conferinţe:  
 ICASSP 2014, IEEE International Conference on Acoustics, Speech, and Signal 

Processing,May 4-9, 2014 - Florence, Italy  

 ISCAS 2014 IEEE International Symposium on Circuits and Systems, 1-5 june 2014, 

Melbourne, Australia  

 21st European Signal Processing Conference, EUSIPCO 2013, Marrakech, Morocco, 

9-13 September 2013,  

 11-th International Symposium on Signals, Circuits and Systems, July 11-12, 2013, 

Iasi, Romania.  

 13th International Conference on Optimization of Electrical and Electronic Equipment 

OPTIM 2012, May 24-26, 2012, Brasov, Romania,  

 2nd IEEE International Conference on Information Science and Technology, ICIST 

2012, 23- 25 May 2012, Wuhan, China  

 IEEE International Symposium on Electronics and Telecommunications, Timisoara, 

November 15-16, 2012, ISETC 2012  

 Statistical Signal Processing Workshop, 28-30 June 2011, Nice, France, SSP 2011  

 IEEE International Symposium on Electronics and Telecommunications, November 

11-12, 2010, Timisoara, ISETC 2010,  

 8-th International Symposium on Signals, Circuitsand Systems, ISSCS 2007, Iasi, July 

12-13,2007  

Granturi (director):  
 2011-2012 - program bilateral Brancusi EGIDE/ANCS, Director pe partea Romană, 

"Classification de textures fondée sur la théorie des ondelettes hyper-analytiques et les 

copules", Director pe partea Franceză: Prof. Yannick Berthoumieu grant no. 

510/31.03.2011, period 2011-2012, parteneri UPT, IPB-ENSEIRB MATMECA, 

finantat de ANCS-UEFISCDI şi EGIDE  

http://mc.manuscriptcentral.com/tifs-ieee
http://mc.manuscriptcentral.com/tmm-ieee
http://mc.manuscriptcentral.com/tsp-ieee
http://mts.hindawi.com/
http://mc.manuscriptcentral.com/iet-ifs
http://mts.hindawi.com/
http://ees.elsevier.com/jss
http://ees.elsevier.com/sigpro
http://shannon.etc.upt.ro/isprc/context
http://shannon.etc.upt.ro/isprc/context
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 2004-2006 – national grant TD, CNCSIS code 47, Digital watermarking for still 

images in the transform domain funding by CNCSIS  

Granturi (membru):  
 2014- în curs, Quality of Services Improvement for GNSS Localisation in Constraint 

Environment by Image Fusing Techniques (IMFUSING), Contract cu Agentia 

Spatiala Europeana, ESA, nr. 4000111852/14/NL/Cbi, contractor UPT, subcontractor 

Thales Alenia (2014) 

 2014- în curs, SEOM SY4Sci Synergy - Ocean Virtual Laboratory (OVL), Contract cu 

Agentia Spatiala Europeana, ESA, nr. 4000112389/14/I-NB, contractor 

OceanDataLab, subcontractor UPT 

 2011-2014 – FP7 EU program, Advanced Radar Tracking and Classification for 

Enhanced Road Safety ARTRAC finanţat de Uniunea Europeana 

 2013-2014 – PC7 EU program, Advanced Radar Tracking and Classification for 

Enhanced Road Safety ARTRAC, finanţat de UEFISCDI 

 2009-2011 – grant naţional– The use of wavelet theory for decision making, finanţat 

de CNCSIS, ID 930, 2009-2011 

 2007-2009 – grant naţional, Improvement of research & development basis in the field 

of communications at the Faculty of Electronics and Telecommunications, Politehnica 

Univ. of Timisoara, finanţat de ANCS, CAPACITATI PN II, 2007-2009, 

77/CP/II/13.09.2007  

 2005-2007 – grant naţional, Performance increase of digital receptors using wavelet 

theory, finanţat de CNCSIS, code 637/A/CNCSIS 

 2004-2006 – grant naţional, Modern methods for image analysis and image 

processing, 2004-2006, finanţat de CNCSIS 

 2011-2012 – membru al grupului ţintă “Şcoala doctorală în sprijinul cercetării în 

context european” (Doctoral School in support of research in the  European context), 

program POSDRU 21/1.5/G/13798 2010-2012 

Burse:  
 Oct. 2009 - bursă EGIDE pentru cercetare, LAPS, Bordeaux, France 

 Sep. 2005 – bursă ECRYPT, Summer School for Multimedia Security, University of 

Salzburg, Austria, 21-24 Sept. 2005 

Premii:  
 2012: Nominalizata pentru comitetul IEEE, Information Forensics and Security 

Technical Committee IEEE 

 

  

http://artrac.org/
http://artrac.org/
http://shannon.etc.upt.ro/isprc/artrac/
http://shannon.etc.upt.ro/isprc/artrac/
http://shannon.etc.upt.ro/cercetare/CNCSIS_Idei/cncsisID.htm


10 

2. Contributions 

 

2.1 Overview of contributions   

 

My research interests include: statistical signal and image processing applied in 

communications, RADAR, medicine, multimedia security, watermarking, their mathematical 

bases (with a predilection for wavelets theory) and their software implementation.  

My PhD thesis was written under the guidance of Professor Monica Borda, from 

Technical University of Cluj-Napoca, and Professor Alexandru Isar, from Politehnica 

University Timisoara, with the subject of Contributions to Image watermarking in the wavelet 

domain.  

My first image processing subject was watermarking. Wavelet based image 

watermarking research was continued further in some of the papers I have published: 

[NafIsa11]; [NafIsaKov09]; [NafIsa09]; [NafIsa08]; [NafNafIsaBor08]; [NafFirBouIsa08].  

My second image processing subject was denoising.   

I have co-authored the paper [FirNafBouIsa09] that presents the implementation of a 

new complex 2D wavelet transform, namely the Hyperanalytic wavelet transform, HWT; 

this was used for watermarking and denoising with a better performance than other quasi 

shift-invariant complex transforms.  

A research preoccupation was the statistical analysis of 2D wavelet transforms 

including the 2D DWT and the HWT. First, I have made second order statistical analysis: 

([IsaNaf14], [NafBerNafIsa12]; [FirNafIsaBouIsa10]; [NafFirIsaBouIsa10a]; 

[NafFirIsaBouIsa10b]). Next, I established statistical models, [NafBerNafIsa12]. In 

[NafBerNafIsa12] we have considered the repartition of the HWT coefficients to be like 

circularly symmetric, with CGGD for the complex coefficients.  We computed a closed form 

for the Kullback-Leibler divergence for the CGGD distribution.  

The HWT has six preferential directions (three with positive orientations and three 

with negative orientations) and it is quasi-shift invariant. We suggested improving the 

directional selectivity of 2D wavelet transforms: using hyperanalytic wavelet packets 

[NafIsaNaf12] (any number of preferential directions) and for anisotropic images, to 

distinguish between directions we have proposed to use the HWPT, and on each direction the 

smoothness is estimated via the Hurst exponent and HWPT [NafIsa13]. I have improved 

further the Hurst exponent estimation techniques by applying a LASSO based regularization 

in the wavelet domain [NafIsaNel14] and I applied this estimation method to solve an image 

denoising problem, where regularity varies piecewise.  

I have co-authored research papers in the field of HWT based image denoising: 

[IsaFirNafMog11]; [FirNafIsaIsa11]; [NafIsaIsa11]; [FirNafBouIsa10]; [FirNafBouIsa09] in 

collaboration with  Professor Alexandru Isar, dr. Ioana Firoiu, Professor Dorina Isar and 

Professor Jean-Marc Boucher (Telecom Bretagne, Brest, France). This direction will be 

pursuited by the analysis of despecklization algorithms in the framework of the ESA contract 

SY4Sci Synergy - Ocean Virtual Laboratory (OVL). 

My third image processing subject was denoising based image contrast 

enhancement [NafIsa14]. 

My fourth image processing processing preocupation was texture analysis. A new 

method for texture clustering based on the information-geometry tools (barycentric 

distribution for each cluster) is proposed in [SchBerTurNafIsa12]. 

My signal processing research activities were: biomedical signal processing (ECG and 

MCG signals), such as denoising, compression and wander baseline reduction; in 

communications we proposed methods for the reduction of the Peak-to-Average Power Ratio 
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(PAPR) of the transmitted signal (OFDM), RADAR signal processing such as detection or 

waveform generation and the generation of new mother wavelets based on the frames theory.  

Recently, in the framework of an European Project (FP7-ARTRAC), I have worked in 

the field of RADAR signal processing, proposing denoising to improve probability of 

detection for the envelope detector; as well as a method to build the range-Doppler map for 

multiple targets in the automotive field [MacNafIsa14], [NafMacIsa14]. 

 

 

2.2 Image watermarking 

Papers: [NafIsa11]; [NafIsaKov09]; [NafIsa09]; [NafIsa08]; [NafNafIsaBor08]; 

[NafFirBouIsa08]  

 

Proliferation of multimedia data on the Internet and the ease of copying this data have 

brought an interest for copyright protection [CoxMilBlo02]. During transmission, data can be 

protected using encryption; however after decrypting it, it is no longer protected. As an 

alternative to encryption, watermarking has been proposed as a means of identifying the 

owner, by secretly embedding an imperceptible signal into the host signal [Cox05] – see Fig. 

1.  

 

 
Fig. 1. Watermark embedding. The watermark is embedded using a secret or public key, 

making invisible changes to the cover work.  

 

The main properties of a watermarking system are perceptual transparency, 

robustness, security, and data hiding capacity [CoxKilLeiSha97]. Some of the terms used in 

watermarking are [CoxMilBlo02]: 

 

 The original data where the watermark is to be inserted is referred to as host or cover 

work. 

 The hidden information is called payload. 

 Visible watermarks are visual patterns (images, logos) inserted or overlaid on 

images/video. Visible watermarks are applied to photos publicly available on the web, 

to prevent commercial use of such images. One example of visible watermarking has 

been implemented by IBM for the Vatican library [BraMagMin96]. 

 Most watermarking systems involve making the watermark imperceptible. 

 The key is required for embedding the watermark. If the same key is used for 

retrieving the watermark, the system is private, while if another key is used to retrieve 

it, the system is known as public. 

 If the cover work is required at the detector, the system is informed (non-blind); if it’s 

not required at the detector, the system is blind.  

 Watermarking systems are robust or fragile. Robust watermarks should resist any 

modifications and are designed for copyright protection. Fragile watermarks are 

designed to fail whenever the cover work is modified and to give some measure of the 

tampering. Fragile watermarks are used in authentication. 

Cover work X0  

Watermark W 

0100100010... 

Watermark 

embedding ε 

Watermarked 

work Xw 

Key K 

 

Data embedding algorithm  
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Most of existing watermarking systems proposed in the literature can be classified 

depending on the watermarking domain, where the embedding takes place: spatial domain 

techniques [NikPit98], where the pixels are directly modified, or transform domain 

techniques.  

The majority of watermarking algorithms operate based on the spread spectrum (SS) 

communication principle. A pseudorandom sequence is added to the host signal in some 

critically sampled domain and the watermarked signal is obtained by inverse transforming the 

modified coefficients. Typical transform domains are the Discrete Wavelet Transform 

(DWT), the Discrete Cosine Transform (DCT) and the Discrete Fourier Transform (DFT). 

The DWT based algorithms usually produce watermarked images with the best balance 

between visual quality and robustness due to the absence of blocking artefacts [Naf08].  

Watermarks can be robust or fragile, depending on the application. For copyright 

protection, robustness is required. This can be assured with encoding of the watermark using a 

repetition code or an error correcting code. Robustness is increased with the increase of the 

correction capacity of the code. Despite of their efficient use in telecommunications, turbo 

codes have been rarely used in watermarking [AbdGlaPan02], [SerAmbTomWad03], 

[BalPer01], [NafIsaKov09]. 

At the embedding side, the watermark can be added to coefficients of known 

robustness (large valued coefficients) or perceptually significant regions [Cox05], such as 

contours and textures of an image. This can be done empirically, selecting larger coefficients 

[CoxKilLeiSha97] or using a thresholding scheme in the transform domain [PodZen98], 

[NafIsaBor05] . Another approach is to insert the watermark in all coefficients of a transform, 

using a variable strength for each coefficient [BarBarPiv01]. Hybrid techniques, based on 

compression schemes, embed the watermark using a thresholding scheme and variable 

strength [PodZen98]. The performance of such a system depends on the quality of the wavelet 

transform.  

 

In [NafIsa11]; [NafIsaKov09]; [NafIsa09]; [NafIsa08]; [NafNafIsaBor08]; 

[NafFirBouIsa08], were reported image watermarking method results that were obtained 

during and after the PhD thesis. We focused mostly on the application of the wavelet 

transforms in robust blind watermarking for static images (we do not require the original 

image at the detection side) [NafIsa11]; [NafIsa09]; [NafIsa08]; [NafNafIsaBor08]; 

[NafFirBouIsa08], except for [NafIsaKov09]. 

Classical techniques of watermarking such as the spread spectrum (SS) watermarking 

system, based on the DCT transform, proposed by Cox et al. [CoxKilLeiSha97] and those 

proposed in the wavelet domain are presented.  Other wavelet transforms as the 2D DTCWT 

[SelBarKin05] or the HWT [NafFirBouIsa08], [FirNafBouIsa09] could also be considered. 

The advantages of such transforms compared to DWT are: quasi-shift invariance and 

enhanced directional selectivity. The data hiding capacity increases with the increase of 

redundancy (4x for DTCWT and HWT). We compare the efficiency of those wavelet 

transforms in watermarking. 

Most techniques embed the watermark in a transform domain as mentioned before. 

Early techniques have used the Discrete Cosine Transform (DCT). One of the most influential 

watermarking works is a SS approach proposed in [CoxKilLeiSha97]. They argue that the 

watermark be placed explicitly in the perceptually most significant components of the data, 

and that the watermark be composed of random numbers drawn from a Gaussian distribution

 0,1 , in order to make it invisible and robust to attacks: 

       1  v i v i w i , (1) 
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where v(i) is the DCT coefficient to be watermarked, w(i) is the watermark bit,   is the 

embedding strength and v’(i) is the watermarked coefficient. Detection is made using the 

similarity between the original W and extracted Ŵ watermarks: 

   




ˆ
ˆsim ,

ˆ ˆ

W W
W W

W W
. (2) 

The fact that the transform is performed over the entire image increases the 

computation time. Other methods have been proposed that use the block-based DCT 

transform, just like in the JPEG compression (see for example [PodZen98]).  

Other authors have proposed the use of the Discrete Fourier Transform (DFT) or its 

variant – the Fourier-Mellin transform. This is useful in order to perform phase modulation 

between the watermark and the original signal [RuaDowBol96]. The phase is more important 

than the amplitude; hence it will be difficult for an attacker to remove the watermark. Phase 

modulation often possesses superior noise immunity in comparison with amplitude 

modulation. Many watermarking techniques use DFT amplitude modulation because the 

watermark will be translation invariant. The DFT is more often used in its derived forms such 

as the Fourier-Mellin transform. This Fourier-Mellin transform approach has arisen out of the 

need for Rotation, Scale and Translation (RST)-invariant watermarking techniques. It 

involves creating a Log Polar map of the DFT amplitudes of the image, where the embedding 

takes place. This method is said to be extremely RST invariant and uses a RST invariant 

watermark [LinWuBlo01], [RuaPun98].  

 

There are different approaches to embed the watermark in the wavelet domain. 

Almost all methods rely on masking in some way the watermark, either by selecting a few 

coefficients, or using adaptive embedding strength. 

Podilchuk & Zeng [PodZen98] propose an image-adaptive (IA) approach. They use 

the just difference noticeable difference (JND) to determine the image dependent perceptual 

mask for the watermark. They applied this method in both DCT and wavelet domain: 

 
  

 


, , , , ,*
,

,

,   if  

,                            otherwise         
u v u v u v u v u v

u v
u v

I JND w I JND
I

I
, (3) 

,u vI  are the coefficients of the original image, ,u vw  are the watermark bits, and ,u vJND  are the 

JND values computed using visual models. In the case of DCT, they are computed using 

Watson’s perceptual model; for the wavelet domain, the weight is computed for each 

frequency band based on typical viewing conditions. Detection is made using correlation 

between the image difference and the watermark sequence. This method is more robust than 

the spread-spectrum method in [CoxKilLeiSha97]. Although more robust than IA-DCT, the 

IA-W method does not take into account perceptual significant regions, so the watermark can 

be erased from perceptually insignificant coefficients. For example, low-pass filtering will 

affect the watermark inserted in high frequency components.    

Xia et al. [XiaBonArc98] propose a watermarking algorithm using the Haar mother 

wavelet, and two levels of decomposition. A pseudo-random sequence is added to the highest 

coefficients not located in the lowest resolution: 

         , , , if m n f m n f m n w


 , (4) 

where   is the watermark strength, and   is the amplification for large coefficients. This 

algorithm concentrates most of the energy in edges and textures, which are the coefficients in 

detail subbands. This increases the invisibility of the watermark, because human observers are 

less sensitive to change in edges and textures compared to changes in smooth areas of an 

image. More watermarks are inserted in each subband, and detection is done hierarchically, 

for each resolution level, using intercorrelation between original watermark and the difference 



14 

of the two images. The method is robust to a series of distortions, but low-pass and median 

filtering affect the watermark. 

Kundur & Hatzinakos [KunHat98] use the Daubechies wavelet family to compute the 

DWT on three levels of decomposition. The watermarking algorithm selects in a pseudo-

random manner the embedding locations from the detail subbands. The authors state that the 

spread-spectrum technique is not appropriate for transmitting the watermark because the 

correlator used for watermark detection is not effective in the presence of fading. Hence, they 

use quantization for embedding the watermark bits. To increase robustness, they use a 

reference watermark in order to estimate if the watermark bit has been embedded 

[KunHat01]. 

 

2.2.1 Perceptual watermarks in the wavelet domain 

 

A spread spectrum method in the wavelet domain is proposed in [BarBarPiv01]. The 

watermark is masked according to the characteristics of the human visual system (HVS), 

taking into account the texture and the luminance content of all the image subbands. The 

contours of the image are watermarked with a higher strength, textures with a medium 

strength and homogeneous regions (with high regularity) with a lower strength, in accordance 

with the analogy water-filling and watermarking [Kun00].  

 

The image I, of size 2M×2N, is decomposed into 4 levels using Daubechies-6 wavelet 

mother, where 

lI   is the subband from level l{0, 1, 2, 3}, and orientation {0, 1, 2, 3} 

(horizontal, diagonal and vertical detail subbands, and approximation subband). A 

pseudorandom binary (1) sequence is casted into 2D binary watermarks, each of size MN/4
l
, 

lx
 . The watermark is embedded in all coefficients from level l=0 by addition 

         , , , ,l l l lI i j I i j w i j x i j    , (5) 

where  is the embedding strength and  ,lw i j
  is half of the quantization step: 

        
0.2

, , , , , ,lq i j l l i j l i j    , (6) 

as it is presented in the following figure. 

 

 
Fig. 2. Watermark embedding in the wavelet domain [BarBarPiv01]. The watermark is 

embedded in the first resolution level using a perceptual mask.  

 

This is a product of three factors: sensitivity to noise Θ, local brightness Λ and texture activity 

around a pixel Ξ. They are computed as follows: 

Mask 

Watermark 

Original Marked 

DWT 
IDWT 
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  

 
     

     
   

  

1.00 0

0.32 12 , 1
,

0.16 21 otherwise

0.10 3

l

l
l

l

l


 , (7) 

      , , 1 ' , ,l i j L l i j , (8) 

             
3 3 3
3, , 1 2 ,1 2 256l lL l i j I i j , (9) 
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23 2 1
3
3 3 3

0,10 0 , 0
0,1

, , 16 2 , 2 Var 1 ,1
2 2

l
k k k

k l l l
xk x y
y

ji
l i j I y i x j I y x . (10) 

 

The texture activity around a pixel is composed by the product of two contributions; 

the first is the local mean square value of the DWT coefficients in all detail subbands and the 

second is the local variance of the 4th level approximation image. Both are computed in a 

small 2×2 neighborhood corresponding to the location (i, j) of the pixel. The first contribution 

is the distance from the edges, and the second one is the texture. This local variance 

estimation is computed with a low resolution.  

Detection is made using the correlation between the marked DWT coefficients and the 

watermarking sequence to be tested for presence (the original image is not needed): 

        
 

  

   
/2 1 /2 12

θ θ

θ 0   0 0

4 , , 3

l lM N
l

l l
i j

l I i j x i j MN . (11) 

The correlation is compared to a threshold Tρ(l), computed to grant a given probability 

of false positive detection, using the Neyman-Pearson criterion. For example, for 
 810fP , 

the threshold is      23.97 2l lT  , with (l)
2
  the variance of the wavelet coefficients, if the 

image was watermarked with a code Y other than X, 

 
       

 

  

   
/2 1 /2 12 222 θ

ρ
θ 0   0 0

4 3 , .

l lM N
l

ll
i j

MN I i j  (12) 

Barni’s method is quite robust against common signal processing techniques like 

filtering, compression, cropping and so on. However, because embedding is made only in the 

last resolution level, the watermark information can be easily erased by an attacker.  

We proposed in [Naf08] a pixel-wise mask allowing insertion of the watermark in 

lower resolution levels. The third factor of the texture is estimated using the local standard 

deviation of the original image computed on a rectangular moving window W(i,j) of WS×WS 

pixels, centered on each pixel I(i,j). This criterion of segmentation finds its contours, textures 

and regions with high homogeneity. The local mean is: 

    
   





 2

, ,

ˆ , ,S
I m n W i j

i j W I m n . (13) 

The local variance is given by: 

       
   





 
22 2

, ,

ˆ ˆ, , ,S
I m n W i j

i j W I m n i j  . (14) 

The local standard deviation is the square root of this local variance. The texture activity for a 

considered DWT coefficient is proportional with the local standard deviation of the 

corresponding pixel from the host image. We denote this local standard deviation image with 

S, and the local mean image with U.  Embedding is made in the subband s, level l; the size of 

the texture matrix must agree with the size of the subband. Hence, the approximation image at 
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the l
th

 decomposition level is used. This compression can be realized exploiting the separation 

properties of the DWT. To generate the mask required for the embedding into the detail 

subimages corresponding to the l
th

 decomposition level, the DWT of the local standard 

deviation image is computed (making l+1 iterations). The required mask will be the 

approximation subimage from level l, denoted Sl
3
, normalized to the local mean, also 

compressed in the wavelet domain, Ul
3
. This is illustrated in Fig. 3.  

  
Fig. 3. Watermark embedding. The watermark is embedded using a secret or public key, 

making invisible changes to the cover work.  

 

One difference between the watermarking method proposed by [Naf08] and the one 

proposed in [BarBarPiv01], is given by the computation of the local variance – the second 

term – in (10). To obtain the new values of the texture, the local variance of the image to be 

watermarked is computed, using the relations (13) and (14). The local standard deviation 

image is decomposed using one iteration wavelet transform, and only the approximation 

image is kept. Relation (10) is then replaced with: 

        






  

        
3 2 1 2

3 3

0 θ 0   , 0

, , 16 2 , 2 , ,
l

k k k
k l l l

k x y

l i j I y i x j S i j U i j  (15) 

The second difference is that the luminance mask is computed on the approximation 

image from level l, where the watermark is embedded. The DWT of the original image using l 

decomposition levels was computed and the approximation subimage corresponding at level l 

was separated, obtaining the image 3

lI . The luminance content is computed using: 

     3, , , 256lL l i j I i j  (16) 

Since both factors are more dependent on the resolution level in the method proposed 

by Barni, the noise sensitivity function becomes: 

  
     

    
   

1.00 0,12 , 1
,

0.66 21, otherwise

l
l

l


  (17) 

It was considered the ratio between the correlation ρ(l) in Eq. (11) and the image 

dependent threshold Tρ(l), hence the detector was viewed as a nonlinear function with a fixed 

threshold. In [Naf07a], three detectors are used, to take advantage of the wavelet hierarchical 

decomposition. The watermark presence is detected,  

1) from all resolution levels, “all_levels”, 

2) separately from each resolution level, considering the maximum detector response from 

each level, “max_level”, 

3) separately from each subband, considering the maximum detector response from each 

subband, “max_subband”. 

Evaluating the correlations separately per resolution level or subband can be sometimes 

advantageous. In the case of cropping attack, the watermark will be damaged more likely in 
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the lower frequency than in the higher frequency, while lowpass filtering affects more the 

higher frequency than lower ones. Layers or subbands with lower detector response are 

discarded. This type of embedding combined with new detectors is more attack resilient to a 

possible erasure of the three subbands watermark. The detector “all_levels” evaluates the 

watermark’s presence on all resolution levels: 

 1 1 1d dd T , (18) 

where the correlation  1d  is given by: 

    
 



    

 
  

 
   

/2 1 /2 12 2 2
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0 θ 0    0 0 0

, , 3 4

l lM N
l

d l l
l i j l

I i j x i j MN . (19) 

The threshold for Pf ≤10
-8

 is   2
d1 ρd13.97T   , with: 
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 
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l lM N
l

l
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The second detector “max_levels” considers the responses from different levels, as 

d(l)=ρ(l)/T(l), with l{0, 1, 2}, and discards the detector responses with lower values:  

   2 max
l

d d l . (21) 

The third detector considers the responses from different subbands and levels, as d(l,θ) the 

ratio ρ(l,θ)/T(l,θ), with l,θ{0, 1, 2}, and discards the detector responses with lower values, 

   


3
,

max ,
l

d d l . (22) 

The correlation and threshold are computed with the same rationale on one subband, indicated 

by its orientation and level. 

 

Watermarking using the HWT. The 2D DWT is useful to embed the watermark 

because the visual quality of the images is very good. However, it has three main 

disadvantages [Kin01]: lack of shift invariance, lack of symmetry of the mother wavelets and 

poor directional selectivity. Caused by the lack of shift invariance of the DWT, small shifts in 

the input signal can produce important changes in the energy distribution of the wavelet 

coefficients. Due to the poor directional selectivity for diagonal features of the DWT the 

watermarking capacity is small. The most important parameters of a watermarking system are 

robustness and capacity. These parameters must be maximized. These disadvantages can be 

diminished using a complex wavelet transform as for example the 2D DTCWT [Kin00], 

[Kin01]. 

A very simple implementation of the HWT, recently proposed [FirNafBouIsa09] 

[AdaNafBouIsa07] has a high shift-invariance degree versus other quasi-shift-invariant 

wavelet transforms (WT) at same redundancy.  It has also an enhanced directional selectivity. 

All the WTs have two parameters: the mother wavelets (MW) and the primary resolution 

(PR), (number of iterations). The importance of their selection is highlighted in [Nas02]. 

Another appealing particularity of those transforms, coming from their multiresolution 

capability, is the interscale dependency of the wavelet coefficients.  

After the PhD thesis, we proposed to use our new implementation of the HWT 

transform [AdaNafBouIsa07] for image watermarking [NafFirBouIsa08]. The watermark 

capacity was studied in [MouMih02], where an information-theoretic model for image 

watermarking and data hiding is presented. Models for geometric attacks and distortion 

measures that are invariant to such attacks are also considered. The lack of shift invariance of 

the DWT and its poor directional selectivity are reasons to embed the watermark in the field 

of another WT. To maximize the robustness and the capacity, the role of the redundancy of 

the transform used must be highlighted first. An example of redundant WT is represented by 

the tight frame decomposition. In [HuaFow02] are analyzed the watermarking systems based 
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on tight frame decompositions. The analysis indicates that a tight frame offers no inherent 

performance advantage over an orthonormal transform (DWT) in the watermark detection 

process despite the well-known ability of redundant transforms to accommodate greater 

amounts of added noise for a given distortion. The overcompleteness of the expansion, which 

aids the watermark insertion by accommodating greater watermark energy for a given 

distortion, actually hinders the correlation operator in watermark detection. As a result, the 

tight-frame expansion does not inherently offer greater spread-spectrum watermarking 

performance. This analytical observation should be tempered with the fact that spread-

spectrum watermarking is often deployed in conjunction with an image-adaptive weighting 

mask to take into account the human visual model (HVM) and to improve perceptual 

performance. Another redundant WT, the DTCWT, was already used for watermarking 

[LooKin00]. The authors of this paper prove that the capacity of a watermarking system based 

on a complex wavelet transform is higher than the capacity of a similar system that embeds 

the watermark in the DWT domain. Many authors (e.g. [Dau80]) have suggested that the 

processing of visual data inside our visual cortex resembles filtering by an array of Gabor 

filters of different orientations and scales. The proposed implementation of HWT is efficient, 

has only a modest amount of redundancy, provides approximate shift invariance, has better 

directional selectivity than the 2D DWT and it can be observed that the corresponding basis 

functions closely approximate the Gabor functions. So, the spread spectrum watermarking 

based on the use of an image adaptive weighting mask applied in the HWT domain is 

potentially a robust solution that increases the capacity. 

Adapting the strategy already described previously to the case of HWT, new methods 

were proposed in [NafFirBouIsa08]. The coefficients z are complex, with real rz  and 

imaginary part iz .  The HWT orientations or preferential directions are: atan(1/2), /4, atan(2) 

(for  = 0, 1, 2), for the image  z  and -atan(1/2), -/4, -atan(2), (=0, 1, 2) for the image z  . 

The first three wavelet decomposition levels are used and the watermark is embedded 

into the real coefficients with positive and negative orientations, rz  and rz , respectively. 

The relations already described previously were used independently for each of these two 

images. The same message was embedded in both images, using the mask from [Naf07a].  

At the detection side, we consider the pair of images ( rz , rz ), thus having twice as 

much coefficients than the standard approach, and  takes all the possible values, atan(1/2), 

/4, atan(2).  

We will compare in the following watermarking systems based on DWT with the ones 

based on complex WTs, namely the HWT. 

 

Results for DWT based methods In [NafIsaBor06a], the system proposed by Barni et 

al. was modified, using the texture mask in (15). The image Barbara is watermarked with 

various values of the embedding strength . The binary watermark is embedded in all the 

detail wavelet coefficients of the first resolution level. Watermarked Barbara for =1.5 is 

shown in Fig. 4. 

Fig. 5 shows results for JPEG compression attack, for different quality factors: the 

ratio /T is plotted as a function of the peak signal-to-noise ratio (PSNR) between the marked 

(un-attacked) image and the original one, and respectively as a function of . The probability 

of false positive detection is set to 10
-8

.  
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Fig. 4 Original and watermarked Barbara images with  = 1.5. 

 

    
Fig. 5 Left: The ratio /T as a function of the PSNR between the marked and the original 

images, for different quality factors, JPEG compression. Right: Ratio /T as a function of 

embedding strength, for different quality factors, JPEG compression. Pf  is set to 10
-8

 . 

 

If this ratio is greater than 1 then the watermark is positively detected. Generally, for a 

PSNR higher than 30 dB, the original image and watermarked one are considered 

indistinguishable. For compression quality factors higher or equal than 25 the distortion 

introduced by JPEG compression is tolerable. For PSNR in the range of 30-35 dB, of practical 

interest, the watermark is detected for all significant compression quality factors. Increasing 

the embedding strength, the PSNR of the watermarked image decreases, and the ratio /T 

increases. The watermark is still detectable even for very small values of . For the quality 

factor Q=5 (or a compression ratio CR=32), the watermark is still detectable even for =0.5. 

Fig. 6 shows the detection of a true watermark for various quality factors, in the case 

of =1.5; the threshold is well below the detector response.  

 

 
Fig. 6 Left: Detector response , threshold T, as a function of different quality factors  (JPEG 

compression). The watermark is successfully detected. Pf  is set to 10
-8

. Right: Highest 

detector response, 2, corresponding to a fake watermark and threshold T. The threshold is 

above the detector response. 
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 [NafIsaBor06a] [BarBarPiv01] 

 0.3199 0.038 

T 0.0844 0.036 

2 0.0516 0.010 

Table 1. A comparison for JPEG compression with a compression ratio CR = 46. The detector 

response for the original embedded watermark ρ, the detection threshold T, and the second 

highest detector response ρ2 are given. Pf = 10
-8

 and 1000 marks were tested. The detector 

response is higher than in Barni’s case. 

 

   
Fig. 7 Original image Lena; mask from [NafIsaBor06b] and Barni’s mask for level l=0. The 

masks are the complementary of the real ones. 

 

In Table 1 we give a comparison between the two methods, for the Lena image, =1.5 

in the case of JPEG compression with a quality factor of 5 (compression ratio of 46). 

In [NafIsaBor06b], Barni’s method is modified, using the texture mask in (15), as well 

as the luminance factor in (16). The masks obtained are shown in Fig. 7. The improvement is 

clearly visible around edges and contours. The method is applied in two cases, when the 

watermark is inserted in level 0 only and when it’s inserted in level 1 only. JPEG compression 

is again considered. The image Lena is watermarked at level l=0 and respectively at level l=1 

with  ranging from 1.5 to 5. The binary watermark is embedded in all the detail wavelet 

coefficients of the resolution level, l as previously described. For =1.5, the watermarked 

images, in level 0 and level 1, as well as the image watermarked using Barni’s mask, are 

shown in Fig. 8. Obviously the quality of the watermarked images are preserved using the 

new pixel-wise mask. The PSNR values are 38 dB (level 0) and 43 dB (level 1), compared to 

Barni’s method, with a PSNR of 20 dB. 

 

   
Fig. 8 Watermarked images,  =1.5, for [NafIsaBor06b], level 0 (PSNR = 38 dB); level 1 (43 

dB); for [BarBarPiv01], level 0 (20 dB). 

 

The PSNR values are shown in Fig. 9(left) as a function of the embedding strength. 

The watermark is still invisible, even for high values of .  
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Fig. 9 Left: PSNR as a function of . Embedding is made either in level 0 or in level 1. Right: 

Detector response ρ, threshold T, highest detector response, ρ2, corresponding to a fake 

watermark, as a function of different quality factors (JPEG compression). The watermark is 

successfully detected. Pf is set to 10
−8

. Embedding was made in level 0. 

 

  
Fig. 10 Ratio ρ/T as a function of the embedding strength . The watermarked image is JPEG 

compressed with different quality factors Q. Pf is set to 10
−8

. Embedding was made in level 0 

(left), and in level 1 (right). 

 

Fig. 10 gives the results for JPEG compression. In all experiments, the probability of 

false positive detection is set to 10
−8

. The watermark is successfully detected for a large 

interval of compression quality factors.For PSNR values higher than 30 dB, the watermarking 

is invisible. For quality factors Q≥10, the distortion introduced by JPEG compression is 

tolerable. For all values of , the watermark is detected for all the significant quality factors 

(Q≥10). Increasing the embedding strength, the PSNR of the watermarked image decreases, 

and ρ/T increases. For the quality factor Q = 10 (or a compression ratio CR = 32), the 

watermark is still detectable even for low values of . 

Fig. 9 (right) shows the detection of a true watermark from level 0 for various quality 

factors, for =1.5; the threshold is below the detector response. The selectivity of the 

watermark detector is also illustrated, when a number of 999 fake watermarks were tested: the 

second highest detector response is shown, for each quality factor. False positives are 

rejected.  

