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I.1 Abstract

The present habilitation thesis summarizes the research contributions of the can-

didate obtained between 2011 (when the candidate obtained the PhD) to this

date.

The most significant research activity and the obtained results are presented struc-

tured in several parts that represent original contributions in the field of image pro-

cessing and computational photography: image dehazing (day-time single image

dehazing, night-time single image dehazing, dehazing evaluation dataset), unde-

rwater images enhancement, image decolorisation and single scale fusion technique

for effectively merging images.

Image dehazing deals with the problem of enhancing the visibility in terms of

color and details for images degraded by haze. In outdoor environments, haze phe-

nomena appears when the light reflected from object surfaces is scattered due to

the impurities of the aerosol, or due to the presence of fog and haze. The yielding

hazy images are characterized by poor contrast, lower saturation and additional

noise.

Day-time image dehazing. Firstly, we describe a novel single image stra-

tegy [1] that demonstrates to accurately dehaze images by only taking as input

the original degraded information. Our approach is built on a fusion strategy and

derives two inputs from the original image. These inputs are weighted by three

normalized weight maps and finally blended in a multi-scale fashion that avoids

introducing artifacts. The method is fast being straightforward to implement and

shows to outperform the related operators. Our approach performs an effective

per-pixel computation, that reduces the amount of artifacts compared with the

patch-based methods.

Night-time image dehazing. To deal with the problem of night-time hazy

scenes, we introduce a novel modality [2] to compute the airlight component while

accounting for the non-uniform illumination presents in nighttime scenes. Unlike

the day-time dehazing strategies that estimates a constant atmospheric light over

the entire image, we estimate this by accounting the local values and patches of
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varying sizes. Our work combines the advantages of using the physical model and

uses noise and artifacts reduction ability by employing the fusion strategy.

Image dehazing evaluation dataset. We proposed a dataset that contains

1400+ pairs of images with ground truth reference images and hazy images of

the same scene. Our dataset, called D-HAZY [3], is built on the Middlebury and

NYU Depth datasets that provide images of various scenes and their correspon-

ding depth maps. Based on the depth information and using the physical model

of a hazy medium we derive a corresponding hazy scene with high fidelity. Using

D-HAZY dataset, we perform a comprehensive quantitative evaluation of the re-

cent techniques.

Enhancing Underwater Images. We describe an effective technique [4] that

is able to enhance underwater images. Our strategy derives the inputs and the

weight measures only from the degraded version of the image. In order to overcome

the limitations of the underwater medium we define two inputs that represent color

corrected and contrast enhanced versions of the original underwater image/frame,

but also four weight maps that aim to increase the visibility of the distant objects

degraded due to the medium scattering and absorption. The enhanced images and

videos are characterized by reduced noise level, better exposedness of the dark

regions, improved global contrast while the finest details and edges are enhanced

significantly. In addition, the utility of our enhancing technique is proved for

several challenging applications (image matching, segmentation, etc.).

Moreover, for highly scattered underwater scenes, we introduce a novel approach [5].

Following the optical underwater model, we first compute the back-scattered li-

ght by searching for the brightest location along each image patch. By simply

applying the optical model using our local estimate of the back-scattered light, we

are able to obtain a good degree of visual restoration, even on in extreme underwa-

ter scenes. Our results demonstrates that our proposed solution can deal with the

difficult situations where most of the existing enhancing underwater approaches

fail, such as when using artificial illumination at higher depths and high turbidity.

Image decolorization (color-to-grayscale) deals with the problem of conver-

ting a color image (with three-RGB-channels) into a single channel image version.

Often, the standard decolorization conversion is simply employed as the luminance
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channel of different color spaces. However, this simple global mapping disregards

important chromatic information and therefore, in many cases, the output does

not preserve the original appearance. Our grayscale transformation [6], designed

in RGB color space and takes as individual inputs the three color channels (R, G,

B). Our technique is guided by two weight maps that transfer in the final result the

most significant information of each derived input ( RGB color channels). In order

to minimize artifacts introduced by the weight maps, our approach is designed in

a multi-scale fashion.

Single scale image fusion. Image fusion plays an important role in a wide

range of imaging applications. One of the main problem for all the fusion algori-

thms is related with the ability to use it for real-time applications. In our recent

work [7] we introduced a single-scale fusion strategy that is more computational

effective for blending multiple-sources images and produces similar results in com-

parison with the traditional multi-scale image fusion technique (MSF). Interestin-

gly, our single-scale expression obtained from the multi-scale approximation also

provides insightful cues regarding how the MSF process manipulates weights and

image features to compute a visually pleasant outcome. The impact is significant,

since this approach facilitates to process high resolution images more effectively.

I.2 Rezumat ı̂n limba română

Teza de abilitatre prezintă contribut, iile in domeniul cercetarii ale candidatului

ı̂ntre anii 2011 (dată la care candidatul a obt, inut doctoratul) şi până ı̂n prezent.

Activitatea de cercetare precum s, i rezultatele cele mai semnificative obt, inute, sunt

structurate ı̂n patru sectiuni, care reprezintă contribut, ii originale ı̂n domeniul pro-

cesării de imagini: recuperarea vizibilităt, ii ı̂n imaginile deteriorate de ceat, ă, tehnici

de restaurare a imaginilor subacvatice, tehnici de conversie a imaginilor color ı̂n

imagini alb-negru, fuziunea imaginilor cu un singur nivel.

Tehnicile de recuperare a vizibilităt,ii din imaginile deteriorate de ceat,ă

au ca scop imbunatatira vizibilitatii ı̂n ceea ce prives,te culoarea s, i detaliile pentru
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imagini degradate de ceat, ă. Imaginile ı̂nregistrate ı̂n condit, ii de ceat, ă sunt carac-

terizate prin contrast redus, saturat, ie scăzută s, i zgomot suplimentar.

Recuperarea vizibilităt,ii in imaginile deteriorate de ceat,ă pe timp de

zi. În lucrarea [1] am introdus o nouă strategie care permite recuperarea cu pre-

cizie a detaliilor in astfel de imagini degradate considerand ca si intrare o singură

imagine afectata de ceata. Abordarea se bazează pe o strategie de fuziune derivand

două intrări din imaginea originală. Aceste intrări sunt ponderate cu trei mărimi

caracteristice (weight maps) normalizate care controlează procesul de fuziune cu

scopul de a reduce introducerea distorsiunilor.

Recuperarea vizibilităt,ii in imaginile deteriorate de ceat,ă pe timp de

noapte. Recent, petru astfel de scene, in lucrarea [2], am introdus o modalitate

nouă de a calcula factorul iluminării folosind si noi constrângeri pentru definirea

neomogenităt, ii caracteristice ı̂nregistrărilor nocturne pe timp de ceata. Spre de-

osebire de cazurile din timpul zilei, unde strategiile existente estimează o valoare

a iluminarii atmosferice constantă pe ı̂ntreaga imagine, ı̂n condit, ii de noapte, am

derivat o procedura de estimare a acestui parametru considerand valorile locale

care sunt estimate pentru diferite dimensiuni ale regiunilor locale.

Bază de date pentru evaluarea tehnicilor de restaurare a scenelor afec-

tate de ceata. In lucrarea [3] am introdus o noua baza de date, denumita D-

HAZY. Aceasta cont, ine peste 1400 perechi de imagini formate din imagini de

referint, ă s, i imagini afectate de ceat, ă. Baza de date s-a construit folosind setu-

rile de imagini Middelbury s, i NYU care furnizează imagini ale diferitelor scene s, i

hărt, ile lor de adâncime corespunzătoare. Scenele afectate de ceata au fost con-

struite sintetic utilizând modelul optic de degradare a imaginiilor ı̂n condit, ii de

ceat, ă.

Tehnici de restaurare a imaginilor subacvatice. În lucrarea [4] am introdus

o noua tehnică care permite ı̂mbunătăt, irea vizibilitatii in imagini inregistrate su-

bacvatic. Pentru a ne adapta mediului subacvatic am definit două intrări: prima

intrare reprezentand imaginea initiala cu balansul de culoare imbunatatit iar a

doua intrare rezultand din imaginea originala cu contrastul global ı̂mbunătăt, it.
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De asemenea am definit patru măsuri caracteristice (weight maps) care au ca scop

principal ghidarea celor doua intrari derivate. Imaginile s, i secventele video pre-

lucrate cu metoda noastra sunt caracterizate prin nivel de zgomot redus, o mai

bună expunere a regiunilor slab iluminate, contrast ı̂mbunătăt, it. Aditional, pen-

tru cazurile subacvatice extreme (highly-scattered) am introdus o noua tehnica [5].

Aceasta metoda calculeaza mai ı̂ntâi lumina reflectată prin găsirea regiunilor cu

cea mai mare intensitate din imagine. Prin aplicarea directă a modelului optic

s, i folosind estimarii locale a iluminării, am demonstrat ca putem obt, ine un nivel

ridicat de restaurare vizuală, chiar si pentru scenele subacvatice extreme cu ilumi-

nare neuniforma.

Tehnici de conversie a imaginilor color ı̂n imagini alb-negru se refera

la conversie unei imagini color ı̂ntr-o imagine monocroma (alb-negru). Conver-

sia standard utilizează canalul de luminant, ă a diferitelor spat, ii de culoare (e.g.

CIEL∗a∗b∗, YCbCr, HSL/HSV ). Această conversie standard s-a dovedit ı̂n multe

cazuri limitata. Transformarea propusa recent [6] utilizează spat, iul de culoare

RGB considerand ca intrări individuale ale algoritmului de fuziune cele trei canale

de culoare individuale. Având ı̂n vedere scopul principal de a ment, ine detaliile

vizibile din imaginiile originale, algoritmul nostru este ghidat de două hărt, i ca-

racteristice de transfer. Pentru a minimiza distorsiunile introduse de hărt, ile de

ghidare, abordarea noastră este bazata pe o strategie de fuziune multi-scală.

Fuziunea imaginilor cu un singur nivel. Fuziunea imaginiilor joacă un

rol important ı̂ntr-o gamă largă de aplicat, ii in domeniul procesarii de imagini.

Una dintre problemele principale este reprezentata de timpii de procesare care

limiteaza utilizarea acestor methode pentru aplicatii ı̂n timp real. În practică,

pentru o execut, ie eficientă cu imagini cu rezolut, ie ridicata este necesară alocarea

unei memorii substant, iale dar s, i de putere de calcul. In lucrarea [7] am introdus

un algoritm de fuziune folosind o singură scală care are avantajul de a produce

rezultate comparative calitativ cu fuziunea multi-scală. Impactul acestei metode

este semnificativ, deoarece facilitează procesarea mult mai eficientă a imaginilor

de ı̂naltă rezolut, ie.
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II.1 Single Image-based Dehazing

Haze is an atmospheric phenomenon that significantly degrades the visibility of

outdoor scenes. This is mainly due to the atmospheric particles that absorb and

scatter light. This paper introduces a novel single image approach that enhances

the visibility of such degraded images. Our method is a fusion-based strategy that

derives two inputs from the original hazy image by applying a white balance and a

contrast enhancing procedure. To blend effectively the information of the derived

inputs in order to preserve the regions with good visibility, we filter their important

features by computing three measures (weight maps): luminance, chromaticity and

saliency. To minimize artifacts introduced by the weight maps, our approach is

designed in a multi-scale fashion, using a Laplacian pyramid representation. We

are the first to demonstrate the utility and effectiveness of a fusion-based technique

for dehazing based on a single degraded image. The method performs in a per-

pixel fashion, which is straightforward to implement. The experimental results

demonstrate that the method yields comparable and even better results than the

more complex state-of-the-art techniques, with the additional advantage of being

appropriate for real-time applications.