In Table 2 a comparison between [NafIsaBor06b] and [BarBarPiv01], can be seen for 

JPEG compression with Q=10 (compression ratio of 32). The detector response for the 

original watermark ρ, the detection threshold T, and the second highest detector response ρ2, 

when the watermark was inserted in level 0 are given. The detector response is higher than for 

Barni et al. The method in [Naf07a] allows embedding of the watermark in all resolution 

levels, except the last one (low resolution). Three types of detectors are used, as described 

before.  
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Various images of size 512x512, have been watermarked at levels l{0, 1, 2} using 

the new mask. The embedding strength is =1.5. Based on human observation and the peak-

signal-to-noise ratio, PSNR, the images are indistinguishable from the original ones. For 

Barni et al. method, a watermark is embedded in all the detail wavelet coefficients of the first 

resolution level, l=0, for =0.2, that results in a similar image quality (see Fig.11). This has 

been concluded in [Naf07b], where by limiting the watermark strength such that the PSNR is 

35 dB and in average the percentage of affected pixels is less than 25%, the quality of the 

images is greatly improved. Girod’s model has been used for determining the location and 

number of affected pixels (Girod, 1989). 

 

 [NafIsaBor06b] [BarBarPiv01]  

ρ 0.0750 0.062 

T 0.0636 0.036 

ρ2 0.0461 0.011 

Table 2. A comparison for JPEG compression with a compression ratio CR = 32. 

 

 

    
Fig. 11 (left) Original image Lena, (middle) Watermarked images for [Naf07a], =1.5, 

PSNR=36.86 dB, (right) [BarBarPiv01], =0.2, PSNR=36.39 dB. 

 

 

Detector response 

vs. attack 

Method in [Naf07a]- DWT domain Barni’s method 

DWT domain 1-All levels 2-Max level 3-Max subband 

JPEG Q=10 2.38 1.98 1.44 1.75 

Median filt., M=5 1.32 1.12 1.46 0.25 

Scaling, 50% 4.06 5.21 5.76 1.85 

Cropping, 

512x512 -> 32x32 
0.68 0.98 1.73 1.48 

Gamma corr., =2 20.32 29.19 28.06 32.54 

Motion blur, 

L=31, θ=11 
1.98 5.48 8.04 6.14 

Table 3. Resistance to different attacks, for the method proposed in [Naf07a].  The detector 

response is a mean value of different responses. 

 

For instance, in Barni’s case, the watermarked image with =0.2 has a PSNR of 36.39 dB, 

11.84% affected pixels, compared to the one watermarked with =1.5 has a PSNR of 20 dB, 

and all pixels are affected. What are kept constant for comparison are the 2D watermarks 

embedded in the first level, and the image quality. The method [Naf07a] cannot be compared 

with the one in [BarBarPiv01] when the watermark is embedded in all resolution levels, 

simply because their mask isn’t suited for embedding in other levels than the highest 
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resolution level. Results for some of the standard images from the USC SIPI Image Database 

are given.  

Table 3 includes PSNR values for the two cases. For the first detector, an estimate of 

the false positive probability is shown for the image Lena, before and after JPEG compression 

attack, with quality factor Q=10, as a function of the detection thresholds, Tρ1. The threshold 

values have been computed using as estimate the variance of the ρ1 obtained from 

experiments. The mean PSNR for the twelve images is 34.16 dB for the proposed method 

[Naf07a] and 34.06 dB for Barni’s method. 

Tests were made for JPEG compression, median filtering, cropping, resizing, gamma 

correction and blurring. Table 3 shows the mean values of the detector responses for each 

attack. A particular attack parameter is chosen where the watermark is still detectable by at 

least one detector. For compression, the method in [Naf07a] successfully detects the 

watermark at Q=10. The 1st detector is better in all cases. This new method has better results 

than Barni’s technique. The watermark of both methods survived in all images for median 

filtering with kernel sizes up to 3. For kernel size 5, the watermark of [Naf07a] using the first 

and third detector is detectable; Barni’s method fails to detect the watermark. In the case of 

scaling to 50%, the watermark was successfully detectable in both cases, with better results 

for [Naf07a]. The third detector has the best performance in detecting the mark. The 

watermark of [Naf07a] was successfully detected in the cropped image of 32x32, only with 

the third detector, which proves its efficiency. Barni’s method detects the watermark with 

similar detector responses as in the case of the third detector. As expected for normalized 

correlation detection, both methods are practically insensitive to gamma correction 

adjustment. For the motion blur attack, both methods have successfully detected the 

watermark in all cases. Detector 3 has slightly better results than the others. 

 

 
Fig. 12. Experimentally evaluated probability of false positive Pf vs. Tρ1/σρ1, the ratio between 

the detection threshold and standard deviation of the correlations in the case where an 

incorrect watermark was embedded. The theoretical trend is also shown (‘o’ marker). Tests 

were made on Lena, before and after JPEG compression with quality factor 10, using 510
4
 

different watermarks. 
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For the first detector, the probability of false positive was estimated by searching 

many different watermarks into one watermarked image, Lena. Each threshold Tρ1 was set in 

such a way to grant a given value of Pf. The trial was repeated for values of Pf ranging from 

10
-1

 through 10
-4

. In total 5x10
4
 watermarks per image have been tested. The estimation has 

been done before any type of manipulation and after JPEG compression, with quality factor 

10. The estimated Pf is plotted in Fig. 12 versus the ratio Tρ1/σρ1 between the detection 

thresholds and standard deviations of correlations for the case corresponding to certain 

estimates of this probability of false positive. This case corresponds to the situation where the 

image is watermarked with a code Y other than X. 

Surprisingly, the estimated false alarm Pf, is lower in the case of compression than in 

the case of no attack, for the same detection threshold. This can be explained by the fact that 

before compression, the empirical pdf of the correlations in the case for an incorrect 

watermark is embedded, was not Gaussian. Although the two empirical pdf’s are closer after 

the attack, they are still very good separated and the empirical pdf for an incorrect watermark 

has the mean below zero, compared to the equivalent one before – which is centered on zero. 

Thus setting a particular threshold can indeed result in a lower false alarm after attack. Similar 

results were obtained for Barbara, and for the same attack. 

For the first detector, the obtained probability of false positive is close to the expected 

one. The assumption that the wavelet coefficients from different levels and subbands are i.i.d. 

is thus reasonable and the detector has a good performance. 

Results for methods based on the Hyperanalytic Wavelet transform In 

[NafFirBouIsa08] the watermark is embedded in the HWT domain, in all levels (0, 1 and 2) 

and all orientations (positive and negative). The test image is Lena, of size 512x512. For 

=1.5, the watermarked image has a PSNR of 35.63 dB. The original image, the 

corresponding watermarked image and the difference image are presented in Fig. 13.  

 

   
Fig. 13. Original and watermarked images with method ([NafFirBouIsa08]), for =1.5, 

PSNR=35.63 dB; Difference image, amplified 8 times. 

 

Measure of invisibility vs. methods DWT Barni’s method  HWT 

PSNR 36.86 dB 36.39 dB 35.60 dB 

Weighted PSNR 53.20 dB 33.20 dB 52.00 dB 

Table 4. Comparison of invisibility. 

 
The watermarked images have been exposed at some common attacks: JPEG 

compression with different quality factors (Q), shifting, median filtering with different 

window sizes M, resizing with different scale factors, cropping with different areas remaining, 

gamma correction with different values of γ, blurring with a specified point spread function 

(PSF) and perturbation with AWGN with different variances. Resistance to unintentional 

attacks, for watermarked image Lena, can be compared to the results obtained using the 

watermarking methods in [BarBarPiv01] and [Naf07a] analyzing Table 4. For the method in 

[Naf07a], the same watermark strength, 1.5 is used and the watermark is embedded in all 
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three wavelet decomposition levels, resulting in a PSNR of 36.86 dB. For the method in 

[BarBarPiv01], the watermark strength 0.2 is used and the embedding is made only in the first 

resolution level, resulting in a similar quality of the images (PSNR=36.39 dB).  

 

Attacks vs. 

detector 

response 

DWT-[Naf07a], =1.5 DWT-

[BarBarPiv01], 

=0.2 

HWT-[NafFirBouIsa08], 

=1.5 

all 

levels 

max 

level 

max 

subband 

all 

levels 

max 

level 

max 

subband 

Before attack 21.57 39.12 33.60 44.31 24.78 43.18 26.30 

JPEG, Q=50 5.45 6.76 5.02 6.22 6.25 7.87 4.85 

JPEG, Q=25 3.02 3.67 2.60 3.03 3.23 4.19 2.62 

JPEG, Q=20 2.55 3.08 2.09 2.38 2.72 3.58 2.33 

Median filter, 

M=3 
4.29 4.58 4.87 1.57 4.59 5.42 4.37 

Median filter, 

M=5 
1.66 1.24 2.27 0.59 1.61 1.64 1.49 

Resizing, 0.75 9.53 15.86 15.64 14.09 10.93 19.34 14.67 

Resizing, 0.50 4.21 5.72 5.75 2.31 4.56 6.14 8.71 

Cropping, 

256x256 
7.40 12.14 17.10 18.08 8.68 15.20 13.82 

Cropping, 

128x128 
3.11 4.66 8.31 8.01 3.53 6.04 6.86 

Cropping, 

64x64 
1.10 1.72 4.45 3.92 1.32 2.47 3.71 

Gamma corr., 

=1.5 
22.18 39.76 33.74 43.04 25.31 43.61 26.45 

Gamma corr.,   

=2 
22.59 39.70 32.98 42.43 25.62 43.24 25.88 

Blur, L=31, 

β=11 
2.69 7.81 9.56 9.05 3.05 9.18 7.55 

LPCD, 

N=5,L=6 

9.99 16.13 15.33 24.84 12.23 19.58 12.34 

Table 5. Resistance to different attacks, for HWT based method compared to DWT based 

methods. 

 

We have submitted the watermarked images to a local desynchronization attack (DA): 

local permutation with cancellation and duplication (LPCD) DAs [AngBarMer08], 

[NafIsa08]. The parameters used in the attack were the ones that visually damage the image 

less indicated by the authors, N=5 and L=6. The watermark is successfully detected each 

time, for each method. An example for the attack corresponding at the last line in table 5 is 

presented in Fig. 14. 

From the results, it is clear that embedding in the real parts of the HWT transform 

yields in a higher capacity at the same visual impact and robustness. In fact the results 

obtained in [NafFirBouIsa08] are slightly better than the results obtained with the DWT-based 

methods for JPEG compression, median filtering with window size M=3, resizing and gamma 

correction. For the other attacks the results obtained are similar with the results of the 

watermarking methods based on DWT.  
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Fig. 14a: (left): Watermarked image in the DWT domain, having a PSNR=36.86 dB and a 

weighted PSNR=53.20 dB compared to the original Lena, (middle): Distorted watermarked 

with the LPCD attack N=5 and L=6 with PSNR=29.20 dB, weighted PSNR=38.41 dB. 

(right):  Difference between the two images, magnified 100 times. 

 

   

Fig. 14b: (left): Watermarked image in the HWT domain, having a PSNR=35.60 dB and a 

weighted PSNR=52 dB compared to the original Lena, (middle):  Distorted watermarked with 

the LPCD attack N=5 and L=6 with PSNR=28.16 dB, weighted PSNR=37.87 dB, (right):  

Difference between the two images, magnified 100 times. 

 

In conclusion, for a watermarking system, robustness evaluation should be made if 

invisibility criteria are satisfied. For this purpose, perceptual watermarks are being used to 

overcome the issue of robustness against invisibility. In the literature, there was proposed a 

blind spread spectrum technique that uses a perceptual mask in the wavelet domain, taking 

into account the noise sensitivity, texture and the luminance content of all image subbands. 

We described new techniques proposed, based on the modifications of this perceptual mask, 

in order to increase robustness, while still maintaining imperceptibility. Moreover, using the 

new mask, information is successfully hidden in the lower frequency levels, thus increasing 

the capacity and making the watermark more robust to common attacks that affect both high 

frequencies and low frequencies of the image. A good balance between robustness and 

invisibility of the watermark is achieved when embedding is made in all detail subbands for 

all resolution levels, except the coarsest level; this can be particularly useful against erasure of 

high frequency subbands containing the watermark in Barni’s system. 

A nonlinear detector with fixed threshold – as ratio between correlation and the image 

dependent ratio – has been used; three watermark detectors were proposed in [Naf07a] that 

take advantage of the hierarchical wavelet decomposition: 1) from all resolution levels, 2) 

separately from each level, considering the maximum detector response for each level and 3) 

separately from each subband, considering the maximum detector response for each subband. 

This has been advantageous for cropping, scaling and median filtering where the 3rd detector 

shows improved performance. We tested our methods against different attacks, and found out 

that it is better than Barni’s method. The behavior of our methods can be explained by the fact 

that we have used a better estimate of the mask and we took advantage of the diversity of the 

wavelet decomposition. The effectiveness of the new perceptual mask is appreciated by 

comparison with Barni’s method. 
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The HWT is a very modern WT and a very simple implementation of this transform 

has been used, which permits the exploitation of the mathematical results and of the 

algorithms previously obtained in the evolution of wavelets theory. It does not require the 

construction of any special wavelet filter. It has a very flexible structure, as we can use any 

orthogonal or bi-orthogonal real mother wavelets for the computation of the HWT. The 

presented implementation leads to both a high degree of shift-invariance and to an enhanced 

directional selectivity in the 2D case. An ideal Hilbert transformer was considered. A new 

type of pixel-wise masking for robust image watermarking in the HWT domain has been 

presented [NafFirBouIsa08]. Modifications were made to two existing watermarking 

technique proposed in [BarBarPiv01] and [Naf07a], based on DWT. These techniques were 

selected for their good robustness against the usual attacks. The method is based on the 

method in [BarBarPiv01], with some modifications. The first modification is in computing the 

estimate of the variance, which gives a better measure of the texture activity. An improvement 

is also owed to the use of a better luminance mask. The third improvement is to embed the 

watermark in the detail coefficients at all resolutions, except the coarsest level, making the 

watermark more attack resilient. The HWT embedding exploits the coefficients  rz  and  rz . 

The simulation results illustrate the effectiveness of the proposed algorithms. The 

methods were tested against different attacks (in terms of robustness). The HWT based 

watermarking method is similar and in some cases outperforms the DWT based methods, but 

it has a superior capacity than the DWT based methods.  

Other embedding mechanisms can also be conceived. it can be observed that the 

coefficients iz  and iz  are not exploited yet. So, the redundancy of the embedding can be 

increased exploiting the quaternions  iirr zzzz  ,,, . Another embedding mechanism can use 

complex images of the form ir jzzz    or ir jzzz   . The watermark can be embedded 

in the absolute value or in the phase of those images. We have already tried the embedding in 

the absolute values, [NafFirIsaBou08], obtaining similar results with those presented. The 

observation that most of the information contained into a complex image is carried by its 

phase component can be taken into account in the future.  Another future research direction is 

the use of the statistical properties of the HWT to improve the watermark detection. 

 

2.2.2 Best mother wavelet for perceptual watermarks 

In the paper [NafIsa09] we investigated the choice of the best mother wavelet for 

perceptual data hiding [Naf08, NafNafIsaBor08] in the wavelet domain. The watermarked 

images are submitted to a series of attacks based on normal image processing techniques. 

Simulations show that regardless of the content of the images (contours, textures, 

homogeneous zones), the best mother wavelets are the ones used in the JPEG2000 standard.  

Initially, the proposed technique was fine-tuned on the DWT with the mother wavelet 

Daubechies-6. The question was however if this mother wavelet gives the best results in terms 

of detection, in the case of attacks based on normal processing techniques. We investigate the 

choice on the best mother wavelet for optimization before and after attacks based on normal 

processing techniques on various watermarked images. 

Various images [USC09], [Pic09] have been watermarked at level l=0 with embedding 

strengths =1.5 [NafIsaBor06] and α=0.2 [BarBarPiv01] resulting in a similar image quality. 

From those images we present results for Lena, Texmos1.p512, Baboon [USC09] and Picasso 

[Pic09], a less known image, but nevertheless also interesting for its content. 

Generally, images contain three types of regions: homogeneous zones, textures and 

contours. We have identified these regions for the test images using the normalized local 

standard deviation, nlv, of the original image. Pixels with nlv>0.35 are from contours, pixels 

with 0.045<nlv<0.35 are from textures and pixels with 0.045>nlv are from homogeneous 
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zones. We chose three categories of test images, containing mostly contours (class 3, 

Texmos1.p512), textures (class 2, Lena and Baboon) respectively homogeneous zones (class 1, 

Picasso); see Table 2, second column. 

 

   
 

    

Fig 15. Top: Images used in experiments; Bottom: Segmentation in three types of regions, 

criterion normalized local standard deviation. Regions: red=1/Homogeneous 00.045; 

green=2/Textures 0.045 0.35; blue=3/Contours 0.351 
 

 PSNR (dB) 

Image vs. 

Mother wavelet  
db2 db3 db4 db5 db6 db7 bior4.4 bior2.2 Barni 

Lena 37.92 38.16 38.28 38.33 38.35 38.41 38.26 35.97 36.39 

Picasso 33.97 34.04 34.15 34.25 34.27 34.35 34.02 32.07 35.95 

Texmos1p.512 28.09 28.21 28.28 28.26 28.29 28.33 28.28 26.08 29.04 

Baboon 33.30 33.39 33.40 33.43 33.46 33.47 33.30 31.32 33.33 

Table 6. Comparison of invisibility 
 

Image 

Predominant 

class 

/Percentage 

Best mother 

wavelet 

Observations 

1/Homogeneous 

zones 
2/Textures 3/Contours 

Lena 2/48.50 bior2.2, db7 46.61% 48.50% 4.89% 

Picasso 1/56.28 bior2.2, bior4.4 56.28%  30.19% 13.54% 

Texmos1 3/92.15 bior2.2, bior4.4 0.00%  7.85% 92.15% 

Baboon 2/76.28 bior2.2, db6 1.21% 76.28% 22.51% 

Table 7. Image content classification based on the local standard deviation; best mother 

wavelet for watermarking for each image. 

 

For the watermarking method [NafIsaBor06], we choose a different mother wavelet for 

each experiment, having n vanishing moments, with n ranging from 2 to 7: db2, db3, and so 

on, as well as the biorthogonal mother wavelets used in the JPEG2000 standard: Daubechies 

9/7 (bior4.4) and the 5/3 LeGall wavelet (bior2.2). We chose them because they are extremely 

short, symmetric, hence avoiding boundary artifacts, with a maximum number of vanishing 

moments and minimum support [UnsBlu03]. 
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A binary watermark is embedded in all the detail wavelet coefficients of the first 

resolution level, l=0, as previously described. The peak signal-to-noise ratio values are given in 

Table 6. The highest PSNR values are obtained for the mother wavelet db7, followed by the 

ones with db6, while the smallest PSNR values are obtained for bior2.2.  

The watermarked images were tested against attacks based on normal signal processing 

techniques: JPEG and JPEG2000 compression, median filtering, cropping, resizing and gamma 

correction, for different parameters. For each attacked image, the ratio correlation per threshold 

ρ/T
 is computed for Pf =10

-8
. Results obtained for Lena are presented in Table 8.  

The highest results are marked with bold characters, while the second highest results 

are marked with bold italic characters. Counting the number of “best” detector response 

(highest and second highest) for each mother wavelet, the best mother wavelets for the image 

Lena are: bior2.2, db7, db6, bior4.4, as seen in the third column of Table 7.  

Repeating the above procedure, we obtain similar results for the other test images; see 

Table 9-12. Practically, we can see that regardless the content of the image,  the best mother 

wavelet that optimizes the detection for the method in [NafIsaBor06] is also the one proposed 

in the standard JPEG2000 (bior2.2 followed closely by bior4.4). Unfortunately, this also leads 

to smallest PSNR values between the original and watermarked images. 
 

 
Detection response for DWT based method [NafIsaBor06] using different 

mother wavelets vs. Barni’s method [BarBarPiv01] 

Attack vs. 

Mother 

wavelet 

db2 

(3) 

db3 

(0) 

db4 

(2) 

db5 

(1) 

db6 

(4) 

db7 

(4) 

bior4.4 

(3) 

bior2.2 

(11) 

Barni 

(6/14) 

Before 37.61 39.08 39.29 40.88 40.92 41.01 40.79 42.76 44.31 

JPEG,Q=50 6.08 6.05 4.92 6.15 5.53 5.06 6.12 7.47 6.46 

JPEG,Q=20 2.90 2.79 1.90 2.89 2.34 1.99 2.66 3.29  2.47 

Median filt., 

33 
3.65 3.45 3.48 2.91 3.00 2.83 3.80 3.50 1.06 

Median filt., 

55 
1.65 1.57 1.63 1.11 1.40 1.15 1.70 1.74 0.49 

Resizing, ¾ 14.69 16.24 15.58 17.17 16.81 16.55 17.38 17.83 14.35 

Resizing, ½ 8.19 1.09 0.56 6.90 0.26 4.42 7.80 9.04 2.35 

Cropping, 

256256 
11.71 11.76 15.94 12.25 13.07 15.14 13.35 15.12 17.20 

Cropping, 

6464 
1.98 1.91 3.15 1.93 2.18 2.72 2.22 2.60 3.34 

Gamma 

corr., =0.5 
36.06 37.35 37.62 39.09 39.07 39.25 38.95 40.87 44.51 

Gamma 

corr., =2 
38.18 39.71 39.81 41.35 41.49 41.46 41.25 43.01 42.66 

Blurring, 

L=31, =31 
6.95 8.20 8.92 9.30 9.56 9.82 9.66 9.28 8.86 

JPEG2000, 

CR=20 
20.90 24.69 22.80 24.48 25.47 23.09 22.02 24.81 28.91 

JPEG2000, 

CR=12.5 
30.53 33.62 32.43 34.53 35.01 33.46 33.05 35.24 38.56 

Table 8. Robustness in the case of different types of attacks, for the image Lena. 
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Detection response for DWT based method [NafIsaBor06] using different 

mother wavelets vs. Barni’s method [BarBarPiv01] 

Attack vs. 

Mother 

wavelet 

db2 

(2) 

db3 

(2) 

db4 

(1) 

db5 

(1) 

db6 

(0) 

db7 

(1) 

bior4.4 

(7) 

bior2.2 

(12) 

Barni 

(0/14) 

Before  22.15 22.90 22.70 24.07 24.05 23.57 24.41 26.60 18.81 

JPEG,Q=50 2.89 2.96 2.24 2.78 2.37 1.86 3.01 4.47 1.51 

JPEG,Q=20 1.50 1.66 0.83 1.54 1.10 0.60 1.58 2.04 0.70 

Median filt., 

33 
2.01 1.70 1.46 1.51 1.19 0.57 1.35 1.36 0.47 

Median filt., 

55 
-0.01 -0.18 -0.28 -0.28 -0.56 -0.76 -0.22 0.05 0.39 

Resizing, ¾ 8.23 9.15 8.84 9.55 9.28 9.03 9.72 10.16  5.00 

Resizing, ½ 5.11 0.68 0.42 4.22 -0.14 3.17 4.83 5.83 1.20 

Cropping, 

256256 
8.94 9.68 10.97 9.78 10.32 10.95 10.54 11.79 8.96 

Cropping, 

6464 
1.50 2.19 2.56 1.93 1.95 2.95 2.59 2.94 1.97 

Gamma 

corr., =0.5 
20.17 20.89 20.62 21.80 21.72 21.29 22.19 24.14 21.42 

Gamma 

corr., =2 
25.06 25.83 25.73 27.33 27.46 26.90 27.44 29.84 17.26 

Blurring, 

L=31, =31 
3.78 3.48 3.58 4.16 4.11 4.01 4.01 4.26 2.81 

JPEG2000, 

CR=20 
14.09 15.72 14.54 15.50 15.71 14.04 15.92 17.56 11.81 

JPEG2000, 

CR=12.5 
18.26 19.45 18.84 19.94 20.06 19.15 20.37 22.31 15.90 

Table 9. Robustness in the case of different types of attacks, for the image Picasso. 

 

 
Detection response for DWT based method [NafIsaBor06] using different 

mother wavelets vs. Barni’s method [BarBarPiv01] 

Attack vs. 

Mother 

wavelet 

db2 

(0) 

db3 

(0) 

db4 

(0) 

db5 

(0) 

db6 

(3) 

db7 

(1) 

bior4.4 

(9) 

bior2.2 

(13) 

Barni 

(0/14) 

Before  22.34 23.46 24.57 23.67 24.47 24.77 24.84 27.10 21.87 

JPEG,Q=50 13.62 14.34 14.86 14.21 14.77 14.75 14. 92 17.24 12.74 

JPEG,Q=20 6.91 7.35 7.38 7.16 7.61 7.01 7.74 8.84 6.09 

Median filt., 

33 
2.62 2.76 2.22 2.46 2.45 2.21 2.67 2.90 0.25 

Median filt., 

55 
0.36 0.08 -0.08 -0.30 0.03 -0. 44 -0.17 0.08 0.02 

Resizing, ¾ 8.18 9.70 9.53 9.57 9.92 9.92 10.32 10.94 6.27 

Resizing, ½ 4.92 0.91 0.25 4.16 0.11 3.50 5.41 6.57 1.18 

Cropping, 

256256 
10.75 11.61 12.16 11.71 12.08 12.10 12.41 13.54  10.55 

Cropping, 

6464 
2.74 2.46 2.91 2.88 2.94  2.64 2.74 3.04 2.48 

Gamma 24.46 26.09 27.19 26.24 27.05 27.61 27.07 29.15 20.05 
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Detection response for DWT based method [NafIsaBor06] using different 

mother wavelets vs. Barni’s method [BarBarPiv01] 

Attack vs. 

Mother 

wavelet 

db2 

(0) 

db3 

(0) 

db4 

(0) 

db5 

(0) 

db6 

(3) 

db7 

(1) 

bior4.4 

(9) 

bior2.2 

(13) 

Barni 

(0/14) 

corr., =0.5 

Gamma 

corr., =2 
21.32 21.57 22.55 21.86 22.52 22.47 23.44 25.48 24.54 

Blurring, 

L=31, =31 
3.23 3.54 3.85 3.86 3.84 4.14 4.15 4.43 3.23 

JPEG2000, 

CR=20 
8.79 10.61 9.99 9.39 10.65 9.71 9.69 10.74 9.53 

JPEG2000, 

CR=12.5 
14.85 16.89 16.78 15.90 17.33 16.73 16.59 17.93 15.55 

Table 10. Robustness in the case of different types of attacks, for the image texmos1.p512. 

 

 
Detection response for DWT based method [NafIsaBor06] using different 

mother wavelets vs. Barni’s method [BarBarPiv01] 

Attack vs. 

Mother 

wavelet 

db2 

(2) 

db3 

(4) 

db4 

(1) 

db5 

(0) 

db6 

(5) 

db7 

(2) 

bior4.4 

(2) 

bior2.2 

(10) 

Barni 

(2/14) 

Before  24.23 24.97 24.85 24.91 25.30 25.06 25.34 27.38 25.16 

JPEG,Q=50 9.62 9.78 9.25 9.59 9.51 9.20 9.76 11.14 9.56 

JPEG,Q=20 5.03 5.08 4.17 4.91 4.67 4.20 4.89 5.81 4.50 

Median filt., 

33 
1.52 1.33 0.95 0.95 0.79 0.72 1.09 1.44 0.25 

Median filt., 

55 
-0.16 -0.40 -0.54 -0.51 -0.83 -0.64 -0.47 -0.17 -0.01 

Resizing, ¾ 9.09 11.28 10.49 10.10 11.24 10.48 10.34 11.00 8.81 

Resizing, ½ 6.05 0.80 0.20 4.96 0.06 3.79 6.02 7.33 1.95 

Cropping, 

256256 
12.56 12.86 15.00 13.14 13.68 14.84 13.88 15.27 15.24 

Cropping, 

6464 
1.79 1.77 2.74 1.77 2.00 2.41 2.08 2.36 3.03 

Gamma 

corr., =0.5 
23.34 24.56 24.20 24.14 24.86 24.34 24.37 26.40 24.92 

Gamma 

corr., =2 
24.53 24.90 24.94 25.04 25.22 25.15 25.63 27.56 24.85 

Blurring, 

L=31, =31 
2.92 3.03 3.09 3.10 3.18 3.15 3.30 3.66 2.69 

JPEG2000, 

CR=20 
12.24 14.28 13.06 12.99 14.15 12.75 12.56 13.78 14.11 

JPEG2000, 

CR=12.5 
17.69 19.46 18.52 18.62 19.53 18.39 18.31 20.00 19.57 

Table 11. Robustness in the case of different types of attacks, for the image Baboon. 

 

Wavelets have two important properties: the magnitudes of the wavelet coefficients are 

strongly correlated across scales and the wavelet coefficients of a piecewise smooth image fall 

into two categories: large amplitude coefficients located near edges, and the smaller ones, 
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located in smooth regions [UnsBlu03]. The JPEG2000 algorithm takes into account these 

properties. In fact, it uses the filters LeGall 5/3 for lossless compression; these are used to 

construct the mother wavelet bior2.2 which has a more compact support, and is suitable for 

edges from an image.  

The perceptual masking embeds the watermark with a higher strength in high wavelet 

coefficients which means the watermarking method in [NafIsaBor06] can be optimized on the 

criterion of the choice of the best mother wavelet, in the same manner as the image 

compression method recommended in the JPEG2000 standard [UnsBlu03]. Moreover, the two 

image processing methods are optimized using the same mother wavelet.  

The best mother wavelet for the method proposed in [NafIsaBor06], regardless of the 

content of the host image, is bior2.2, as seen from the results. The mother wavelet bior2.2 leads 

to better detection results than the ones obtained in [BarBarPiv01] for all the host images tested 

here. For highly textured images, there are attacks where Barni’s method is better (6 out of 14 

cases for Lena and 2 out of 14 cases for Baboon). For images with contours or homogeneous 

zones, for all attacks, the method in [NafIsaBor06] using bior2.2 works better than the method 

in [BarBarPiv01]. This is in accordance with [UnsBlu03]: the approximation properties of the 

LeGall 5/3 are much better than those of the Daubechies4 filter of the same order. 

 

2.2.3 Watermarking using turbocodes  

 

Watermarking robustness can be also assured by using some sort of encoding of the 

watermark, usually a repetition code or an error correcting code [Naf08]. The association 

between watermarking and turbo codes is effective in the wavelet domain 

[SerAmbTomWad03], [AbdGlaPan02], [BalPer01].  

In [NafIsaKov09] we proposed a watermarking system that uses the biorthogonal 

discrete wavelet transform, DWT and the message is encoded before embedding. The method 

is very simple, implying four steps: turbo coding of the watermark message, embedding the 

turbo coded watermark into the host image using a perceptual mask, extraction of the turbo 

coded watermark from the watermarked, possibly corrupted image, and turbo decoding of the 

watermark. The encoded watermark is masked using the same mask described previously.  

The orthogonal DWT permits the analysis in the wavelet domain. The analyzed signal 

can be exactly reconstructed using the inverse DWT (IDWT). The same scaling function and 

mother wavelets are used in the analysis and in the reconstruction stages. The biorthogonal 

DWT was proposed by Feauveau [Fea92]. This is a more flexible DWT. Sacrificing the 

perfect reconstruction (a delayed variant of the analyzed signal is reconstructed) different 

couples of scaling functions and mother wavelets can be used for analysis and for 

reconstruction. In fact, our system embeds the watermark in the biorthogonal DWT domain. 

The image I , of size 2 2M N , is decomposed into 4 levels of the DWT, where 
lI   is 

the subband from level  0,1,2,3l , and orientation  0,1,2,3  (horizontal, diagonal and 

vertical detail subbands, and approximation subband). A binary watermark message m  is 

turbo coded and the result is casted on subbands on different levels of resolutions,  ,lx i j
. 

The turbo coded watermark  ,lx i j
 is embedded in the wavelet coefficients of the thl level, 

having the magnitude higher than a threshold T : 

          , , , , ,  if ,l l l l lI i j I i j w i j x i j I i j T        (23) 

where α is the embedding strength,  ,lw i j
 is a weighing function, which is a half of the 

quantization step  ,lq i j
. The quantization step of each coefficient is computed as in 
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[NafNafIsaBor08] and the embedding takes place in all resolution levels,  0,1,2l , except 

the coarsest resolution level. 

The detection requires the original watermark and the original image, or some 

significant vector extracted from its wavelet transform, specifically in this case, the detail 

coefficients with an absolute value above the threshold T . The watermark bit is obtained from 

the wavelet coefficient  ˆ ,lI i j  of the possibly distorted image ˆwI , and the original coefficient 

 ,lI i j : 

  
   

 
 

ˆ , ,
ˆ , ,  if ,

,

l l

l l

l

I i j I i j
x i j I i j T

w i j

 

 




   (24) 

The estimate of the encoded message is decoded and the watermark message m̂  is obtained. 

We compute at the output the bit error rate between the original watermark message m  and 

the received watermark message m̂ : 

 
number of erroneous bits

number of bits
BER   (25) 

which gives a measure of the performance. In the following, we explain the architecture of the 

chosen turbo code. 

Turbo codes [BerGlaThi93] [BerGla96] are characterized by their powerful error 

correcting capability while maintaining reasonable complexity and flexibility in terms of 

coding rates. Douillard and Berrou have proposed a new family of turbo codes with multiple 

inputs [DouBer05]. Particularly, they show that a parallel concatenation of two binary 

recursive systematic convolutional (RSC) codes based on multiple-input (r-inputs) linear 

feedback shift registers (LFSRs) provides a better overall performance than turbo codes with 

single input over AWGN channel. Multi-binary turbo codes (MBTC) have been adopted in 

the digital video broadcasting (DVB) standards for return channel via satellite (DVB-RCS) 

and the terrestrial distribution system (DVB-RCT), and also in the 802.16 standard for local 

and metropolitan area networks. 

A parallel concatenation of two identical r-ary RSC encoders with an interleaver (ilv) 

is shown in Fig. 16 [KovBalNaf06], where u, c
1
 and c

2
 represent the encoder outputs. The 

scheme of the 8-state duo-binary RSC encoder, with polynomials 15 (feedback) and 13 

(redundancy) in octal form, is shown in Fig. 17, where S1, S2 and S3 denote the encoder states. 

We consider here the particular case of MBTC, namely, the duo-binary turbo codes (DBTC). 

The trellis of the first encoder is closed to 0 and the trellis of the second encoder is unclosed. 

The rate of the DBTC is ½. 

 

 
  
Fig. 16. The r-ary turbo-encoder Fig. 17. Scheme of the 8-state duo binary RSC 

encoder with the rate 2/3. Encoder polynomials: 

15 (feedback) and 13 (redundancy) in octal form 

(DVB-RCS constituent encoder for r=2).   
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We consider an S-interleaver [Cro00], which is semi-random and exhibits excellent 

performance since it has very high minimum distances even for moderate block sizes. For the 

block size of 768 bits, the S-interleavers designed in [DolDiv95] [KovBalNaf05] yields 

minimum distances of 20. The minimum distance can be further increased [Cro00]. The 

design of the interleaver is based on a random selection with the following constraint: 

      ,d i j i j i j S       (26) 

where  is the fully random permutation function and d(i,j) represents the interleaving 

distance between the positions i and j, i,j=1,…,n. Here, n denotes the codeword size. Based on 

this design method, the interleaver used has a minimum distance of 28 for a block size of 768 

bits. The length of the coded sequence is 2768=1536 bits. For decoding we used the Max-

Log-MAP algorithm [VogFin00]. This suboptimal version is preferred in practice due to its 

low computational complexity while keeping near-optimal performance [DouBer05]. The 

scaling factor of the extrinsic information is equal with 0.75 [KovBalBayNaf07]. We assume 

at the decoder a number of 15 iterations with a stopping criterion. 