Often, the images of outdoor scenes are degraded by bad weather conditions. In

such cases, atmospheric phenomena like haze and fog degrade significantly the

visibility of the captured scene. Since the aerosol is misted by additional particles,

the reflected light is scattered and as a result, distant objects and parts of the

scene are less visible, which is characterized by reduced contrast and faded colors.

Restoration of images taken in these specific conditions has caught increasing

attention in the last years. This task is important in several outdoor applications

such as remote sensing, intelligent vehicles, object recognition and surveillance.

In remote sensing systems, the recorded bands of reflected light are processed [8,

9] in order to restore the outputs. Multi-image techniques [10] solve the image

dehazing problem by processing several input images, that have been taken in

different atmospheric conditions. Another alternative [11] is to assume that an

approximated 3D geometrical model of the scene is given. In the work of Treibitz

and Schechner [12] different angles of polarized filters are used to estimate the

haze effects.

A more challenging problem is when only a single degraded image is available.

Solutions for such cases have been introduced only recently [13–17].
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II.1.1 Background Theory: Optical model

The physical model used in our approaches that are presented in the next sections,

is similar to the one employed in previous single image dehazing methods [13–

15, 17], initially described by Koschmieder [18]. For the sake of completeness, we

provide a brief description of this model in this section.

When examining an outdoor scene from an elevated position, features gradually

appear lighter and fading as they are closer towards the horizon. Only a percentage

of the reflected light reaches the observer as a result of the absorption in the

atmosphere. Furthermore, this light gets mixed with the airlight [18] color vector,

and due to the scattering effects the scene color is shifted (illustrated in Fig. 1).

Based on this observation, the captured image of a hazy scene Ih is represented

by a linear combination of direct attenuation D and airlight A contributions:

Ih = D +A = I ∗ t (x) + A∞ ∗ (1− t (x)) (1)

where Ih is the image degraded by haze, I is the scene radiance or haze-free image,

A∞ is the constant airlight color vector and t is the transmission along the cone

of vision. This model assumes linear correlation between the reflected light and

the distance between the object and observer.

atmosphere

Distance (Depth)

Object radiance

Direct transmission

Airlight

scattering

camera

Figura 1: The optical model for the atmospheric phenomenon of haze.

This problem is clearly ill-posed, and requires us to recover the unknowns I, A∞

and t(x) from only a single input image Ih.
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In a homogeneous atmosphere, the transmission t is considered to be modulated

as:

t (x) = exp(−β ∗ d(x)) (2)

where β is the attenuation coefficient of the atmosphere due to the scattering and

d represents the distance to the observer.

From equation 1, it becomes apparent that the chrominance attenuation becomes

increasingly influenced by the airlight, as the optical depth increases:

A

D
=

A∞ ∗ (1− t(x))

I ∗ t(x)
(3)

Theoretically, if the transmission and the airlight are known, the haze-free image

can be easily computed:

I = A∞ − (A∞ − Ih) /t(x) (4)

II.1.2 Haze Detection and Transmission Estimation

Existing techniques that deals with satellite images can be classified into two main

categories. The first category aims to employ a physical model that aims to esti-

mate an appropriate radiative transform model that is able to process the radio-

metric effect for given atmospheric conditions and spectral bands then proceeding

in the subtraction from the data. Often, such approaches also require detailed

auxiliary data regarding the atmospheric conditions at the time and place of the

scene acquisition.

The dark object method [8] is a well-known technique within the remote sensing

community. In order to recover the details and to enhance the contrast loss due to

the haze influence this approach searches to detect the dark object [8]. Considering

an image satellite, this is found in the area of zero reflectance and below the pixels

that are characterized by the lowest reflectance values in the image (for instance

shadowed areas). To find with high accuracy this value, usually all ratios histogram

of considered significant bands are analyzed. The main reason for band selection

is the property of the materials that are known to reflect more intensely in certain

bands than in others. In addition, based on numerous observations and statistics

(related with the relative reflection in different TM bands), this process of bands
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Landsat TM images (Path 188, Row 32) Band composition 4-3-2; image dates:

a) 08 Septeber 1984;                                                         (b) 16 September 2010.

Figura 2: Two Landsat TM 2010 and TM 1984 cloud free images (path 188,
row 32) with 30 x 30 m spatial resolution

selection can automatically classify the type of areas (e.g. vegetation, minerals,

etc).

To understand the importance of image visibility adjustment it is presented an

example in the context of the image registration. In the following is presented an

image registration as shown in the work of [19]. First, image registration opera-

tion aims to help image conformity to another image. This implicates additional

georeferencing, if the reference image is also rectified to a certain map projection.

Landsat satellite images are first projected by employing several ground control

points (GCPs) (in this example 26) to the Transverse Mercator (UTM) projection

System (zone number: 33N; reference datum: WGS84). For geographical cor-

rection of the two images , the first order polynomial transformation model and

nearest neighbor model for resampling (with a Root Mean Square (RMS) error of

0.5 pixels). Landsat satellite imageries of two different time periods Landsat TM

2010 and Landsat TM 1984 were geo-coded by “map-to-map” method.

Using the dark object subtraction model [8] the images are also radiometrically

corrected. This method is considered one of the most robust and effective approach

and employed by many implementations as shown in [19]. The algorithm results

has been compared against the inter-calibration algorithm of NC regression nor-

malization. The results obtained by the two compared methods has showed no

significant differences in change detection over forest areas. Finally the images can

be cross-classified and differences can be analyzed (see figure 2). For this shown
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example, the main target has been to find changes over forest areas over the time

periods.

On the other side, the process of haze removal can be performed on the basis of

certain scene-based procedure without any additional data that describe the at-

mospheric conditions. In this category is included for example the tool SHARE

(Scene-based Haze Removal) [20] implemented as extension of the method propo-

sed by Zhang et al. [21] and Zhang and Guindon [22].

The method has the foundation on the Haze Optimized Transform (HOT) that

aims to estimate the haze amount based of the certain distances(e.g. green band

versus blue) which classify image pixels into so-called clear-sky line from points

belonging to haze-free areas. However, this approach is affected mainly by man-

made elements of the scene, that due to their spectral signature, have the effect to

produce high HOT estimates and that influence the algorithm to over-correct these

type of targets. For low-resolution satellite images, the solution found by Zhang

et al. [21] and Zhang and Guindon [22] is to smoothly interpolate the estimated

haze. This solution is not satisfactory for high-resolution data (e.g. IKONOS

used by [20]). Their solution (as presented in figure 3 and 4) is to mask man-made

features first as a preprocess step before applying the haze interpolation for these

masked targets.

Preious presented techniques have demonstrated utility mostly for satellite images.

However, remote sensing images tend to be collected at nadir, or near nadir so

that the effect pf haze tends to be uniform across the image due to the fact that

the ground is mostly nearly the same distance across the image, especially from

space. For images affected by haze, acquired with common cameras, the presented

solutions are not applicable.

More recently, He et al. [15] have presented a new derivation of dark object

approach, called the dark channel prior. This prior information has its foun-

dation on the statistics of haze-free outdoor images. Analyzing a large database

of images, the authors have found that most of the local regions which are not

part of the sky, are characterized by low intensity in at least one color(R, G,B)

channel. Since some pixels (also called dark pixels) are always of low intensity,

the minimum intensity of the patch that contains them have very low value. The

dark channel for an image is defined mathematically:
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The results of HOT(Haze Optimized Transform)-based haze subtraction algorithm

Figura 3: Two details of the IKONOS scene reported in the logo before (left)
and after (right) the haze removal (Dark-Object Subtraction performed as well)

Idark = minc∈(R,G,B)(minY ∈Ω(x)(Ic(y))) (5)

where Ic is the color (R, G,B) channel and Ω(x) represents a local patch centered

at x. The observation of the authors is that the intensity of Idark is low and tends

to be zero, except for the sky region if the image I is actually haze-free outdoor

image. The image obtained after min morphological operations are applied (Idark)

is call dark channel of I.
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Figura 4: Vegetation Indices NDVI and GARI before (left column) and after
(right column) the haze removal via SHARE

There are several factors that influence the intensity on the dark channel such as

shadows of objects(cars, buildings, trees, rocks), colorful scene areas (e.g. green

grass/plant, red/yellow/purple flowers, blue water, etc), dark objects or surfa-

ces(e.g. trees trunk, roads and stones). To validate this assumption the authors
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Figura 5: Dark channel example. Top: haze-free images Bottom: the corres-
ponding dark channels.

have tested about 5000 images an manually cut out the sky regions. The images

has been resized to a match a maximum withxheight of 500 pixels. For all of them

the dark channel has been computed by applying the formula 5.

In the hazy images, the intensity of dark pixels in the dark channel are mainly

contributed by the airlight. In other words, the dark channel computed for an

haze image will have higher intensity in regions that are characterized by denser

haze. Roughly, visually this dark channel is similar with the transmission that

estimate the haze density over the scene (or the depth map).

A disadvantage of dark channel method is its inability to properly preserve edges,

which is caused mainly by the employed erosion filter during the stage of compu-

ting the dark channel. In order to recover the refined transmission map and the

latent image, this patch-based approach requires a complex postprocessing stage.

By employing the dark channel prior [15], it has been shown that each patch of

a natural image contains at least one point that is dark for non-sky or haze-free

regions. The validity of this observation is mainly motivated by the fact that na-

tural images are colorful and full of shadows [15]). On the dark channel, patches

representing sky and hazy regions contain high values, as the local minimal in-

tensity of such patches is high. Similarly, it has been observed that pixels in sky

or hazy areas have high values in all color channels. These observations confirm
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Figura 6: From left to right: input haze image, estimated rough transmission
map, refined transmission map after soft matting and final haze-free image.

the assumption that values in hazy image patches vary smoothly, except at depth

discontinuities.

The dark channel method built on depth map statistics is physically valid and

is capable to deal with distant objects. To avoid hallo artifacts, the solution is

to combine the extracted haze imaging model and a soft matting interpolation

method. Thus the authors has demonstrated the possibility to recover both a

hi-quality haze-free image and also to produce a good depth map (up to a scale).