In Fig. 18 a) and b), bit error rate (BER) and frame error rate (FER) performance of 

the uncoded case and of the DBTC are plotted for rate ½. In our simulations we considered 

the AWGN channel. For a SNR=1.6 dB the bit error rate is BER=1.5∙10
-6

. For a FER=2∙10
-4

, 

DBTC performs as close as 0.8 dB from the Shannon limit. 
 

 
                                                   SNR (dB)                                               a)                                             SNR (dB)                                             b) 

Fig. 18. Bit Error Rate and Frame Error Rate performance for uncoded case and 1/2 rate Duo-

Binary Turbo Coded (DBTC) transmission over AWGN channel as function of SNR. 

The image Lena (512×512) is decomposed into a four level decomposition with a 

biorthogonal mother wavelet. As shown in [NafIsa09], the biorthogonal mother wavelets used 

in the JPEG2000 standard are most suitable.  In experiments, we use the mother wavelet 

Biorthogonal 2.2 (bior2.2). A pseudo-random binary message m  with values  1,1  is turbo 

coded using a DBTC, resulting in a coded watermark message. The block size is 768 bits and 

the number of blocks for the image Lena is 7. The coded watermark is embedded into each 

subband in coefficients with the magnitude greater than a threshold T , for levels 0, 1 and 2, 

using eq. (23). In all simulations, this threshold was experimentally set to the value 10. The 

embedding strength is set to 9  , resulting in a watermarked image with the peak signal-to-

noise ratio PSNR=29.95 dB. Two attack experiments were performed: addition of white 

Gaussian noise (AWGN) and JPEG compression.  
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Fig. 19. BER versus noise standard deviation obtained without coding the watermark and 

using a DBTC for the AWGN attack. 

 
Fig.20. BER versus the PSNR obtained without coding the watermark and using a DBTC for 

the AWGN attack. 

 

In the first experiment, we added noise with mean 0 and variance σ
2
 to the 

watermarked image. We repeated the experiment for σ ranging from 3.25 to 15 with step 

0.25; we plotted BER, without coding the watermark, and with a DBTC. Fig. 19 presents the 

values of the BER computed for different values of σ, while Fig. 20 presents BER as a 

function of the PSNR between the attacked image and the watermarked image, for the 

uncoded sequence as well the coded sequence. For values of σ inferior to 8, the noise addition 

doesn’t degrade the image too much and the PSNR value is still high.  For a PSNR superior to 

29 dB, the watermark is reconstructed without error, using turbo decoding. For PSNR values 

inferior to 29 dB, the attacked images are visually impaired by the noise addition, making the 

attacked images useless. 
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Fig. 21. BER versus quality factor obtained without coding the watermark and using a DBTC 

for JPEG compression. 

 
Fig. 22. BER versus PSNR obtained without coding the watermark and using a DBTC for 

JPEG compression. 

 

Next we studied the robustness of the watermark using the JPEG compression attack. 

We have compressed the watermarked image using different quality factors, Q from 100 to 

10, and we have plotted the BER with and without turbo coding the watermark. Fig. 21 

presents the values of the BER computed for different values of the quality factors, for the 

uncoded sequence as well the coded sequence. For a quality factor higher than 50, the 

reconstruction of the watermark is almost perfect. Fig. 22 presents BER as a function of the 

PSNR between the attacked image and the watermarked image. 

 

Attack vs. BER 
BER 

Uncoded  DBTC 

JPEG compression, Q=50, PSNR=32.94 dB 0.167132 0.001488 

AWGN, =8, PSNR=29.29 dB 0.0885  3.25·10
-4

 

Table 12. A  BER based comparison of the coded and uncoded approach. 
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Table 12 shows numerical values of the BER for the uncoded and for the coded case 

for each attack. We can see the performance of turbo coding in watermarking in the decrease 

of the bit error rate. For less severe attacks, the watermark is perfectly reconstructed. This is 

the case when the attack on the watermarked image can be modeled like an AWGN 

transmission channel, with a high value of the SNR. It is to be noted that the coding gain 

brought by the use of the DBTC is superior to 2 dB. 

Analyzing the simulation results the advantages of the use of turbo coding in data 

embedding are obvious. The simulation results presented illustrate the decrease of the bit error 

rate of the message extracted from the watermarked image attacked with two types of attacks. 

For less severe attacks, the watermark is perfectly reconstructed if turbo codes are used. This 

is the case when the attack on the watermarked image can be modeled like an AWGN 

channel, with a high value of the SNR, needed for a successful decoding for the Max-Log-

MAP algorithm. For severe attacks, the images obtained are visually impaired, making them 

useless. It is to be noted that the coding gain brought by the use of the DBTC is higher than 2 

dB.  

 

 

2.3 Image Denoising 

Papers: [IsaFirNafMog11]; [FirNafIsaIsa11]; [NafIsaIsa11]; [FirNafBouIsa10]; 

[FirNafBouIsa09] 

 

2.3.1 Images affected by AWGN 

 

Shift-invariance associated with good directional selectivity is important for the use of 

a wavelet transform, (WT), in many fields of image processing. Generally, complex wavelet 

transforms, e.g. the Double Tree Complex Wavelet Transform, (DT-CWT), have these useful 

properties. In [FirNafBouIsa09] we proposed the use of an implementation of such a WT, 

namely the Hyperanalytic Wavelet Transform, (HWT) [AdaNafBouIsa07], in association with 

filtering techniques already used with the Discrete Wavelet Transform, (DWT). The result is a 

very simple and fast image denoising algorithm. Some simulation results and comparisons 

prove the performance obtained using the new method. 

During acquisition and transmission, images are often corrupted by additive noise. The 

aim of an image denoising algorithm is then to reduce the noise level, while preserving the 

image features. There is a big diversity of estimators used as denoising systems. One may 

classify these systems in two categories: those directly applied to the signal and those who use 

a wavelet transform before processing. In fact, David Donoho introduced the word denoising 

in association with the wavelet theory [DonJoh94].  From the first category, we must mention 

the denoising systems proposed in [FoiKatEgi07] and [WalDat00]. The first one is based on 

the shape-adaptive DCT (SA-DCT) transform that can be computed on a support of arbitrary 

shape. The second one is a maximum a posteriori (MAP) filter that acts in the spatial domain.  

The multi-resolution analysis performed by the WT has been shown to be a powerful 

tool to achieve good denoising. In the wavelet domain, the noise is uniformly spread 

throughout the coefficients, while most of the image information is concentrated in the few 

largest ones (sparsity of the wavelet representation) [FouBenBou01], [SenSel02], [PizPhi06], 

[AchKur05], [GleDat06], [LuiBluUns07], [Shu05], [ZhoShu07], [Olh06]. The corresponding 

denoising methods consist of three steps [DonJoh94]:  

1) the computation of the forward WT,  

2) the filtering of the wavelet coefficients,  

3) the computation of the IWT of the result obtained.  



38 

Consequently, there are two tools to be chosen: the WT and the filter. In what 

concerns the first choice, we proposed in [FirNafBouIsa09] the new implementation of the 

HWT. In [FouBenBou01], [PizPhi06] was used the UDWT, in [SenSel02], [AchKur05], 

[Shu05] the DTCWT, and in [GleDat06], [LuiBluUns07] the DWT. Concerning the second 

choice, numerous non-linear filter types can be used in the WT domain. A possible 

classification is based on the nature of the noise-free component of the image to be processed. 

Basically, there are two categories of filters: those built assuming only the knowledge of noise 

statistics (a non-parametric approach), and those based on the knowledge of both signal and 

noise statistics (a parametric approach). From the first category we can mention: the hard-

thresholding filter, [DonJoh94], the soft-thresholding filter (soft) [DonJoh94], [Mal99], that 

minimizes the Min-Max estimation error and the Efficient SURE-Based Inter-scales Point-

wise Thresholding Filter [LuiBluUns07], that minimizes the Mean Square Error (MSE). To 

the second category belong filters obtained by minimizing a Bayesian risk under a cost 

function, typically a delta cost function (MAP estimation [FouBenBou01], [SenSel02], 

[AchKur05]) or the minimum mean squared error (MMSE estimation [PizPhi06]). The 

denoising algorithms proposed in [SenSel02], [PizPhi06], [AchKur05], [GleDat06], 

[LuiBluUns07] exploit the inter-scale dependence of wavelet coefficients. The method 

proposed in [PizPhi06] takes into account the intra-scale dependence of wavelet coefficients 

as well. The statistical distribution of the wavelet coefficients changes from scale to scale. 

The coefficients for the first iterations of the WT have a heavy tailed distribution. To deal 

with this mobility, there are two solutions. The first one assumes the use of a fixed simple 

model, risking a decrease of accuracy across the scales. This way, there is a chance to obtain a 

closed form input-output relation for the MAP filter. Such an input-output relationship has 

two advantages: it simplifies the implementation of the filter and it allows the sensitivity 

analysis. The second solution assumes the use of a generalized model, defining a family of 

distributions and the identification of the best fitting element of this family to the distribution 

of the wavelet coefficients at a given scale (e.g. the family of Pearson’s distributions in 

[FouBenBou01], the family of S S distributions in [AchKur05] and the model of Gauss–

Markov random field in [GleDat06]). The use of a generalized model makes the treatment 

more accurate but requires implicit solutions for the MAP filter equation, which can often be 

solved only numerically. The MAP estimation of u , based on the observation z u n  , 

(where n  represents the WT of the noise and u  the WT of the useful component of the input 

image) is given by the MAP filter equation:        ˆ argmax lnu n uu z p z u p u  , where 

ap  represents the probability density function (pdf) of a . If the pdfs up  and np  do not take 

into account the inter-scale dependency of the wavelet coefficients the obtained filter is called 

marginal. For the MAP filters that take into account the inter-scale dependency, the pdfs are 

multivariate functions. In the following, we consider a univariate Gaussian distribution for the 

noise coefficients ( np ) and a univariate Laplacian distribution for the useful signal 

coefficients ( up ). The noise coefficients have zero mean and variance 
2
n .  

The solution of the MAP filter equation Consequently, we take: 

  
1 2

exp
2

u
uu

p u u
 

     
. (27) 

Under the considered hypothesis, the MAP filter equation becomes: 

 
 

2

ˆ 2
ˆsgn 0

un

z u
u





 . (28) 

Finally, the solution corresponding to the proposed marginal MAP filter (pmMAPf) can be 

expressed as: 
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  
22

ˆ sgn n

u

u z z



 
    

, (29) 

where  X X

  for 0X   and 0 otherwise. In the equation (29) 

2
n  is the noise variance 

and u  is the standard deviation of the useful image coefficients. The relation (29) reduces to 

a soft-thresholding of the noisy coefficients with a variable threshold. In the non-parametric 

approach this threshold has a constant value, proportional to the noise standard deviation, 

[DonJoh94]. As an alternative, we use a denoising method based on the association of the 

DWT with a soft, where the already mentioned constant of proportionality equals 2, called 

adaptive soft. In practice, the statistical parameters in (29) are not known and therefore we use 

their estimates. To estimate n  from the noisy wavelet coefficients, a robust median estimator 

is applied to the finest scale wavelet coefficients corresponding to each of the four DWTs: 

 
 median

σ̂ ,   subband HH
0.6745

i

n i

z
z  .  (30) 

The marginal variance of the k ’th coefficient is estimated using neighboring coefficients in 

the region  N k , a window centered at the k ’th coefficient. To make this estimation, one 

gets 
2 2 2
z u n     where 

2
z  is the marginal variance of noisy observations, y . For the 

estimation of 
2
z  the following relationship is used: 

 
 

2 21
ˆ

i

z

z N k

iz
M 

   , (31) 

where M is the size of the neighborhood N(k). Then σu can be estimated as: 

  
1/2

2 2ˆ ˆ ˆu z n 
    . (32) 

This estimation is not very accurate. In addition, after computing the sensitivities of 

that MAP filter with the noise and the clean image standard deviations (given in (30) and 

(32)), it can be observed that the absolute values of those sensitivities increase with the 

increase of ˆ n  and with the decrease of ˆ u  respectively. These behaviors must be 

counteracted. A solution is the use of a denoising algorithm in two stages [Shu05].  

Directional windows in the wavelets domain In [SenSel02] the regions  N k  were 

rectangular of size 77. The energy clusters in different subbands are mainly distributed along 

the corresponding preferential directions. For this reason, the estimator using a squared 

window often leads to downward-biased estimates within and around energy clusters, which 

is disadvantageous for the preservation of edges and textures in images. In [Shu05], the 

elliptic directional windows are introduced to estimate the signal variances in each oriented 

subband. We generalized here this idea for the proposed implementation of the 2D-HWT 

associated with pmMAPf, using constant array elliptic estimation windows with their main 

axes oriented following the directions: atan(1/2), /4 and atan(2).  

The proposed denoising method in [FirNafBouIsa09] First stage: After applying the 

pmMAPf in the HWT domain, using elliptic estimation windows, a first partial result, 
HWT-MAPˆ
lu  is obtained. The local standard deviation of each pixel is computed into a 

rectangular window of size 77, obtaining an image, stdev, that will lead the entire algorithm. 

To further enhance the denoising process, the image stdev is used as follows. The maximum 

local standard deviation, stdevmax is extracted and used to segment this image.  Two classes 

are obtained, with elements separated by a threshold equal to 0.1 stdevmax. These classes are 

used as masks. The second class, containing the higher values of the local standard deviations, 
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is associated with the first partial result. Pixels, having the same coordinates as those 

belonging to the second class, are transferred into an intermediate result: 

  
   HWT-MAP

maxˆ , , if , 0.1
,

0, otherwise

l

l

u i j stdev i j stdev
inres i j

 
 


, (33a) 

where l=2…10 vanishing moments. 

Second stage: The adaptive soft is applied in the DWT domain for the same input 

image (using the same mother wavelets), obtaining a second partial result, DWT-softˆ
lu . The 

intermediate result will be completed with the pixels of the second partial result having the 

same coordinates as those belonging to the first class of the stdev image: 

  
   

 

HWT-MAP

DWT-soft

maxˆ , , if , 0.1
,

ˆ , , otherwise

l

l
l

u i j stdev i j stdev
inres i j

u i j

 
 


, (33b) 

where l=2…10 vanishing moments. 

Third stage: A way to reduce the sensitivity of the denoising results with respect to 

the mother wavelets selection is the diversity enhancement. The first two stages are repeated 

for each of the nine mother wavelets from the family proposed by Ingrid Daubechies (having 

a number of vanishing moments between 2 and 10), obtaining nine intermediate results. The 

final result is obtained by computing their mean: 

      
10

2

, 1/ 9 ,
l

l

fires i j inres i j


  . (34) 

Simulation results obtained using the image Lena (size 512512) perturbed with 

additive white Gaussian noise (AWGN) are presented. Three types of results were considered. 

The association of the first and third stages: 

      
10

HWT-pmMAPf

2

HWT-MAPˆ ˆ, 1/ 9 ,l

l

u i j u i j


  , (35a) 

is denoted by HWT-pmMAPf in Tables 13-15. DWT-adaptive stf refers to the combination of 

the second and third stages: 

      
10

DWT-adaptive soft

2

DWT-softˆ ˆ, 1/ 9 ,l

l

u i j u i j


  . (35b) 

The complete denoising method based on the association of all of the three stages produces 

the fires and is named in the following Hybrid.  

We consider two types of simulations. The first one refers to the visual aspect of the 

image while the latter focuses on the peak signal-to-noise ratio (PSNR) enhancement.  

Generally, an image contains three types of regions: contours, textures and 

homogeneous areas. We propose new measures of the contours and homogeneous region 

degradations due to denoising. First, the contours of the useful component of the input image 

and of the denoising results were detected and the absolute values of the sums of contour 

approximation errors were computed. A small value of the sum indicates a good quality 

treatment (the denoising preserves the contours). The results obtained are presented in Table 

13. The best results are obtained using the mono-wavelet parametric method (Best parametric) 

when the mother wavelets Dau8 (l=8) is used, followed by the results obtained using the 

Hybrid method. The quality of a homogeneous region denoising can be measured by 

computing the ratio of the square of its mean and its variance, R. The corresponding 

simulation results can be found in Table 14. The best method is the mono-wavelet non-

parametric one (Best non-parametric), when the mother wavelets Dau6 is used, followed very 

close by the method named DWT-adaptive soft and the method Hybrid.  
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The second set of simulations is presented in Table 15 and it refers to the PSNR 

enhancement. Let s and ŝ  be the noise-free (original) and the denoised images. The root mean 

square of the approximation error is given by: =((1/N)q(sq- ŝ q)
2
)
1/2

 where N is the number of 

pixels. The PSNR in dB is: PSNR=20log10(255/). The best results are obtained using HWT-

pmMAPf, that outperforms the results reported in [Shu05] and [Olh06], proving the efficiency 

of the proposed MAP system. These results are followed by the results of the Hybrid method. 

In fact these results are comparable (slightly better) with the results obtained using another 

WT with enhanced directionality, the contourlet transform associated with a filtering method 

using directional estimation windows, reported in [ZhoShu07]. From the PSNR enhancement 

point of view the denoising methods proposed are slightly inferior to the best results obtained 

in [SenSel02], [PizPhi06], [AchKur05]. The images corresponding to σn=35 are presented in 

Fig. 23. The visual aspects of the results obtained are satisfactory: the noise was completely 

eliminated, the contours are highlighted and the homogeneous regions are uniform. 

It is also interesting to evaluate the various denoising methods by the computation 

time. In this respect, the three proposed denoising methods are classified in the following 

order: DWT-adaptive soft, HWT-pmMAPf and Hybrid.  

 

σn Noisy 

l=8 

HWT-

pmMAPf 

DWT-adaptive 

soft 
Hybrid Best 

parametric 

Best 

non-

parametric 

10 3418 348 1018 615 1397 443 

25 6458 921 1484 1544 2296 1373 

35 7019 1360 1695 1882 2497 1806 

Table 13. A comparison of the contour treatment of the proposed denoising method and its 

components [FirNafBouIsa09]. 

 

σn Noisy 

l=6 

HWT-

pmMAPf 

DWT-adaptive 

soft 
Hybrid Best 

parametric 

Best 

non-

parametric 

10 63 208 256 202 211 211 

25 14 173 212 187 194 194 

35 7 148 196 153 175 167 

Table 14. A comparison of the homogeneous regions treatment of the proposed denoising 

method and of its components (R). 
 

The HWT is a modern WT as it has been formalized recently [OlhMet06]. We used a 

simple implementation of this transform, which permits the exploitation of the mathematical 

results and of the algorithms previously obtained in the evolution of wavelets theory. This 

implementation has a very flexible structure, as we can use any orthogonal or bi-orthogonal 

real mother wavelets for the computation of the HWT. We preferred a denoising strategy 

based on diversity enhancement, on a simple MAP filter and on the estimation of the local 

standard deviation using directional windows. The simulation results in Table 16 illustrate the 

effectiveness of the proposed association HWT-pmMAPf.  

To appreciate the contribution of the new implementation of the HWT and of the 

proposed MAP filter, Table 15 compares the method HWT-pmMAPf with the denoising 

association DWT-Wiener filter based on the genuine use of directional estimation windows 

[Shu05]. Our results are slightly better. 
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Fig. 23 Noisy image for 35n  ; Denoising result (hybrid)  

 

σn  Noisy [Shu05] [ZhoShu07] [Olh06] l=10 HWT-

pmMAPf 

DWT- 

adaptive 

soft 

Hybrid 

Best 

par. 

Best 

non-

par. 

10 28.18 34.7 - - 34.06 31.6 34.92 31.4 34.54 

20 22.16 31.5 - 31.58 - - 31.6 28.56 31.42 

25 20.20 30.4 - - 29.67 27.85 30.55 27.63 30.37 

30 18.62 - 28.77 - - - 29.61 26.91 29.45 

35 17.29 - - - 28.01 26.44 28.83 26.28 28.65 

40 16.53 - 27.47 27.74 - - 28.13 25.75 27.93 

50 14.18 - 26.46 - - - 26.96 24.84 26.63 

Table 15. A comparison of the PSNRs obtained using different denoising methods reported in 

the references indicated (in dB). 

 

Two new ideas were proposed. The first one refers to the diversity enhancement. Its 

useful effect is the increasing with 0.6 dB of the output PSNR of Prop with respect to the best 

mono-wavelet intermediate result. The drawback of the diversity enhancement is a slight 

degradation of the visual aspect quality. The second new idea proposed is the cooperation 

between a parametric and a non-parametric denoising technique. Despite the small output 

PSNR reduction, the hybrid approach enhances the visual aspect of the HWT-pmMAPf. A 

future research direction will be the speed optimization of our codes. Another research 

direction will be the segmentation threshold selection optimization (the value 0.1stdev was 

empirically chosen). Finally, we will find better solutions for the intermediate results 

synthesis.  The comparisons made suggest that the new image denoising results are 

competitive with some of the best wavelet-based results reported in literature, despite the 

inaccuracy of the statistical model used.  

 

In [FirNafBouIsa10] denoising of images affected by additive white Gaussian noise 

(AWGN) is done in the HWT domain, but this time, the maximum a posteriori (MAP) filter, 

named bishrink, is used [SenSel02]. The best results are obtained with the biorthogonal 

mother wavelets Daubechies 9/7.  

We compared the performance of the denoising method in terms of output SNRs for 

Lena and Barbara, size 512 × 512 pixels and four wavelets families: the family of orthogonal 

wavelets with compact support having the higher number of vanishing moments for the 
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considered support length, Daubechies, the family of Symmlets, the family of Coiflets and the 

family of biorthogonal wavelets [Dau92].  

The Daubechies family contains 44 elements (first being denoted by Dau_4). The 

family Symmlets contains 17 elements (first one being denoted by Sym_4). The family 

Coiflets contains 5 members, the first one being denoted by Coif_1. We have also tested 17 

pair of biorthogonal wavelets. In each case we have used AWGN with different standard 

deviations (10, 15, 20, 25, 30 and 35) obtaining different values for the input PSNR (PSNRi) 

and we have estimated the output PSNRs.  

The results are presented in Table 16. On the first column are given the values of 

PSNRi. On second to last colums, we give the output PSNR result for each wavelet family, 

indexed by the respective parameter.  The Daubechies family is indexed by the length of the 

corresponding quadrature mirror filter.  

On the third column are given the PSNRs obtained using the best mother wavelets 

from the Biort family. On the fourth column are presented the PSNRs obtained using the best 

Coiflet. These functions are indexed by their ordering number in the family. Finally, on the 

last column are highlighted the output PSNRs obtained using the best mother wavelets from 

the Symm family. They are also indexed by their ordering number in the family.  

Lena 

PSNRi Dau 6 Biort9/7 Coif 2 Sym 4 

28.17 35.04 35.08 34.97 35.01 

24.66 33.27 33.30 33.22 33.24 

22.13 32.00 32.04 31.95 32.02 

20.23 31.01 31.03 30.91 30.95 

18.61 30.22 30.23 30.12 30.21 

17.30 29.5 29.58 29.38 29.50 
 

Barbara 

PSNRi Dau 14 Biort9/7 Coif 3 Sym 6 

28.17 33.2 33.32 33.17 33.19 

24.66 30.93 31.06 30.92 30.94 

22.13 29.32 29.51 29.32 29.33 

20.23 28.09 28.28 28.09 28.08 

18.61 27.09 27.36 27.09 27.10 

17.30 26.28 26.44 26.24 26.25 

Table 16 PSNR results for the denoising method in [FirNafBouIsa10] , for  different wavelet 

mother used in the HWT transform. 

 

The best results are obtained with the biorthogonal pair of mother wavelets 

Daubechies 9/7. This is one of the pair recommended by the JPEG-2000 image compression 

standard as well. For the other families, different best mother wavelets are obtained for the 

treatment of the two different images considered here. The corresponding PSNRs are slightly 

smaller in comparison with the values obtained using the mother wavelets Daubechies 9/7. To 

compare the proposed variant of HWT with the 2D DWT, we applied the same denoising 

procedure based on both WTs in similar conditions (input image, mother wavelets) obtaining 

the results in following figure.  

Fig. 24 represents a zoom on a leg with a regular texture from Barbara image. This 

illustrates that, compared with 2D DWT, the HWT leads to better visual results. Fig. 24(left) 

corresponding to the 2D DWT is strongly blurred. It clearly appears that the texture with an 

apparent angle of -π/4 is heavily corrupted by patterns in the opposite direction, due to the 
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mixing in the “diagonal” subband produced in the 2D DWT case. Details are better preserved 

in the HWT case, [Fig. 2(b)]. There is much less directional mixture in the HWT case. 

 

  
Fig. 24 A comparison of the directional selectivity of 2D DWT (left) and HWT (right). 

 

The simulation results are better than the results presented in [FirNafBouIsa09] 

proving that the bishrink filter is one of the best MAP filters. The proposed variant of HWT 

outperforms the 2D DWT in denoising applications, due to its quasi shift-invariance and 

better directional selectivity. The results are inferior with 0.3 dB in comparison with the 

results reported in [SenSel02], where the 2D DTCWT was associated with the bishrink filter. 

But the HWT architecture is simpler than the one of the 2D DTCWT, and our algorithm is 

faster. The superiority of 2D DTCWT versus the HWT in denoising applications, already 

mentioned, disappears when the noise is multiplicative as in the case of despecklisation 

systems.  

As we will see below, both the 2D DTCWT and the HWT can be considered 

equivalent in despecklisation applications. The blurring effect introduced by the HWT can be 

reduced by substituting the 2D DWTs in the HWT architecture, by other 2D WTs with better 

frequency localization like for example the 2D Wavelet Packets Transform or the 2D M-band 

WT. The HWT can be regarded as a Gabor’s filter bank [LajHus09]. We have searched here 

the best mother wavelets following a classical approach based on trials. We have found results 

compatible with the whole noiseless image. This strategy could be applied for other image 

processing methods as well. 

 

2.3.2. SONAR images affected by speckle  

 

The proliferation of SONAR images produced by different equipments: multibeam 

echo sounders, side scan sonar, forward looking imaging SONAR etc. [Lur02] created the 

necessity of expert systems for assisting the decision making. An example is the SonarScope 

expert system. The basic functionality of such an expert system is the representation and the 

analysis of sonar data, organized as a "multilayer" structure defined by its various attributes 

(bathymetry, image, angles, and data from auxiliary sensors …). These data can be 

represented and processed using various techniques either classical (signal or image 

processing) or specific to SONAR.  

The goal of an expert system for SONAR images is to achieve Quality Control, Data 

Processing and Data Interpretation [IsaFirNafMog11].  Signal processing methods used in an 

expert system for SONAR images are: image conditioning methods and intelligent image 

processing techniques (segmentation, textures analysis, classification, etc.).  

Conditioning methods are:  
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 echoes acquisition, meaning the acquisition of: depth, across and along-track distance, the 

received beam angle, the numbers of the transmitted and received beam, or the two-way 

travel time of the acoustic pulse.  

 correction of acquired data to complete the missing data and techniques for the correction 

of the differences between the directivity characteristics of the sensors.  

 data organization: SONAR data are arranged as a set of arrows called pings (swath), 

which correspond to all the soundings acquired in a ping cycle. At the beginning of the 

ping cycle, each sensor's value is logged: gyro, pitch, roll, positions, etc. 

 the formation of SONAR images: a SONAR image is linked with the sensor’s time series, 

pertaining to that given dataset and in synchronization with each ping. The time series can 

be plotted as curves, displayed in conjunction with the image. There are few geometric 

formats for the SONAR images: PingBeam, LatLong, PingSamples and PingSwat. 

 assembling of few neighboring individual images. This could be a technique to produce 

mosaics or digital terrain models (DTM). 

 angular correction and despecklisation of SONAR images. The SONAR images are 

perturbed by speckle. The aim is the despecklisation of SONAR images. It is of 

multiplicative nature. The aim of a denoising algorithm is to reduce the noise level, while 

preserving the image features. The noisy image is: 

  f s v , (36) 

where s is the noise-free input image and v  the speckle noise.  

The most frequently used despecklisation techniques are: i) the classical (Lee, Kuan 

and Frost filters) ii) the pure statistical despecklisation method [WalDat00] to arrive at iii) the 

most modern which act in the wavelet domain. 

The field of natural images denoising methods is very large. A lot of articles dedicated 

to denoising methods were already written, most of them treating the case of additive noise. 

There are two ways of reducing the speckle to an additive noise: 

     1f s s v , (37) 

or: 

  ln ln lnf s v . (38) 

Assuming that usually f  is not stationary, in the first approach the additive noise is not 

stationary as well [ArgBiaScaAlp09].  

Denoising can be done either in the spatial domain or in a transform domain. They 

can be parametric or nonparametric. 

Denoising based on differential equations with partial derivatives. These methods 

do not take into account a priori information about the image to be processed, being non 

parametric. The aim of those methods is to conceive the denoising like a decomposition of 

the acquired image into two components, the noiseless part and the noise. This decomposition 

can be realized by the projection of the acquired image on two very different vector spaces. 

The projection can be done by the minimization of a cost function. The result corresponds to 

the solution of the system of equations which is obtained imposing the zero value to the 

partial derivatives of the cost function. This is a system of partial differential equations. The 

simpler projection on the noiseless space is realized by the averaging of the acquired image. 

The corresponding denoising method works well for the homogeneous regions of the acquired 

image if the noise is of zero mean. Taking into account the fact that the averager is a low-pass 

filter, this method distorts the edges and some of the textured regions by oversmoothing.  

Denoising by non-local averaging Another very modern non parametric denoising 

method is based on non-local (NL) averaging [Bua07]. The NL-means algorithm tries to take 

advantage of the high degree of redundancy of any natural image. Every small window in a 

natural image has many similar windows in the same image. In a very general sense, one can 
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define as „neighborhood of a pixel i" any set of pixels j in the image so that a window around 

j looks like a window around i. All pixels in that neighborhood can be used for predicting the 

value at i. Given a discrete noisy image    x x i i I , the estimated value  xNL i  is 

computed as a weighted average of all the pixels in the image,      


  ,
x

j I

NL i i j x j , where 

the weights    ,
j

i j depend on the similarity between the pixels i and j and satisfy the usual 

conditions   0 , 1i j  and    , 1.
j
i j  The non-locality of the average prevents for 

oversmoothing. 

Parametric denoising methods take into account statistical models for the noiseless 

component of the acquired image and for the noise. One of the best parametric denoising 

methods uses maximum a posteriori (MAP) filters. The MAP estimation of w, based on the 

observation y=w+n, (where n represents the additive noise) is given by the MAP filter 

equation:  

         ˆ argmax ln
w

w y p y w p wn w , (39) 

where pa represents the probability density function (pdf) of a. 

Some classical filters are proposed by Kuan, Lee, and Frost. Kuan considered a 

multiplicative speckle model [KuaSawStr87] and designed a linear filter based on the 

minimum mean square error (MMSE) criterion, optimal when both the scene and the detected 

intensities are Gaussian distributed. The Lee filter [Lee81] is a particular case of the Kuan 

filter, the Frost filter [FroStiShaHol82] is a Wiener filter adapted to multiplicative noise. The 

parameters of the Kuan, Lee and Frost filters are: the size of the rectangular windows used for 

the estimation of the local standard deviation of the useful component of the acquired image 

and its number of looks. 

Denoising in the wavelet domain. These methods, for additive noise,  assume: i) the 

computation of a wavelet transform (WT); ii) the filtering of the detail wavelet coefficients; 

iii) the computation of the corresponding inverse WT (IWT). The usefulness of the filtering in 

the wavelet domain comes from the sparseness of the WTs. Only few wavelet coefficients 

have high magnitude, concentrating almost of the energy of the noiseless component of the 

input image, the other wavelet coefficients have small magnitude and can be considered as 

noise, an can be discarded without producing high distortions.    

A category of denoising methods applied in the wavelets domain is based on non-

parametric techniques using the hard or the soft thresholding filters: i) MAP filters in the 

wavelet domain, ii) Adaptive Soft-Thresholding filter (soft).  D. Donoho, [DonJoh94], wanted 

to estimate the noiseless component of the acquired image by the minimization of the min-

max approximation error. He studied the case of the Discrete Wavelet Transform (DWT). 

Other wavelet transforms used for images denoising are: the Undecimated Discrete Wavelet 

Transform (UDWT), the Double Tree Complex Wavelet Transform (DTCWT) and the 

Hyperanalytic Wavelet Transform (HWT). 

The bishrink is a local bivariate MAP filter. Its performance depends on the quality of 

the estimation of a parameter, the local variance of the noiseless component of the acquired 

image. The quality of this estimate depends on the shape and the size of the estimation 

window. These estimation windows have different shapes in subbands with different 

preferential orientations highlighting the better directional selectivity of DTCWT and HWT 

versus the DWT.  

Despeckling SONAR Images 

Since SONAR images are perturbed by speckle noise, which is of multiplicative 

nature, in [FirNafIsaIsa11] we presented a new denoising method in the wavelet domain, 
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which tends to reduce the speckle, preserving the structural features and textural information 

of the scene. We used the Hyperanalytic Wavelet Transform (HWT) in association with a 

Maximum A Posteriori (MAP) filter named bishrink. The algorithm is simple and fast.  

The aim of a denoising algorithm is to reduce the noise level, while preserving the 

image features. One may classify the denoising systems in two categories: those directly 

applied to the signal [AubAuj08] and those which use a wavelet transform before processing 

[DonJoh94].  

Classical despecklization systems, proposed by Lee, Kuan and Frost, belong to the 

first category [AubAuj08]. The denoising solution proposed in [AubAuj08] is based on 

variational techniques. Its implementation was optimized in [DenTupDarSig09].  

The good performance of the methods in the second category is explained by the fact 

that the multi-resolution analysis performed by the WT is a powerful tool to achieve good 

denoising. In the wavelet domain, the noise is uniformly spread throughout the coefficients, 

while most of the useful information is concentrated in the few largest ones due to the sparsity 

of the wavelet representation.  

A particularity of SONAR images is the high directional diversity of their content. The 

multiplicative speckle noise that disturbs the SONAR images can be transformed into an 

additive noise with the aid of a logarithm computation block. To obtain the denoising result, 

the logarithm inversion is performed at the end of the additive noise denoising process. A 

potential architecture for a SONAR denoising system is presented in Fig. 25. The block 

named Sensitivity reduction corrects the drawbaks of the additive noise denoising kernel. The 

despecklization system also contains a bias correction block composed by two mean 

computation systems. The first one computes the expectation of the acquired image which is 

equal with the mean of its noise-free component because the speckle noise has unitary 

expectation. The second one computes the expectation of the image at the output of the 

Sensitivity reduction block. This value is extracted and the mean of the acquired image is 

added. In this way the undesirable bias introduced by the homomorphic method is corrected. 

The first goal is the additive noise denoising kernel in fig. 25.  

We use the HWT [FirNafBouIsa09], to take into account the high directional diversity 

of SONAR images and to have a high flexibility for the selection of mother wavelets. In 

[FouBenBou01] was used a very redundant WT, namely the 2D Undecimated Wavelet 

Transform (2D UWT) and in [SenSel02] the 2D Double Tree Complex Wavelet Transform 

(2D DTCWT) which has a lower flexibility for the selection of mother wavelets.  

There are two categories of estimators: non-parametric and parametric. From the first 

category can be mentioned: the hard-thresholding filter and the soft thresholding [DonJoh94], 

which are generalized in [AntFan96] for the case of non-uniform sampling. To the second 

category belong filters obtained by minimizing a Bayesian risk under a cost function, 

typically a delta cost function (MAP estimation [FouBenBou01], [SenSel02]) or the minimum 

mean squared error (MMSE estimation). 

  

 
Fig. 25. Proposed denoising system. There exists a mean correction  mechanism and additive 

noise denoising kernel. 
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We have already associated the proposed implementation of HWT with a marginal MAP filter 

in [FirNafBouIsa09]. The aim is to improve the results in [FirNafBouIsa09] by the 

substitution of the marginal MAP filter with the bishrink filter [SenSel02]. The MAP 

estimation of w, based on the observation y=w+n, (where n represents the WT of the noise 

and w the WT of the useful component of the input image) is given by the MAP filter: 

        wpwypyŵ wn
w

 lnargmax , (39) 

where pa represents the probability density function (pdf) of a. In the case of the bishrink filter 

[SenSel02] the noise is assumed i.i.d. Gaussian, 

  
2 2

1 2

2 2

1
exp

2πσ 2σn n

n n
p

 
   

 
n n . (40) 

The model of the noise-free image in [SenSel02] is a heavy tailed distribution:  

   2 2

1 22

3 3
exp

2πσ σ
p w w

 
     

 
w w . (41) 

Each of the vectors  1 2,w ww  and  1 2,n nn  contain two components representing the 

wavelet coefficients of the noiseless image f and of the noise n at the current decomposition 

level (child coefficients) and of the wavelet coefficients localized at the same geometrical 

positions at the next decomposition level (parent coefficients).  Substituting these two pdfs in 

the equation of the MAP filter, the input-output relation of the bishrink filter is:  

 
 2 2 2

1 2
1

1 1
2 2

1 2

3σ / σny y
w y

y y



 



. (42) 

This estimator requires prior knowledge of the noise variance and of the marginal variance of 

the clean image for each wavelet coefficient. To estimate the noise standard deviation from 

the noisy wavelet coefficients, a robust median estimator from the finest scale wavelet 

coefficients is used [DonJoh94]: 

 
 median

σ̂ ,   subband HH
0.6745

i

n i

y
y  . (43) 

In [SenSel02], the marginal variance of the k
th

 coefficient is estimated using neighboring 

coefficients in the region N(k), a squared shaped window centered on this coefficient with size 

77. To make this estimation one gets 2 2 2σ σ σy n   where 2σ y  represents the marginal variances 

of noisy observations y1 and y2. For the estimation of the marginal variance of noisy 

observations, in [SenSel02] is proposed the following relation: 

 
 

2 21
σ̂ ,

i

y i

y N k

y
M 

   (44) 

where M is the size of the neighborhood N(k). Then σ can be estimated as: 

  2 2ˆ ˆ ˆ
y n 

    . (45) 

A very important parameter of the bishrink filter is the local estimation of the marginal 

variance of the noise-free image ̂ . The sensitivity of the estimation 1ŵ with ̂  is given by:   
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. (46) 

This is a decreasing function of ̂ . The precision of the estimation based on the use of the 

bishrink filter decreases with the decreasing of ̂ . To reduce this drawback, the system with 
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the name Sensitivity reduction was included in the architecture in Fig. 25-an averager for the 

pixels with small local variances.  

We present two types of simulation results: for synthesized speckle noise and for real 

SONAR images. In all cases the proposed denoising method was implemented using the same 

mother wavelets, nammely Daubechies 9/7 (which will be denoted in the following by B9.7). 

The best values in the following tables are represented by bold characters and the values from 

the second place by italic characters. 

Synthesized speckle noise For the first experiment the noise is generated following a 

Rayleigh distribution with unitary mean. It is obtained computing the square root of a sum of 

squares of two white Gaussian noises having the same variance. The first image of Fig. 26 

contains a normalized representation of the pdf in equation (37) particularized for the variance 

of the noise in the first experiment. The second image of fig. 26 represents the normalized 

bivariate histogram of the HWT coefficients of the logarithm of the noise.  It was obtained 

considering the HWT coefficients 
rz corresponding to horizontal details from the first two 

decomposition levels.  The similarity of the surfaces from the two images in figure 26 proves 

the validity of the bivariate noise statistical model used for the construction of the bishrink 

filter and the possibility to use this filter in despecklisation applications. 

 
Fig. 26. The representation of the pdf in eq. (37) (left) and the corresponding bivariate 

histogram (right). 

 

A comparison of the proposed method with the classical speckle removing methods 

proposed by: Lee, Frost and Kuan and with the wavelets based method from [IsaMogIsa09], 

is presented in Table 17.  

 

Noisy Lee Frost Kuan [IsaMogIsa09] Hybrid 

21.4 27.2 27.0 28.1 31.4 31.7 

Table 17. The PSNR of different speckle denoising methods (in dB). 

 

In the case of the classical speckle removing methods, rectangular estimation windows with 

size 77 were used. The method in [IsaMogIsa09] uses a system with architecture similar 

with that from Fig. 25, but the structure of the additive noise denoising kernel is different. It is 

based on an association of a different WT, namely the DTCWT, with a bishrink filter. The 

sensitivity reduction is realized by diversification followed by non local averaging. From the 

PSNR point of view our method has the best performance among those compared in Table 17.  

The aim of the second experiment is to compare the proposed denoising method with another 

despecklisation method based on MAP filtering in the wavelets domain [ArgBiaAlp06]. The 

proposed method can be considered equivalent with the SAR denoising method proposed in 

[ArgBiaAlp06]. The two denoising algorithms proposed in [ArgBiaAlp06] use the UWT.  It is 

computed either with the aid of the Daubechies mother wavelets with four vanishing moments 

db8 or with B9.7. The first denoising algorithm proposed in [ArgBiaAlp06] performs a local 

linear minimum mean square error (LLMMSE) filtering in the UWT domain. The second one 

uses a MAP filter constructed supposing that the noise-free wavelet coefficients and the 

wavelet coefficients of the noise are distributed according to Generalized Gaussian 

 n1 

n2 

n1 

n2 
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Distributions. The four parameters of those pdfs are estimated for each pixel of the input 

image. The corresponding MAP filter equation is solved with the aid of numerical methods.  

A comparison of the PSNRs obtained processing the image Lena with the proposed denoising 

method and the methods proposed in [ArgBiaAlp06] is presented in table 18.  

 

(A) (B) (C) ( D ) ( E ) (F) 

  db8 B9.7 db8 B9.7  db8 B9.7 

1 12.1 24.2 24.2 26.0 26.2 26.4 26 26 

4 17.8 28.2 28.3 29.4 29.6 29.9 30.2 30.2 

16 23.7 32.2 32.4 32.9 33.0 32.2 33.0 33.1 

Table 18 A comparison between the speckle reduction methods described in [ArgBiaAlp06], 

[IsaMogIsa09] and proposed method; (A)-The number of looks of the acquired image, (B)-

PSNR of raw image, (C)- PSNR results obtained using LLMSE-UWT, (D)-PSNR results 

obtained using MAP-UWT, (E) Method in [IsaMogIsa09] and  (F) Hybrid method from 

[FirNafIsaIsa09]. 

 

This time, the speckle was generated using the method proposed in [ArgBiaAlp06]. The 

method proposed is better than the LLMSE-UWT method for all the noise levels. It is 

comparable with the MAP-UWT method and with the method proposed in [IsaMogIsa09]. 

For high input PSNRs, the results obtained using the DTCWT and the HWT are better than 

the results reported in [ArgBiaAlp06] because the UWT has a poorer directional selectivity. 

The proposed denoising method is the less sensitive with the selection of the mother wavelets. 

In Fig. 27 is presented a comparison of the results corresponding to the last line of table 18. 

The first image in figure 27 represents a region of the noisy image. In the second and third 

images are presented the denoising results of the same region obtained applying the method 

proposed in [ArgBiaAlp06] with the MAP filter and the mother wavelet B9.7 and the 

proposed method. Comparing the last two images in figure 27 it can be observed the better 

directional selectivity and the better contrast preservation of the proposed method (proving 

the superiority of the HWT versus the UWT). Analyzing the two regions marked in the last 

two images it can be observed the incapacity of the UWT to separate the orientations 

corresponding to orthogonal directions.  
 

 
Fig. 27. Acquired image (left); result from [ArgBiaAlp06] (middle); result of the hybrid 

method (right). 

 
Fig. 28. Speckle removal for the sea-bed SONAR Swansea image (we are thankful to 

GESMA for providing this image); a region of the acquired image (ENL=3) (left); result in 

[IsaMogIsa09] (ENL=102) (middle), result of the proposed method (ENL=150) (right). 

 

Real SONAR Images Fig. 28 shows the original SONAR image “Swansea” and the 

results obtained with the method in [IsaMogIsa09] and with the proposed method. The visual 

analysis of the filtered images proves the correctness of our assumptions. Indeed, the result of 
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the proposed method has a better visual aspect. An objective measure of the homogeneity 

degree of a region is the enhancement of the Equivalent Number of Looks (ENL). It is defined 

by the ratio of the square mean and the variance of the pixels situated in the considered 

region: 

 
 

  
 

2
mean

standard deviation
ENL . (47) 

The enhancement of the ENL of a denoising method in a homogeneous region is defined by 

the ratio of the ENLs of the considered region computed before and after the application of 

the method. The performance of the proposed denoising method is certificated by the 

important enhancement of the ENL obtained considering a homogeneous region of 2001000 

pixels. The gain in performance can be explained by the superiority of HWT versus DTCWT 

in despecklization applications.  

In [FirNafIsaIsa11] we presented an effective image denoising algorithm for SONAR 

images. Despite the actual proliferation of this type of images, there are not numerous 

publications dealing with their denoising. The proposed algorithm is based on a new additive 

noise denoising kernel. It uses one of the best WTs, the HWT,   and a very good MAP filter 

which can be associated for despecklization purposes in a homomorphic framework as can be 

seen in figure 24. We have proved by simulation that the HWT is a better choice than the 

UWT or the DTCWT for SONAR images despecklization. The proposed denoising metod 

outperforms other denoising methods from the visual aspect, the PSNR enhancement and the 

enhancement of ENL points of view. It is faster than the methods proposed in [IsaMogIsa09] 

and [ArgBiaAlp06] and its results have a better visual aspect.  

 

 

2.4 2D wavelet transforms  
Papers: [IsaNaf14], [NafBerNafIsa12]; [FirNafIsaBouIsa10]; [NafFirIsaBouIsa10a]; 

[NafFirIsaBouIsa10b] 

 

2.4.1 The Hyperanalytic Wavelet Transform (HWT) 

 

Shift-invariance associated with good directional selectivity is important for the use of 

a wavelet transform, (WT), in many fields of image processing. Generally, complex wavelet 

transforms, e.g. the Double Tree Complex Wavelet Transform, (DT-CWT), have these useful 

properties. In [FirNafBouIsa09] we proposed the use of an implementation of such a WT, 

namely the Hyperanalytic Wavelet Transform, (HWT) [AdaNafBouIsa07], in association with 

filtering techniques already used with the Discrete Wavelet Transform, (DWT). The result is a 

very simple and fast image denoising algorithm. Throughout recent years many WTs were 

used in image processing such as denoising. The first one was the DWT [DonJoh94]. It has 

three main disadvantages [Kin01]: lack of shift invariance, lack of symmetry of the mother 

wavelets and poor directional selectivity. These disadvantages can be diminished using a 

complex wavelet transform [Kin01], [Kin00]. Over twenty years ago, Grossman and Morlet 

[GroMor84] developed the Continuous Wavelet Transform (CWT) [SelBarKin05]. A revival 

of interest in later years has occurred in both signal processing and statistics for the use of 

complex wavelets [BarNas04], and complex analytic wavelets, in particular [Kin99], [Sel02], 

[Sel01]. It may be linked to the development of complex-valued discrete wavelet filters 

[LinMay95] and the clever dual filter bank [Kin99], [SelBarKin05]. The complex wavelet 

transform has been shown to provide a powerful tool in signal and image analysis [Mal99]. In 

[OlhMet06] were derived large classes of wavelets generalizing the concept of the one-

dimensional local complex-valued analytic decomposition introducing two-dimensional 
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vector-valued hyperanalytic decompositions. We proposed the use of a very simple 

implementation of the HWT, recently proposed [AdaNafBouIsa07].  

The shift-sensitivity of the DWT is generated by the down-samplers used for its 

computation. In [Mal99], [LanGuoOdeBur96] is presented the undecimated DWT (UDWT), 

which is a WT without down-samplers. Although the UDWT is shift-insensitive, it has high 

redundancy, 2
J
 (where J represents the number of iterations of the WT). In [CoiDon95] was 

proposed a new shift-invariant but very redundant WT, named Shift Invariant Discrete 

Wavelet Transform (SIDWT). It is based on an algorithm called Cycle Spinning (CS) and it 

was conceived to suppress the artifacts in the neighborhood of discontinuities introduced by 

the DWT in denoising applications. For a range of delays, data is shifted, its DWT is 

computed, and then the result is un-shifted.  Averaging the several obtained results, a quasi 

shift-invariant DWT is implemented. In [Abr94], it is demonstrated that approximate 

shiftability is possible for the DWT with a small fixed amount of transform redundancy. In 

this reference a pair of real mother wavelets is designed such that one is approximately the 

Hilbert transform of the other. In the following we will give the mathematical basis for this 

approach. In [Hig84] the author provides a way to build new complete orthonormal sets of the 

Hilbert space of finite energy band-limited functions with bandwidth π, named the Paley-

Wiener space (PW). He proved the following proposition: 

P1. Let  denote the characteristic function of the interval  ,   and let  x  be real valued 

and piecewise continuous there. Then the integer translations of the inverse Fourier transform 

of 
j

e


  constitute a complete orthonormal set in PW. 

Following this proposition, some new orthonormal complete sets of integer translations of a 

generating function can be constructed in the PW space. The scaling function and the mother 

wavelets of the standard multi-resolution analysis of PW generate by integer shifts such 

complete orthonormal sets. The proposition P1 was generalized in [Isa93] to give a new 

mechanism of mother wavelets construction. In [FirNafBouIsa09] the following two 

propositions were formulated: 

 

P2. If   ,m m n n
A t


   is a complete orthonormal set generating a Hilbert space mH  then 

the set      1/2

,
ˆ ˆ1/ 2m m n

n

A


     is a complete orthonormal set of ˆ
mH  (the Hilbert 

space composed by the Fourier transforms of the elements of the space mH ) and reciprocally; 

 

P3. If     is a real valued and piecewise continuous function and 

     1/2

,
ˆ ˆ1/ 2m m n

n

A


     is a complete orthonormal set of ˆ
mH  then 

        1/2

,
ˆ ˆ1/ 2 expm m n

n

A i


       is another complete orthonormal set of the 

same space.  

These two propositions can be used to build new mother wavelets if we identify the 

sub-spaces of an orthogonal decomposition of the Hilbert space  2 ,  ,  mL W m  with the 

Hilbert spaces ˆ
mH . With respect to this, the function    must satisfy the following 

constraint:    2 ,  m m      . 
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An example of function that satisfies this constraint is:      / 2 sgn 1     . In this case: 

    exp sgni    . So, the function generating the set mA  (that corresponds to the new 

mother wavelets) is obtained by applying the Hilbert transform to the function generating the 

set Am (that corresponds to the initial mother wavelets) multiplied by i . In consequence if the 

function   is a mother wavelets then the functions  i   and  a i    are also 

mother wavelets. This wavelets pair    ,i   defines a complex discrete wavelet 

transform (CDWT), presented in Fig. 29a). A complex wavelet coefficient is obtained by 

interpreting the wavelet coefficient from one DWT tree as being its real part, whereas the 

corresponding coefficient from the other tree is considered to form its imaginary part.  

In [Kin01], the DTCWT, which is a quadrature pair of DWT trees similar to the CDWT, is 

developed. The DTCWT coefficients may be interpreted as arising from the DWT associated 

with a quasi-analytic wavelet. Both DTCWT and CDWT are invertible and quasi shift-

invariant.  

The implementation of the HWT is presented in Fig. 29b). First, we apply a Hilbert 

transform to the data. The real wavelet transform is then applied to the analytical signal 

associated to the input data, obtaining complex coefficients. The two implementations 

presented in Fig. 29 are equivalent because: 

 
                 

                 

       

       

DTCWT m,n m,n m,n m,n

m,n m,n m,n HWT

d m,n x t , t i t x t , t i x t , t

x t , t i x t , t x t i x t , t d m,n
(48) 

While the DTCWT requires special mother wavelets, the implementation of the HWT 

proposed in Fig. 29b) can be done using classical mother wavelets like those introduced by 

Daubechies. These two transforms have a redundancy of 2 in the 1D case. In [FerSpaBur00] a 

two-stage mapping-based complex wavelet transform (MBCWT) that consists of a mapping 

onto a complex function space followed by a DWT of the complex mapping computation is 

proposed. The authors observed that DTCWT coefficients may be interpreted as the 

coefficients of a DWT applied to a complex signal associated with the input signal. The 

complex signal is defined as the Hardy-space image of the input signal. As the Hardy-space 

mapping of a discrete signal cannot be computed, they defined a new function space called 

the Softy-space, which is an approximation of the Hardy-space. In [SimFreAdeHee92], a new 

measure of the shift-invariance is defined, called “shiftability”. We introduced a new 

criterion: the degree of shift invariance, d. It requires the computation of the values of the 

energy of every set of detail coefficients (at different decomposition levels) and of the 

approximation coefficients, corresponding to a certain delay (shift) of the input signal 

samples. This way, we obtain a sequence of energy values at each decomposition level, each 

sample of this sequence corresponding to a different shift. Then using the mean m and the 

standard deviation sd of every energy sequence, the degree of shift invariance is: 

 1 /d sd m  . (49) 

It can be increased if the absolute values of the wavelet coefficients are considered. In Fig. 30, 

the dependence of the degree of shift invariance of the new implementation is shown with 

respect to the regularity of the mother wavelets used for its computation, when the absolute 

values of the wavelet coefficients are considered. The procedure followed in this simulation is 

described in [AdaNafBouIsa07]. The Daubechies family was investigated, each element being 

indexed by its number of vanishing moments. As the curve illustrated in Fig. 29 indicates it, 

the degree of shift-invariance increases with the degree of regularity of the mother wavelets 

used. 
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Fig. 29. The implementation of the DTCWT a) and of the HWT b) are equivalent.  

 

An analytical 1D DWT of a real signal can be computed by applying a real 1D DWT 

to the analytical signal associated to the input signal. In the following we will summarize the 

construction based on the notion of hypercomplex signal. Its definition is not unique. 

Hyperanalytic mother wavelets have four components, each one localized in a different 

quadrant of their 2D spectrum. The construction of the hyperanalytic mother wavelets 

requires algebra whose elements are sets of four numbers. Choosing different algebras, 

different definitions of the hyperanalytic signal are obtained. In [OlhMet06] was chosen the 

algebra of quaternions. We have preferred the 4-D commutative hypercomplex algebra 

proposed in [Dav14] because the multiplication is not commutative in the algebra of 

quaternions. An element of the hypercomplex algebra and its conjugate can be expressed as:  
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The generalization of the analyticity concept in 2D is not obvious, as there are 

multiple definitions of the Hilbert transform in this case. We use the definition leading to the 

so-called hyper-complex signal. The hyper-complex mother wavelet associated to   ,x y  is 

defined as: 

                     a , , , , ,x y x yx y x y i x y j x y k x y  (50) 

where: i
2
=j

2
=-k

2
=-1 and ij=ji=k, [Dav14]. The HWT of the image  ,f x y  is: 

       , , , , .aHWT f x y f x y x y   (51) 

Taking into account relation (50) it can be written: 

 

         

        
      

  

 

  

, , ,

, ,

, , , , .

x

y y x

a a

HWT f x y DWT f x y iDWT f x y

jDWT f x y kDWT f x y

f x y x y DWT f x y

 (52) 

So, the 2D-HWT of the image  ,f x y can be computed with the aid of the 2D-DWT of its 

associated hyper-complex image. The new HWT implementation [AdaNafBouIsa07], 

[AdaNafBouIsa07b], presented in fig. 31, uses four trees, each one implementing a 2D-DWT. 

The first tree is applied to the input image. The second and the third trees are applied to 1D 

discrete Hilbert transforms computed across the lines (Hx) or columns (Hy) of the input image. 

The fourth tree is applied to the result obtained after the computation of the two 1D discrete 

Hilbert transforms of the input image. The enhancement of the directional selectivity of the 

2D-HWT is made as in the case of the 2D-DTCWT [Kin00], [SelBarKin05], by linear 
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combinations of detail coefficients belonging to each subband of each of the four 2D-DWTs. 

This technique is explained, based on an example, in [AdaNafBouIsa07b]. 

 

 
Fig.  30. Degree of shift-invariance of HWT as a function of the regularity of the mother 

wavelet used for its computation.  

 

 
Fig. 31. HWT architecture, [FirNafBouIsa09]. 

 

 
Fig. 32. The strategy of directional selectivity enhancement in the HH subband. The 

frequency responses of the systems that transform the input image f into the output diagonal 

detail coefficient sub-images z-r and z+r represented in figure 30. [IsaFirNafMog11] 
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2.4.2. Hyperanalytic Wavelet Packets (HWPT) – a solution to increase the directional 

selectivity in image analysis 

We proposed [NafIsaNaf12] a solution to increase the directional selectivity in image 

analysis based on wavelets theory. The classical two-dimensional Discrete Wavelet 

Transform (2d-DWT) has a poor directional selectivity, separating only three directions: 0 or 

180, 45 and 90. The directional selectivity can be improved by using 2d Discrete 

Wavelet Packets Transform (2d-DWPT). Neither one of these transforms is able to separate 

directions with opposite orientations. This separation can be done by using a complex wavelet 

or wavelet packets transform, such as the Hyperanalytic Wavelet Packets Transform (HWPT). 

We analyze the directional selectivity of the HWPT and we propose an algorithm for the 

detection of the principal directions in a given image.    

The discrete wavelet transform and the discrete wavelet packets transform are shift-

variant. In the two-dimensional case, both 2d-DWT and 2d-DWPT are not able to separate the 

orientations with opposite directions (orientations 45).  To reduce the shift-variance, several 

solutions can be used. In [CohRazMal97], the shift invariant wavelet packets transform 

(SIWPT) is proposed. Another solution consists in the use of the Undecimated Discrete 

Wavelet Packets Transform (UDWPT), [PesKriCar96]. There are two drawbacks: an increased 

redundancy and a reduced directional selectivity in the case of image processing. For this 

reason, the Complex Wavelet Packets Transforms (CWPT) were studied. We highlighted in 

[NafIsaNaf12] the improved directional selectivity of a particular CWPT, namely the HWPT. 

The 2d-CWT [Kin98] is build using a quad-tree algorithm, with 4 trees A, B, C and D, 

with a half-sample shift between the trees to achieve the approximate shift invariance. 

Different filter lengths are used for each tree. Complex coefficients are obtained by 

combining the different trees together. If the subbands are indexed by k, the detail subbands 

d
j,k

 of the parallel trees A, B, C and D are combined to form complex subbands ,j kz  and ,j kz , 

by the linear transforms: 

 
   

   

, , , , ,

, , , , ,

j k j k j k j k j k

A D B C

j k j k j k j k j k

A D B C

z d d i d d

z d d i d d





   

   
 (53) 

where i
2
=-1. This 2d-CWT is generalized to a corresponding 2d-CWPT [JalBlaZer03]. This 

transform is quasi shift-invariant. Also, compared to the original 2d-CWT, which only 

separates 6 directions, the directional selectivity is highly improved. With the tree chosen in 

[JalBlaZer03], up to 26 directions can be separated. The CWPT’s disadvantage is the lack of 

analyticity, [BaySel08]. Analytic transforms have improved frequency localization. This 

disadvantage is solved in [BaySel08], where the Dual Tree Complex Wavelet Packet 

Transform (DTCWPT) is proposed, representing the generalization of the Dual Tree Complex 

Wavelet Transform (DTCWT) [Kin01]. DTCWPT is quasi shift-invariant, quasi-analytic and 

the two-dimensional DTCWPT (2d-DTCWPT), also introduced in [BaySel08], has a good 

directional selectivity. The frequency resolution of DTCWPT and 2d-DTCWPT can be 

further improved if M Band DTCWPT is used, as described in [BaySel08]. A generalization 

of the Hyperanalytic Wavelet Transform (HWT) is proposed in [FirIsaBouIsa09].  

The HWT implementation [AdaNafBouIsa07b] supposes four trees, each one 

implementing a 2d-DWT. The first tree is applied to the input image producing the detail 

wavelet coefficients dA. The second and the third trees are applied to one dimensional (1D) 

discrete Hilbert transforms computed across rows (x) or columns (y) of the input image and 

produce the detail wavelet coefficients dB and dC. The fourth tree is applied to the result 

obtained after the computation of the two 1D discrete Hilbert transforms of the input image 

(x and y) and generates the detail wavelet coefficients dD. The directional selectivity is 

enhanced using linear transformations from equation (53). HWPT was obtained from HWT in 
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[FirIsaBouIsa09], by replacing the four trees computing the 2d-DWT with trees that compute 

2d-DWPTs. There are several similarities between the HWPT and the complex wavelet 

packets transforms previously mentioned. As the CWPT and the DTCWPT, HWPT uses four 

trees. Its quasi-analyticity comes from (52). The quasi shift-invariance, highlighted in 

[FirIsaBouIsa09], is inherited from the HWT. The HWPT improves the frequency resolution of 

HWT in the same way the DWPT improves the frequency resolution of DWT. At last, HWPT 

and DTCWPT, have an increased directional selectivity in comparison with the 2d-DWPT. 

This is so because the same mechanism of improving the directional selectivity as in the case 

of DTCWT (based on the linear transformation from equation (53)) was used for the HWT 

implementation.  

HWPT Directional Selectivity In the case of the 2d-DWT three preferential directions 

are defined: horizontal, vertical and diagonal. 2d-DWPT has an increased directional 

selectivity, compared to 2d-DWT due to supplementary splitting of the high-pass filters 

outputs denoted by g. In the following the example given in [FirIsaBouIsa09] and highlighted 

in Fig. 33 will be considered. This example is based on two hypotheses: the spectrum of the 

input image is considered constant and the lowpass and highpass filters (h and g) are 

considered ideal. 

 

 
Fig 33 A comparison of the directional selectivities of 2d DWPT and HWPT. a) The selected 

path is 0→6. b) The spectrum of the input image is supposed to be constant. c) Directional 

selectivity of 2d DWPT. Directional slectivity of HWPT: d) real part of coefficients z+, e) 

imaginary part of coefficients z+, f) real part of coefficients z-, g) imaginary part of 

coefficients z-.   

 

A part of the 2d-DWPT computation scheme, with two iterations, and the spectrum of 

the input image are shown in Fig.33a and b, respectively. The spectrum of the image obtained 

at the output 6 is shown in Fig. 33c. It has two preferential orientations: ±atan(2). 

Consequently, the directional selectivity of the 2d-DWPT is higher than that of the 2d-DWT. 

As shown in [AdaNafBouIsa07b], HWT is capable to separate six preferential orientations. 

We consider the same path (0→6) for the four 2d-DWPTs that implement the HWPT as in 

Fig. 33a and we apply eq. (53). The four images with the spectra represented in Fig. 33d-g are 

obtained.  
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Fig.34 The rule used for indexing the sub-images which represent the results of the HWPT 

with two decomposition levels. 

 

Taking into account its increased directional selectivity, we propose a possible 

application of HWPT for the identification of the principal orientations contained in an image. 

A solution for this problem was proposed in [AndKinFau05]. It implies the utilization of the 

2d-DTCWT and is based on a new concept, namely the Inter-Coefficient Product (ICP). 

Contrary to [AndKinFau05], the method proposed in the following is based on the energy of 

each subband. We identify the principal orientations from the image Lena. Applying the 

HWPT with two decomposition levels, we obtain the sub-images z+ and z-, which are indexed 

as in Fig. 34.  

 

 

Sub-image index Direction Sub-image index Direction 

2 ± atan(2) 8, 17, 20 ± atan(1) 

3 ± atan(1/2) 9, 13 ± atan(1/5) 

4 ± atan(1) 10, 14 ± atan(3/5) 

6 ± atan(3) 11, 15 ± atan(1/7) 

7 ± atan(1/3) 12,16 ± atan(3/7) 

18 ± atan(7/5) 19 ± atan(5/7) 

Table 19 Principal orientations of detail sub-images for HWPT with two decomposition 

levels. 

 

Sub-image Energy Order 

z+6 3.8471e+007 1 

z-6 3.4375e+007 2 

z+7 1.5123e+007 3 

z+8 1.0834e+007 4 

Table 20 The energies of the sub-images which correspond to the principal directions 

contained in image Lena. 

 

The principal directions of those sub-images are presented in Table 19. Computing the 

normalized energies of each detail sub-image obtained applying the HWPT with two 

decomposition levels to the image Lena, we can identify the principal orientations contained 

in this image as the preferential orientations of the sub-images which contain the highest 

values of normalized energy. We have normalized the energies of the detail wavelet 

coefficients with respect to the subband bandwidth in order to make objective the comparison 

of the energies computed at different decomposition levels. These values are presented in 

Table 20. The normalized energies values reflect two types of information, about the principal 

orientations contained in the input image and about the frequency content of the image 

features which correspond to those orientations. In general the simple computation of the 

normalized energies does not permit the separation of those two types of information. The 

information about the principal orientations contained in the input image can be accurately 

separated from the values of normalized energies only for flat spectrum input images. We 
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have marked the principal orientations contained in the image Lena (which does not have a 

flat spectrum), as are they classified in Table 20, in Fig. 35. We observe by visual inspection 

that the orientations detected by the proposed algorithm are dominant for the image Lena 

despite the fact that its spectrum is not flat. Orientation 1 is observed in the left part of the 

contour of the hat, orientation 2 corresponds to the right part of the same contour, orientation 

3 is observed in the region of feathers and orientation 4 corresponds to the brim heat. We used 

in this experiment the HWPT with two decomposition levels computed with the aid of the 

mother wavelet Daubechies-20 (having ten vanishing moments). 

  
Fig. 35 Main directions contained in the image Lena. 

 

We reviewed several methods for the enhancement of the directional selectivity in 

image analysis highlighting the role of Hyperanalytic Wavelet Packets. It was shown that the 

directional selectivity of the HWPT depends on the number of decomposition levels of the 

transform. For two decomposition levels, the HWPT can separate eighteen orientations, as can 

be seen in Table 19. The degree of separation depends on the MW used, being proportional 

with the number of vanishing moments of the MW. The HWPT can be seen as a Gabor FB 

inheriting all the applications of that structure as for example the segmentation of SONAR 

images [KarFabBou08]. We have proposed as new application of the HWPT, the detection of 

the principal directions contained in an image. The corresponding algorithm consists in the 

computation of the normalized energies of the HWPT sub-images. The preferential 

orientations of the sub-images with the highest normalized energies represent the principal 

directions contained in the image analyzed if its spectrum is flat. The constraint of flatness 

can be avoided using the concept of ICP but the corresponding algorithm [AndKinFau05] is 

more complex. We have exemplified the proposed algorithm with the aid of the image Lena, 

which does not have a flat spectrum. The results obtained have good visual quality, showing 

that the proposed method is promising for images without flat spectrum as well. Principal 

direction of a texture is a parameter, which can be used for the retrieval of a particular image 

from a database. The proposed detection algorithm could be used in the same way as a Gabor 

FB [KarFabBou08]. In the case of content-based image retrieval application, the separation of 

the two types of information contained in the values of the normalized energies could be not 

necessary.  

 

2.4.3 A second order statistical analysis of the 2D Discrete Wavelet Transform 
 

In [IsaNaf14], we presented a second order statistical analysis of the 2D Discrete 

Wavelet Transform (2D DWT) coefficients. This continues the analysis from 

[NafBerNafIsa12]; [FirNafIsaBouIsa10]; [NafFirIsaBouIsa10a]; [NafFirIsaBouIsa10b].   

The input images are considered as wide sense bivariate random processes. We 

derived closed form expressions for the wavelet coefficients’ correlation functions in all 

possible scenarios: inter-scale and inter-band, inter-scale and intra-band, intra-scale and inter-
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band and intra-scale and intra-band. The particularization of the input process to the White 

Gaussian Noise (WGN) case is considered as well. A special attention was given to the 

asymptotical analysis obtained by considering an infinite number of decomposition levels. 

Simulation results are also reported, confirming the theoretical results obtained. The equations 

derived, and especially the inter-scale and intra-band dependency of the 2D DWT 

coefficients, are useful for the design of different signal processing systems as for example 

image denoising algorithms. We showed how to apply our theoretical results for designing 

state of the art denoising systems which exploit the 2D DWT. 

A great number of Wavelet Transforms (WT) as for example: 2D Discrete WT (2D 

DWT) [Mal99], 2D Undecimated DWT (2D UDWT) [StaFadMur07], 2D Double Tree 

Complex WT (2D DTCWT) [SelBarKin05], etc., can be used for image processing, because 

most of the image information is concentrated in few large wavelet coefficients, property 

known as sparsity of the wavelet representation. This simplifies and accelerates the image 

processing algorithm considered and is a consequence of  the 2D WT decorrelation properties. 

The first results about the decorrelation effect of WT were obtained for 1D transforms. For 

example the covariance of coefficients obtained by wavelet decomposition of random 

processes can be computed recursively based on an algorithm described in [VanCor99]. This 

algorithm has an interesting link to the 2D DWT, which makes computations faster. A 

statistical analysis of 1D DWT was reported in [CraPer05] and it was generalized in 

[AttPasIsa07] to the wavelet packets case. Some results of statistical analysis of 2D WT can 

also be found. In [LiuMou01] is treated the case of 2D DWT, highlighting the inter-scale and 

inter-band dependencies of wavelet coefficients, with the aid of the mutual information 

concept, but closed form expressions for the correlation functions are missing. A statistical 

analysis of 2D UDWT is presented in [FouBenBou01] and a second order statistical analysis 

of 2D DTCWT is presented in [ChaPesDuv07].  

All the WT are characterized by two features: the mother wavelets (MW) and the 

primary resolution (PR), or the number of decomposition levels. The importance of their 

selection is highlighted in [Nas02]. An appealing particularity of 2D DWT is the inter-scale 

dependency of the wavelet coefficients [LiuMou01]. The goal of the present paper is a 

complete second order statistical analysis of the 2D DWT, establishing closed form 

expressions for the correlation functions in all four possible scenarios. We also highlight the 

influences of the 2D DWT features on those correlation functions.  