Another similar approach is to maximize the image contrast. The main difference

between physical based methods and contrast based methods is that the second

cathegory does not require geometrical information(or depth map) in order to

restore the lost details. The method of Tan [14] also propose a strategy on a

similar assumption as the dark channel [15]. First, the haze-free images have more

contrast and second, the airlight variation mainly depends on the distance. The

method is built on a framework of Markov random fields. This approach can be

efficiently optimized by choosing different techniques, such as graph-cuts or belief

propagation.

This method aims to employ the chromacity information and assumes that if the

object is infinitely distant, then the image chromaticity is straightforward depen-

dent only by the atmospheric light (airlight). In addition, the authors assumed

that if there is no effect of scattering particles, it can be translated mathematica-

lly, that in the absence of the airlight then the image chromaticity is constrained

solely by the direct attenuation.

The algorithms requires three mains constraints to be valid: first, the dehaze

image (or the haze-free image) is assumed to have higher contrast compared with

the input hazy image. Second, the variation of the airlight value A depends mostly

by the scene geometry, which means that objects at the same depth will record

the same values of airlight A, regardless of their reflectance. As a consequence,
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the airlight value for most neighboring pixels tend to be similar. This rule is not

applicable to depth continuities which can impact dramatically the the airlight

influence, although the number of pixels is assumed relative small. Finally, hazy

images characterized mostly outdoor natural scenes. Due to this fact, the correct

estimate of transmission (scene geometry) should follow the characteristics of clear-

day natural images.

Summarizing the algorithm procedures: it crops from the image an nxn (7x7 or

more since it depends by the size and scale of the input image) patch centered at a

location x. As shown in the figure 7 the strategy is to find that airlight value that

corresponds to the patch in order to maximize the edges contrast. After all of the

iterations finish, the algorithm will estimate a data cost for all pixels (smoothness

term), where for each pixel should find the inference, which finally produces the

airlight distribution. This algorithmic part provides a data cost and a smoothness

cost that supplies a complete graph in term of Markov random fields.

Currently, graph-cuts and belief propagation are considered by the authors the

most efficient techniques to optimize the cost function of MRFs. The main dra-

wbacks are represented by the fact that they still require a considerable amount

of computational time (especially for high-quality input images) and when the

number of labels are large. In order to reduce the complexity two strategies has

been considered: first, the number of labels has been reduced (that means also the

dimension of the data cost is reduced), and second, some initial estimates values

for the airlight are known.

The results produced by the authors are obtained by using Iterated Conditio-

nal Modes (ICM) which uses the blurred luminance image as the initial values.

However, ICM does not guarantee the global optimum, but the obtained results de-

monstrated that the contrast has been considerably improved. The main problems

shown by the results are mainly related by the halos at depth discontinuities.
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Foggy image Dehazed Result

Figura 7: Top Left: synthetic fog applied on the right image, where A is set
constant globally (=153 after the division). Right: the haze-free natural image.
Bottom: Edges distribution for the region in the red rectangle with respect to A.
Please notice that the peak is around A = 167 (y-axis characterizes the contrast

estimated for the edges, while the x-axis is airlight values)
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II.1.3 Daytime Image Dehazing by Fusion

In this section we describe an alternative single-image based strategy that is able

to accurately dehaze images using only the original degraded information. The

technique has been published recently by the candidate in [1]. Our technique

has some similarities with the previous approaches of Tan [14] and Tarel and

Hautière [17], which enhance the visibility in such outdoor images by manipulating

their contrast.

However, in contrast to existing techniques, we built our approach on a fusion stra-

tegy. We are the first to demonstrate the utility and effectiveness of a fusion-based

technique for dehazing on a single degraded image. Image fusion is a well studied

process [23], that aims to blend seamlessly several input images by preserving only

the specific features of the composite output image. In this work, our goal is to

develop a simple and fast technique and therefore, as will be shown, all the fu-

sion processing steps are designed in order to support these important features.

The main concept behind our fusion based technique is that we derive two input

images from the original input with the aim of recovering the visibility for each

region of the scene in at least one of them. Additionally, the fusion enhancement

technique estimates for each pixel the desirable perceptual based qualities (called

weight maps) that controls the contribution of each input to the final result. In

order to derive the images that fulfill the visibility assumptions (good visibility

for each region in at least one of the inputs) required for the fusion process, we

analyze the optical model for this type of degradation. There are two major pro-

blems, the first one is the color cast that is introduced due to the airlight influence

and the second is the lack of visibility into distant regions due to scattering and

attenuation phenomena.

The first derived input ensures a natural rendition of the output, by eliminating

chromatic casts that are caused by the airlight color, while the contrast enhance-

ment step yields a better global visibility, but mainly in the hazy regions. However,

by employing these two operations, the derived inputs taken individually still su-

ffer from poor visibility (e.g. analyzing figure 54 it can be easily observed that the

second input restores the contrast of the hazy inputs, but at the cost of altering

the initial visibility of the closer/haze-free regions).

Therefore, to blend effectively the information of the derived inputs, we filter (in a

per-pixel fashion) their important features, by computing several measures (weight
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maps). Consequently, in our fusion framework the derived inputs are weighted by

three normalized weight maps (luminance, chromatic and saliency) that aim to

preserve the regions with good visibility.

Finally, to minimize artifacts introduced by the weight maps, our approach is

designed in a multi-scale fashion, using a Laplacian pyramid representation of the

inputs combined with Gaussian pyramids of normalized weights.

Hazy image Tarel and Hautiere [2009] Our result

Figura 8: Comparison with the fast method of Tarel and Hautière [17]. Our
method performs faster and yields more visually plausible results than [17]

Notice the sky and sea regions.

Our technique has several advantages over previous single-image dehazing me-

thods. First, our approach performs an effective per-pixel computation, different

from the majority of the previous methods [13–15] that process patches. A pro-

per per-pixel strategy reduces the amount of artifacts, since patch-based methods

have some limitations due to the assumption of constant airlight in every patch.

In general, the assumptions made by patch-based techniques do not hold, and

therefore additional post processing steps are required (e.g. the method of He et

al. [15] needs to smooth the transmission map by alpha-matting). Secondly, since

we do not estimate the depth (transmission) map, the complexity of our approach

is lower than most of the previous strategies. Finally, our technique performs fas-

ter which makes it suitable for real-time applications. Even compared with the

recent effective implementation of Tarel and Hautière [17] our technique is able to

restore a hazy image in less time, while showing more visually plausible results in

terms of colors and details (see figure 8).

Our technique has been tested extensively for a large set of different hazy images

(the reader is referred to the evaluation section). Results on a variety of hazy
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images demonstrate the effectiveness of our fusion-based technique. Moreover, we

perform a quantitative experimental evaluation based on the measure of Hautière

et al. [24]. The main conclusion is that our approach is less prone to artifacts,

yielding very similar results with the physically-based techniques such as the te-

chnique of Fattal [13], He et all. [15], Nishino et al. [25] and Kopf et al. [11]. We

believe that this is a key advantage of our technique.

The rest of this section is structured as follows. In the next section, the related

techniques that deal with haze removal are briefly reviewed. Next, we discuss

some theoretical aspects of light propagation in such environments and present our

single image based dehazing technique; the details regarding our fusion technique

are discussed in this section. Finally, we report and discuss the results and present

a quantitative evaluation.

Related Work. Enhancing images represents a fundamental task in many image

processing and vision applications. As a particular challenging case, restoring hazy

images requires specific strategies and therefore an important variety of methods

have emerged to solve this problem.

Firstly, several dehazing techniques have been developed for remote sensing sys-

tems, where the input information is given by a multi-spectral imaging sensor

installed on the Landsat satellites. The recorded six-bands of reflected light are

processed by different strategies in order to yield enhanced output images. The

well-known method of Chavez [8] is suitable for homogeneous scenes, removing

the haze by subtracting an offset value determined by the intensity distribution

of the darkest object. Zhang et al. [26] introduced the haze optimized transfor-

mation (HOT), using the blue and red bands for haze detection, that have been

shown to be more sensitive to such effects. Moro and Halounova [9] generalized the

dark-object subtraction approach [8] for highly spatially-variable haze conditions.

A second category of methods, employs multiples images or supplemental equi-

pment. In practice, these techniques use several input images taken in different

atmospheric conditions. Different medium properties may give important infor-

mation about the hazy image regions. Such methods [27], [28], [10] produce

pleasing results, but their main drawback is due to their acquisition step that in

many cases is time consuming and hard to carry out.

Different strategies have been developed when the approximated 3D geometrical

model of the scene is given. The forerunner method of Narasimhan and Nayar [29]
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employs an approximated depth-map specified interactively by the users. Hautière

et al. [30] designed a method for vehicle vision systems, where weather conditions

are first estimated and then used to restore the contrast according to a scene

structure which is inferred a priori. The Deep Photo [11] system uses the existing

georeferenced digital terrain and urban models to restore foggy images. The depth

information is obtained by iteratively aligning the 3D models with the outdoor

images.

Another class of techniques exploits the properties of the airlight that is partially

polarized [31], [32], [12], [33], [34]. By using different angles of polarized filters the

resulting images of the same scene can be processed to estimate the haze effects.

The difference between such images enables the estimation of the magnitude of the

polarized haze light component. These methods have shown less robustness for

scenes with dense haze where the polarization light is not the major degradation

factor.

However, a more difficult case is when only a single hazy image is used as an input

information. The single image dehazing is an ill-posed problem that can be solved

by different strategies [13], [14], [15], [17], [25] that have been introduced only

recently. Roughly, these methods can be divided into contrast-based and statistical

approaches. Tan’s [14] method belongs to the first category. In this case the image

restoration maximizes the local contrast while constraining the image intensity to

be less than the global atmospheric light value. The contrast-based enhancing

approach of Tarel and Hautière [17] has shown to be a computationally effective

technique, but assumes as well that the depth-map must be smooth except along

edges with large depth jumps. Regarding to the second category, the technique of

Fattal [13] employs a graphical model that solves the ambiguity of airlight color. It

assumes that image shading and scene transmission are locally uncorrelated. He et

al. [15] built their approach on the statistical observation of the dark channel [8],

that allows a rough estimation of the transmission map. To refine the final depth-

map, the transmission map values are extrapolated into the unknown regions, by

a relatively computationally expensive matting strategy [35]. The technique of

Kratz and Nishino [16], recently extended [25], is a Bayesian probabilistic method

that jointly estimates the scene albedo and depth from a single degraded image

by fully leveraging their latent statistical structures. Their approach models the

image with a factorial Markov random field in which the scene albedo and depth

are two statistically independent latent layers, which are estimated jointly.
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Our method is also a single image dehazing technique. Different than previous

single image dehazing approaches, our technique is built on the principle of image

fusion, a well-studied topic of computational imaging that has found many use-

ful applications such as interactive photomontage [36], image editing [37], image

compositing [38, 39] and HDR imaging [40, 41]. The main idea is to combine

several images into a single one, retaining only the most significant features. Even

though the fusion principle has been used previously to restore hazy images, but

using additionally near-infrared (NIR) image of the same scene [42], we are the

first that introduce a single image dehazing technique based on the fusion prin-

ciple that blends only the information existing in the input image. Our strategy

bears some similarity with the recent methods of He et al. [15] and Tarel and

Hautière [17]. Both of these methods can be seen as filtering solutions since the

dark channel [15] can be related with an erosion problem, while [17] employed

their defined median of median filter in order to preserve both edges and corners.