We study the statistical decorrelation of the 2D DWT coefficients when the image is a 

wide sense stationary bivariate random process, developing the results presented in 

[NafFirIsaBouIsa10b]. Starting from the implementation of this transform, we highlight the 

four possible scenarios: inter-scale and inter-band, inter-scale and intra-band, intra-scale and 

inter-band and intra-scale and intra-band dependencies. We treat the case of the 2D DWT 

coefficients of a bivariate white Gaussian noise (WGN) as well. The most important 

theoretical results obtained were verified by simulation. The object is a discussion of the 

results presented, oriented toward images denoising.  

The main advantage of 2D DWT versus other 2D WT, as for example the 2D 

DTCWT, is its computational flexibility, as it inherits some of the classes of MW developed 

in the framework of the 1D DWT, like the Daubechies, Symmlet or Coiflet families [Dau92]. 

This non-redundant transform can be implemented using the very fast Mallat’s algorithm 

[Mal99]. The drawbacks of the 2D DWT are lack of translation invariance and poor 

directional selectivity. The perfect translation invariance can be reached using the 2D UDWT. 

Quasi translation invariance can be obtained using Complex WT (CWT) as for example the 

2D DTCWT or the Hyperanalytic Wavelet Transform (HWT) [FirNafIsaIsa11]. It represents a 

generalization of the 2D DWT, which is conceived for real images, for hyperanalytic images. 

The HWT implementation supposes the computation of 2D DWT of four different images, 
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representing the components of the hyperanalytic input image. The lack of translation 

invariance of 2D DWT can be corrected in denoising application [BluLui07]. Both CWT also 

have better directional selectivity than 2D DWT. 

Each of the iterations of the Mallat’s algorithm implies several operations [Mal99]. The 

rows of the input image, obtained at the end of the previous iteration, are passed through two 

different filters: a low-pass filter -   with the impulse response      and a high-pass filter -   

with the impulse response    , resulting in two different sub-images. The rows of the two sub-

images obtained at the output of the two filters are decimated with a factor of two. Next, the 

columns of the two images obtained are filtered with     and    . The columns of those four 

sub-images are also decimated with a factor of two. Four new sub-images, representing the 

result of the current iteration (which corresponds to the current decomposition level – or scale), 

are obtained. These sub-images are called subbands. The first sub-image, obtained after two 

low-pass filtering (LL), is named approximation sub-image (or LL subband). The other three 

are named detail sub-images: LH, HL and HH. The LL subband represents the input for the 

next iteration. In the following, the coefficients of 2D DWT will be denoted by   
 , where   

represents the current scale and   is the subband and it is     – for LH,     – for HL, 

    – for HH and     – for LL. These coefficients are computed using the following 

scalar products: 

  
 [   ]  〈 (     )       

 (     )〉            (54) 

where   represents the image whose DWT is computed (considered as a bivariate random 

process) and the wavelets are real functions and can be factorized as: 

      
 (     )      

 (  )      
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and the two factors can be computed using the scaling function  ( ) and the MW  ( ) with: 
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where: 
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Taking into account Eqs. (56)-(58), it can be written: 
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(59) 

The expectation of the wavelet coefficients: We begin the second order statistical analysis by 

computing the statistical mean of the wavelet coefficients: 
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Applying Fubini’s theorem and taking into account the fact that the random process   is wide 

sense stationary, we obtain: 
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(61) 

The Fourier transform was denoted by   and the expectation of the input image by    in Eq. 

(61). Because the spectrum of the wavelet can be expressed as,  

 {      
 }(     )         (       ) {  }(      

   )    (62) 

the last equation becomes: 
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      for           and     

          for       (63) 

Consequently, the expectations of the detail wavelet coefficients are null. Only the 

expectations of the fourth subband (approximation sub-image) are not null but are dependent 

on the scale and on the expectation of the original image   .  

The correlation of the wavelet coefficients. The pyramid corresponding to the 

computation of the 2D DWT is presented in Fig. 36, where four types of coefficients 

dependencies are exemplified: inter-scale and inter-band, inter-scale and intra-band, intra-

scale and inter-band and intra-scale and intra-band. In the inter-scale and inter-band case, the 

coefficients are located in different scales and subbands (        and        , 

for example). In the inter-scale and intra-band case, coefficients are located in different scales, 

but same subband (        and         for example). The coefficients 

belonging to the sets indexed by         and         in Fig. 36, have an intra-

scale and inter-band dependency. Finally, the coefficients belonging to same decomposition 

level and same subband have an intra-scale and intra-band dependency. The coefficients 

having same geometrical coordinates at consecutive decomposition levels are named parents 

(for the last decomposition level), children (for previous decomposition level) and nephews 

(for previous decomposition level).  

 
Fig. 36. 2D DWT pyramid, three decomposition levels, subbands and examples of coefficients 

dependencies. 

 

In the following we analyzed the four types of correlation.  

The inter-scale and inter-band case We consider that the input image   is a bivariate 

second order random process. The cross-correlation of two wavelet coefficients, located in the 

subbands    and    at the scales     and         , where     , and of geometrical 

coordinates (     ) and  (     ) respectively, can be computed using the following equation: 

  
   

     

  (    
      

   
    )          ( 

    (     
 )      (   

  
 ))         (     

       
 ), 

(64) 

where the effect of decimators (used at each iteration of 2D DWT) was considered by putting 

       
   and        

 . As one can observe, the inter-scale (   ) and inter-band 
(     ) dependency of the wavelet coefficients is function of the autocorrelation of the 

input image,    and of the cross-correlation of the MW which generate the considered 

subbands,        . If the input image is stationary, then the image formed by the coefficients 

is also stationary. A simplified version of (64) is obtained, if we suppose that the input signal is 

a bivariate independent and identically distributed (i.i.d.) WGN with variance    
  and zero 

mean,  (     )   (     ): 
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In this case, the inter-scale and inter-band dependency is function on the cross-correlation of 

the MW generating the considered subbands only. Generally speaking, the 2D DWT 

correlates the input signal.  

The inter-scale and intra-band case. For        , the cross-correlation of the 

wavelet coefficients expressed by (11) becomes an inter-scale and intra-band dependency: 

    
    

 (    
      

   
    )          ( 

    (     
 )      (   

  
 ))     (     

       
 )      

(66) 

In this case, the cross-correlation of MW    and      (from Eq. (64)) is substituted by the 

autocorrelation of the MW,   . If it generates by translations and dilations an orthogonal 

basis of   (  ), then its autocorrelation has the following property: 

   (   )   (   )   (67) 

which can be proved by direct computation. In the following, the MW which satisfy condition 

(67) will be called orthogonal MW. The expression of the inter-scale and intra-band 

dependency of the coefficients cross-correlation becomes: 
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(68) 

This cross-correlation is function of the autocorrelation of the input image only. The wavelet 

coefficients are still correlated. If the input is a bivariate i.i.d. WGN with variance   
  and zero 

mean,  (     )   (     ), then: 
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The right hand side of the last equation equals zero almost everywhere because the conditions 

     
  and       

  can not be fulfilled, as referring to indexes of coefficients belonging to 

different decomposition levels separated by decimators. We conclude from the equation above 

that the wavelet coefficients of a WGN, at different decomposition levels, are not correlated 

inside a subband for orthogonal MW.  

The intra-scale and inter-band case. For         and      , the cross-

correlation in Eq. (64) becomes: 
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If the input image is a zero mean bivariate i.i.d. WGN random process with variance   
 ,  then 

the last equation can be written in the following form: 
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The wavelet coefficients are still correlated. 

The intra-scale and intra-band case. For        , the cross-correlation of the 

wavelet coefficients given in Eq. (68) becomes an autocorrelation, expressing an intra-scale 

and intra-band dependency: 

   
 (           )       ( 

 (     )  
 (     ))  . (72) 

The autocorrelation of the wavelet coefficients depends only on the autocorrelation of the input 

image. The last equation can be put in the equivalent form: 
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At the limit    , we obtain: 

   
 (           )    (   ) (           )  (74) 

We can say that, asymptotically, the 2D DWT transforms the colored noise into a white one. 

Hence this transform can be regarded as a whitening system in an intra-band and intra-

scale scenario.  

A stronger result can be obtained if the input is a bivariate i.i.d. WGN with variance 

  
 and zero mean,   (     )   (     ). In this case, Eq. (73) becomes: 

   
 (           )    

  (           )  (75) 

The dependence of the autocorrelation of the wavelet coefficients on   disappeared. The 

wavelet coefficients of a zero mean white noise image with variance   
  are organized in zero 

mean white noise sub-images of same variance at any decomposition level. We can state that, 

in the same subband and at the same scale, the 2D DWT does not correlate the i.i.d. 

bivariate WGN random process for orthogonal MW. This is a surprising conclusion, taking 

into account the fact that the implementation of 2D DWT is based on filters which correlate the 

WGN. The result in Eq. (75) is more significant than the result presented in Eq. (21) because it 

is verified at each decomposition level (the result in Eq. (75) is not of asymptotical nature).  

 

Experimental results. We carried out experimental tests, where the random process at 

the input of the 2D DWT is wide sense stationary, to confirm the theoretical results. Two 

types of results were established; concerning the comportment of the 2D DWT in the presence 

of a WGN input process, highlighted in Eqs: (65), (69), (71) and (75); and concerning the 

asymptotical behavior described in Eq. (74). For the first case, we have used a zero mean 

bivariate WGN random process w. To confirm the result concerning the asymptotical regime 

of 2D DWT, we have used for simulations another wide sense stationary random process, 

obtained by filtering the process   with a bivariate running averager having a rectangular 

sliding window with size      , which will be denoted in the following by  . The random 

variables        
,                , are Gaussian independent and identically 

distributed with zero mean and unitary standard deviation. The autocorrelation of the bivariate 

WGN process   is presented in Fig. 37 and the autocorrelation of the process   is presented 

in Fig. 38.   

 
 

Fig. 37. The normalized 

autocorrelation of the WGN process. 

 . 
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The experimental results [IsaNaf14] show that, for the random processes considered above, 

the theoretical results can actually be attained with reasonable values for the decomposition 

level   using MW with 10 vanishing moments, with the shorter support, proposed by Ingrid 

Daubechies [Dau92]. These experimental results have been obtained by achieving full 2D 

DWT decompositions of the input random process specified above. In some cases, 10 

realizations of this input random process were considered and the corresponding results given 

hereafter are average values over these 10 realizations.  

The average empirical cross-correlation functions of the 2D DWT coefficients are 

calculated on the basis of 256 coefficients per subband. The values    and    were selected 

in each experiment, to make possible the computation of those average empirical cross-

correlation functions in each subband for every decomposition level. 

The first experiment refers to Eq. (69), by computing the cross-correlation between the 

coefficients belonging to same subband at two successive decomposition levels, for a 

bivariate WGN input process. In this experiment, we have used the values           . 

The group of pixels considered was obtained by cropping a region from the input image with 

size      . We have selected the following parameters: 

- decomposition levels:     and    , 

- subbands:     and    . 

The corresponding cross-correlations are represented in Fig. 39. The empirical cross-

correlation functions were obtained by averaging the corresponding cross-correlations 

obtained for 10 different realizations of the input process  . It can be observed that the values 

of the cross-correlations are small enough to consider that the corresponding 2D DWT 

coefficients are decorrelated. 

The second experiment for a WGN input refers to Eq. (73). In the following, we 

illustrate Eq. (75) to show that the 2D DWT does not correlate the input bivariate WGN 

process in an intra-scale and intra-band scenario. In this experiment we have used the values 

          and the following parameters: 

- decomposition levels:     and    , 

- subbands:        and  . 

The corresponding autocorrelations are represented in Fig. 40.   

The autocorrelations of the wavelet coefficients represented in Fig. 40 are similar with the 

autocorrelation of the input image for any decomposition level and any subband, showing that 

the 2D DWT does not correlate the input bivariate WGN. Finally, the third experiment refers 

to the 2D DWT coefficients of a colored bivariate noise process. More specifically, we deal 

with the Eq. (74). In this experiment we have used the values            and we have 

considered as input image the random process  .   

Fig. 38. Normalized autocorrelation of a 

group of 256 pixels belonging to a 

realization of the process  . 
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Fig. 39. Autocorrelation of input image (up) and cross-correlation between the coefficients 

belonging to subbands (   -middle) and subbands (   -bottom) situated at successive 

decomposition levels (    and    ) of 2D DWT of a bivariate WGN (inter-scale and 

intra-band scenario). The correlations are normalized to the maximum of the autocorrelation 

of input image.  

 

We have selected the following parameters:  

- decomposition levels:     or  , 

- subbands:     or  . 

The corresponding autocorrelations are represented in Fig. 41. Analyzing the results, it 

can be noticed that with the increasing of the number of decomposition levels, the 

resemblance of the shapes of those correlations with the shape of the autocorrelation of the 

process from Fig. 37, which corresponds to a bivariate WGN random signal, increases. The 

results in Fig. 41 were obtained on a single realization of the input process. The shapes of the 
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autocorrelations could be even closer to the shape of the autocorrelation of a WGN random 

process if multiple realizations of the input random process would be used.  

 

 
Fig. 40. Autocorrelations of 2D DWT coefficients of a bivariate WGN process in an intra-

scale and intra-band scenario. From left to right and top to bottom are represented the 

autocorrelations of input image, and of the wavelet coefficients from the decomposition level 

m=1 and the subbands k=1, 2, or 3; and from the decomposition level m=2 and the subbands 

k=1 and 2.  

 

 
Fig. 41. Autocorrelations of 2D DWT detail coefficients of a bivariate correlated random 

process at the first decomposition level (left column) and fifth decomposition level (right 

column). First line (    subband) and second line (     subband). 
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The experimental results show that, for the random process considered above, the 

asymptotic decorrelation stated by Eq. (74) can actually be attained with reasonable values for 

the decomposition level (       )  It must be observed that the random process f used 

for the illustration of the asymptotical decorrelation effect of the 2D DWT coefficients, 

represented in Fig. 39, is highly correlated. For input random processes less correlated, the 

number of decomposition levels required to obtain the decorrelation could be smaller 

(   ). 

The results highlighted are useful for the design of different image processing 

methods: compression (JPEG-2000), denoising [FirNafIsaIsa11], watermarking [NafIsa11] or 

classification systems. The principal difficulty arising in the design of those systems, with 

statistical tools, lies in the nonstationary nature of the bivariate random process which model 

natural images. As suggested in [Pes99], the approach for the statistical analysis of WT of 

nonstationary random processes is based on higher order statistics. In [AttBer12] is shown 

that the Wavelet Packet Transform realizes a kind of stationnarisation by reducing the higher 

order dependencies of nonstationary input signal. During acquisition and transmission, images 

are often corrupted by additive noise. The aim of an image denoising algorithm is then to 

reduce the noise level, while preserving the image features. 

 

In case of additive noise, the acquired image is expressed as: 

       (76) 

where   represents the noiseless component of input image and   is noise. Computing the 2D 

DWT of both members of the last equation we obtain: 

          
     

     
   (77) 

where: h=2D DWT{f}, u=2D DWT{s} and v=2D DWT{r}. If the input noise    is WGN, 

   , then    , because the 2D DWT of WGN is also WGN (as it is shown in Eq. (75) 

and in Fig. 40). 

In the case of multiplicative noise (for example speckle noise), Eq. (76) becomes: 

        (78) 

The multiplicative noise can be reduced to additive noise by homomorphic treatment:   
        

We will consider in the following the denoising scenario which correspond to additive 

WGN (AWGN) only. Every image denoising method has three steps: acquired signal’s WT 

computation; filtering in wavelets domain; computation of Inverse WT (IWT). A huge 

number of denoising methods were developed in the last years, by associating different WT 

with different filters (requested in the second step of the denoising method). In the following, 

we present a possible classification of denoising methods, highlighting each class with 

examples based on 2D DWT.  A first category of denoising methods is composed by non-

parametric techniques. These are denoising methods which not take into account any model of 

the components of the acquired signal [DonJoh94]. A second category of denoising methods 

is composed by parametric techniques, [FirNafIsaIsa11], [GleDat06], [FirNafBouIsa09], 

which consider statistical models for both components of the acquired image. Finally, there 

are some denoising methods, which lie at the border of parametric and non-parametric 

techniques, named semi-parametric techniques [BluLui07], [LuiBluUns07], [LuiBluUns11], 

[LuiBluWol12]. These consider models only for the noise component of the input image. The 

denoising methods belonging to the second and third category, already mentioned, exploit 

some of the consequences of the second order statistical analysis reported in [IsaNaf14]. The 

results of our statistical analysis can be directly applied in denoising to characterize the noise 

detail coefficients by ignoring the term u in Eq. (77).  

The use of orthogonal 2D DWT, denoted in the following as 2D DOWT, has some 

consequences in denoising: 
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1. The noise remains white and Gaussian with same statistics (mean, variance) see 

Eq. (75) and Fig. 40, in wavelet domain. The detail 2D DOWT coefficients of noise, 

  
 

 , belonging to different subbands, (     ) from the same scale ( ) or from 

different scales  (     ) are not correlated. So, the most important dependency in 

case of AWGN scenario is the intra-scale and intra-band dependence. This allows 

applying a new denoising function independently in every detail subband, which 

means that the solution obtained is subband-adaptive [SelBarKin05], [BluLui07], 

[GleDat06], [LuiBluUns07], [LuiBluUns11], [LuiBluWol12]. 

2. The cross-correlation of detail wavelet coefficients of noise in inter-scale and 

intra-band case equals zero almost everywhere (Eq. (69), Fig. 39). Hence, the 

inter-scale dependency of noise detail coefficients is not important in this case. The 

right hand side of Eq. (68), which consists of the autocorrelation of the input image, 

  , equals the autocorrelation of the noiseless component of the input image,    (Eq. 

(76)). We can estimate scaled versions of the autocorrelation of the noiseless 

component of input image  , by computing the cross-correlation of wavelet 

coefficients of the acquired image. The integration of interscale information in 

denoising algorithms has been shown to improve their quality, both visually and 

in terms of PSNR [FirNafIsaIsa11, [BluLui07], [GleDat06], [LuiBluUns07], 

[LuiBluUns11], [LuiBluWol12].  
The design of filters in the second step of denoising methods proposed in [BluLui07], 

[GleDat06], [LuiBluUns07] were clever enough to compensate the first drawback of 2D 

DOWT. The absence of translation invariance is caused by the potentially non-integer – shifts 

introduced by the filters    and   , which produce contours denoising errors as consequence 

of Gibbs phenomena in the neighborhood of discontinuities.   

In conjunction with the expansion of new wavelet estimators, some researchers have 

worked on improving the wavelet transform itself. Since the early – non-redundant – 2D 

DOWT, substantial improvements have been reached in denoising by using shift-invariant 

transformations, as the 2D UDWT [FouBenBou01], [PizPhi06], or quasi shift-invariant WT 

with better directional selectivity, as for example the 2D DTCWT [SelBarKin05], [SenSel02], 

[AchKur05], [MilKin08], the steerable pyramid [PorStrWaiSim03], the Dual-Tree M–band 

WT (DTMBWT) [ChaDuvBenPes08], [ChaDuvPes06] or the HWT [FirNafIsaIsa11]. The 

new properties resulting from the use of often highly redundant transforms (as for example 

the 2D UDWT) have been obtained at the expense of the loss of orthogonality, a substantially 

more intensive memory usage and a higher computational cost than that of the 2D DOWT. 

The latter point becomes a major concern in image volume denoising and more generally in 

multichannel image denoising, in particular when the number of channels is large. For 

instance, even though the usual color image representations require no more than 3–4 

channels (RGB, HSV, YUV, or CMYK descriptions), the computational cost is already quite 

large when shift-invariant (i.e., un-decimated) transforms are involved. Recently, it was 

proposed a general methodology, the “SURE-LET” paradigm [BluLui07], for building (using 

a linear expansion of thresholds: “LET” parameterization) and optimizing (using Stein’s 

unbiased risk estimate: SURE principle) denoising algorithms adapted to any kind of linear 

transforms, including 2D DOWT. The originality of this approach lies in the hypothesis that 

the noiseless component of the input image is deterministic. This is the reason why, we have 

considered the SURE-LET approach as semi-parametric. 

Taking into account the drawback of redundancy already mentioned, in 

[LuiBluUns07] was considered only the case of the association of 2D DOWT with the SURE-

LET estimator for multichannel image denoising. The SURE-LET estimator considers the 

inter-scale and intra-band dependency of the noiseless detail wavelet coefficients as is 

explained in the following. The parent detail wavelet coefficients of the noiseless component 
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from different subbands of the same decomposition level are large together in the 

neighborhood of image discontinuities. The corresponding child coefficients are also large, as 

a consequence of the aforementioned inter-scale and intra-band dependency. So, the position 

of large wavelet coefficients out of parents at lower decomposition levels (which represent 

detail wavelet coefficients of noise) can be detected with reasonably good accuracy. The 

detection of the positions of the large detail wavelet coefficients of noise can be realized by 

segmentation of subband images. Two classes of detail wavelet coefficients are obtained as 

result of segmentation: large coefficients and small coefficients. In the case of 2D DOWT, the 

parent subband is half the size of the child subband. The usual way of putting the two 

subbands in correspondence is simply to expand the parent by a factor of two. Unfortunately, 

this approach requires translation invariance. In [BluLui07] is, thus, proposed a solution, 

which corrects the absence of translation invariance of 2D DOWT and ensures the alignment 

of image features between the child and its parent. The idea proposed in [BluLui07] comes 

from the following observation: Let LHm and LLm be, respectively, band-pass and low-pass 

outputs at iteration m of the filterbank. Then, if the group delay between the band-pass and the 

low-pass filters are equal, no shift between the features of LHm and LLm will occur. When the 

group delays differ—which is the general case—in [BluLui07] is proposed to filter the low-

pass subband LLm in order to compensate for the group delay difference with LHm. Because 

the filters considered are separable (see Eq. (55)), only 1-D group delay compensation (GDC) 

must be considered. After GDC, the features of LHm and LLm are aligned, next these sub-

images are segmented and the corresponding two classes are compared. As result, the 

positions of large noise coefficients can be detected and these coefficients can be discarded. In 

[LuiBluUns07], the association of the 2D DODWT with SURE-LET, already explained, 

compared favorably with the association of Prob-Shrink algorithm with 2D UDWT (which is 

translation invariant) [PizPhi06] and with the famous association of the BLS-GSM algorithm 

with the steerable pyramid transform (which has better directional selectivity than 2D 

DOWT) [PorStrWaiSim03]. The idea of SURE-LET estimator was further developed in 

[LuiBluUns11], [LuiBluWol12]. 

 

  
Fig. 42 a) A comparison of HWT (up), 2D DTCWT (middle) and 2D DWT (bottom) of a disc 

image, which shows that 2D DTCWT and HWT are quasi-shift invariant and that 2D DWT is 

shift variant. Fig. 42 b) The absolute values of the spectra of horizontal and diagonal detail 

sub-images obtained after the first iterations of 2D DWT and HWT. In the HWT case, the real 

and imaginary parts of complex coefficients are separated. 

 



71 

The second drawback of 2D DWT refers to its poor directional selectivity and its 

effects can be reduced by generalizing this transform to HWT [FirNafBouIsa09]. 

The hyperanalytic image, associated to the input image  , is composed by four 

components:  , the 1D discrete Hilbert transform computed across the lines of  ,    { }, the 

1D discrete Hilbert transform computed across the columns of  ,   { } and   {  { }}. 

The architecture of HWT is composed by two parts. The first part implements the 2D DWT of 

the hyperanalytic image associated to the input image f in the initial computations block. The 

second part realizes the directional selectivity enhancement, using the same solution based on 

complex linear combinations of detail wavelet coefficients from every type of subband as in 

case of 2D DTCWT [SelBarKin05]: 

            (   
        

     
  {  { }} )   (   

     
  

   
     

  
)  (79) 

The HWT coefficients,   , are complex and can have positive or negative orientations: 

atan(1/2); π/4 and atan(2). 

The HWT is quasi-shift invariant, as can be seen in Fig. 42a. 

 

A comparison between HWT and 2D DWT is depicted in Fig. 42b. The spectrum of 

the input image has several preferential orientations: 0, atan(1/2), π/4, atan(2) and π. The 

better directional selectivity of HWT versus the 2D DWT can be easily observed, comparing 

the corresponding detail sub-images in Fig. 42b. For the diagonal detail sub-images, for 

example, the imaginary part of the HWT rejects the directions: -atan(1/2), -π /4 and -atan (2), 

whereas the 2D DWT conserves these directions. Exploiting the results of the present second 

order statistical analysis, on the basis of the HWT architecture, we have reported in 

[NafFirIsaBouIsa10a] results of a complete second order analysis of HWT, which have 

similar consequences for denoising:  

-the AWGN noise remains white and Gaussian in HWT domain, 

-the inter-scale and intra-band cross-correlation of detail wavelet coefficients depends only 

on the autocorrelation of the noiseless component of the input image s. 

 

We have compared in [FirNafIsaIsa11] the method based on the association: 2D 

DTCWT – bishrink filter, proposed in [SenSel02]; and the method which associates HWT 

with bishrink filter, respectively, for the case of SONAR images denoising. The HWT 

outperforms 2D DTCWT, producing a higher PSNR enhancement in case of synthesized 

images and a higher Equivalent Number of Looks (ENL) in case of real SONAR images.  

We have made a complete second order statistical analysis of the 2D DWT of wide-

sense stationary random processes, considering all the four possible scenarios: inter-scale and 

inter-band, inter-scale and intra-band, intra-scale and inter-band and intra-scale and intra-

band, giving explicit formulae for the correlation functions in each case. We have shown the 

importance of orthogonal wavelets and of the number of decomposition levels. We have 

proved the practical importance of the asymptotic analysis of the autocorrelation of 2D 

DOWT detail coefficients by simulations, evaluating the speed of convergence towards the 

unitary impulse. 

We have shown how the results of the second order statistical analysis proposed can 

be used for the design of denoising systems based on 2D DOWT for images affected by 

AWGN. A different denoising function can be applied independently for every detail subband 

and decomposition level. We have highlighted the importance of inter-scale and intra-band 

dependency of detail wavelet coefficients in denoising images affected by AWGN. We have 

compared three denoising approaches: non-parametric, parametric and semi-parametric, 

showing the advantages of models based on the hypothesis that the noiseless component of 

the image to be denoised is deterministic and the noise is a random process.   
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These results on the second order statistical analysis of 2D DWT have been 

generalized to HWT in [NafFirIsaBouIsa10a].  

A possible continuation is to compare the actual results and the results obtained for 

HWT with the results of the second order statistical analysis of 2D DTCWT [ChaPesDuv07].  

 

2.4.4 A second order statistical analysis of the Hyperanalytic Wavelet Transform 

 

Wavelet Transforms (WT) are used to process images in many applications in 

communications. The 2D Discrete WT, 2D DWT has disadvantages [Kin01], [Kin00]: lack of 

shift invariance and poor directional selectivity, which can be diminished by a complex 

wavelet transform [Kin00], [AdaNafBouIsa07].  

In the papers [FirNafIsaBouIsa10], [NafFirIsaBouIsa10a]. [NafIsa12], we present a 

second order statistical analysis of the HWT. We applied it in denoising and watermarking but 

we have not fully exploited its statistical properties. A particularity of HWT is the interscale 

dependency of coefficients. Similar to the DWT analysis, we derive closed form expressions 

for the wavelet coefficients’ correlation functions in all possible scenarios:  

 inter-scale and inter-band (different scale/different subband),  

 inter-scale and intra-band (different scale/same subband),  

 intra-scale and inter-band (same scale/different subband)  

 intra-scale and intra-band (same scale/subband).  

In the following, f will denote the input image (considered as a stationary bivariate 

random process), m will represent the current scale and k = 1 - for the sub-band LH, k = 2 - 

for HL, k = 3 - for HH (detail coefficients) and k = 4 - for LL (approximation coefficients). 

The detail coefficients are computed as scalar products of  f and the wavelets k
pnm ,,  where n 

and p represent horizontal and vertical translations in the expression of the bivariate mother 

wavelets [Mal99]. We will consider in the following the case of orthogonal wavelets.  

The HWT of the image  ,f x y  is computed with the aid of the 2D DWT of its 

associated hypercomplex image, composed by two sequences of complex coefficients, one 

containing three subbands with positive angle orientations  atan 1/2 , / 4 and  atan 2 : 

 
  

1,2,3 1,2,3 1,2,3 1,2,3
r i f m m m mf x yy x

z z jz D D j D D  

          
  

H HH H
,  

 

and one containing three subbands with negative angle orientations  -atan 1/2 , / 4 and 

 -atan 2 :  

 
  

1,2,3 1,2,3 1,2,3 1,2,3
r i f m m m mf x yy x

z z jz D D j D D  

          
  

H HH H
.  

The expectation of coefficients z  and z  is: 

              1,2,3 1,2,3 1,2,3 1,2,3 0f x yy x f
E z E D E D jE D jE D E z      H HH H

 (80) 

 

1) Inter-scale and inter-band case  

The intercorrelation between real and imaginary parts of the coefficients in subbands 

with same type of orientation (positive or negative) 

Applying the definition of the statistical correlation for the real and imaginary parts of 

the coefficients z  we obtain a sum of correlations of 2D DWT coefficients: 
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 (81) 

Each term in (81) can be computed using (8) from [FirNafIsaBouIsa10]. fS  is substituted with 

the power spectral densities and interspectra: Hf xS ,   H H Hy x xS , Hf yS   and   H H Hy x yS : 
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So we have: 
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The intercorrelation of real and imaginary parts of z  is given in equation (84). Taking the 

limit for m1 infinity in equations (83) and (84) we obtain the result in equation (85) because 

sgn(0)=0.  This result proves that real and imaginary parts of z  and z  are asymptotically 

decorrelated in an inter-band context. 
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  
1

1 2 1 2 1 2 1 2lim , , , , , , , 0
r iz z

m
R m m k k n n p p

 
  (85) 

 

Correlation of real parts and of imaginary parts of coefficients in subbands with same 

type of orientation. We identify inter-band and inter-scale dependencies of the real and 

respectively of the imaginary parts of z  and z : 

 

 

   

   
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 


      

     

H H H H

H H H H

 (86) 

Each term in the right hand side can be computed using (8) from [FirNafIsaBouIsa10], but 

instead of fS  we must substitute with xSH , H Hx yS  , H Hy xS  and HyS . We have similar relations 

for other orientations, for real part of z  and z . The equation (86) becomes: 



74 
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 (87) 

Taking the limit for m1 tending to infinity, the right hand side of the last equation becomes 

equal with zero because sgn(0)=0. The imaginary parts of the coefficients z  are 

asymptotically decorrelated [FirNafIsaBouIsa10]. 

Intercorrelation of coefficients in subbands with opposite type of orientation. The 

HWT subbands are positive oriented for z  and negative orientated for z . The 

intercorrelation between the imaginary parts of the coefficients z  and z  can be expressed as: 
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We obtain:  
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 (89) 

The first factor under the integral from the right hand side of the last equation equals zero for 

any pair of not nulls real numbers  21, , reason for which it can be written: 

  1 2 1 2 1 2 1 2 1 2, , , , , , , 0 a.e.w, , 0
i iz zR m m k k n n p p

 
    (90) 

Imaginary parts of positively oriented subbands are not correlated with imaginary parts of the 

negatively oriented subbands for any finite values m1 and m2. This is a more general result than 

former ones which are of asymptotical nature only. The same value is obtained for 

intercorrelation between real parts of z  and imaginary parts of z , or for intercorrelation 

between real parts of z  and z : 

  1 2 1 2 1 2 1 2, , , , , , , 0 a.e.w
r iz zR m m k k n n p p


   (91) 

 

2) Inter-scale and Intra-band Dependencies  
For k1=k2=k, if the mother wavelet ψ

k
 generates by translations and dilations an 

orthogonal basis of L
2
(R

2
) then: 
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 (92) 

Similar results are obtained for 
rr zzR


,  

ii zzR


and  
rr zzR


. In an inter-scale and intra-band 

context, correlation functions of the HWT coefficients depend solely on the correlations of the 

four input images f, Hx{f}, Hy{f}, Hy{Hx{f}}, if orthogonal wavelets are used.  
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3) Intra-scale and Intra-band Dependencies. For 1 2m m m  we have: 
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Using Wiener-Hincin theorem we obtain equation (94). At the limit for m, the equation 

(94) becomes (95) which represent the autocorrelation of a white noise. Similar asymptotic 

results are obtained for the subbands rz , iz  and rz . HWT can also be seen as a whitening 

system in an intra-scale and intra-band scenario, just like the 2D DWT. 
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4) The intra-scale and inter-band scenario is the most general one and supposes the 

computation of the cross-correlation of the HWT coefficients belonging to the decomposition 

levels indexed by m1 and m2 and to the subbands indexed by k1 and k2. These cross-correlation 

functions are computed in [NafFirIsaBouIsa10a]. For example, the cross-correlation of the 

imaginary parts of coefficients z and z is expressed in the equation (90). For 1 2m m m  , the 

equations (90) and (91) become intra-scale and inter-band dependencies. So, there are 

categories of HWT coefficients, as for example those belonging to subbands with opposite 

type of orientations, which are decorrelated a. e., in the intra-scale and inter-band scenario. It 

can be proved, following the strategy proposed in [NafFirIsaBouIsa10a], that the HWT 

coefficients belonging to the other categories are asymptotically decorrelated in the intra-scale 

and inter-band scenario.   

 

The results of the HWT second order statistical analysis reported are resumed in the 

following table. These results refer to different categories of HWT coefficients: real and/or 

imaginary parts of complex numbers z belonging to subbands with same type of orientation 

(++ or --) or to subbands with opposite type of orientation (+- or -+). All these coefficients 

have zero statistical mean (in conformity with the first column of the table).   

 

Expectation Correlation 

Inter-scale & 

inter-band 

Inter-scale & 

intra-band 

Intra-scale & intra-

band 

intra-scale &  

inter-band 

0, for k=1, 

2, 3 

Asymptotically 

decorrelated 

Correlated Asymptotically 

decorrelated 

Asymptotically 

decorrelated 

 Table 21. Results. 

 

There are two types of results which concern the correlation functions: non 

asymptotically and asymptotically (which are obtained as limits for m approaching infinity). 

Generally, the results of first type indicate that the HWT coefficients are correlated (as it is 

indicated on the third column of the table). Still, there are categories of HWT coefficients, as 
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for example those belonging to subbands with opposite type of orientations, which are 

decorrelated almost everywhere (a. e.) in the inter-scale and inter-band scenario, see equations 

(26) and (27) in [NafFirIsaBouIsa10a]. The HWT coefficients are asymptotically decorrelated 

in the inter-scale and inter-band (see second column of Table 21) and in the intra-scale and 

intra-band scenarios (see fourth column of Table 21).    

 

We carried out experimental tests where the random process f at the input of the HWT 

is stationary [NafIsa12]. This process is obtained by filtering a zero mean bivariate White 

Gaussian Noise (WGN) random process w with a bivariate running averager having a 

rectangular sliding window with size 1010. The random variables W(n1,n2), 1 n1 N1, 1 n2

N2, are Gaussian, independent and identically distributed with zero-mean and unitary 

standard-deviation. We have used the MWs with 10 vanishing moments and shorter support 

proposed by Ingrid Daubechies. These experimental results have been obtained by achieving 

full HWT decompositions of the input random process specified above. In some cases, 10 

realizations of this input random process were considered and the corresponding results given 

hereafter are average values over these 10 realizations. The average empirical cross-

correlation functions of the HWT coefficients are calculated on the basis of 256 coefficients 

per subband. We have selected the values N1 and N2 in each experiment to make possible the 

computation of those average empirical cross-correlation functions in each subband for every 

decomposition level and for each preferential orientation considered below.  