However, our approach is fundamentally different since it removes the haze by

simply blending the two derived inputs weighted by several measures. Our stra-

tegy combines the input information in a per-pixel fashion minimizing the loss of

the image structure by a multi-scale strategy. While no post-processing steps are

required it is also straightforward to implement and computationally effective.

Background Theory: Light Propagation. Due to the absorption and scat-

tering, the light passing through the atmosphere is attenuated and dispersed.

While in normal conditions (clear day) the size of air molecules is relatively small

compared with the wavelength of visible light, the scattering influence might be

considered insignificant. As the title presents, in this paper we are dealing with

specific atmosphere conditions due to the presence of haze. As discussed in the

study of McCartney [43], haze is traditionally an atmospheric phenomenon where

dust, smoke and other dry particles obscure the clarity of the sky. Haze reduces

visibility for distant regions by yielding a distinctive gray hue in the captured

images. As will be demonstrated, our algorithm is able to deal as well with a par-

ticular case: foggy scenes. Fog is a dense cloud of water droplets, or cloud, that is

close to the ground. In general, this phenomenon appears when night conditions

are clear but cold, and the heat released by the ground is absorbed during the day.

As the temperature of the ground decreases, it cools the air above it to the dew

point forming a cloud of water droplets known as radiation fog.

Based on the Koschmieder’s [18] law only a percentage of the reflected light reaches
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the observer causing poor visibility in such degraded scenes. The light intensity

I for each pixel x, that reaches the observer is described by two main additive

components: direct attenuation and veiling light, also known as airlight :

I(x) = J (x) T (x) + V∞ (1− T (x)) (6)

where J is the scene radiance or haze-free image, T is the transmission along the

cone of vision and V∞ is the veiling color constant. The optical model assumes

linear correlation between the reflected light and the distance between the object

and observer. The first component, direct attenuation D, represents how the scene

radiance is attenuated due to medium properties: D(x) = J (x) T (x). The veiling

light component V is the main cause of the color shifting, being expressed as:

V(x) = V∞ (1− T (x)) (7)

The value of T depicts the amount of light that has been transmitted between the

observer and the surface. Assuming a homogeneous medium, the transmission T is

determined as T (x) = e(−β d(x)) with β being the medium attenuation coefficient

due to the scattering, while d represents the distance between the the observer and

the considered surface. Practically, the problem is to estimate from the hazy input

I the latent image J when no additional information about depth and airlight are

given.

Fusion-based Dehazing. In this part is presented in detail our fusion technique

that employs only the inputs and weights derived from the original hazy image.

The fundamental idea is to combine several input images (guided by the weights

maps) into a single one, by keeping only the most significant features of them .

Obviously, the choice of inputs and weights is application-dependent. By proces-

sing appropriate weight maps and inputs, we demonstrate that our fusion-based

method is able to effectively dehaze images.

Inputs.As mentioned previously, the input generation process seeks to recover

optimal region visibility in at least one of the images. In practice, there is no

enhancing approach that is able to remove entirely the haze effects of such degraded

inputs. Therefore, considering the constraints stated before, since we process only

one captured image of the scene, the algorithm generates from the original image

only two inputs that recover color and visibility of the entire image. The first
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Derived Inputs Inputs - Laplacian Pyramid Weights - Gaussian Pyramid

Our resultHazy Input

Multi-scale Fusion

*

*

Figura 9: Overview of our technique. From the input hazy image are derived
two enhanced versions. These two derived inputs are weighted by three nor-
malized weight maps (luminance, chromatic and saliency) - here we show only
the Gaussian of corresponding normalized maps. Finally, the Laplacian of the
inputs and Gaussian of the weights are blended in a multi-scale fashion that
avoids introducing artifacts. In this outline we depict our approach by using

only 5 (l=5) scale levels in the Laplacian and Gaussian spaces.

one better depicts the haze-free regions while the second derived input increases

visible details of the hazy regions.

Inherently inspired by the previous dehazing approaches such as Tan [14], Tarel

and Hautière [17] and He et al. [15], we searched for a robust technique that will

properly white balance the original image.

Our first input I1 is obtained by white balancing the original hazy image. By

this step we aim a natural rendition of images, by eliminating chromatic casts that

are caused by the atmospheric color.

In the last decades many white balancing approaches [44–48] have been propo-

sed in the literature (a systematic overview of the existing methods is presented

in [49]). Several specialized techniques have been experimented in the context of

our problem. Since we aim for a computationally effective dehazing approach, we

opted for the shades-of-gray color constancy technique [47]. Despite of its sim-

plicity, this low-level approach of Finlayson and Trezzi [47] has shown to yield

comparable results to those of more complex white balance algorithms (that pro-

duces reliable results based on natural image statistics [50]). The main objective of

white balance algorithms, is to identify the illuminant color e(λ) or its projection

on the RGB color channels (Re, Ge, Be) . We use the same notations as in the ori-

ginal manuscript of Weijer and Gevers [51] of grey-edges that is just an extension
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of shades-of-gray. Unfortunately, we observed that the grey-edges technique often

failed when processing hazy images. We believe that this is due to the lack of local

contrast in the hazy regions but also since the hazy images are characterized by a

smaller amount of edges.

Given an image f , for a Lambertian surface, the intensity measured can be modeled

as:

f(x) =

∫

ω

e(λ)s(λ, x)c(λ)dλ (8)

where e(λ) is the radiance given by the light source, λ is the wavelength, s(λ, x)

denotes the surface reflectance, c(λ) = [R(λ), G(λ), B(λ)] describes the sensitivity

of the sensors while ω is the visible spectrum.

The illuminant e to be estimated, is expressed as:

e = (Re, Ge, Be) =

∫

ω

e(λ)c(λ)dλ (9)

According to the Grey-World assumption of Buchsbaum [44] the average reflec-

tance of the scene is achromatic (gray). This hypothesis is mathematically defined

as follows:
∫

s(λ, x)dx
∫

dx
= κ (10)

where κ is the constant assumed to have the value 0.5.

Next, by replacing s in equation 8 with 10, the following expression is obtained:

∫

f(x)dx
∫

dx
=

1
∫

dx

∫ ∫

ω

e(λ)s(λ, x)c(λ)dλdx ⇐⇒

∫

f(x)dx
∫

dx
= κ

∫

ω

e(λ)c(λ)dλ

(11)

As shown in shades-of-gray [47] and grey-edges [51], white balance can be defined

based on Minkowski norm of images. Grey-World [44] algorithm estimates the

illumination, by stating that the average color of the entire image raised to a

power n is achromatic (gray).

[
∫

fndx
∫

dx

]
1
n

= κe = κ (Re, Ge, Be) (12)
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As demonstrated, shades-of-gray is part of the same family with Grey World [44]

and max-RGB [45] techniques. This is easy to demonstrate by setting norm n = 1

and n → ∞ respectively in the equation 12. For shades-of-gray approach n can

take any number between 1 and ∞ (default value is set to n = 6). When n = 1,

all the components from the scene contribute uniformly to the average. When

n is increased, the impact of the components is directly proportional with their

intensity.

Since the first input I1 shows good visibility in non-hazy regions and discards the

color shifting, the second input I2 is generated from this I1 in order to enhance

the contrast in those regions that suffer due to the airlight influence.

For the second input we searched for a relatively complementary processing

technique, capable to enhance those regions that present low contrast. Considering

the airlight factor from the optical model (eq. 7)(that is both additive and

multiplicative with the transmission), and since the haze is dominant in the hazy

images, it is expected that the hazy regions would have a great influence over the

average of the image. Moreover, due to the fact that the airlight influence increases

linearly with the distance, the luminance of these regions is assumed to amplify

with the distance. In practice, based on these observations, second input I2 is

obtained automatically by subtracting the average luminance value of the entire

image I from the original image I. This operation has the effect of amplifying

the visibility in regions degraded by haze, but yields some degradation in the

rest of the image (the effect of this conversion is shown in figure 54). A similar

effect may be obtained by general contrast enhancing operators (e.g. gamma

correction, histogram stretching) that also amplify the visibility in the hazy parts,

while destroying the details in the rest of the image. However, this degradation is

detected and solved in our fusion approach by defining proper weight maps (please

refer to the next subsection and figure 54).

Mathematically, the second input computed for each pixel x is obtained by applying

the following expression:

I2(x) = γ (I(x)− Ī) (13)

where γ is a factor that increases linearly the luminance in the recovered hazy

regions (default value is γ = 2.5). This default value for γ matches for those most

cases. However, in our experiments there are few exceptions that are not satisfied.

These cases are characterized by the fact that hazy regions are relatively darker
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Derived inputs Corresponding weight maps of the two inputs

Luminance map Chromatic map Saliency map Our result

He et al. [2009]

Figura 10: Derived inputs and weight maps. In the left side the two derived
inputs are shown. In the middle are displayed the three weight maps correspon-
ding to the inputs. Finally, in the right column the results of He et al. [15] and

our result are shown.

than non-hazy regions (see figure 14). Since fusion blends selectively (guided by

the weight maps) the two inputs, the results of the dehazing operation will suffer

also by darker aspect (some algorithms suffer from such problems as can be no-

ticed by a closed inspection of figure 15 of [14], in figure 8 of [17] or in figure 13

of [25]). To generate optimal results for these cases, we derived a general expres-

sion for gamma (γ = 2(0.5+ Ī)), that is correlated with the average luminance of

the image (we employ this information, since Ī is a good indicator of the image

brightness appearance). The parameter gamma has a similar impact as the tone

mapping stage of [17] that has been applied on the the haze-free regions, assumed

to be in the bottom third part of the original image.

Weight Maps. As can be seen in figures 9 and 54, by applying only these

enhancing operations, the derived inputs still suffer from low visibility mainly

in those regions with dense haze and low light conditions. The idea that global

contrast enhancement techniques are limited to dealing with hazy scenes has been

remarked previously by Fattal [13]. This is due to the fact that the optical density

of haze varies across the image and affects the values differently at each pixel.

Practically, the limitation of the general contrast enhancement operators (e.g.

gamma correction, histogram equalization, white balance) is due to the fact that

these techniques perform (constantly) the same operation across the entire image.

In order to overcome this limitation, we introduce three measures (weight maps).

These maps are designed in a per-pixel fashion to better define the spatial relations

of degraded regions.
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Our weight maps balance the contribution of each input and ensure that regions

with high contrast or more saliency from a derived input, receive higher values.