The first experiment refers to the cross-correlation between the real and imaginary 

parts of the coefficients belonging to subbands with same type of orientation in an inter-scale 

and inter-band scenario (#4). In Fig. 43 is presented the normalized auto-correlation of a 

group of 256 pixels of a realization of the input process f. In this experiment we have used the 

values N1=N2=2048. The group of pixels considered was obtained by cropping a region from 

the input image with size 1616. We have selected the following parameters:  

- decomposition levels: m1=6 and m2=7, 

- orientation: negative, 

- subbands: k1 =1 and k2=2. 

 
Fig. 43. Normalized auto-correlation of a group of 256 pixels belonging to a realization of the 

process f. 

 

The corresponding cross-correlation is represented in Fig. 44. It was obtained by averaging 

the cross-correlation of the real and imaginary parts of the coefficients z obtained for 10 

different realizations of the input process f. It can be observed, analyzing comparatively Fig. 

43 and Fig. 44, that the values of the cross-correlation in Fig. 44 are small enough to consider 

that the corresponding HWT coefficients are quasi-decorrelated. The experimental result 

detailed below shows that, for the random process considered above, the asymptotic 

decorrelation (obtained for m1→∞) can actually be attained with reasonable values for the 

resolution level (m1≥6, m2> m1). 
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The second experiment refers to the cross-correlation of the real parts of the 

coefficients belonging to subbands with opposite type of orientation in an intra-scale and 

inter-band scenario. In this experiment we have used the values N1=N2=256. We have 

selected the following parameters:  

- decomposition levels: m1= m2=1, 

- orientations: negative, positive, 

- subbands: k1 =k2=2. 

The corresponding cross-correlation is represented in Fig. 45 and it equals zero almost 

everywhere. So, the HWT coefficients belonging to subbands with opposite type of 

orientations are decorrelated in an intra-scale and inter-band scenario. The intra-scale and 

intra-band scenario, considered in the following experiment, is the most frequently used in 

applications.  

The third experiment refers to the asymptotic decorrelation of the real parts of the 

coefficients belonging to the same subband and same decomposition level. In this experiment 

we have used the values N1=N2=2048. We have selected the following parameters:  

- decomposition levels: m1= m2=7, 

- orientation: negative, 

- subbands: k1 =k2=1, k1 =k2=2, k1 =k2=3. 

The corresponding auto-correlations are represented in Fig. 46. 

They were obtained by averaging the auto-correlations of real parts of coefficients z  

obtained for 10 different realizations of the input process f. Analyzing Fig. 46, it can be 

observed that the form of the auto-correlations is similar with the form of the auto-correlation 

of a WN process. So we can consider that the corresponding HWT coefficients are quasi-

decorrelated.  

 

 
Fig. 44. Normalized cross-correlation between the real and imaginary parts of the coefficients 

belonging to subbands with same type of orientation in an inter-scale and inter-band scenario. 

 

 
Fig. 45. Normalized cross-correlation between real parts of coefficients belonging to subbands 

with opposite type of orientations situated at the same decomposition level. 
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We generalized the second order statistical analysis of 2D DWT from 

[NafFirIsaBouIsa10b] for HWT.  This WT seems more complicated than 2D DWT, because of 

the greater number of subbands and complex coefficients. HWT coefficients have strong inter-

scale and inter-band dependencies. Real and imaginary parts of coefficients in subbands with 

same type of orientation are asymptotically decorrelated. In an inter-band and inter-scale 

context, real and respectively imaginary parts of z  and z  are asymptotically decorrelated. 

We analyzed coefficients in subbands with opposite type of orientation. Intercorrelations are 

zero a.e.w. even for finite number of scales. This allows parallel processing of the HWT 

coefficients in subbands with opposite type of orientation [FirNafBouIsa09]. HWT coefficients 

correlations are independent of the mother wavelets in an inter-scale and intra-band context, 

depending on correlations of the four input images f, Hx{f}, Hy{f}, Hy{Hx{f}} only, if 

orthogonal wavelets are used. HWT is a whitening system in an intra-scale and intra-band 

scenario, similarly to 2D DWT. We analyzed the two WTs in only three scenarios: inter-scale 

and inter-band, inter-scale and intra-band and intra-scale and inter-band. The 2D DWT and the 

HWT have similar statistical behaviors in inter-scale scenarios. Asymptotically, HWT has 

higher decorrelation strength in intra-band scenarios.  

Despite its superior complexity, the HWT inherits the good statistical properties of 2D 

DWT and outperforms it in several cases as for example for the subbands of opposite type of 

orientations (when the decorrelation is even not asymptotically). 

The experimental results confirm the theoretical findings showing that, for the random 

processes considered above, the asymptotic theoretical results (obtained for m1,2→∞) can 

actually be attained with reasonable finite values for the resolution level (m1≥6, m2> m1 for the 

first experiment and m1= m2≥7 for the third experiment).  

 

 Fig. 46. Normalized auto-correlations of real parts of 

coefficients with preferential direction negative at the seventh decomposition level in 

subband: a) k=1, b) k=2 and c) k=3. 
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2.5 Kullback-Leibler divergence between complex generalized Gaussian distributions  

Papers: [NafBerNafIsa12] 

 

In texture classification, feature extraction can be made in a transform domain. A 

possibility to preserve the translation invariance is to use a complex transform like the 

Hyperanalytic Wavelet transform. It exhibits a circularly symmetric density function for 

subband coefficients so it can be modeled by a particular form of the complex generalized 

Gaussian (CGGD) distribution function. The Kullback-Leibler (KL) divergence, or distance, 

can be used to measure the similarity between subbands density function. We derived in 

[NafBerNafIsa12] a closed-form expression for the KL divergence between two complex 

generalized Gaussian distributions. In probability and information theory, the Kullback–

Leibler (KL) divergence is a non-symmetric measure of the difference between two 

probability density functions (pdf), p and q. This is defined as [KulLei51]: 

    
 

 

,
, log

,
KL

p x y
D p q p x y dxdy

q x y

 

 

   . (96) 

If the two pdfs are the same (p=q), the divergence is null. The KL distance is used as a 

similarity measure between textures, which makes it useful for texture classification 

[DoVet02]. In [DoVet02], the authors deal with computation of KL divergence for statistics 

of real wavelet subband coefficients. A wavelet subband is modeled using the generalized 

Gaussian distribution (GGD). Based on this model, hyperparameters of the coefficients pdf 

from each subband are estimated. The KL divergence is computed between the pdf of 

subbands for two compared textures.   

If this classification is made using a complex wavelet transform, we need a complex 

model and the closed-form for the KL divergence.  

The generalization for the GGD model in the complex case was proposed by Novey 

and Adali which approximates the pdf based on a histogram [NovAdaRoy10]. The 

computation problem for the distance between two pdf for complex variables was also 

discussed by Verdoolaege [VerBacSch08]. He established equations for geodesics in 

probability space. Unfortunately, these relations are not usable at this moment.  

Because the hyperanalytic wavelet transform (HWT) produces complex coefficients 

with a circular distribution we have studied the simpler problem of KL divergence for such 

distributions [FirNafBouIsa09]. We derived a closed-form for the KL divergence of pairs of 

CGGD random variables and we studied its sensitivity with the shape parameter.  

In the following, we give the definition of HWT and its main statistical properties; we 

then briefly presents the CGGD [NovAdaRoy10] and we explain why we chose this model for 

HWT. We give the closed-form of the KL divergence of two CGGD. The sensitivity of this 

KL divergence with the parameters of the CGGDs is analyzed as well. 

In [FirNafBouIsa09] a new complex wavelet transform was proposed, the HWT , 

which identifies six orientations, 3 positive and 3 negative, ±atan(1/2), ±/4 and ±atan(2): 

    R Iz z jz .  

A problem of interest is the statistical modeling of the HWT coefficients. For input random 

processes, random variables as Z, can be associated to the HWT coefficients  z.  

The coefficients have zero mean, the cross-correlation between their real and 

imaginary parts is zero and the variances of their real and imaginary parts are estimated to be 

the same, 2 2 2 / 2R I     , for any second order stationary bivariate input random process 

[NafFirIsaBouIsa10a]. Therefore, we considered the repartitions of the random variables Z± 

corresponding to the HWT coefficients z  to be like circularly symmetric. The cross-

correlation matrix is:  
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  
2
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/ 2 0

0 / 2
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b b bE
 

   
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C Z Z , (97) 

where Zb=[ZR ,ZI]
T
 is the bivariate vector of the real and imaginary parts of the HWT 

coefficients. The augmented form: Za=[Z , Z
*
]

T
 [NovAdaRoy10] can also be used. 

CGGD. For a complex generalized Gaussian distribution, CGGD, where the bivariate 

random vector is 
b

Z  and the augmented vector is aZ  [NovAdaRoy10], the general form of the 

bivariate covariance matrix is:  

  
2

2

T R

b b b

I

E
  

   
  

C Z Z , (98) 

where  R IE Z Z    is the cross-correlation between the real and imaginary part. The 

augmented covariance matrix is established by Novey and Adali as: 

  
2 2 2 2

2 2 2 2

( ) 2

( ) 2

H R I R I

a a a

R I R I

j
E

j

      
   

      
C Z Z . (99) 

The probability density function generalizes the GGD family of densities,  
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, (100) 

where ( )  is the gamma function,   is the scale parameter, and c is the shape parameter. The 

generalized probability density function for the augmented vector is: 
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. In [NovAdaRoy10] a 

Matlab program is presented which gives the ML estimation for the vector 
2 2, , ,

T

R I c      . 

This means we can have the ML estimation for the shape parameter c and the matrices 
b

C   

and  aC . We show in the following the importance of the quality of this estimation. 

In the case of circular vectors, with 2 2 2 / 2R I       and 0  , which corresponds to 

the HWT coefficients of any bivariate stationary random process [NafFirIsaBouIsa10a], 

starting from the augmented pdf in (10), the bivariate pdf is:  
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. (102) 

For the pdf having the shape parameters c1, c2 and the variances 2 2
1 2   using relationship 

(11) and the definition in (1) we obtain the Kullback-Leibler distance: 
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. (103) 

The proof of this relation can be found in the Paragraph 2.5.1.  
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We plot the KL distance between p1 and p2, for 1 2   . In Fig.47, the shape parameter 

for p2, that is c2, is fixed, with values 0.3, 0.5, 1, 1.5 and 2. The shape parameter for p1, that is 

c1, varies from 0.2 to 2. In Fig.48, the shape parameter for p1, c1 is fixed, with values 0.3, 0.5, 

1, 1.5 and 2. The shape parameter for p2, that is c2, varies from 0.2 to 2.  

 

 
Fig. 47. KL distance between p1 and p2 ( 1 2  ). The shape parameter for p2, c2 is fixed, with 

values 0.3, 0.5, 1, 1.5 and 2. The shape parameter for p1, that is c1, varies from 0.2 to 2. 

 

 

 
Fig. 48. KL distance between p1 and p2 ( 1 2  ). The shape parameter for p1, c1 is fixed, with 

values 0.3, 0.5, 1, 1.5 and 2. The shape parameter for p2, that is c2, varies from 0.2 to 2. 
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It is essential for any classification that the distance between the two pdf to be as 

discriminant as possible. In other words, if c1 and c2 are very close then KL should be close to 

zero, and if they have different values, this distance should be as high as possible.  

It can be observed, analyzing Fig. 47 and Fig. 48 that the KL becomes zero if c1=c2 and 

σ1=σ2. These parameters are not a priori known in textures classification applications and they 

must be estimated. The success of the classification depends on the quality of the estimators 

used. For an efficient classification, it is necessary that the speed of variation of the curves in 

Fig. 47 and Fig. 48 around their intersections with the line expressed by the equation DKL=0, 

to be as high as possible. 

For the VisTex database [VisTex02], using 40 images subdivided in 16 subimages 

each, resulting in 640 smaller images, we have repeated the estimation of the shape parameter 

c and of the covariance matrix Ca, using the programs presented in [NovAdaRoy10]. This was 

done in the HWT domain, using one decomposition level and Daubechies-3 mother wavelet. 

We have noticed that the shape parameter varies in the range 0.1÷5 but its values around 0.5 

appear more frequently. 

From Fig.47 it is easily noticeable that the KL distance varies only slightly for values 

of c1 between 0.8 and 1.2. It is interesting that it responds better around the value c1=0.25. 

The KL distance is more sensitive for the plot c2=0.3 than for Gaussian case (c2=1).  

For Fig.48, where we plotted KL distance with c1 fixed, the best case is for c1=0.3, as 

opposed to the case of c1=1 (Gaussian case). The KL distance varies only slightly for example 

in the range c2 of 0.5÷1.5. As expected, the KL distance is non-symmetric with respect to c1 

and c2. 

In texture classification, when using a complex transform such as the HWT, modeled 

by the CGGD distribution, the KL distance can be used to measure the similarity between 

subband density functions. This is not always satisfactory because there are intervals where 

KL distance varies only slightly despite the fact that the two pdfs are very different. It would 

be useful in the future to study more measures for texture classification.  

 

2.5.1 Derivation of KL distance  
 

We compute the KL distance for the CGGD model, in the circular case. The 

probability density function is:  
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, (A.1) 

where x and y are the real and imaginary components, and 
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We compare two pdf: 
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. (A.3,4) 

We start from the KL distance definition: 
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First we have: 
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The integrand is then: 
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The KL distance can be written as a sum of three terms, I1, I2 and I3: 

  1 2 1 2 3KLD p p I I I   . (A.8) 

The first term is: 
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Because:  
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we obtain:  
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In the same manner, we have:  
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and 
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The distance becomes: 
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where: 
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It results that: 
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We took into account that: 
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We verify that the distance is correct, for 

 1 2 1 2;        c c c       ,  

it should be zero: 
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2.6 Texture classification/clustering 

Papers: [SchBerTurNafIsa12]  

 

A new method for texture clustering was proposed in [SchBerTurNafIsa12]  based on 

the information-geometry tools. Considering textured images as a collection of heavy-tailed 

prior probability distributions related to some space/scale decomposition, an average of 

distributions (a barycentric distribution) is used to characterize each cluster. The Jeffrey 

divergence is used of as a dissimilarity measure for the clustering of images. Taking into 

account the geometry of the probabilistic manifold associated to the prior family, we provide 

the steepest descent method used to estimate the barycentric distribution. The descent exploits 

the Fisher information matrix, which is the expected value of the Hessian matrix and the local 

metric to the manifold. The experimental results on well-known texture databases show that 

the Fisher information matrix approach provides a convergence speed significantly higher 

than the convergence speed of conventional methods of steepest descent.  

Texture analysis is important for various issues such as classification, segmentation or 

indexing image databases. Many methods use jointly scale-space approaches and stochastic 

modeling to characterize the textural content [DoVet02], [MatSkaBr02], [WouSchDyc99], 

[KwiUhl08], [MalHasLasBer10], [LasBer10]. The stochastic modeling consists in fitting the 

empirical marginal probability density function (pdf) with a given prior parametric function 

for each set of sub-band coefficients. In the context of classification/segmentation, clustering 
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approaches have known an increased interest providing efficient and tractable algorithms for 

various domains. The general purpose of a clustering algorithm consists in partitioning the 

data set into k homogeneous groups (clusters), represented by the most centrally located 

object in a cluster, that is the barycenter. Estimating the mean value of the objects in the 

cluster implies to define adapted measure to determine the similarity/dissimilarity. The 

clustering can be developed in different frameworks ranging from unsupervised context 

[HuZha09], for which any information is available, to the supervised case for which the 

barycenter of the cluster can be estimated from training data [ChoTon07]. However for all 

these frameworks, the common issue that one may encounter is the estimation of the 

barycenter associated to each cluster. In [SchBerTurNafIsa12]  we provided efficient methods 

for texture clustering considering the supervised case. In the context of the probabilistic 

modeling devoted to texture analysis, we proposed a clustering approach which takes 

advantage of information-geometry theory and parametric point-of-view. The first proposal is 

related to the selection of the measure of similarity to intra-cluster comparison. We promote 

the symmetrized Jeffrey divergence in opposition to the Euclidean distance widely used for 

texture clustering. The main advantage of this dissimilarity corresponds to a closedform of the 

measure in terms of parameter prior distribution. The second proposal is exploited in the 

procedure to estimate the barycenter of each cluster which is also a distribution. The proposed 

estimator is based on steepest descent procedure [ComPes09]. The estimator exploits the 

Riemannian geometry [AmaNag07] of the parameter space of the prior statistical models to 

adapt to the local manifold geometry, with the Fisher information matrix [AmaDou98].  

The main purpose of textured image analysis for classification, segmentation or 

indexing issues consists in providing a relevant and tractable measure of dissimilarity 

associated to a representative and compact parametric modeling of the textural content. In the 

following, dissimilarity and parametric pdf family are presented in order to introduce the 

concept of barycentric law. 

In the framework of Bayesian parametric approach, the conditional pdf p is modeled 

by a family of prior pdf denoted by p(t ;λtest) where λtest   M is a d-dimensional parameter 

vector and M is a parametric model family. The index t references an instance of the 

parametric vector within the space associated to M . The estimated class  ĉ t of the sample t is 

defined as [DoVet02]: 

       
1,...,

ˆ arg ; , ;
c

t c
c N

c t m p t p t
 
  



 
  

 λ λ ,  

where testλ  is the d-dimensional parameter vector which maximizes the likelihood of testλ  

given the outcome t and where m is a dissimilarity measure devoted to probabilistic context. 

Taking into account information-geometry theory [AmaNag07], the measure m can be 

specified as Jeffrey divergence (J) or Euclidean distance (E). Thanks for the availability of a 

closed form in terms of parameters for J, we define:  

       ; , ; ,test c ctestJ p t p t Jλ λ λ λ . (104) 

Let Ti be a texture image decomposed by a linear operator D into 
sN  sub-bands [DoVet02]  

  , , 1,...,i sT s s ND  . In texture analysis, usually empirical marginal densities of decomposed 

sub-band coefficients are approximated by parametric laws [DoVet02], [MatSkaBr02], 

[WouSchDyc99], [KwiUhl08], [MalHasLasBer10], [LasBer10]. Considering the parametric 

pdf family M , the stochastic model of iT  is then defined as    ,, ; ,i i sp D T s sλ . The 

stochastic model of iT  is denoted as:  

  , , 1,...,i i s sT s N λ , (105) 



86 

where λi, s is the d-dimensional parameter vector that maximizes the likelihood of D(Ti , s). 

Where the sub-band coefficients are independent, the separability of Jeffrey divergence 

allows us to define the dissimilarity between two texture images T1 and T2 : 

    1 2 1, 2,

1

, ,
sN

s s

s

J T T J


 λ λ . (106) 

Generally in the framework of texture analysis, the parametric model exibits heavy-tailed 

behavior which can be represented by the centred generalized Gaussian distribution 

[DoVet02]. 

The supervised framework starts from a set of Nc classes of textured images. For each class, 

N image samples are available. The clustering principle aims to estimate from the N samples a 

“barycentric texture” to each class noted c and which we define as follows: 

  , , 1,...,c c s sT s N λ , (107) 

where  
,c sλ  is the “barycentric distribution” for the sub-band s.  Fig. 49 shows the parameter 

vector estimated from the samples of three class of textured images for the third subband, s=3. 

 

 

 
Fig. 49. For the sub-band s=3, display the parametrized vectors estimated on image samples 

from three different classes of Vistex database Class 8. 

 

A. Cost Function and Barycentric Distribution 

Let  
1

N

n n
Λ λ  be a collection of parameter vectors corresponding to the modeling M 

estimated from the N samples. The main issue is focused on the inference of the barycentric 

distribution based on the following cost function: 
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d
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Knowing that J (. , .) has a closed-form in terms of λ  [DoVet02], the cost function  ,Jl  λ is 

a convex function in terms of λ and has a closed-form. The barycentric distribution λ  is a 

stationary point of J:  
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d

i i
λ
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λ  
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But stationary points of J have no closed-form and need to be numerically estimated. We thus 

investigated different procedures in order to estimate λ . 
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B. Projected Gradient-Descent Algorithm 

Obtaining the barycentric distribution by the minimization of (108), requires the use of the 

projected Gradient-descent algorithm i.e. proximal one, also called steepest descent algorithm. 

Let  
1k k




λ  be a sequence of parameter vectors defined as: 

   1

1 ,k k k J kP ξ l

   λ λ λK . (110) 

The sequence converges toward λ  which minimizes eq. (108). Proximal methods 

[ComPes09] conduct us to use the projection P on the closed space within  
d

 . In eq. (110) 

K is the identity matrix of dimension d, and kξ  is a step that decreases when the stationary 

point approaches λ . 

 

C. Improved Projected Steepest-Descent Method 

Thanks to the prior family chosen, each prior distribution is uniquely defined by its parameter 

vector. The parameter space  
d

 is called manifold. The curvature of the manifold of 

parameter vectors is obtained by the Hessian matrix ,JHl   of ,Jl  lJ ,Λ as follows: 
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The definition of a Hessian-based algorithm consists in using the Hessian matrix inside the 

steepest-descent by replacing K=H l J ,Λ(λk ) . 

The geometry of the manifold is also locally defined by the tensor which is the Fisher 

information matrix: 
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The Fisher information matrix for the GGD is writed as: 
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We proposed a generalized steepest-descent based on the expected value of the Hessian 

matrix: the Fisher information matrix K=−G(λk). 

Experimental results. The texture clustering requires a barycentric texture computed 

with a proximal method (110). The three optimization methods obtained are compared in 

terms of performance and complexity. 

The supervised clustering test on a texture image database consists in splitting the 

database into two parts: the training and the testing sets. The training set is composed by a 

random selection of NTr samples from the NSa samples of each texture class. The remaining 

samples define the "test" samples. Based on a training set, a barycentric distribution is 

estimated for each parametric model in the stochastic model which defines the signature of 
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the texture class. The divergence between a test sample and the signature of each class that is 

minimum defines the estimated class for this test sample. The performance of the algorithm is 

illustrated by the percentage of tests samples accurately classified to the class among the tests 

samples from this class. 

The supervised clustering test requires a texture image database. A texture image 

database consist in a set of high quality textures images. The three texture image databases 

are: 

1. the VisTex database which is a conventional texture image database. Each of the 40 images 

is split in 16 non overlapping sub-images of size 128x128 pixels ( NSa=16);  

2. the Brodatz database proposed by Choy and Tong [ComPes09] contain 20 texture classes. 

Each textured image is split in NSa=16 non overlapping sub-images (128x128 pixels); 

3. the VisTex complete database. Each of the 167 images is split in 16 non overlapping sub-

images of size 128x128 pixels (NSa=16); 

4. the Brodatz database contain 13 texture classes. Each textured image is split in N Sa=16 

non overlapping sub-images (128x128 pixels). 

The clustering algorithm is launched one hundred times with random training samples to 

evaluate its performance. In addition, the mean computing time value and the mean number of 

loops are recorded. The computing time value is the time in seconds needed to obtain one 

barycentric distribution and the number of loops corresponds to the complexity of the 

optimization method. 

The supervised clustering test with the Jeffrey divergence is apportioned in three 

optimization methods: the Gradient descent algorithm ∇, the Hessian method H, and the 

Fisher information matrix approach G. A clustering test is done with the Euclidean distance E 

between the parameter vectors inside ( +)d. The clustering with the Euclidean distance 

consists on the computation of a barycentric distribution as an arithmetic mean of parameter 

vectors.  

 

NTr /NSa 2/16 3/16 4/16 5/16 6/16 Time Loops 

E, GGD 65% 66% 66% 68% 69% 80 μs 1 

∇, GGD 82% 82% 82% 82% 84% 603 ms 159 

H, GGD 81% 81% 80% 81% 83% 99 ms 36 

G, GGD 84% 83% 83% 83% 84% 16 ms 7 

Table 22. Performance and complexity on the VisTex database 

 

NTr /NSa 2/16 3/16 4/16 5/16 6/16 Time Loops 

E, GGD 79% 80% 80% 80% 79% 78 μs 1 

∇, GGD 90% 88% 87% 90% 89% 571 ms 173 

H, GGD 90% 89% 86% 88% 89% 102 ms 37 

G, GGD 90% 88% 88% 88% 89% 11 ms 5 

Table 23. Performance and complexity on the Brodatz Choy database 

 

NTr /NSa 2/16 3/16 4/16 5/16 6/16 Time Loops 

E, GGD 36% 35% 36% 35% 35% 80 μs 1 

∇, GGD 51%  51% 52% 52% 51% 661 ms 190 

H, GGD 51%  50% 51% 51% 50% 113 ms 39 

G, GGD 52%  53% 53% 53% 52% 31 ms 12 

Table 24. Performance and complexity on the VisTex complete database 
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NTr /NSa 2/16 3/16 4/16 5/16 6/16 Time Loops 

E, GGD 81%  82% 81% 80% 81% 80 μs 1 

∇, GGD 84%  86% 86% 85% 85% 561 ms 161 

H, GGD 83%  85% 85% 84% 85% 93 ms 34 

G, GGD 84%  84% 84% 83% 82% 24 ms 9 

Table 25. Performance and complexity on the Brodatz database 

 

Tables 22-25 shows the clustering results with the centered generalized Gaussian 

distribution (GGD) assumption. The time needed to compute the barycentric distribution with 

the Euclidean distance is lower than the time needed to compute a barycentric distribution 

with an optimization method. The supervised clustering tests with the Jeffrey divergence have 

a gain of seven points against the supervised clustering test with the Euclidean distance. 

The three optimization methods based on the projected steepest-descend method 

provide similar performance, the three methods converge globally towards the same 

stationary point of the cost function. Among the three methods, the Fisher information matrix-

based method is preferred due to its low computing complexity. In addition, the Jeffrey 

divergence provides a gain of 2 points again the performance obtained by the method 

proposed by Choy and Tong [ChoTon07]. In their paper, authors proposed a simple 

implementation of the steepest descent without geometrical point of view.  

It was introduced in [SchBerTurNafIsa12] the information-geometry tools in the 

clustering of textured images. Our parametric modeling of textured images defines the 

barycentric distribution. We estimate the barycentric distribution using a projected 

steepestdescent method geometrically conditioned by the Fisher information matrix The 

Fisher information matrix provides performance similar to other steepest-descent methods 

with a lower convergence speed. We obtain respectively a gain of fifteen and seven points on 

the mean retrieval rate on the Euclidean distance on the VisTex and Brodatz database.  

 

 

2.7 Image contrast enhancement 

 

In [NafIsa14] we have presented a fast and simple contrast enhancement technique, 

that uses the Dual-Tree Complex Wavelet transform (DT-CWT), coupled with the bivariate 

Laplace model for local adaptive contrast improvement. In order to overcome the noise 

amplification that results from nonlinear operations especially in the homogeneous areas of 

the image, denoising using bishrink filter in the DTCWT domain is used. 

Digital images (photographs, medical images) can be affected by variable light 

intensity and non-uniform exposure, resulting in low-contrast images. To improve the visual 

quality of such an image, we have to modify its intensity values and to enhance its contrast. 

Contrast enhancement (CE) methods are non-linear transformations [Pel90] [BegNeg89] 

[GonWoo08], histogram-based techniques [PizJohEriYanMul904], [PisZonHem98], 

[TsaYeh08], contrast-tone optimization [Zha10], frequency domain methods 

[IsaFirNafMog11, LozBulHilAch13]. Typically some of these methods may result in noisier 

homogeneous areas; this is why in [LozBulHilAch13] it is proposed to use denoising in the 

complex wavelet domain.  

The algorithm in [LozBulHilAch13] is an adaptive CE method estimating the statistics 

of the wavelet coefficients locally; the amplification of the noise in the homogeneous areas in 

the image is avoided by denoising it using the same statistical model. 

In [NafIsa14] is presented a fast and simple CE algorithm, inspired by 

[LozBulHilAch13], which uses likewise the Dual Tree Wavelet Complex transform (DT-

CWT) [Kin99], for both local adaptive contrast adjustment and denoising. Instead of using the 
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SαS model, we used the bivariate Laplace distribution and bishrink filter [SenSel02]. To 

evaluate the results, we use several quality measures, as well as visual observation. The major 

contribution of [NafIsa14] is the selection of the statistical model of wavelet coefficients, in 

contrast with [LozBulHilAch13], increasing the speed of the method. The performance of the 

method is compared with the well-known CLAHE technique [PizJohEriYanMul90].  

For low-dynamic range images, the aim is to increase their contrast, therefore low and 

middle intensity pixels should be increased, but high intensity pixels should be left 

unchanged. When this nonlinear amplification occurs, noise can be more visible in less 

textured areas of the images. Color images are represented in the Red-Green-Blue space 

(RGB), but we may choose to work in the Hue-Saturation-Value (HSV) space, and more 

specifically, only on the V channel, similar to [LozBulHilAch13], reducing the computational 

cost.  

The second step is to normalize the V channel values in order to use the entire [0,1] 

range:  
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We use for the local contrast enhancement and denoising steps, the Dual-Tree complex 

wavelet transform, which has six orientations and is quasi-shift invariant. Its directional 

selectivity is also improved as opposed to the discrete wavelet transform (DWT) being able to 

distinguish between positive and negative orientations. We use the AntonB filter to decompose 

the L1 normalized image with J=6 decomposition levels. In the complex wavelet domain, we 

perform two operations, namely, denoising and local contrast enhancement. As mentioned 

before, denoising prevents the local contrast enhancement to amplify the noise in highly 

homogeneous areas.  

Denoising in the DT-CWT domain: It is assumed the image is corrupted by additive 

white Gaussian noise, so the noisy wavelet coefficients xj at level j, are: 

  2,   with  0,j j j nx w n n σ    

The coefficient and its parent are modeled by a Laplacian bivariate probability 

distribution function [NafFirIsaBouIsa10b], to take into account the interscale dependencies: 
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where wj is the wavelet coefficient at decomposition level j, and wj+1 is the parent wavelet 

coefficient, at the same location, but coarser level,  j+1, respectively. The marginal variance σ
2
 

for each wavelet coefficient for the useful (noiseless) image needs to be known and it is 

estimated locally in a moving window of size NxN. The noise is modeled by  
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where nj is the wavelet coefficient of the noise at level j, and nj+1 is the parent wavelet 

coefficient of the noise, same location, coarser level,  j+1. 

The wavelet coefficients are denoised using Maximum a Posteriori (MAP) estimators 

jŵ  of noisy wavelet coefficients xj. The MAP estimate is obtained as the bishrink filter 

[SenSel02]: 
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A robust median estimator is used to compute the noise standard deviation, σn
, from 

the noisy wavelet coefficients, at the finest level of decomposition: 

 
 median

σ̂ , subband HH
0.6745

i

n i

x
x  .  

Local Contrast Enhancement in the DT-CWT domain: We use the contrast measure 

proposed in [LozBulHilAch13], suitable for wavelet domain, defined as the ratio between the 

maximum of the marginal standard deviation and the standard deviation itself, σ: 
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The marginal variance is estimated in a similar manner as in the case of denoising, in a moving 

window of size MxM, where M may be different than N. This measure is supposed to be a 

reference value for the desired contrast. The local contrast values are used to adjust the 

corresponding wavelet coefficients using an exponential contrast enhancement function 
cA  
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where A0=1−exp(−1) is a normalization constant. Basically the coefficients are denoised and 

their contrast improved at the same time. So we can write that the obtained value channel L2 is  

    ˆ
j c j j jw A x bishrink x x , (114) 

where 
cA  is the enhancement function and the bishrink is the denoising filter given before.  

The image resulted after denoising and local CE is then further post-processed, by 

scaling its levels logarithmically. This compresses the dynamic range [GonWoo08]: 
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To obtain the color processed image, the V channel is replaced and we convert from 

HSV back to RGB. To summarize, the steps of the method are: 1-RGB – HSV conversion; 2-

extracting the input V channel, denoted by L
i
; 3-normalizing V channel, from L

i
, we obtain L1 ; 

4-denoising and local contrast enhancement in the DT-CWT domain, using bishrink filter for 

the denoising and 
cA  for CE; we obtain L2. 5-postprocessing to obtain L

o
; 6-finally conversion 

back to RGB format. 

For the experiments, we use two image sets, Memorial and Greenwich, for which 

there are so called reference images (in reality we would not have such a reference) [Deb14] 

[Dul14]. We compare our results with the adaptive histogram equalization (CLAHE) method.  

For the DT-CWT transform, we use J=6 decomposition levels and AntonB filter. It is 

to be noted that for step 4, for the denoising part, we have to give an estimate of the marginal 

variance, σ
2
 for the useful signal. This is done in a moving window of size 7x7, just as it is 

indicated in [SenSel02] (N=7). For the local contrast enhancement, the variance is computed 

using a square window of size: 3x3, 5x5 and 7x7 (M=3, 5 or 7).  

For CE window size= 3*3 the method is noted with (1); for CE window size= 5*5 with 

(2), and CE window size= 7*7 with (3) in the following tables. 

We evaluate the obtained images subjectively, using a human observer, as well as 

computing some objective measures. For the contrast enhancement, we use the same adapted 

measure as in [LozBulHilAch13], the Structural SIMilarity Image Quality Index (SSIM), 

between two images A and B, defined as: 
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where μA and μB are the sample means of A and B,  σA and σB are sample standard deviations 

of A and B and σAB is the sample covariance of A and B: 
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We also give the entropy of the images, which is a statistical measure of randomness 

used to characterize the texture. The entropy H of a grey level image, with G discrete grey 

levels with probabilities pm is: 
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m m
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H p p
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  . (118) 

Low entropy images have very little contrast, so we are interested in images with 

higher entropy after the contrast enhancement processing.  

To see the effect of the denoising in step 4 (processing the V channel), we estimate the 

sample noise standard deviation before and after processing. We also estimate the sample noise 

standard deviation for L
o
 to compare it with the one of L

i
.  

 

(a) (b) (c) (d) 

Fig 50. Memorial image: original, reference, corrected image, proposed method with window 

size 7*7 (SSIM=97,08 %), corrected image for CLAHE (SSIM = 94,23%). 

 

  
                         (a)                                   (b) 

  
                          (c)                                   (d) 

Fig. 51. Greenwich image, top to bottom, left to right: original (image #2), reference (image 

#3), corrected image for window size 7*7 (SSIM=97,22 %), corrected image for CLAHE 

(SSIM=93,27%). 
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For Memorial, the original low-contrast and reference images are shown in Fig. 50a)-

b), where we used as original memorial0065 and as reference memorial0063 from the HDR 

image series for the Stanford Memorial Church. The result of the proposed contrast 

enhancement method is shown in Fig. 50c) and the result for the CLAHE method is shown in 

Fig 50d).  

For the Greenwich images, the original and reference images are shown in Fig. 51a)-b). 

The result of the proposed method is shown in Fig. 51c) and CLAHE result is shown in Fig 

51d). It can be observed visually that both methods are efficient, correcting the contrast of the 

original. The SSIM values, shown in Table 26 are higher for the proposed method in both 

cases, than for the CLAHE, indicating our method outperforms CLAHE. The highest value is 

obtained when both windows to estimate the local variance are of the same size, 7x7, for both 

denoising and local contrast enhancement. The output noise standard deviation  n
o
 values 

from Table 27 show the values for the proposed method are half of the values for CLAHE. 