The luminance weight map measures the visibility of each pixel and assigns

high values to regions with good visibility and small values to the rest. Since

hazy images present low saturation, an effective way to measure this property is

to evaluate the loss of colorfulness. This weight is processed based on the RGB

color channel information. We make use of the well known property, that more

saturated colors yield higher values in one or two of the color channels. This weight

map is simply computed (for each input Ik, with k indexes the derived inputs) as

the deviation (for every pixel location) between the R,G and B color channels and

the luminance L from the input:

Wk
L(x) =

√

1/3 [(Rk(x)− Lk(x))2 + (Gk(x)− Lk(x))2 + (Bk(x)− Lk(x))2] (14)

Since the luminance L is computed by averaging the RGB channels, this disparity

yields higher values for the saturated pixels which are assumed to be part of the

initial haze-free regions. On the other hand, because haze produces colorlessness

and low contrast, this measure will assign small values (reducing the contribution

of these locations to the output) for the hazy but also for the deteriorated regions

(e.g. in the second derived input we refer to the regions that have lost their

luminance and therefore have a dark appearance). As illustrated in figure 54, the

WL map is a straightforward, yet effective identification of such regions.

The luminance weight acts as an identifier of the degradation induced in I2 in the

haze-free regions, ensuring a seamless transition between the derived inputs I1, I2.

On the other hand this map also tends to reduce the global contrast and colorful-

ness. To overcome these effects, in our fusion framework we define two additional

weight maps: a chromatic map (colorfulness) and a saliency map (global contrast).

The chromatic weight map controls the saturation gain in the output image.

This weight map is motivated by the fact that in general humans prefer images

characterized by a high level of saturation. Since the color is an inherent indicator

of the image quality, often similar color enhancement strategies are also performed

in tone mapping.
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Only Luminance map Only Chromatic map Only Saliency map Our final result

Figura 11: Impact of each weight map to the final result. Results of our fusion
technique but using only one weight map at a time.

To obtain this map, for each pixel the distance between its saturation value S and

the maximum of the saturation range is computed as following:

Wk
C(x) = exp

(

−
(Sk(x)− Sk

max)
2

2σ2

)

(15)

where k indexes the derived inputs, the default value of the standard deviation

is σ = 0.3 and Smax is a constant that depends by the color space employed (in

our approach we opted for the HSI color space and higher saturated pixels cor-

respond to Smax = 1). Therefore, small values are assigned to pixels with reduced

saturation while the most saturated pixels get high values. As a result, this map

ensures that the initial saturated regions will be better depicted in the final result.

The saliency weight map identifies the degree of conspicuousness with respect

to the neighborhood regions. This perceptual quality measure assesses that a

certain object/person stands out from the rest of the image, or from nearby re-

gions. In general, saliency (also referred to as visual attention [52, 53]) no matter

what the motivation behind it (biologically based [54, 55], computational [53] or

combination of both), seeks to estimate the contrast of image regions relative to

their surroundings (based on different image features such as intensity, color or

orientation).

For this measure, we use the recent saliency algorithm of Achanta et al. [55]. This

strategy is inspired by the biological concept of center-surround contrast. The

saliency weight at pixel position (x, y) of input Ik is defined as:

Wk
S(x) = ‖Iωhc

k (x)− Iµk ‖ (16)

where Iµk represents the arithmetic mean pixel value of the input Ik (a constant

value during the entire process that is computed only once) while Iωhc

k is the

blurred version of the same input that aims to remove high frequency such as noise.
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Hazy image Naive blending Our result- Multi-scale fusion

Figura 12: The naive blending that directly implements equation 52 introdu-
ces halo artifacts, most apparent in locations characterized by strong transitions

of the weight maps.

Iωhc

k is obtained by employing a small 5 × 5 ( 1
16
[1, 4, 6, 4, 1]) separable binomial

kernel with the high frequency cut-off value ωhc = π/2.75. For small kernels,

the binomial kernel is a good approximation of its Gaussian counterpart, but it

has the advantage that in this way it can be computed more efficiently. Once

the blurred version of the image Iωhc

k and the arithmetic mean Iµk are computed,

the saliency is obtained in a per pixel fashion. We opted for the approach of

Achanta et al. [55] since this technique is computationally efficient. Moreover, it

is able to produce maps with well-defined boundaries and uniformly highlighted

salient regions (even at high resolution scales). These features of this saliency

map, prevent introducing unwanted artifacts in the result image yielded by our

fusion technique since neighboring comparable values are assigned similarly on the

saliency map. Additionally, the employed map [55] emphasizes large regions and

estimates uniform values for the whole salient regions. As a result, the effect of

this gain is to enhance the global and local contrast appearance (that corresponds

to large scale). As can be observed in figure 11, one of the main effects of this

measure is to increase the contrast in highlighted and shadowed regions.

By processing a large and diverse set of degraded images, we observed that the

impact of these three measures is, in general, equally important. However, the

first measure has the highest impact on the visibility. To better understand the

contribution of each of these weight maps, the reader is referred to figure 11 that

displays a result processed with our fusion technique, but using only one weight

map at a time.

The resulted weights Wk are obtained by multiplying the processed weight maps
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Wk
L, W

k
C , W

k
S. To yield consistent results, we normalize the resulted weight maps

(W̄k(x) = Wk(x)/
∑

k W
k(x)). This operation constrains that sum at each pixel

location x of the normalized weight maps to equal one.

Multi-scale Fusion. In the fusion process, the inputs are weighted by specific

computed maps in order to conserve the most significant detected features. Each

pixel x of the output F is computed by summing the inputs Ik weighted by

corresponding normalized weight maps W̄k:

F(x) =
∑

k

W̄k(x)Ik(x) (17)

where Ik symbolizes the input (k is the index of the inputs) that is weighted by the

normalized weight maps W̄ k. The normalization of the weights ensures that the

intensity scale of the result is maintained in relatively the same scale as the inputs

(since the sum of each pixel equals 1,
∑

k W̄
k(x) = 1). The naive solution (please

refer to figure 55) that directly implements this equation, introduces strong halos

artifacts, mostly in the locations characterized by strong transitions of the weight

maps. To prevent such degradation problems, we have opted for the adapted so-

lution that employs a classical multi-scale pyramidal refinement strategy [56]. We

also tested several more recent edge preserving techniques (e.g. WLS [57]) but

we did not obtain significant improvement. However, recent advanced methods

need, in general, to tweak their parameters, as well as being more computatio-

nally intensive. In our case, each input Ik, is decomposed into a pyramid by

applying Laplacian operator at different scales. Similarly, for each normalized

weight map W̄k, a Gaussian pyramid is computed. Considering that both the

Gaussian and Laplacian pyramids have the same number of levels, the mixing be-

tween the Laplacian inputs and Gaussian normalized weights is performed at each

level independently, yielding the fused pyramid:

Fl(x) =
∑

k

Gl

{

W̄k(x)
}

Ll {Ik(x)} (18)

where l represents the number of the pyramid levels (default value of the number

of levels is l=5) and L {I} is the Laplacian version of the input I while G
{

W̄
}

represents the Gaussian version of the normalized weight map of the W̄ .
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This step is performed successively for each pyramid layer, in a bottom-up man-

ner. The final haze-free image J is obtained by summing the contribution of the

resulting inputs (levels of pyramid):

J (x) =
∑

l

Fl(x) ↑
d (19)

where ↑d is the upsampling operator with factor d = 2l−1. As a default charac-

teristic, in our implementation the contribution of all the three weight maps is

equally distributed.

Results and Discussion. To prove the robustness of our method, the new

operator has been tested on a large dataset of different natural hazy images. Haze

due to dust, smoke and other dry particles reduces visibility for distant regions

by causing a distinctive gray hue in the captured images. However, our technique

has been successfully tested as well for a slightly different case: foggy scenes (e.g.

the first and the third example in figure 13). For our problem, fog has a similar

impact as haze, but technically it appears as a dense cloud of water droplets close

to the ground when night conditions are clear but cold, and the heat released by

the ground is absorbed during the day (please refer to figure 21). We assume

that the input hazy/foggy images are color images and the images may contain

achromatic objects.

As can be seen in figure 13, but also in figures 15 and 16, our operator is able to

yield comparable and even better results with more complex techniques. Compa-

red with the techniques of Tan [14] and Tarel and Hautière [17] our technique is

able to better preserve the fine transitions in the hazy regions without introducing

unpleasing artifacts. Moreover, the technique of Tan [14] produces results with

over-saturated colors. The recent technique of Kratz and Nishino [16] (recently

extended in [25]) yields in general aesthetically pleasing results, but may introduce

some artifacts in those regions considered to be at infinite depth (e.g. the sky-

line of the pumpkins field). Similarly, the technique of Fattal [13] performs well,

but shows some limitations for situations with dense haze. This is mainly due to

the fact that the method of Fattal [13] is basically a statistic interpretation that

requires variance to estimate the depth map. On the other hand, our technique

yields visually similar results with the technique of He et al. [15]. However, by a

closer analysis of the results, a difference can be observed between how colors are

restored by the two methods, especially for the distant regions (e.g. in figure 16
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Foggy image Kratz and Nishino [2009] Our result

Foggy image He et al [2009] Our result

Hazy image Fattal [2008] Our result

Figura 13: Comparison with the single image dehazing techniques of Kratz
and Nishino [16], Fattal [13], He et al. [15].

the sky and the clouds have a different hue rendition). Also, the technique of He et

al. [15], seems to restore slightly better the fine transitions of the regions closer to

the horizon. However, our technique has the advantage of enhancing robustly such

degraded images, without estimating the transmission, that needs to be refined

by a computationally expensive alpha matting procedure in the approach of He et

al. [15].

Figure 14 shows a direct comparison between our result and the output of Sche-

chner et al. [33] that is a multi-image dehazing approach. Nevertheless, as can

be seen, our single image dehazing operator is able to produce comparable results

with the technique of Fattal [13] but also with the method of Schechner et al. [33].

The technique of Schechner et al. [33] is a polarization-based approach that em-

ploys two images - the worst and the best polarization states among the existing

image versions. In this case, we processed only one input of those provided by

Schechner et al. [33]. Moreover, for this example our technique outperforms un-

sharp mask and the specialized technique of Tarel and Hautière [17]. Partially,
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Hazy image Schechner et al. [2007]

Our resultFattal [2008]

Unsharp Mask

Tarel&Hautiere [2009]

Figura 14: A direct comparison between our result and the output of Schech-
ner et al. [33] that is a polarization-based approach that employs two images (the
worst and the best polarization states among the existing image versions). For
this example our technique yields comparable result with Schechner et al. [33]
and Fattal [13] while it outperforms unsharp mask and the specialized technique

of Tarel and Hautière [17].

these observations are strengthen by analyzing the gradient distribution of the

considered techniques in figures 17, 19.

In figures 15 and 16 are presented direct comparisons against the recent dehazing

techniques. In addition to the most representative recent single image dehazing

techniques of Tan [14], Fattal [13], He et al. [15], Tarel and Hautière [17], Nishino

et al. [25], we analyzed the technique of Kopf et al. [11] that uses a rough 3D map

approximation of the scene. Based on these results we perform a quantitative

evaluation using the blind measure of Hautière et al. [24].
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Figura 15: Comparison of the recent dehazing techniques. Besides the initial
hazy images in this figure are displayed the results of Tan [14], Fattal [13], Kopf

et al. [11] and our technique. The reader is asked for a close inspection.
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Figura 16: Comparison of the recent dehazing techniques. Besides the initial
hazy images in this figure are displayed the results of He et al. [15], Tarel and
Hautière [17], Nishino et al. [25] and our technique. The reader is asked for a

close inspection.
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Ó=0.27 ; r=2.59 Ó=0.05 ; r=2.28 Ó=0.01 ; r=1.23 Ó=0.01 ; r=1.33 Ó=0.01 ; r=1.19

Figura 17: Interpretation of the indicator r̄ proposed by Hautière et al. [24].
Except unsharp mask filter the analyzed methods yield low values of Σ (the
percentage of pixels that becomes completely white or black after restoration).
In general, methods that increase too much the local contrast are characterized
by high values of indicator r̄. This is demonstrated by the results shown in
this figure and figure 19, supported also by the values shown in table 1. As an
example, the method of Tan [14] adds some extra edges in the horizon region.
We believe that for a more objective evaluation additional characteristics need to
be taken into account (e.g. relation between depth and gradients, the amplitude

of gradients, the reversal of the gradients).

Basically, this quality assessment approach consists in computing the ratio between

the gradients of the image before and after restoration. This is based on the

concept of visibility level, commonly used in lighting engineering. In table 18 we

considered four images (named as ny12, ny17, y01 and y17), where indicator e

represents edges newly visible after restoration, indicator r̄ represents the mean

ratio of the gradients at visible edges, while indicator Σ represents the percentage

of pixels which become completely black or completely white after restoration.

To compute this indicator we used the parameters used in [17]. Besides the

aforementioned dehazing techniques, the values of these indicators when applying

just an unsharp filter are shown in the table.

Analyzing the results of table 18, in general, all the considered techniques (in-

cluding our technique) yield small values of the Σ descriptor (the percentage of
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Figura 18: Qualitative comparison of the four images (ny12, ny17, y01 and
y17) shown in figures 15 and 16 based on the indicators Σ and r̄ of Hautière

et al. [24].

pixels which become completely black or completely white after the restoration).

On the other hand, indicator e shows that most of the methods depending on the

processed image remove some of the visible edges. Interestingly, only our method

and He et al. [] technique, are characterized by positive values of the indicator e

for the considered images.

Moreover, regarding indicator r̄, the measure produces small values of indicator r̄

(the ratio of the gradient norms after and before restoration) for our results. Since

one may observe that the appearance in our case is globally restored and the value

of indicator r̄ is kept close to the minimum value (r̄=1), one may deduce that in

our case the local contrast was restored moderately. This feature is achieved also

by the methods of Fattal [13], He et al. [15] and Kopf et al. [11]. On the other

hand, the techniques of Tarel and Hautière [17] and Tan [14] increase too strongly

the local contrast and as a result these approaches have higher values of indicator

r̄. Regarding indicator r̄, the first group of techniques demonstrates less spurious

edges and artifacts. Analyzing images of figure 17 that displays results processed

by unsharp mask, Tan [14], Fattal [13], He et al [15] and our approach, one may

observe that in general the techniques with low values of indicator r̄ show less

spurious edges and artifacts.

To the best of our knowledge, the blind measure of Hautière et al. [24] is the

only existing method designed to give a quantitative interpretation for dehazing

operation. The indicators of this measure are able to reveal only partially the

level of restoration and degradation. Obviously, for a more objective evaluation

additional characteristics need to be taken into account (e.g. relation between

depth and gradients, the amplitude of gradients, the reversal of the gradients). For

example, after restoration, gradients that were not visible should be emphasized,

and that effect needs to be proportional to the distance from the camera.
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Nishino et al. [2012]

Hazy image Tan [2008] Fattal [2008] Kopf et al. [2008]

He et al. [2009] Tarel&Hautiere [2009] Our resultNishino et al.  [2012]

Figura 19: Comparison of the analyzed dehazing techniques based on the
indicator r̄ proposed by Hautière et al. [24]. To better visualize the restoration
but also the level artifacts introduced by different techniques a cropped region

is shown below.
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One would expect to see a stronger visible gradient ratio as one goes further away

(towards the top of the image). While, the method of Tan [14] yields a too strong

emphasis of the gradients, the results of physically-based methods such as Kopf

et al. [11], Nishino [25] and also our results demonstrate edge enhancements that

are consistent with the depth variation. Interestingly, the results of the method

by Fattal [13] are characterized by stronger gradients for near scene points while

the results of He et al. [15] present in some cases a very non-linear emphasis of the

gradients.

To conclude, by a simple visual inspection of the results in figures 17 and 19,

our technique is shown to be less prone to artifacts, yielding results similar to

the physically-based techniques of He et al. [15] , Fattal [13], Kopf et al. [11] and

Nishino et al. [25]. This is a key advantage of our technique, since we do not

explicitly estimate the depth, while our method is much faster and simple than

the other approaches that yield similar outputs. Moreover, it can be observed that

the techniques of Tan [14] and Tarel and Hautière [17] restore some non-existent

gradients.

Hazy image Fattal [2008] Our resultTarel and Hautiere [2009]

Figura 20: Our technique is limited to deal with homogeneous hazy images.

Furthermore, compared with most of the existing techniques, an important ad-

vantage of our strategy is required computation time, since our method is able to

processes a 600×800 image in approximately 2-300 ms (20% for derived imputs,

35% for the weight maps while the multi-scale strategy takes approximately 45% of

the entire fusion process on an Intel Core i7 CPU, 8GB RAM). In comparison, the

method of Tan [14] needs more than 5 minutes per image, He et al. [15] requires 20

seconds, Tarel and Hautière [17] technique takes less than 0.5 seconds, the method

of Fattal [13] needs 35 seconds, while the processing times of the method [25] were

not reported.

Even though the proposed method performs in general well, as the previous me-

thods, a limitation of our algorithm may be observed for images that are charac-

terized by non-homogeneous haze layers. Figure 20 depicts this issue. As can be

seen, the other single image dehazing approaches present serious limitations while
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He et al. [2009]

Our resultFoggy image

Our result

Tan  [2008]

Our resultFoggy image Tan  [2008]

Foggy image

Our resultFoggy image Tan  [2008]

Figura 21: More results generated for foggy scenes.

tackling this challenging case (e.g. the technique of Tarel and Hautière [17] yields

unpleasing artifacts such as coarse edges and color distortion). Moreover, even tho-

ugh some enhancement may be achieved, our technique is limited to processing

color images.

To summarize: in this part we have demonstrated that a fusion-based approach

can be used to effectively enhance hazy and foggy images. To the best of our

knowledge, this is the first fusion-based strategy that is able to solve such problems

using only one degraded image. We have shown that, by choosing appropriate

weight maps and inputs, a multi-scale fusion strategy can be used to effectively

dehaze images. Our technique has been tested on a large data set of natural hazy

images. The method is faster than existing single image dehazing strategies and

yields accurate results. In future work we would like to test our method on videos.
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II.1.4 Night-Time Dehazing by Fusion

Capturing good quality outdoor images poses interesting challenges since such

scenes often suffer from poor visibility introduced by weather conditions such as

haze or fog. The process dehazing has been tackled using such information as

rough depth [11] of the scene or multiple images [10]. More recently, several

techniques [1, 13–17, 58–63], have introduced solutions that do not require any

additional information than the single input hazy image.

While the effectiveness of these techniques has been extensively demonstrated on

daylight hazy scenes, they suffer from important limitations on night-time hazy

scenes. This is mainly due to the multiple light sources that cause a strongly non-

uniform illumination of the scene. Night-time dehazing has been addressed only

recently [64–66]. Pei and Lee [64] estimate the airlight and the haze thickness by

applying a color transfer function before applying the dark channel prior [15, 67]

refined iteratively by bilateral filtering as a post-processing step. The method of

Zhang et al. [65] estimates non-uniform incident illumination and performs color

correction before using the dark channel prior. Li et al.[66] employ an upda-

ted optical model by adding the atmospheric point spread function to model the

glowing effect. A spatially varying atmospheric light map is used to estimate the

transmission map based dark channel prior.

In this section we present a different approach to solving the problem of night-

time dehazing. The technique has been published recently by the candidate in [2].

Our approach is the first fusion-based method of restoring hazy night-time images.

Image fusion is a well-known concept that has been used for image editing [37],

image compositing [39],image dehazing [1], HDR imaging [41], underwater image

and video enhancement [4] and image decolorization [68]. The approach described

here is built on our previous fusion-based daytime dehazing approach [1] that has

been recently extended by Choi et al. in [69].

To deal with the problem of night-time hazy scenes (refer to Fig. 22), we pro-

pose a novel way to compute the airlight component while accounting for the

non-uniform illumination presents in nighttime scenes. Unlike the well-known

dark-channel strategy [67] that estimates a constant atmospheric light over the

entire image, we compute this value locally, on patches of varying sizes. This

is found to succeed since under night-time conditions, the lighting results from

multiple artificial sources, and is thus intrinsically non-uniform. In practice, the
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Hazy image Fattal  [ACM TOG 2014]

Ancuti & Ancuti [IEEE TIP 2013] Our result

Figura 22: Night-time scene capture is a challenging task under difficult weather
conditions and recent single-image dehazing techniques [1, 60] suffer from important

limitations when applied to such images.

local atmospheric light causes the color observed in hazy pixels, which are the

brightest pixels of local dark channel patches. Selecting the size of the patches

is non-trivial since small patches are desirable to achieve fine spatial adaptation

to the atmospheric light, it might also lead to poor light estimates and reduced

chance of capturing hazy pixels. For this reason, we deploy multiple patch sizes,

each generating one input to the multi-scale fusion process. Our fusion approach

is accomplished in three main steps. First, based on our airlight estimation using

different sizes of the patches we derive the first two inputs of the fusion approach.

To reduce the glowing effect and emphasize the finest details of the scene, the

third input is defined to be the Laplacian of the original image. In the second

step, the important features of these derived inputs are filtered based on several

quality weight maps (local contrast, saturation and saliency). Finally the derived

inputs and the normalized weight maps are blended in a multi-scale fashion using

a Laplacian pyramid decomposition of the inputs and a Gaussian pyramid of the

normalized weights.

The experimental section describes testing of our technique on a large set of diffe-

rent night-time hazy scenes. The results demonstrate the efficacy of our approach

as compared to recent competitive techniques both in terms of computational

efficiency and quality of the outputs.
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Airlight Estimation On Night-time Hazy Scenes. Next part explains how

the atmospheric factors affecting the image formation process can be estimated

from night-time images formed in the presence of non-uniform (artificial) lightning.