 

Image 
SSIM (%) 

[NafIsa14] 1 [NafIsa14]  2 [NafIsa14] 3 CLAHE 

Memorial 97,03 97,08 97,08 94,23 

Greenwich 96,99 97,13 97,22 93,27 

Table 26 SSIM results. 

 

Image, input noise standard 

deviation  n
i
 

Output noise standard deviation n
o 

[NafIsa14]  1 [NafIsa14] 2 [NafIsa14] 3 CLAHE 

Memorial, 0,0125 0,0136 0,0133 0,0131 0,0249 

Greenwich, 0,0045 0,0051 0,0051 0,0050 0,0097 

Table 27 Noise standard deviation results. 

 

Table 28 shows the denoising and contrast enhancement step greatly reduces the noise standard 

deviation. The entropy is higher for our method than for the CLAHE method, indicating the 

contrast is enhanced (Table 29). It is also increased when compared to the input image entropy. 

In Fig. 52 we are showing the corrected V channels for each step. 

 

Image, input noise 

standard deviation  

n
i
 

Output noise standard deviation n
o
  

after step 4 

[NafIsa14] 1 [NafIsa14] 2 [NafIsa14] 3 

Memorial, 0,0133 0,0049 0,0048 0,0047 

Greenwich 0,0045 0,0007 0,0007  0,0007 

Table 28 Noise Standard Deviation results for step 4, proposed. 

 

Image, input entropy 
Output entropy 

[NafIsa14] 1 [NafIsa14]  2 [NafIsa14]  3 CLAHE 

Memorial 7,27 7,61 7,61 7,61 7,52 

Greenwich 6,68  7,00 7,00 7,00 6,63 

Table 29 Entropy results. 

 

We have proposed in [NafIsa14] a variant of the wavelet based contrast enhancement 

method in [LozBulHilAch13], which has similar performance but is faster. The reason is that 

we have used a simpler statistical model for the wavelet coefficients that simplifies the 

denoising procedure, requiring the estimation of a reduced number of parameters, and simpler 



94 

estimation methods. We found this method works really well when the image is not very dark. 

Future work may involve correcting this. 

 

      
Fig. 52 Memorial images-V channel,  left to right: reference, original, preprocessed, after 

denoising+local CE, postprocessed (proposed), V channel for CLAHE. 

 

 

2.8 Contributions to Hurst parameter estimation 

Papers: [NafIsaNel14], [NafIsa13] 

 

2.8.1Hurst estimation using HWPT 

Anisotropic images have different smoothness degree values on the preferential 

orientations. To distinguish between preferential directions from such an image, we can use a 

complex wavelet transform with enhanced directional selectivity, such as the DTCWT 

([NelKin10b]). In the paper [NafIsa13] we have proposed to use the Hyperanalytic Wavelet 

Packet Transform (HWPT) for the identification of the preferential orientations, and on each 

direction the smoothness is estimated via the Hurst exponent.  

The smoothness of a signal is an important characteristics, and it can be used to 

optimize its treatment. For example, a treatment based on wavelets can be optimized by 

selecting mother wavelets (MW) with same smoothness as the signal to be treated [Rio93]. A 

fractional Brownian motion (fBm) random processes is a continuous-time Gaussian process 

depending on the Hurst exponent H, 0<H<1. It generalizes the ordinary Brownian motion 

corresponding to H = 0.5, whose derivative is the white noise [AbrVei98]. A signal with a 

Hurst exponent of H = 0.9 is smoother than a signal which has a H =0.1.  

 

  
Fig. 53. Left: Image D33(Brodatz database) with a global mean Hurst exponent of 0.3926; 

right: Image D31, global mean Hurst exponent of  0.4645 

 

The utilization of Hurst exponent for smoothness estimation can be generalized to 

images [NelKin10b]. The smoothness of the image D33 can be appreciated globally because 

it is isotropic. Despite the very different informational content of images D33 and D31, their 
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global mean Hurst exponents are close. In the case of anisotropic images, as for example the 

image D31, the estimation of the global Hurst exponent is no longer sufficient, because they 

contain preferential orientations (some of them are marked on the image D31).  

Different values of anisotropic Hurst exponent can be estimated considering each of 

these orientations, obtaining estimations of directional smoothness of the image. Vidakovic et 

al. [VidNicGar07] estimated anisotropic Fractal Distance (FD) in the horizontal, vertical and 

diagonal directions, using 2d-Discrete Wavelet Transform (2d-DWT). Nelson et al. 

[NelKin10b] used the 2d Dual-Tree Complex Wavelet Transform (2d-DTCWT) to increase 

the number of directions at six in which are estimated the anisotropic Hurst exponents. We 

have increased the number of orientations for which anisotropic Hurst exponents can be 

estimated, using the Hyperanalytic Wavelet Packets Transform (HWPT). 

The number of directions selected by the HWPT depends on the number of iterations 

of the four DWPT used in its implementation. If we apply, for example, two iterations 

[NafIsaNaf12], we obtain the sub-images z+ and z-, which are indexed as in Fig. 34. The 

twenty two preferential directions of these sub-images are presented in Table 19. This number 

can be further increased, by increasing the number of iterations of the DWPT. We notice that 

there are directions associated with multiple subbands, as for example the directions ±atan(1). 

These two directions are associated with the subbands indexed by 4, 8, 17 and 20. Even if 

they have the same preferential orientations, these subbands differ by their frequency content 

(central frequency and bandwidth). The HWPT represents a tool useful for the estimation of 

the anisotropic smoothness of an image because it separates in subbands the details 

corresponding to different directions. 

Hurst parameter estimation: The Hurst parameter is a measure of the degree of 

correlation of a signal. For a White Gaussian Noise process, the value of Hurst exponent is 0 

and its samples are not correlated. There are several methods for estimating the Hurst exponent 

both for fBm and for multifractional Brownian motion processes (mfBm). In [NelKin10b], the 

authors measure the global H for the entire image using the 2d-DTCWT decomposition. 

However, in [NafIsa13], we computed for each subband the Hurst parameter, so we have used 

a simple and fast estimator based on local oscillation, implemented in FracLab [Frac14]. 

 

Subband H real Orientation Subband H imaginary 

-2 0.59 -atan(2) +2 0.59 

-3 0.60 -atan(1/2) +3 0.57 

-4 0.55 -atan(1) +4 0.54 

-6 0.60 -atan(3) +6 0.58 

-7 0.54 -atan(1/3) +7 0.55 

-8 0.55 -atan(1) +8 0.48 

-9 0.71 -atan(1/5) +9 0.62 

-10 0.75 -atan(3/5) +10 0.68 

-11 0.60 -atan(1/7) +11 0.68 

-12 0.64 -atan(3/7) +12 0.59 

-13 0.60 -atan(1/5) +13 0.54 

-14 0.59 -atan(3/5) +14 0.63 

-15 0.64 -atan(1/7) +15 0.68 

-16 0.61 -atan(3/7) +16 0.66 

-17 0.57 -atan(1) +17 0.52 

-18 0.54 -atan(7/5) +18 0.64 

-19 0.65 -atan(5/7) +19 0.61 

-20 0.65 -atan(1) +20 0.58 

Table 30. Anisotropic Hurst exponents for the image D31 
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Experimental results: We have estimated, using FracLab, the anisotropic Hurst 

exponents corresponding to the twenty two directions, for the image D31, using the HWPT 

with two iterations, obtaining the results in Table 30. For each subband, we have obtained a 

matrix of local Hurst exponents, proving that the considered image is multi-fractal. The values 

are obtained by averaging the elements of each subband matrix.  

Because the detail HWPT coefficients are complex, we have estimated separately the 

anisotropic Hurst exponents of the real and imaginary parts of those subbands, obtaining close 

results.  

The highest difference between Hreal and Himaginary is 0.12 and is observed in subbands 

z18 and z20 while the smallest difference equals 0.01 and is observed in subbands z3 and z14.  

For the subbands z-3 and z+14, in the directions −atan(1/2) and  +atan(3/5), we have 

obtained the Hurst exponents: 0.60 and 0.63, relatively close, meaning that the test image has 

same smoothness on both directions.  

Comparing the values from the second column of Table 30, we observe that the 

direction with the highest Hurst exponent, 0.75, is –atan(3/5) (subband z-10) corresponding at 

the smoothest direction in Fig. 54. The minimum value corresponds to the directions ±atan(1) 

(subband z±4) which represent the less smooth directions in Fig. 54. These directions are 

indicated in Fig. 54.   

The contours of objects represent rapid transitions, reducing the smoothness. The 

number of contours intersected by the line corresponding to the smoothest direction in Fig. 3 is 

lower than the number of contours intersected by the line corresponding to the less smooth 

directions. The results in Table 30 are in agreement with the visual content of the image in Fig. 

54.     

 

 
Fig 54. The smoothest and the less smooth directions, identified in the image D31, are marked 

with colored lines.  

 

We compared the method proposed with the same method applied this time in the 2d-

DTCWT domain. We have used the same test image, and again, two levels of decomposition. 

Obviously this time, the number of orientations is limited at six.The values for the Hurst 

exponent are very close for the real and imaginary coefficients. The lowest difference is for the 

orientation 15, for both levels of decompositions. The highest difference is at orientation 

135, second level of decomposition.  

Comparing Table 30 and Table 31, we notice the similar values obtained for the same 

direction. For example, for the direction 45, the values obtained using HWPT are Hreal =0.55 

and Himaginary=0.54 and the values obtained using 2d-DTCWT are Hreal =0.55 and 

Himaginary=0.53.  
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Scale Orientation H real  H imaginary 

1 15 0.56 0.56 

 45 0.55 0.53 

 75 0.48 0.45 

 105 0.57 0.56 

 135 0.52 0.55 

 165 0.48 0.45 

2 15 0.65 0.65 

 45 0.61 0.62 

 75 0.64 0.62 

 105 0.64 0.61 

 135 0.61 0.54 

 165 0.62 0.61 

Table 31. Anisotropic Hurst exponents for the image D31 in the 2D-DTCWT domain. 

 

From Table 31, we observe that the direction with the highest Hurst exponent, 0.65, is 

15 (level 2). The highest value of the Hurst exponent from Table 30, 0.75, is missing in Table 

31, because the 2d-DTCWT does not separate direction –atan(3/5),  which corresponds at the 

smoothest direction in D31. The minimum value in Table 31, 0.45, corresponds to the direction 

165 (level 1), which is not separated by HWPT implemented with two iterations.  

The main contribution of [NafIsa13] consists in the substitution of the 2d-DTCWT, 

used in [NelKin10b], for the estimation of directional smoothness of images, with the HWPT. 

While the 2d-DTCWT has six preferential orientations; the HWPT could have any number of 

preferential orientations (for example 22 in Table 19). The HWPT, computed with an 

appropriate number of iterations, is able to detect all the directions present in a given image 

and to separate (in subbands) the corresponding details. By estimating the Hurst exponent of 

each subband, using an appropriate estimator, the image smoothness on the corresponding 

direction can be appreciated. 

The method proposed has numerous applications in materials’ science, geo-sciences or 

engineering, because it permits to appreciate the directional smoothness of an object based on 

one of its images. The great advantage of the proposed method is the absence of the direct 

contact. The method allows the search of a road using the SAR image of a forest, the detection 

of a scratch on the surface of a car or the identification of the portions of a road covered by 

snow or glace.   

It has interesting theoretical consequences as well, facilitating the introduction of a new 

best MW searching criterion. Each of the smoothness values can be used for the selection of 

the MW (with same smoothness), which will generate the subband with same direction in a 

particular HWPT. So, that MW will be adapted to the image considered. Some image 

processing methods, as for example: denoising, compression or texture classification, based on 

wavelets, can be adapted in this way to the geometrical content of a given image. For example, 

Olivier Rioul used, in a limited context, the results of mother wavelets’ smoothness estimation 

to find the most appropriate function for image compression [Rio93]. The adaptation of the 

MW to the geometrical content of a given image will represent a future research direction.   

 

2.8.2  Regularised, semi-local Hurst estimation via generalised lasso and Dual-Tree 

Complex Wavelets 
 

In accordance with my career development action plan presented at the Associate 

Professor competition (in sep.2013), I have proposed a paper in the field of Hurst parameter 
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estimation, to the most prestigious conference of Image Processing, IEEE International 

Conference on Image Processing (ICIP 2014), in collaboration with Professor Alexandru Isar 

and Senior Lecturer, Dr James Nelson (University College London, UK). This paper was 

accepted, presented and published, although the acceptance ratio was only 43%.  

 

Strictly self-similar processes are invariant in distribution, up to a constant, under 

spatial (or temporal) scalings to a constant, under spatial (or temporal) scalings. These 

processes have long-range dependence behaviour which is encapsulated by regularity 

parameters : the Hurst exponent. These shape the spatial correlatory structure and determine 

the smoothness present in complex textures and natural phenomena. In a simple case, 

regularity is assumed constant throughout the data; but images typically comprise multiple 

textures and have multiple Hurst exponents throughout their spatial support.  

We have considered a special case for this semi-local Hurst estimation for random 

fields, where the regularity varies in a piecewise manner, which is appropriate for 

segmentation/adaptive denoising and detrending where image is a disjoint union of textures. 

The generalised lasso (Least Absolute Shrinkage and Selection Operator) is exploited 

to propose a spatially regularised Hurst estimator. Dual-tree complex wavelets are used to 

formulate the log-spectrum regression problem and an interlaced penalty matrix is constructed 

to form a 2-d fused lasso constraint on the double-indexed parameters.  

We demonstrate with experiments that we have reasonably accurate pointwise 

estimates of the Hurst exponent and our lasso-based approach holds an advantage over the 

usual least-squares (or linear extensions thereof).  

We extended a regularity-based denoising approach, of Echelard and Levy Vehel 

[EchLev08]. Moreover, our construction is such that this can easily be extended to the case 

where the Hurst exponent varies as a polynomial. 

 

Weakly self-similar processes: If a self-similar process f satisfies some conditions 

(stochastic continuity and non-triviality) then there must exist an exponent H > 0 such that if 

 (  )     ( ) . In fact, we only here require a more general form of self-similarity, 

whereby the invariance property is satisfied over the first two orders of statistics. 

Def.1 (Weak self-similar processes): Let (     ) probability space,    ,   (   ), 

      . The stochastic field           is weakly self-similar,       if 

  (  )       and   (  ) (  )       ( ) ( ) 

It immediately follows that weak self-similar processes are strictly self-similar, they contain 

the much studied Fractional Brownian surface, and have a power law spectrum.  

 

Wavelets offer means to study self-similar processes, see Prop.2.  

Proposition 2 (Nelson and Kingsbury [NelKin10a]).  

Let      . Then  |(  )(     )|     (   )  where    denotes the wavelet transform 

operator, defined by , (  )(     )     ⟨    (      )⟩  with some suitable wavelet 

   , defined over space t, orientation m and kth finest scale level. 

The Hurst exponent describes the smoothness. Values close to one (zero) will be relatively 

smooth (rough). If H is fixed over the entire support, it can be estimated by taking the log of 

both sides of the proportionality in Prop. 2 and computing the slope of the regression via least 

squares. In general, regularity can vary with respect to space and direction and we have 

    ( ). In this case, the Hurst parameter can still be estimated by carrying out least 

squares over localised cones, and directional subbands, in the wavelet domain. 

In practice  | |  is approximated by the sample second moment E in the region   , scale k and 

orientation m, namely
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    ( )  |  |
  ‖(  )(     )‖ 

  (  )
    (  ( )  ). (119) 

When spatial localisation of Hurst is important, the pointwise estimate |(  )(     )|  is 

used. The energy of the discrete wavelet coefficients, computed over a dyadic 2-d grid, can 

then be computed on the integer lattice (the original pixel locations) at each scale level by 

appropriate interpolation. 

Estimation: In [NelKin10b] it was proposed to use the dual-tree complex wavelet 

estimator for the case where the Hurst exponent is anisotropic and piecewise locally varying. 

Nelson and Kingsbury showed that (shift-invariant) dual-tree wavelets provided Hurst 

estimates with greater accuracy and less variance than other, shift-variant, decimated wavelet 

transforms; a key reason for this is that the shift invariance of dualtree wavelets provides more 

stable energy estimates, especially near singularities or considerable oscillations 

[SelBarKin05]. 

Index the spatial domain as     {  }   
 . Since the same analysis can be applied in each 

direction as required, we drop m and let   [ ]          (  ) denote the log sample second 

moment of the wavelet magnitudes about the location    and scale k. Throughout we will use 

dual-tree wavelets to compute the sample energy    ( ) but other wavelets or measures may 

be used to derive   without loss of generality.
 

Given the power law, the log sample second moments will ideally follow the simple 

linear model   [ ]     [ ]    [ ], with slope   [ ]   (    ), where     [  ]. In 

practice, the energies at some of the finest (low SNR) and coarsest (poorly localised) scale 

levels are excluded from the regression. The corresponding pointwise least squares problem 

takes the form: 

     
‖       ‖  with     [   

[ ]     
[ ]]      [

   
  
   

]      [
  [ ]
  [ ]

]. 

Here, the 1st (    ) finest, and (    ) coarsest, scale levels are discarded. The Hurst 

estimate is then obtained from the slope estimate:   ̂  (  ̂[ ]    ). 

The pointwise least-squares solver can be readily extended to the entire spatial domain:  

    ‖     ‖   where 

  [       ]           [       ]      . 

As in the pointwise case, the solution (  
   )

    
    only involves the inversion of a two-by-

two matrix. 

Generalised LASSO formulation: The main drawback with the Hurst estimation, 

described above, is that the estimated regularity can vary quite markedly according to the 

behaviour at the finest, and usually noisier, scales. Ideally, we might want some spatial 

smoothing but only at those locations where the linear least squares solution was a poor fit to 

the log spectrum. This motivated us to propose the generalised lasso [TibTay10] as a means to 

spatially regularize the Hurst estimates. This non-linear smoother takes the form 

       ‖    ‖ 
   ‖  ‖ , 

where   – is the response (data) vector, X – is a model matrix of predictor variables (the 

model),    – is a vector of model parameters, and   is a penalty matrix. This problem reduces 

to the so-termed 1-d fused lasso when D has a main diagonal of negative ones, an upper 

diagonal of positive ones, and is zero elsewhere. 

Regularised Hurst estimation: The generalised lasso framework can accommodate a 

spatially regularised version of Hurst estimation as follows. We rearrange the least-squares 

problem as            ‖    ‖   with    [  
      

 ]     ,    [  
      

 ]  

    and 
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         [
   

 
   

]        , 

where   denotes the Kronecker product and    is the n-by-n identity matrix.  

A modification of the so-called ‘2-d fused lasso’ penalty is used to impose spatial 

regularisation on both parameters   [ ] and   [ ]. For the case where we have defined as 

above, this is achieved by designing an interlaced version of the usual 2-d penalty, namely 

  [  
      

 ]
 
  where    is the diagonal sub-matrix diag([1, 0,−1]) which performs the 

horizontal differences of the form   [ ]    [   ] and, likewise,     
 is the diagonal sub-

matrix which performs the vertical differences   [ ]    [     ], and where    is the width 

of the image over which the   parameters are defined. The extra zeros between the +1 and −1 

have the effect that the odd-numbered rows of the penalty matrix produce differences in the 

intercept parameter   [ ] and the even-numbered rows produce differences in the slope 

parameter   [ ]; hence the term ‘interlaced’. 

Like the usual 2-d fusion penalty, it can easily be seen that the interlaced version also has a 

rank equal to the number of columns which is less than the number of rows. As such, we can 

follow similar arguments to that of Tibshirani [TibTay10] to conclude that our interlaced 

fusion penalty is ‘generalised’ in the sense that cannot be reduced to the standard lasso 

problem. 

Two sets of experiments were carried out: Hurst estimation and spatially adaptive, 

regularity-based denoising. The incremental Fourier synthesis method [KapKuo96] favoured 

by the Fraclab toolbox [Frac14] was used to simulate fractional Brownian surfaces. These 

were furnished with piecewise Hurst parameters by stitching together surfaces generated with 

the same underlying white noise process but different spectral slopes in the same way as 

[NelKin10b]. This ensures that there were no ‘artificial’ artefacts caused by jumps from one 

piecewise region to the next. Four image types were designed and one hundred instances of 

each design were used for testing. The underlying Hurst parameters are depicted with respect 

to space in the first column of Fig. 56. These are referred to here as ‘chequers’, ‘curves3’, 

‘curves4’, and ‘curves5’. In keeping with the emphasis on the localised nature of our analysis 

all images were restricted in size to 64×64.  

Three methods were used to estimate the Hurst parameter, namely:  

(i) the usual least squares technique (OLS);  

(ii) least squares followed by post-filtering (PS)—convolution of    by a 5×5 Gaussian 

filter; and  

(iii) the proposed generalised lasso, mentioned above.  

As well as Fraclab, we used Kingsbury’s DTCWT Matlab toolbox and Tibshirani’s 

genlasso R package. The finest and coarsest scale levels were discarded from the regression 

(scales           ) in all cases. Methods (ii) and (iii) require one parameter each to be 

set—the variance of the Gaussian filter and the ‘λ’ of the lasso. However, the results obtained 

here (cf. Fig. 55) suggest that the optimal settings are very stable across instances of the same 

image type and that both methods are superior to least squares over very large intervals of the 

parameter values.  

To illustrate their realistic potential, we used three hold-out images to train the optimal 

parameter settings for each image type. Generally, if training data is not available, the 

smoothing parameters should set in accordance to how rapidly one expects, or wants, the 

Hurst parameter to vary.  

Columns 2-4 in Fig. 56 illustrate the mean Hurst estimates of each method. The 

banding effect in the OLS method is due to the fact that, near the boundaries of the piecewise 

regions, the Hurst parameter estimation is disturbed by the conflicting statistics of the 
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neighbouring regions. The PF method smooths these artefacts out but at the cost of spatial 

coherence. Only the lasso-based method appears, in the mean, to be able to convincingly cope 

with this effect. Furthermore, as Table 32 shows, lasso also obtains smaller error variance. 

 

 
Fig. 55. Mean error of ‘curves4’, over all pixels and instances, and standard error (dotted 

lines), over the instances, with respect to smoothing parameter. Note the OLS error is 0.187. 

 

 
Fig. 56. True Hurst and mean Hurst estimates of four fractional Brownian surfaces (over 100 

simulations each). 1st column: true Hurst; 2nd: OLS; 3rd: PF; 4th: LASSO. OLS: banding 

effect near boundaries; PF smooths these artefacts with cost of spatial coherence; LASSO 

convincingly copes with this effect.  

 

  
Table 32. Mean absolute error (error standard deviation) of Hurst estimators: OLS, PF, lasso. 

 

Fig. 57 shows the absolute error histograms of the methods for the ‘curves5’ image. 

Although not shown here due to space restrictions, the OLS errors follow a very similar 

distribution over all data types. This is perhaps not too surprising since it is a more localised 

method than PF or lasso. The lasso’s errors are smaller than PF which is smaller than OLS. 

The advantage of the lasso as well as the PF becomes steadily weaker as the Hurst exponent 

varies more. This is to be expected since spatial smoothing has less significance when 

regularity varies more rapidly in space. 
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Fig. 57. Mean absolute error histograms of the OLS, PF, and lasso methods, for the ‘curves5’ 

data. OLS more localised than PF/lasso. Advantage of lasso/PF weaker as Hurst varies more 

(spatial smoothing less significant). 

 

Denoising: Various strategies have been devised to exploit the Hurst or Hӧlder 

(regularity) exponent for denoising. The general idea assumes that the signal of interest 

follows a power law and uses shrinkage to mitigate any significant deviation from that model. 

Often, the regularity is known or assumed, as in [VidKatAlb00]. We follow, in spirit, the 

work of Echelard and Levy-Vehel [EchLev08] where the regularity is estimated and extend 

this by allowing the regularity to vary piecewise. 

The four image types were simulated as before. High frequency Gaussian noise was 

then added (in the wavelet domain to the finer scale levels:     at       and     at 

   ). Then, scale levels         were used to estimate the Hurst parameter using OLS, 

PF, and lasso. Any (dual-tree) wavelet coefficients at levels     or     which had a 

magnitude above the estimated power law decay were shrunk to the expected value as defined 

by the power law model. 

 

  
Fig. 58. Regularity-based denoising for ‘curves3’ subject to high frequency noise: hard 

thresholding; OLS; PF; LASSO.  
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Fig. 59. Top: lasso-regularity-denoised example from ‘curves3’ image data, plotted wrt 

vectorised pixel index. Bottom: zoomed-in segment of top figure.  

 

Figures 58 and 59 illustrate a typical example on the ‘curves3’ data. For comparison, 

in addition to the OLS, PF, and lasso regularity-based shrinkage methods, a non-adaptive hard 

thresholding was also implemented which simply shrunk all coefficients in the first two finest 

scale levels to zero (set all coefficients in       to zero). It can be seen that the hard 

shrinkage over smooths the data. The optimal variance parameter for the PF method was so 

small that it gave almost identical results to the OLS method. The PF and OLS did better than 

hard shrinkage but, because the Hurst estimation is not as good as the lasso-based method, 

they under- and over-shrunk various parts of the images. As suggested by Table 33 and 

confirmed by the error histogram in Fig. 60, this lead to many more large errors than the 

lasso. Some of these artefacts are clearly visible in Figs 58 and 59. 

 

Data  OLS  PF  Lasso  Hard  

chequers 

curves3 

curves4 

curves5  

0.200 (0.211) 

0.169 (0.175) 

0.190 (0.193) 

0.189 (0.185)  

0.200 (0.211) 

0.169 (0.175) 

0.190 (0.193) 

0.189 (0.185)  

0.163 (0.151) 

0.135 (0.118) 

0.154 (0.137) 

0.153 (0.135)  

0.373 (0.329) 

0.354 (0.344) 

0.523 (0.467) 

0.356 (0.305)  

Table 33. Mean absolute error (error standard deviation) of  the regularity-based denoisers: 

OLS, PF, lasso, and hard thresholding.  

 

 
Fig. 60. Mean absolute error histograms,‘curves3’, of the regularity-based denoising methods, 

OLS, PF, and the lasso. 

 

We have introduced a new spatially regularised Hurst estimation method which 

exploits situations where regularity is constant over unknown regions in an image. We have 

shown that, by framing the problem in terms of the generalised lasso, the solution can be 

obtained with powerful methodology from computational statistics. We have furthermore 

translated this idea to image reconstruction to arrive at a regularity-based denoising method 

which adapts to piecewise varying regularity. Much further work is possible: higher order 
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differencers; anisotropic estimations and subsequent filtering; combination with data-driven 

methods; adaptive basis selection; establish and compare theoretical results on convergence 

and conditions thereof (cf. other local regularity-based denoising), empirical mode 

decomposition. 

 

 

2.9 Radar signal processing: [MacNafIsa14]; [NafMacIsa14] 

2.9.1 Envelope detector with denoising to improve the detection probability  

 

In [NafMacIsa14] we proposed the use of soft-thresholding denoising to improve the 

signal-to-noise ratio in a simple envelope detector followed by a decision threshold block. 

Simulation results for a received useful signal perturbed by additive white Gaussian noise 

(AWGN) using the denoising systems, indicate that the probability of detection increases at 

the same probability of false alarm.  

 

Fig.61 The architecture of a radar system. 

The radar maximum detectable range Rmax is determined by the radar equation as 

[EhaSasMor94], [Sko90]: 

 
   
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


, (120) 

where Pt is the (peak) maximum transmit power, G the antenna gain, Ae the antenna effective 

aperture, σT  the radar cross section of a target, k the Boltzmann constant, T0 is the absolute 

temperature, Bn the receiver bandwidth, Fn the noise figure and (S0/N0)min is the minimum 

intermediate frequency (IF) output signal-to-noise ratio (SNR) necessary for detection. A block 

scheme of the radar system is presented in Fig. 61. The minimum IF output SNR (mIFoSNR) is 

computed before the detector in Fig. 61. The factors Pt, G and Ae from (120) are determined by 

the radar system hardware. The increase of the detectable range requires the decreasing of the 

minimum IF SNR necessary for detection. 

 

Fig. 62 The scheme of radar receiving system, using denoising systems and envelope detector. 
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The aim was to improve the IF SNR necessary in a simple envelope detector without 

supplementary phase errors. We refer to a simplified scheme of the radar receiver system that 

uses an envelope detector and a threshold decision. We propose to introduce denoising systems 

as seen in Fig. 62. 

David Donoho introduced the term “denoising” for an additive white noise removing 

method which does not distort the useful component of the processed signal [DonJoh98]. His 

method, composed by three steps is based on the Discrete Wavelet Transform (DWT) [Mal99]. 

Starting from the input signal a0, we obtain successively, the approximation sequences a-1, …, 

a-m, and the detail sequences d-1, …, d-m, at different resolutions. It is necessary that the length 

of the input signal a0, (M) to be a power of two, for example M = 2
J
. In this case, the maximal 

number of DWT decomposition levels is m = J. 

The DWT of a deterministic signal is a sparse representation, containing a small 

number of large coefficients. The degree of sparsity depends on the selection of the features of 

the DWT: the mother wavelets and the number of decomposition levels. The DWT of a 

random noise signal is not sparse, the detail coefficients being small and uniformly distributed. 

Subsequently, the noise can be eliminated by thresholding the detail DWT coefficients (which 

is a nonlinear filtering). 

Donoho proposed the two nonlinear filters having the input-output relations in Fig. 63, 

where s represents a threshold [DonJoh94], [Don95], [DonJohKerPic95]. Only the detail 

coefficients are filtered. One of the features of the denoising algorithm, denoted by L, indicates 

the number of decomposition levels where the soft-thresholding filter is not applied. Hence the 

soft-thresholding filter is applied on the detail coefficients belonging to the first J–L+1 

decomposition levels of DWT. Ideally, L should be much smaller than J, but L should also be 

chosen in such a way that the useful component (if it is a bandlimited signal) is left unaffected.   

We rephrase the denoising problem in terms of frequency analysis. Fig. 64 represents 

the subbands of the DWT for three decomposition levels (M = 8, J = 3, L = 3). The denoising 

system is presented in Fig. 65. We derive the statistical model of the signal ˆ
i

X .  

We consider first noise only, Xi = ni, a white Gaussian noise (WGN) with zero mean 

and variance 
0

N . In this case, the approximation (aX) and detail (dX) coefficients are zero mean 

WGN with variance
0

N  as well. Hence, we suppose the detail coefficients, dn, follow a 

Gaussian distribution law with zero mean and variance 
0

N at each decomposition level l, with  l 

= 1,2,…,J, with the cumulative distribution function (CDF): 
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where the error function is denoted by erf: 
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The pdf of the approximation an and detail dn coefficients is: 
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Suppose that in Fig. 65 we have a soft thresholding filter having the input-output relation: 
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The CDF of the detail coefficients at the output of the soft-thresholding filter is: 

          
Y X Xd d dF y F y s u y F y s u y     , (125) 
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where u  represents the unit step function. 

The pdf of the detail wavelet coefficients, after thresholding, can be expressed now by 

differentiation in both members of (125): 

                ( ) .
Y X X X Xd d d d dp y p y s u y F s F s y p y s u y         (126)  

 
Fig. 63 Input-output characteristics of two non-linear filters which can be used in wavelet 

domain for denoising. 

 
Fig. 64 The detail subband filtered by the soft-thresholding filter is the grey area. L=3 – three 

subbands are not filtered. 

 
Fig. 65 The architecture of a denoising system. 

 

So, the pdf of detail coefficients at the output of the soft-thresholding filter is composed 

by two branches of Gaussians which are symmetric around the ordinate (x = 0). The mean and 

the variance of the random variable dY are: 

     0
YY dE d yp y dy





  , (127) 

        2 2

0(1- - ) 2 (1- - ) .
x x x xd d d d ds F s F s N F s sp s     (128) 

For high values of s, 2

d
 is much smaller than

0
N . 

At the output of the soft-thresholding filter the approximation coefficients are identical 

with the approximation coefficients obtained after the DWT computation, aX, concatenated 

with a sequence of detail wavelet coefficients dY having the pdf in (126). 

Consider now the case of noiseless signal only Xi = nc and suppose that nc  is a low-

pass bandlimited random signal with zero mean whose bandwidth is smaller than / 2Q

nf , 

where Q is a positive integer (see Fig. 64). Selecting an appropriate value for L, such that 

1Q J L   , the noiseless component of the input signal will be perfectly reconstructed after 

denoising because its power spectral density is not affected by the filter. 

Then, at any new iteration of the DWT (corresponding at the m
th

 decomposition level 

for example), the variance of the approximation (detail) coefficients of nc, denoted in the 

following by m( )nc a d , doubles its value. Hence, the variance of the approximation (detail) 

coefficients of nc obtained after J decomposition levels can be expressed as: 
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1

2 2

( ) ( )2 ,J

a d a dncXnc i
   (129) 

where we have denoted by 2

( )ma dnc
 the variance of the approximation (detail) coefficients of nc 

at the m
th

 decomposition level. 

Finally, we consider the case of noisy signal. Let us split the noiseless component in 

two parts: a low-pass bandlimited random signal with zero mean and bandwidth smaller than

/ 2
Q

n
f , bl

nc iX  and a non-bandlimited random part nbl

nc iX , bl nbl

nc i nc i nc iX X X  , which are 

perturbed by a zero mean Gaussian random noise ni. 

Taking into account the linearity of DWT, the coefficients obtained at the output of the 

first block in Fig. 65 are: 

 
,

,

i nc i i

i nc i nc i

X X n

X ib X ob X i

a a a

d d d n

 

  
 (130) 

where the approximation coefficients of the WGN ni are denoted by 
ina , the details of nbl

nc iX by 

nc iib Xd and the details of bl

nc iX  by 
nc iob Xd . The following approximation coefficients are obtained 

at the output of the second block in Fig. 65: 

 
i iY Xa a , (131) 

because the soft thresholding filter does not process the approximation coefficients. 

The detail wavelet coefficients of the noise at the output of the second block in Fig. 65 

have the pdf expressed in (126) with the mean in (127) and with the variance in (128). For the 

sake of simplicity, we consider in the following that these detail coefficients are modeled as a 

zero mean WGN with variance 2 ˆ, .
d in We will select for L a value smaller than J – Q+1. This 

way, the soft thresholding filter will not affect the details of bl

nc iX . 

The details of the non bandlimited noiseless component of the input signal, 
nc iob Xd  will 

be affected by the soft-thresholding filter, producing some distortions and the expression of the 

detail wavelet coefficients at the output of the soft thresholding filter will become: 

 ˆ .
i nc iY X dist id d d n    (132) 

For input signals with bandlimited noiseless component, the second term in the right 

hand side disappears. Taking into account (129), it can be observed that the power of the first 

term of the right hand side of the first equation in (130) increases with the increasing of the 

number of decomposition levels of the DWT. The second term,
ina , represents the 

approximation coefficients of the noise component of the input signal and is a Gaussian 

random variable with zero mean and same variance,
0

N , at any decomposition level. So, the 

weight of the power of the first term in the sum which represents the right hand side of the first 

equation in (130) increases with the increasing of the number of decomposition levels. In 

consequence, after a sufficient number of decomposition levels, the power of the signal which 

represents the second term in this sum becomes negligible in comparison with the power of the 

signal which represents the first term, and the first equation in (130) can be written in the 

equivalent form: 

 ˆ
i i nc iY X X ia a a n   . (133) 

So, the approximation coefficients of the signal at the output of the second block in Fig. 