Due to atmospheric particles that absorb and scatter light, only a fraction of the

radiance from a scene point reaches the observer. Koschmieder’s model [18] is a

relevant description of atmospheric effects caused by weather on the observer. In

short, it states that the light intensity I at each image coordinate x is the result

of two main additive components - direct transmission D and airlight A :

I(x) = D(x) +A(x) = J (x) T (x) + A∞ [1− T (x)] (20)

where J is the scene radiance or haze-free image (estimated, which would reach

the observer unaltered in absence of atmospheric effects), T is the transmittivity

along the cone of vision and A∞ is the atmospheric intensity, resulting from envi-

ronmental illumination.

In Koschmieder’s model, the transmission map T (x) is directly related to the

depth of the scene. For homogeneous medium, T (x) = e(−β d(x)) where β is the

medium attenuation coefficient due to scattering, and d is the distance between

the observer and the considered surface.

Following [67], and adopt the well-known dark channel (DC) prior to estimate T (x)

without resorting to depth estimation. The DC prior assumes that natural objects

have a weak reflectance in one of the color channels (the direct radiance is small,

or dark, in at least one of the R,G,B color channels [8]), while the atmospheric

intensity conveys all colors (the haze looks grey or white, i.e. all components in

A∞ are significant). Hence, assuming that A∞ is known (we discuss estimation

of it later), then T (x) can be directly estimated from the weakest color (relative

to atmospheric color) over a neighborhood of x. Formally, under the assumption

that miny∈Ω(x) (minc∈r,g,b J
c/A∞

c) = 0, Koschmieder’s model states that:

T (x) = 1− min
y∈Ω(x)

(

min
c∈r,g,b

Ic/A∞
c

)

(21)

where Ac
∞ is the component of the atmospheric light associated with color c, and

Ω(x) represents a local patch centered at x.
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Atmospheric intensity estimation

Early methods estimated the atmospheric intensity as the color vector having the

highest intensity pixel [14]. This choice was motivated by the white appearance

of haze in day-time scenes. Such estimate could however fail, e.g. on a white

object instead of a hazy pixel. To circumvent this problem, the authors of [67]

proposed to estimate the atmospheric intensity using the most haze-opaque pixels.

These are defined as the ones having the brightest dark channel, i.e as the ones

maximizing IDC(x) = miny∈Ω(x)(minc∈r,g,b I
c(y)), where r, g, b denote the R,G,B

color channels.

This estimator works well on day-time scenes, but suffers from two weaknesses

when applied to night scenes (see Fig. 23). First, it globally estimates the atmos-

pheric intensity, over the entire picture, whereas the night-scenes are characteri-

zed by artificial and spatially non-uniform environmental illumination. Second, by

maximizing the minimum over the set of color channels, their method finds those

locations taking large values in all channels. It thus implicitly assume that the at-

mospheric intensity is reasonably white, which is the case in day-time scenes, but

is not necessarily true of night-scenes which can present strongly colored lighting.

Input Images Dark Channel Global Estimate Our Local Estimate

Figura 23: Rough dehazing of night-time scenes. Designed for day-time deha-
zing, the well-known dark channel [67] has important limitations on night scenes because
it uniformly estimates the airlight constant. As may be observed, our patch-based esti-
mate (also not refined) of the airlight component is more appropriate for the night-time
hazy scenes. In particular, color and details that are close to light sources are better
enhanced. By simply replacing these estimates in the model equation results in some

rough dehazing outputs.

To address those two limitations, we propose (i) to estimate the atmospheric in-

tensity locally, within spatial neighborhoods Ψ(x) around each coordinate x, and

(ii) to compute each component of the atmospheric light independently. Formally,

we define the local atmospheric intensity Ac
L∞(x) to be:

Ac
L∞(x) = max

y∈Ψ(x)

[

min
z∈Ω(y)

(Ic(z))

]

= max
y∈Ψ(x)

[IcMIN(z)] (22)
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Hazy Input Our local A (eq. 3)¥ Our  estimate

local A based on¥ IDC

IMIN = ( )min I
S

Dark Channel ( )IDCglobal A based on¥ IDC Estimate based on local A¥ of IDC

c

Figura 24: Local airlight estimation. A global estimate of the A∞ based on dark
channel results in a white airlight. As a consequence, the dark channel might become
very small (see blue rectangle in second image of bottom row), which means 1−T (x) ≈ 0
in Equation21 and no airlight influence in Equation 20. In contrast, our local airlight
estimate on the same blue rectangle results in a colored atmospheric light, which in
turns results in a non-unity transmission and a non-zero atmospheric light influence.

This formulation is again motivated by Koschmieder’s model, where scene radiance

J c(x) can be written as ρc(x).Ac
L∞(x), with ρc(x) denoting the normalized radia-

tion coefficient. Maximizing independently on each color, as done in Equation 22,

is equivalent to finding the coordinate y around which the normalized radiation co-

efficient is maximum for color c. In particular, when an object reflects all incident

color c, this coefficient is close to one at every coordinate z within neighborhood

of y, and Ic(z) ≈ Ac
L∞(z).T (z) + Ac

L∞(z).(1− T (z)) = Ac
L∞(z).

Obviously, each potential light source has an influence that goes beyond the size

of the patch Ω used to validate the lighting relevance. Here, all results have been

generated using patches Ψ twice the size of Ω.

Figure 24 compares the atmospheric intensity estimated by global and local stra-

tegies. Local estimation appears to capture the major changes arising from en-

vironmental illumination, while the global approach does not. More importantly,

the bottom, rightmost pictures reveal the benefit of computing each atmospheric

intensity component independently, compared to searching for the location in Ψ(x)

maximizing the minimum over the 3 color channels, as a straightforward locally

adaptive extension of [67] would do. We also observe that the image reconstructed

estimated by our local method of the atmospheric intensity is of better appearance

(both in color and details) those resulting from local estimation obtained based

on joint processing of the color channels.
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Finally, it is worth noting that, when Ψ(x) is defined to cover the entire image, our

method reduces to a global estimator. Interestingly, in this case, Fig. 25 reveals

that the global estimate of Ac
L∞ derived by maximizing miny∈Ω(x) (I

c(y)) over the

entire image is quite similar to the one proposed in [67] for day-time scenes. Hence,

our proposed estimator may be regarded to be a night-friendly generalization of

the concepts introduced in [67].

Hazy Image ( )I Dark Channel ( )IDC
I IMIN = ( )min max ( )IMINS

c

Figura 25: Airlight estimation. Our global airlight estimate Ac
L∞

, derived by
maximizing miny∈Ω(x) (I

c(y)) over the entire image, appears to be quite similar to the
atmospheric intensity estimated by He et al. [67], from the brightest region of the dark
channel (depicted by green rectangles). The red rectangles show that, in daytime scenes,
the two approaches equally reject the high image intensity locations that are not relevant
regarding airlight estimation. He et al. [67] method rejects them because the prior is
dark in those regions, our strategy because IMIN gets darker than the initial image in
those regions that are not subject to intense airlight illumination. Since IMIN does not
make any implicit assumption about the whiteness of the atmospheric illumination, it

is more general than [67], especially in presence of artificial colored lighting.

Fusion Process. While a significant degree of picture enhancement is obtained

using the above described local estimation procedure in the optical model, im-

portant artifacts arise at and around patch transitions, where color shifting and

glowing defects are visible. Moreover, as detailed below, the choice of patch size

could result in poor quality output images owing non-uniformity of the airlight in

night-time scenes. To solve this problem we propose a multi-scale fusion approach

which can effectively and seamlessly enhance hazy night-time images.

Derived Inputs. Our fusion technique is a single image-based approach that

uses several inputs from the original hazy image. In the first stage we employ

the strategy previously described that locally estimates the airlight values. An

important problem that arises is how to choose the optimal size of the patch in

order to be able to deal with the case where multiple light sources are contained
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within the same patch. Selecting a size that is too small risks improper haze

removal, effects of diffusely distributed light from a source may not be included in

that patch.

Input image

Our Result

Derived  Inputs Normalized Weights

Figura 26: Derived inputs and corresponding normalized weight maps.

By choosing a too large patch size the haze is better removed, but as may be seen

in Fig. 26 the color might be shifted, the influence of the airlight might not be

entirely removed and some details may remain poorly restored.

Based on this observations, we derive a first and a second input based on our

airlight estimation using different patch sizes. The first input is computed using

a small patch size (e.g. 20 × 20 for an image of size 800 × 600), thereby preven-

ting estimation of the airlight from multiple light sources. However this input is

characterized by an important loss of global contrast and chroma. We solve this

limitation by computing a second input using larger patches (e.g. 80 × 80 for

an image of size 800× 600). This derived input considerably improves the global

contrast, since it removes a significant fraction of the airlight. The transitions

between neighboring patches is smoothed using a simple gaussian filter. When

more than one light source is included in the region of interest, a winner take it

all procedure decides which light source estimates the airlight.

However, as shown in Fig. 26, glowing effects are still visible in the derived inputs.

To reduce such undesired effects we derive a third input which is the discrete
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Hazy images Our resultsLi et al. [ICCV 2015]

Zhang et al. [ICIP 2014]

Figura 27: Comparative results with the recent night-time dehazing technique of
Zhang et al. [65] and Li et al. [66]. Please refer to supplementary material for

more comparative results..

Laplacian of the original image. This input makes it possible to enhance the finest

details that are transferred to the fused output.

Definition of the Weight Maps. Inspired by our previous fusion dehazing

approach [1], we derive three weight maps to ensure that regions of high contrast

or of high saliency will receive greater emphasis in the fusion process.

Local contrast weight estimates the amount of local variation of each input

and is computed by applying a Laplacian filter to the luminance of each processed

image. This indicator has been used in applications such as tone mapping [41]

and assigns high values to edges and texture variations.

Saturation weight map controls the saturation gain in the output image. This

factor is motivated by the fact that humans generally prefer images characterized

by a high level of saturation. This measure is computed as the standard deviation

across channels at each coordinate.

Saliency weight map highlights the most conspicuous regions of an image com-

pared with their surroundings. Using the well-known saliency technique of Achanta

et al. [55] this weight map is computed as a difference between a Gaussian smoo-

thed version of the input and its mean value.
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Multi-scale Fusion. The main goal of the fusion process is to produce a better

output image by effectively blending inputs that are guided by specific weight

maps designed in order to preserve the most significant features of the inputs.

The simplest way is to directly combine the inputs and weight maps as RNF (x) =
∑

k W̄
k(x)Ik(x) (where Ik represents the kth input weighted by the normalized

weight maps W̄ k). However, this naive fusion strategy has been shown to cause

annoying halo artifacts, mostly at locations with strong transitions in the weight

maps. Such unpleasing artifacts can be overcame by using a multi-scale Laplacian

decomposition, a well-known concept dating to Burt and Adelson [56].

Similarly to other single-image dehazing approaches [1, 69], each input Ik, is de-

composed into a Laplacian pyramid while the normalized weight maps W̄k are

decomposed using a Gaussian pyramid. Using the same number of levels, the

Gaussian and Laplacian pyramids are independently fused at each level:

Rl(x) =
∑

k

Gl

{

W̄k(x)
}

Ll {Ik(x)} (23)

where l represents the number of the pyramid levels, L {I} denotes the Laplacian

of the input I, and G
{

W̄
}

is the Gaussian-smoothed normalized weight map W̄ .