65 represent the sum of the approximation coefficients of the noiseless component of the input 

signal and of the noise component ˆ
i

n . 

Based on (133) and (132), we can view the concatenation of the coefficients 
iYa and

iYd , 

denoted in the following by (aYi, dYi), as the DWT of the signal ˆ
i inc X distort n  , 
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 ˆ( , ) DWT{ }
i i i iY Y nca d X distort n   . (133’) 

Finally, the signal obtained at the output of the system in Fig. 65 can be expressed as: 

 ˆ ˆ ˆ{ { }} ,i nc i i nc i iX IDWT DWT X distort n X distort n       (134) 

because the DWT and the IDWT are inverse transforms. 

Hence, at the output of the system in Fig. 65 we obtain a good approximation of the 

noiseless component of the input signal, nc iX , which is additively perturbed by small 

distortions and by the WGN ˆin  with zero mean and variance 2

d
 , many times smaller than the 

variance 
0

N  of noise component ni of the signal Xi from the input of the system in Fig. 65. The 

input and output SNR of the system in Fig. 65 can be computed with the following equations: 

 
i

0

SNR
nc iXP

N
 , (135) 

 
o 2

SNR
inc

d distort

XP

P



, (136) 

where we have denoted by 
nc iXP the power of the noiseless component of the input signal and 

by Pdistort the power of the distortion component. For input signals with bandlimited noiseless 

component, Pdistort = 0. 

The envelope detector has the structure in Fig. 62, where the denoising systems are 

considered as all pass systems ( 2 2

1 2

ˆ ˆ, , 1,  2
i i

X X r r X X i     and nS S ). 

The signals X1 and X2 (in Fig. 62) could be seen as the real and imaginary parts of a 

complex signal X. The modulus of the signal X, denoted by r, represents the envelope of the 

input signal sR. We will suppose in the following that Xi = ai + ni where ai the noiseless 

component is constant (the amplitude of the received sinusoid) and ni the noise component is 

AWGN with zero mean and variance N0 and i = 1, 2. Hence, the noiseless components are 

bandlimited. 

In the case of noise only: Xi = ni, we can establish the value of the detector threshold S 

which corresponds to a given probability of false alarm, Pfa. If this probability is constant for 

all the values of the SNR of sR, then we are dealing with a Constant False Alarm Rate (CFAR) 

detector [Roh12]. In the case of noise only, the signal r is given by the absolute value of the 

complex noise n: 2 2

1 2
r n n n   , which represents a random variable with Rayleigh 

distribution [Gal93-page 146, Eq. (1.789)], whose probability density function (pdf) is 

[Roh12]: 

  
2

0 0

exp ,    for  0
2

n

r r
p r r

N N

 
   

 
. (137) 

For the threshold S, the probability of false alarm is [Roh12]: 

  
2 2

0 0

exp exp
2 2

fa n

S S

r S
P p r dr d

N N

      
          

    
  . (138) 

Based on (138) we can derive the expression of the detection threshold S: 

 
2

2

0 0

0

ln 2 ln 2 ln .
2

fa fa fa

S
P S N P S N P

N
         (139) 

To establish the value of the detection probability Pd, we will consider in the following 

the general case, where the useful signal is present as well (noisy signal). For 
1 2

a a a   and 
2 2 2

1 2
a a A  , the expression of the signal r becomes: 
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2 2 2 2

1 2 1 1 2 2

22

1 1 2 2

( ) ( )

2( ).

r X X a n a n

A n a n a n

      

   

 (140) 

Taking into consideration the fact that the noiseless and noise components on both 

branches of the classical envelope detector in Fig. 2, ai and ni, are independent, the variance of 

the envelope becomes: 

 
           

   

2 22 2 2

1 1 2 2 1 1 2 2

22

2( ) n 2 2

n  ,

E r E A n a n a n E A E a E n a E n

E A E

       

 

 (141) 

where E denotes the statistical mean operator and the SNR at the input of the last block in Fig. 

62 in case of classical envelope detector can be computed as: 

 
2

0

10log
2

A
SNR

N
 . (142) 

The detection probability, Pd, represents the area of the surface under the pdf of the 

noisy signal computed from S to infinity. No closed form exists for this integral which is called 

the Q function or the Marcum function, but it can be very accurately estimated by numerical 

methods [Gal93-page 150]. 

 

Envelope Detection with Denoising The architecture of the proposed system is 

presented in Fig. 62. We have used for the implementation of denoising the VisuShrink 

estimator: the soft-thresholding filter whose threshold is selected with the equation: 

0 2lns N M and M is the length of the input sequences Xi, i = 1, 2, proposed in [DonJoh94]. 

As for the classical radar receiver, we have treated first the case of noise only, to 

choose the value of the decision threshold Sn, in accordance with the imposed probability of 

false alarm, Pfa. We deal once again with a complex noise whose real and imaginary parts are 

zero mean AWGN with variance 0N . The power (variance) of the random signals 2

1X̂  and 2

2X̂  

is smaller now. Practically, the denoising systems in Fig. 62 transform the input WGN random 

variables with zero mean and variance 0N  into output WGN random variables with zero mean 

and variance 2

d , reducing the noise power. 

Again, these signals represent the real and imaginary parts of a complex signal. Its 

absolute value is the output noise: 2 2

1 2
ˆ ˆ ˆ ˆr n n n   , which has a Rayleigh distribution: 

  
2

2

ˆ ˆ
ˆ ˆexp ,    for 0

2
d d

n
p

r r
r r  

 
 
  

, (143) 

because the signals ˆ , 1, 2
i

n i  are WGN with zero mean and variance 2

d .  

This has lead us to conclude that the threshold for the constant false alarm rate can be 

obtained using the same equation from the classical procedure, provided that the parameter d  

of the distribution is estimated after denoising, for each sequence: 

 2
2 ln .

n d fa
S P   (144) 

For the noisy signal (target present), the SNR becomes: 

 
2

2
10 log .

2
d

A
SNR


  (145) 

The pdf of the noisy signal is of Rice type: 
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  
2 2

ˆ 02 2 2

ˆ ˆ ˆ
ˆ ˆexp , for 0

2
r

d d d

r r A Ar
p r I r


  

   
   
     

, (146) 

but now it is much narrower.  

So, the separation between the  pdfs of noise and noisy signal increases significantly in 

the case of denoising as opposed to the classical case. In consequence, the interval for the 

selection of the detection threshold is larger in the case of the proposed system. 

Both cases were simulated in Matlab (with and without denoising systems) and we 

have compared their performance. We have used for the computation of the DWT the mother 

wavelets Symmlet 6 and the maximal number of decomposition levels.  

The results of simulation are presented in Fig. 66. The threshold is computed when no 

target is present (noise only), corresponding to a value of the probability of false alarm of
-410faP  . In both cases, we took 1000 different realizations of noise, of length 1024 and 0N = 

1.  

 

 

Fig. 66 A comparison of the detection probabilities for both cases. 

 

For a false alarm rate of 10
-4

, in the classical case, the threshold is S = 4.29. When using 

denoising, the new threshold is 22 ln 0.53n d faS P   , obtained for the denoising threshold 

of 
0 2ln(1024) 3.72s N  , where σd is estimated experimentally, at the value 0.12. In both 

cases, we verified that the false alarm rate is near 10
-4

 as we expect.  

Next, we have considered the target + noise case (noisy input signals). SNR values are 

taken from -10 to 20 dB. For each case, we have taken 1000 realizations, each having a length 

of 1024, and we estimated the probability of detection. We have plotted the detection 

probability versus the input SNR in Fig. 66 for the case -4
10

fa
P  .   

The SNR improvement brought by denoising versus the classical case is around 18 dB. 

For Pd = 1 we need in the classical case a value mIFoSNR = 14 dB.  
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Taking into account the SNR enhancement, the corresponding value of mIFoSNRd for 

the proposed method is  -4 dB. Indeed, the corresponding value of the detection probability is 1 

on the new probability detection curve.  

The aim in [NafMacIsa14] is to propose the use of denoising methods for the envelope 

detection of radar signals, which could be of interest in CW Radar systems.  

We have derived the performance of this system analytically and by simulation, 

verifying other equations established as well, and we have compared its performance by 

simulation with the classical case. Fig. 66 presents the performance of both systems. Denoting 

by maxR the radar maximum detectable range of the system equipped with the classical 

envelope detector and by maxd R  the radar maximum detectable range of the system equipped 

with the proposed system and applying (120), we obtain according to Fig. 66:

max max2.82d R R , which represents an improvement of the radar performance. 

 

2.9.2 Building the range-Doppler map for multiple automotive radar targets 

The selected waveform for automotive radar needs to be able to satisfy functional 

requirements such as the ability to resolve multiple targets in range and velocity 

simultaneously and unambiguously while keeping the measurement cycle time and 

transmitted power as low as possible. We analyze the main waveforms used in automotive 

radars and present a method for constructing the range-Doppler map [MacNafIsa14]. 

Simulations are performed using the rapid chirps waveform. 

The technical challenge in automotive radar research and development is the 

simultaneous measurement of target range, radial velocity and azimuth angle. This must be 

done unambiguously for multiple targets inside a measurement cycle. The waveform design 

influences the fulfillment of these requirements. If the radars commonly seen in the defense 

industry are generally pulsed systems, the automotive sensors often use Frequency Modulated 

Continuous Waveform (FMCW) technology. This makes the radars smaller, cheaper to 

manufacture and use less power, the compromise being a much smaller distance which can be 

covered. 

The objective in [MacNafIsa14] is to analyze some waveforms used in FMCW radars 

and to build the range-Doppler map by processing the simulated received radar waveform. 

This can be achieved by making use of different strategies and tools, depending on the chosen 

waveform. The main types of waveforms employed in automotive radars on 24 and 77-GHz 

are presented with their advantages and drawbacks. We focused on the rapid chirp waveform 

which is the latest development in the field. The theoretical considerations are validated by 

simulations which illustrate the capability of this waveform to resolve multiple targets 

simultaneously and unambiguously while keeping a low measurement cycle. 

Waveforms Used in FMCW Automotive Radars  

The requirements of automotive radars can be fulfilled by an appropriately chosen 

waveform. In general, this is a continuously transmitted modulated sinusoidal signal of 

instantaneous frequency fT. The received echo signals are down-converted directly into the 

baseband by the instantaneous transmit frequency. There is a difference between the received 

frequency fR and the transmitted frequency fT which is called the beat frequency, fB: 

 .B R Tf f f   (147) 

The beat frequency is influenced by the propagation delay τ and the Doppler frequency 

fD respectively. The propagation delay τ is related to the target range R: 

 2 .
R

c
   (148) 
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The radial velocity vR determines the Doppler frequency: 

 
2

.D Rf v


   (149) 

If a moving target is observed, the beat frequency depends simultaneously on both the 

propagation delay and the Doppler frequency. 

After being down-converted into baseband, the received signal is sampled and the beat 

frequency is measured by applying an FFT to the complex-valued vector. The challenge is how 

to identify the contributions of the range and radial velocity to the beat frequency. 

The simplest continuous waveform which can be used in automotive radars is a non-

modulated sine wave. It can measure the Doppler frequency precisely but has poor range 

measurement capabilities, because, in this case, the beat frequency is in fact equal to the 

Doppler frequency [GinMaiPat12]. The phase of the baseband signal is proportional to the 

range. 

The next step taken in order to ensure a better range measurement capability is to 

consider the linear frequency modulation (LFM). The most important parameters in FMCW 

radars using this waveform are the carrier frequency fC, the sweep bandwidth Bsw and the chirp 

duration TCPI. The instantaneous frequency of the transmitted signal at time t is given by: 

   .sw
C

CPI

B
f t f t

T
   (150) 

The sign of the slope indicates an up-chirp or down-chirp signal respectively. 

In case of a moving target, the beat frequency of a single chirp contains two 

components, one owing to the target range and another to the Doppler frequency 

[GinMaiPat12]: 

 
2 2

.sw
B R D

CPI

B
f v R f f

T c



     (151) 

This means that in a single chirp signal there will always be an ambiguity when 

attempting to measure range and radial velocity. Therefore, an up- and down-chirp transmitted 

as a concatenated sequence is necessary, as presented in Fig. 67. 

 

Fig. 67 Up- and down-chirp LFM waveform. 

There are two different beat frequencies measured separately by performing two FFTs 

on both chirps, yielding two independent linear equations of the form presented in (151), with 

two unknowns, the radial velocity and target range. In a single target situation, the solving of 

this system means the calculation of an intersection point between two lines in the range-radial 

velocity plane. 

But, in a situation with two targets, each of them will have a pair of beat frequencies 

associated with the up- and down-chirps. This means that there will be a total of four 

intersection points in the range-radial velocity plane, resulting in two additional ghost-targets. 

The more targets we have in the scenario, the more ghost targets will appear considering this 
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type of waveform. In order to resolve such ambiguities, the transmit signal can be extended by 

two additional up- and down-chirp signals [FolRohLub05] [PouFegSch08] with different 

bandwidth. By using this variant, the range-Doppler ambiguities are eliminated even for 

multiple targets, but the measurement time is extended, which can be a disadvantage. 

The frequency shift keying (FSK) waveform, on the other hand, is capable of resolving 

multiple targets with different ranges and radial velocities, but cannot resolve stationary targets 

with different ranges which will be detected on the same spectral line in the Doppler spectrum. 

This means the pure FSK has no range resolution capability [GinMaiPat12] [Roh10] (see Fig. 

68).  

 

Fig. 68 FSK waveform. 

However, a combination of LFM and FSK, called MFSK [RohMei01] achieves almost 

perfectly the performance requirements discussed so far. This waveform is presented in Fig. 

69. 

 

Fig. 69 MFSK waveform.  

The MFSK consists of two stepwise linearly modulated signals with a frequency shift 

between them. They are transmitted in an intertwined way. The frequency difference (beat 

frequency) obtained from the received signal contains information about range and velocity. 

The phase shift between the two signals measured at the beat frequency also depends on range 

and velocity. Thus, a linear system of two equations can be solved for finding the two 

parameters of interest unambiguously even in multiple target environments [GinMaiPat12]: 

 
22 sw

B R

CPI

B
f v R

cT
   , (152a) 
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 


 
   

 
. (152b) 

However, there is a concern in the fact that the phase measurement needs a high signal-

to-noise ratio (SNR) for high accuracy.  

The next improvement is a frequency modulated waveform composed of multiple 

chirps of very short duration. This waveform is analyzed. 
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The Rapid Chirps Waveform. This waveform consists of a sequence of chirps which 

have a very short duration Tchirp. The target range and velocity will be estimated by two 

independent frequency measurements, eliminating the need of phase estimation [Roh14]. This 

brings a higher accuracy and system performance at the expense of a greater computation 

complexity. The rapid chirps waveform is presented in Fig. 70.  

 

Fig. 70 Rapid chirps waveform. 

If the transmitted signal, denoted by s(t), is scattered back by P targets, we receive the 

signals rp(t), p = 1,2,…,P. The signal received by the antenna has the expression: 

    
1

.
P

p

p

r t r t


  (153) 

Assuming there is no noise affecting the received signal, and taking into account that 

the chirp is expressed as a frequency modulated signal with instantaneous phase φi and 

duration Tchirp, the received signal has the form: 

      
1

1 0

cos exp 2 .
P M

p i chirp p p

p m

r t A t mT j v t  


 

     (154) 

where Ap denotes the amplitude corresponding to the signal reflected from target p, M is the 

number of chirps in the sequence, τp and vp are the delay corresponding to the range and the 

Doppler shift respectively. 

The frequency down conversion is made for both in phase and quadrature components 

of the received signal. The result of the down conversion is low-pass filtered, and the resulting 

components are added to obtain the beat signal, expressed as: 

        
1

0 1

exp ,
M P

If Qf p bmp

m p

b t b t jb t A j


 

    (155) 

where 

     2 .bmp i chirp i chirp p pt mT t mT v t           (156) 

In the case of a chirp, the modulator signal is linear therefore the instantaneous phase 

has the expression: 

  
2

2 ,
2

i C f

t
t t k      (157) 

where ωC is the carrier angular pulsation, kf is the frequency deviation and α is the modulator 

signal amplitude. 

By substituting (157) into (156) and performing some calculations, we arrive at the 

following equation for the instantaneous phase of the received beat signal: 

   0 2 2 ,bmp mp f p pt k t v t        (158) 

where φ0mp is a constant term that does not depend on the time. 
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The instantaneous frequency of the beat signal is obtained by taking the first derivative 

with respect to time: 

   .bimp f p pf t k v   (159) 

The instantaneous frequency of the beat signal has two components. The first 

component is proportional to the delay τp and is used for range estimation. The second 

component is equal with the Doppler frequency vp and is used for target velocity estimation. 

By analyzing Fig. 70, we can see that the angular coefficient of the instantaneous frequency of 

each chirp can be expressed in such a way that (159) becomes: 

   .
sweep

bmp bmp p p Rp Dp

chirp

f
f t f v f f

T
      (160) 

 

 

Fig. 71 Range and Doppler processing by two FFT operations. 

In the case of the rapid chirps, we have fRp >> fDp, because Tchirp is very short, so fbmp ≈ 

fRp. After the sampling and analog to digital conversion of the signal b(t) the digital range 

processing step is performed. The frequencies fRp are estimated by a first FFT computation 

round of the digital beat signals over each Tchirp duration. FFT is applied to each beat signal 

corresponding to a chirp, and the results are stored in the columns of a matrix, as shown in Fig. 

71. The FFT magnitudes are proportional with the amplitudes of the targets (if at the 

considered frequency a target exists). The peaks in each FFT will correspond to the target 

ranges. The FFT phases in each column of the matrix have the values 0 2p Dp chirpf mT  , 

where 2

0 0 -p p f pk      can be considered as constant for each target on the short duration 

TCPI and m indexes the chirps. The target velocities, proportional with fDp, can be estimated 

now in the digital Doppler processing step, by a second FFT computation round. This second 
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FFT is applied on each row of the previous matrix taking into account the dependency of the 

phase of the complex numbers already mentioned on m. The resulting peaks will be placed at 

the Doppler frequencies fDp. A new matrix is obtained, which has peak values at the range and 

Doppler frequency of each target.  

By performing windowed FFTs, we can also reduce unwanted effects such as a loss of 

information at some frequency components not visible due to the finite FFT frequency 

resolution.  

Experimental Results. The algorithm described above was implemented in MATLAB 

and tested in a multiple target simulated environment. Some “worst case scenarios” such as 

targets with the same velocity or range were introduced to test the ability to determine their 

parameters unambiguously. We considered a carrier frequency of 24 GHz and a sweep 

bandwidth of 150 MHz. The maximum detectable range is Rmax = 200 m and the maximum 

detectable radial velocity is vrmax = 250 km/h. The transmitted signal consists of M = 256 

chirps. Both FFTs are done on NFFT = 2048 points. We consider three simulation scenarios: 

without and with noise (speckle and AWGN) in the received signal. In the first scenario, we 

consider that the received signal is not affected by noise. We take a number of P = 9 targets 

with the following range and radial velocity parameters: 

 
   

   

10 20 40 50 65 65 70 80 100   m

30 30 45 55 60 120 20 10 75   km/h

p

rp

R

v




.  

After down conversion, the in-phase and quadrature components of the beat signal 

corresponding to the 256
th

 chirp are shown in Fig. 72. The signals are a sum of 9 sine waves 

with different beat frequencies. There is a continuous phase shift from one beat signal to the 

next which is proportional to the Doppler frequency. This feature will be exploited later on to 

find the radial velocity of the targets inside a range gate. 

 
Fig. 72. Demodulated chirp signal components. 

 

After combining the two components to form the complex signal, we look to find the 

target ranges. As stated before, an FFT is performed on each of the M chirps. The result of the 

FFT on the 256
th

 chirp is shown in Fig. 73. We only have 8 peaks because there are two targets 

with the same range. Because the range component fRp is much larger than the Doppler 

frequency fDp, the two targets appear to have the same beat frequency and cannot be resolved at 

this stage. 
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Fig. 73. Result of the first FFT computation. 

At this point we have a matrix containing M columns and NFFT rows. On the lines of 

this matrix we perform the second FFT. This will separate the targets in Doppler frequency, so 

the targets with identical range can be unambiguously resolved. The two targets with identical 

radial velocities  (vr1 = vr2 = 30 km/h) have already been resolved by the first spectral analysis. 

In Fig. 74 we have shown the result obtained for the range gate corresponding to the two 

targets with the same range (R1 = R2 = 65 m), but different radial velocities. It can be seen that 

they are resolved at this point in an unambiguous way. 

 

Fig. 74. Result of the second FFT computation.  

The range-Doppler map will have NFFT x NFFT elements. After converting the axes to 

show the measures of interest, the result can be viewed in Fig. 75.  

 

 

Fig. 75. Range-Doppler map for 9 targets (without noise).  
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It can be seen that all 9 targets are visible and detectable by a suitable thresholding 

performed in the amplitude domain. The artifacts which can be observed are due to the finite 

number of FFT points. A Hamming window was used in both FFT operations. For the first 

FFT, the window size is equal to the length of the down converted beat signal in Tchirp, while 

for the second FFT, the window length is equal to the number of chirps, M. 

 

 

Fig. 76. Demodulated chirp signal components, affected by noise. 

 

Fig. 77. Result of the first FFT computation on the noisy beat signal.  

 

Fig. 78. Result of the second FFT computation on the noisy beat signal. 
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In the second scenario we consider speckle noise sp(t), which affects each signal 

reflected by a target, and receiver thermal noise, w(t). The received signal is modeled as 

[HlaEde92]: 

        
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 The Rayleigh-distributed speckle noise was obtained from two independent Gaussian 

distributions with zero mean and unitary variance. The receiver thermal noise is a Gaussian 

complex sequence of zero mean and unitary variance. The global Signal-to-Noise ratio at the 

receiver is -10 dB. 

In the third scenario, we have nine targets affected by additive Gaussian white noise 

(AWGN), and for each target the SNR ranges from -15 to 25 dB with a step of 5dB: 
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 The in-phase and quadrature components of the beat signal corresponding to the 256
th

 

chirp are shown in Fig. 76. The result of the first FFT on the 256
th

 chirp is shown in Fig. 77. It 

is clear, by comparing figures 73 and 77 that the peaks corresponding to the targets are much 

more difficult to identify, in the second experiment, because the amplitudes of the peaks are 

affected by the two types of noise.  

Fig. 78 shows the result of the second FFT corresponding to the range gate which 

contains the two targets with identical ranges. It can be seen that the peaks proportional to the 

Doppler frequencies are easier to identify, meaning that the noise does not affect the radial 

velocity measurement as much as the range measurement. 

Finally, the range-Doppler maps for the second and third experiments are shown in Fig. 

79 and 80. We can see that the targets situated at a greater range are very difficult to detect 

from the noisy background.  

The paper [MacNafIsa14] presents some waveforms for automotive radar signal 

processing, focusing on the rapid chirps and a method for digital range and Doppler processing 

based solely on FFT computations. Simulation results prove that it is able to resolve multiple 

targets unambiguously in range and radial velocity by applying a two-dimensional FFT.  

Depending on the number of points in which the FFTs are computed, the presented 

method for range and Doppler processing can be faster than other methods such as phase 

estimation, which also has lower accuracy. Furthermore, today’s digital signal processors 

which implement the FFT are produced on a large scale with reduced costs, making the rapid 

chirps a feasible solution as far as production costs are concerned. 

 
Fig. 79. Range-Doppler map for 9 targets – second experiment – received signal affected by 

speckle noise. 
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Fig. 80. Range-Doppler map for 9 targets – third experiment – received signal affected by 

AWGN noise. 

 

2.10 Other topics  

 

2.10.1 Biomedical signal processing: [ArvCosStoNafIsaToe11]; [ArvNafIsaCos11]  

 

The collaboration with Dr. Beatrice Arvinti was focused on applying the wavelets 

theory for the ECGs and MCG signals transmission,  problem that becomes nowadays actual 

due to the tremendous progress in communications. For the ECG signal, we have 

implemented denoising method, base line correction as well as compression. For the MCG 

signal, we have conceived a method for baseline wander reduction [ArvCosStoNafIsaToe11]. 

One of the major aspects of the ECG transmission is the source coding (compression). 

In [ISSCS2011], we propose a method for ECG compression using rejection of wavelet 

coefficients with the magnitude inferior to a given threshold in the DWT domain. This is 

equivalent with the filtering of wavelet coefficients with a hard thresholding filter. To 

evaluate the proposed method, we have proposed a quality factor 2 /CR PRDQF   as the ratio 

of the square of the compression ratio and the distortion factor. For the evaluation of the 

distortions we used the Percent Root-Mean Square Difference (PRD), 
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where x represents the input signal having N samples and x̂ represents the reconstructed signal 

obtained after compression and reconstruction. The compression system is presented in Fig. 

81. For the coding of the positions of the nulls wavelet coefficients we propose a run-length 

encoding (RLE) [IsaCubNaf02]. The best results are obtained using the Daubechies family of 

mother wavelets.  

 

 
Fig. 81 The architecture of the acquisition chain. 

 

In [ArvCosStoNafIsaToe11] we intended the development of a noninvasive method 

for removal of baseline drift of fetal magnetocardiograms (fMCG) based on the Stationary 

ECG 

transducer 
Sampler 

ADC Denoising Baseline 

Correction 
Compression 
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Wavelet Transform (SWT). Usually, MCGs and ECGs are affected by biological noise due to 

the breathing or movement of the patient or interferences of the power line or other electronic 

devices. One of the results will be a drift of the baseline of the ECG or MCG, the opportunity 

of establishing a correct diagnosis being thus endangered. The method proposed involves 

computation of the SWT of the MCG;  removal of detail coefficients, setting them to zero; 

back-conversion in the time domain  of the new sequence, obtaining thus an estimation of the 

baseline drift;  subtraction of the baseline estimation from the original signal, resulting in the 

removal of the baseline wander of the MCG. The estimation of the baseline drift is obtained 

through the low-pass filtering of the processed MCG (the detail coefficients resulted from the 

high-pass filter are eliminated). Fig.82 shows seven beats of the heart from the MCG signal 

before and after the baseline correction. We observe the method is very efficient, despite the 

noise. 

 
Fig.82 Seven beats of the recorded MCG before (left) and after the baseline correction (right). 

 

 

2.10.2 PAPR reduction in telecommunications: [CutIsaNaf11a]; [CutIsaNaf11b] 

 

Orthogonal Frequency Division-Multiplexing (OFDM) is one of the most popular 

technologies used in broadband wireless communication. One of the main practical issues of 

the OFDM is the Peak-to-Average Power Ratio (PAPR) of the transmitted signal. Large 

signal peaks requires the power amplifiers (PA) to support wide linear dynamic range. Higher 

signal level causes non-linear distortions leading to an inefficient operation of PA causing 

intermodulation products resulting unwanted out-of-band power.  

In [CutIsaNaf11a] we proposed a PAPR reduction technique composed by a multiple 

symbol representations step followed by a signal clipping operation. This new PAPR 

reduction method combines the advantages of linearity from the first step with the reduced 

computation complexity of the second step, providing a better PAPR reduction with an 

insignificant bit error rate (BER) degradation. 

In [CutIsaNaf11b] we proposed a hybrid PAPR reduction technique obtained by 

serialization of sequential tone reservation method and signal clipping method. This combines 

the advantages of linearity from the first step with the reduced computation complexity of the 

second step, providing a better PAPR reduction without any bit error rate (BER) degradation.  

 

2.10.3 Riesz bases: [IsaIsaNaf11] 

  

In [IsaIsaNaf11], we present a new method for the generation of Riesz bases with the 

aid of low-pass filters. The Riesz bases obtained can be used for the implementation of 

sampling systems for non-bandlimited signals. Each continuous in time low-pass filter 
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impulse response generates a Riesz basis which corresponds to a Hilbert subspace of the 

space of finite energy signals. 

 

 

2.11 Development and future work 

 

My intention is to carry out academic and research activities in the field of signal and 

image processing, especially in statistical signal processing as well as estimation and 

detection. Statistical signal processing treats signals as stochastic processes, dealing with their 

statistical properties (mean, covariance, etc.). Signals are modeled as consisting of both 

deterministic and stochastic components. For example we consider a simple case, where the 

deterministic signal is affected by noise which can be often modeled as additive white 

Gaussian noise (AWGN). Even the deterministic component of the signal has some 

parameters which are unknown: for example the time when the signal begins.  

Thus communications is based on stochastic signals, i.e. at least one signal parameter 

is random. Processing these signals is very important, and it completes the field of 

deterministic signal processing. In other words, information-bearing signals are random and 

also the noise affecting them is random. 

For instance, in radiolocation the Neyman-Pearson detection is applied which is a 

classical strategy in the Statistical Signal Processing.  On the other hand, when the useful 

signal is stochastic, having known statistical parameters, the Bayesian strategy is applied.  

The detection process is based on one or many parameters which have to be estimated. 

Estimation is also an important problem, based on the Cramer-Rao theorem, the maximum-

likelihood estimation, MLE, the minimum mean square error MMSE method, the method of 

moments etc. 

The statistical performance of the estimators and detectors are evaluated always by 

simulations. Applications are: watermarking, denoising, texture classification, Hurst exponent 

estimation, segmentation, radar signal processing and so on. These can constitute both 

research projects as well as material for courses taught at the M.Sc. curriculum. 

  

Consequently, my teaching objectives are the following:  

 

1. Develop a teaching material for M.Sc. and Ph.D. students on statistical signal 

processing methods, including new trends worldwide, targeting the treatment of complex 

signals, complex statistical distributions and their use in signal processing, complex wavelet 

transforms, with particular emphasis on computer simulation. 

2. After testing the efficiency of the material from point 1, I will develop a teaching 

material that may be published by a prestigious international publisher. I consider adopting 

the methods given by Vetterli and Goyal and others, and using my own research results in 

watermarking, texture classification, signal processing for automotive radar and tracking. 

 

My research objectives are determined both by my previous work at UPT and LAPS 

laboratory, as well as the collaboration with researchers from abroad. The research activities 

developed in the framework of grants and contracts have also helped me train in the fields of 

statistical signal processing, complex signal processing, complex wavelet transforms, radar 

signal processing. 

The main research activities can be done in collaboration with students, in connection 

mainly with the needs of the local and European industry and research centres. I do not 

exclude international cooperation with research centres and universities from outside the 

Europe. I have some research experience which comes from the cooperation with Prof. 
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Yannick Berthoumieu (ENSEIRB Bordeaux, France), Senior Lecturer James Nelson (Univ. 

College London UK), Prof.  Hermann Rohling (TUHH, Germany) and contacts with: Prof. 

Deepa Kundur (Univ. of Toronto, Canada), Prof. Mauro Barni (Univ. of Siena, Italia), Prof. 

Tulay Adali (Univ. of Maryland, USA), and Prof. Ivan Selesnick (Polytechnic Institut of New 

York, USA). 

 

I will most likely pursue the following research themes: 

 

 1. The continuation of the image watermarking research already established at 

Timisoara, developed in the framework of PhD thesis, in the wavelet transform domain, based 

on the papers of Prof. Selesnick, regarding the wavelet coefficient statistics and on our own 

research here in Timisoara. The watermark insertion in the phase of complex wavelet 

coefficients could be of major interest. I believe that the resulting research can be published in 

an ISI journal.  

    

 2. The continuation of the research made in cooperation with LAPS Bordeaux 

laboratory, in the framework of the bilateral grant Brancusi Romania-France „Classification 

de textures fondée sur la théorie des ondelettes hyper-analytiques et les copules” for texture 

classification, also in the framework of a PhD thesis. A first paper published by me treats the 

„distance” between two textures using Kullback-Leibler divergence. But I consider that there 

is a lot of work to do in this direction, possibly by simplifying the measurement on the 

„geodesic distance” between two probability distributions, introduced by Verdoolaege, to 

allow an easier way to compute this relationship (metric). On the basis of introducing a 

suitable measurement of the distance between two textures, I hope to contribute to the 

development of a mechanism for automatic image search in a database, as suggested by Do 

and Vetterli. The research results may be published in an ISI journal. 

 

3. I will continue the research on the complex wavelet transform domain. I intend to 

cooperate with the team of prof. Tulay Adali and the team from LAPS to work for 

complex signal processing methods to be applied in telecommunications, image 

processing and biomedical signal processing. I have to mention here that I already 

went through a documentary research phase and I was able to make a correction to a 

calculation in an IEEE publication related to the complex distribution. These research 

can serve as a subject for a PhD thesis. 

 

4.  The research carried out in the framework of the European FP7 Grant ARTRAC, 

on radar signal processing for road safety has already led to some published results. This 

makes me believe that the application of wavelet transform and signal denoising after Donoho 

and Isar can significantly increase the probability of detection of a moving target while 

maintaining the required probability of false alarm (CFAR). Some results on the separation 

and tracking trajectories were obtained; extended Kalman filtering can be thus applied for this 

problem. These are two possible PhD research themes with a high applicability. 

    

 5. We have investigated the problem of estimating the regularity of an anisotropic 

image. In such images, for different directions, we obtain different regularity measure. It is 

important to separate preferential directions in the image. This can be done using a complex 

wavelet transform. Then on each direction, we estimate the degree of regularity (smoothness) 

through the Hurst exponent. We have already written two papers on the subject, one uses the 

Hyperanalytic wavelet packets and estimates the Hurst on each direction using a technique 

existing in the literature. The other  paper, published at ICIP 2014, improves Hurst 
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(regularity) estimation by using lasso, in the field of the DTCWT. This second paper is 

written together with Professor Alexandru Isar, in collaboration with Senior Lecturer James 

Nelson (Univ. College London UK). To further improve this estimation we can replace the 

DTCWT with the HWPT.  

There is of course, the possibility of continuation of the collaboration by articles and a PhD 

thesis. 

 

 6. As a member of the Adelaida Mateescu research centre, I will try to attract research 

contracts to support the major research directions presented. In this respect, I can mention that 

we already have two ongoing contracts with the European Space Agency, ESA, both using 

image processing techniques (segmentation, denoising). To the extent that we can 

successfully solve the themes proposed, we foresee the possibility to participate in other 

European space programs, together with PhD students from UPT.  

 

 I believe that the plan is realistic, since I already have accumulated some experience 

through contracts and publications, evidence shown by the fact that I was nominated as a 

reviewer for IEEE Trans. Information Forensics & Security, IEEE Trans. Multimedia, IEEE 

Trans. Signal Processing, IEEE Trans. Image Processing, EURASIP Journal on Information 

Security, IET Information Security, Research Letters in Electronics, Elsevier, Journal of 

Systems and Software, Elsevier, Signal Processing, Elsevier, IET Radar, Sonar & Navigation, 

Physical Communication.  

 

I will also mention that I have access to the latest documentation, both through the 

UPT library and its subscribption to IEEE Proceedings, as well as my own subscriptions, as a 

member of IEEE (IEEE Trans periodicals. Information Forensics & Security, IEEE Trans. 

Multimedia, IEEE Trans. Signal Processing, IEEE Trans. Image Processing, IEEE Trans. 

Pattern Analysis and Machine Intelligence). 
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