Hazy image Fattal [ACM TOG 2014]

Zhang et al. [ICIP 2014] Li et al. [ICCV 2015] Our result

Ancuti&Ancuti [TIP 2013]

Figura 28: Comparative results. The night-time hazy image with color palette
(left side, top row) is enhanced by several dehazing techniques. See Table 1 for the

PSNR values.

The fused result R is processed by summing the contributions from all the com-

puted levels of the pyramid:

R(x) =
∑

l

Rl(x) ↑
d (24)
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where ↑d is the upsampling operator with factor d = 2l−1.

Results and Discussion. We extensively tested our approach using the recent

image dataset introduced in [66] that contains various quality and formats of

images taken of night-time scenes. We compared our method with the recent

night-time dehazing techniques of Zhang et al. [65] and Li et al. [66] and also with

the day-time dehazing methods of Ancuti and Ancuti [1] and Fattal [60]. For all

the results we used the original code provided by the authors on their webpages.

While Fig. 22 demonstrates limitations of day-time dehazing techniques when

applied to night-time hazy images, Fig. 27 directly compares our approach with

the recent specialized techniques of Li et al. [66] and Zhang et al. [65]. The method

of Li et al. [66] tends to darken the original image and to over-amplify colors in

some regions. On the other hand, as compared with our approach, the strategy of

Zhang et al. [65] is less robust to the the glowing effect and may introduce color

artifacts.

Moreover, our approach has the advantage of simplicity and computational effi-

ciency. Our unoptimized Matlab implementation processes an 800× 600 image in

less than 4 seconds. The method of Li et al. [66] computes results on a similar

image in more than 30 seconds while the method of Zhang et al. [65] requires a

similar computation as He et al. [15] (approx. 20 seconds per image).

yellow white brown red blue green average

Fattal 21.10 23.94 15.43 20.71 15.12 15.77 18.68
Ancuti 17.75 15.82 13.49 19.16 14.01 17.01 16.20
Zhang et al. 21.20 23.21 21.30 20.10 15.38 12.66 18.98
Li et al. 19.80 23.21 16.94 23.38 17.69 21.09 20.35
Our method 27.33 30.04 18.58 23.21 17.59 17.66 22.40

Tabela 1: Evaluation of the results in Fig. 28 based on the PSNR values computed
as an average on RGB components for each of the 6 colors of the reference palette.

We also performed a quantitative evaluation using the pair of images provided by

Zhang et al. [65]. On the left side of the top row of Fig. 28 is shown the reference

color palette and the night-time hazy image containing the same palette. We

processed this input image using several different dehazing techniques [1, 60, 65, 66]

and computed the PSNR values for each of the 6 colors (shown in Table 1). As

can be seen, our approach generally performs better in terms of PSNR compared

with the other techniques.
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II.1.5 D-Hazy: A dataset to evaluate quantitatively deha-

zing algorithms

In this section we describe a novel dataset that allows to quantitatively evaluate

the existing dehazing techniques. The technique has been published recently by

the candidate in [3].

Image dehazing, a typical image enhancement technique studied extensively in the

recent years, aims to recover the original light intensity of a hazy scene. While

earlier dehazing approaches employ additional information such as multiple ima-

ges [10] or a rough estimate of the depth [11], recent techniques have tackled this

problem by using only the information of a single hazy input image [1, 13–17, 58–

60, 62, 63, 70]. The existing techniques restore the latent image assuming the

physical model of Koschmieder [18]. Since dehazing problem is mathematically

ill-posed there are various strategies to estimate the two unknowns: the airlight

constant and the transmission map. Fattal [13] employs a graphical model that

solves the ambiguity of airlight color assuming that image shading and scene trans-

mission are locally uncorrelated. Tan’s method [14] maximizes local contrast while

constraining the image intensity to be less than the global atmospheric light value.

He et al. [15, 67] introduce a powerful approach built on the statistical observation

of the dark channel, that allows a rough estimation of the transmission map, fur-

ther refined by an alpha matting strategy [35]. Tarel and Hautière [17] introduce a

filtering strategy assuming that the depth-map must be smooth except along edges

with large depth jumps. Kratz and Nishino [16] propose a Bayesian probabilistic

method that jointly estimates the scene albedo and depth from a single degraded

image by fully leveraging their latent statistical structures. Ancuti et al. [59] des-

cribe an enhancing technique built on a fast identification of hazy regions based on

the semi-inverse of the image. Ancuti and Ancuti [1] introduce a multi-scale fu-

sion procedure that restore such hazy image by defining proper inputs and weight

maps. The method has been extended recently by Choi et al. [69]. Meng et al. [71]

propose a regularization approach based on a novel boundary constraint applied

on the transmission map. Fattal [60] presents a method inspired from color-lines,

a generic regularity in natural images. Tang et al. [63] describe a framework that

learns a set of feature for image dehazing.

There have been a few attempts to quantitatively evaluate dehazing methods. All

of them have been defined as non-reference image quality assessment (NR-IQA)
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Ground truth image Depth map Hazy image

He et al. Ancuti&Ancuti Meng et al.

Figura 29: D-HAZY dataset provides ground truth images and the correspon-
ding hazy image derived from the depth map (known). In the bottom row are

shown results yielded by several recent dehazing techniques [1, 67, 71].

strategies. Hautiere et al. [24] propose a blind measure based on the ratio between

the gradient of the visible edges between the hazy image and the restored version

of it. Chen et al. [72] introduce a general framework for quality assessment of

different enhancement algorithms, including dehazing methods. Their evaluation

was based on a preliminary subjective assessment of a dataset which contains

source images in bad visibility and their enhanced images processed by different

enhancement algorithms. Moreover, general non reference image quality assess-

ment (NR-IQA) strategies [73–75] have not been designed and tested for image

dehazing.

However, none of these quality assessment approaches have been commonly ac-

cepted and as a consequence a reliable data set for dehazing problem is extremely

important. Unlike other image enhancing problems for dehazing task capturing a

valid ground truth image is not trivial. The procedure to record both the reference

(haze-free) and the hazy image in the same illumination condition is generally in-

tractable. The FRIDA dataset [76] designed for Advanced Driver Assistance Sys-

tems (ADAS) is a synthetic image database (computer graphics generated scenes).

It contains 66 roads synthesized scenes and besides the reduced level of generality

and complexity of the scenes as a computer-generated dataset some parameter

settings are not valid for real scenarios.

Our dataset contains 1400+ images of real complex scenes. In order to generate

the hazy images we use the extended Middleburry1 dataset that contains high qu-

ality real scenes and corresponding depth map. Moreover, we improve our dataset

1http://vision.middlebury.edu/stereo/data/scenes2014/

http://vision.middlebury.edu/stereo/data/scenes2014/
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using recent NYU-Depth V2 2, a large dataset that includes various indoor scenes

with RGB and depth maps captured by a Microsoft Kinect sensor. Employing

the Koschmieder’s physical model [18] of light transmission in hazy scenes, as-

suming uniform atmospheric intensity and uniform haze density, and using the

reference depth map available from the dataset, we are able to synthesize haze

in the considered scenes. Even if the strict validity of the Koschmieder model is

arguable in arbitrary illumination and haze density conditions, it is revelvant to

synthetise hazy images based on this model because it is at the core of all modern

dehazing techniques. Hence, all those methods should provide good results when

the model is valid. As an important and surprising contribution, our work howe-

ver reveals that, even for hazy images that perfectly fit the model, none of the

existing dehazing technique is able to accurately reconstruct the original image

from its hazy version. This observation has been derived from a comprehensive

evaluation of several state of the arts dehazing approaches based on SSIM [77] and

CIEDE2000 [78] measures computed between the reference (haze-free image) and

the restored results produced by different dehazing techniques.

From Depth to Hazy Scenes. A hazy medium is characterized by small par-

ticles that respond to changes in relative humidity acting as small droplets nuclei

when the humidity is higher than a certain level. In such medium, the light that

is passing through it is attenuated along its original course and is distributed to

other directions. Mathematically this process is expressed by the the image forma-

tion model of Koschmieder’s model [18] that is widely accepted by all the recent

dehazing approaches. Based on this model, due to the atmospheric particles that

absorb and scatter light, only a certain percentage of the reflected light reaches

the observer. The light intensity I of each pixel coordinate x, that passes a hazy

medium, is the result of two main additive components - direct attenuation D and

airlight A :

I(x) = D(x) +A(x) = J (x) T (x) + A∞ [1− T (x)] (25)

where J is the scene radiance of a clear medium (haze-free image), T is the

transmission along the cone of vision and A∞ is the atmospheric light (a color

constant that is computed globally for the day-time dehazing).

2http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html

http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
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He et al. [2011]CLAHE Ancuti & Ancuti [2013]Reference Image Tarel & Hautiere [2009] Meng at al. [2013] Fattal [2014]Hazy ImageDepth Map

Figura 30: Comparative results. The first two rows show the ground truth,
depth map, hazy images and results derived from the Middleburry dataset while

the last three rows show results derived from NYU-Depth dataset.

The airlight component is linearly correlated with the distance between the obser-

ver and the target object of the scene. The first component of the model, direct

attenuation D, describes how the scene radiance is attenuated with the distance.

The second one, the airlight component A represents the principal source of the

additive color shifting and is expressed as:

A(x) = A∞ [1− T (x)] (26)

where T is the transmission and represents the relative fraction of light able to

cross the hazy medium between the observer and scene surface, without being

scattered.

Basically, the transmission map T is directly related with the depth of the scene

and considering a homogeneous medium this value is expressed as:

T (x) = e[−β d(x)] (27)

where β is the medium attenuation (extinction) coefficient due to the light scat-

tering, while d represents the distance between the observer and the considered

surface.

Using Depth to Synthesize Hazy Scenes. Depth is a key parameter in Equ-

ation 27. In general, the existing datasets, are relatively limited in resolution, ,

realism and accuracy of depth ground truth. To overcome these limitations the

recent work of Scharstein et al. [79] has introduced a novel dataset to evaluate
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stereo algorithms. The dataset is generated using structured light [80]. It repre-

sents an extension of the well-known Middlebury dataset and contains 23 images

(6-megapixel) of indoor scenes with subpixel-accurate depth ground truth.

To deal withthe the lack of ground truth in occluded regions, for the images of

the Middlebury dataset we have employed the recent weighted median filtering

strategy introduced by Ma et al. [81].

Additionally, for a more comprehensive evaluation we have also considered the

recent NYU-Depth V2 data set [82]. This data set includes various indoor scenes

with RGB and depth maps captured by Microsoft Kinect sensor. Missing depth

values have been filled in using the colorization scheme of Levin et al. [83]. While

this dataset is not as accurate as the Middlebury dataset it has the advantage to

be much larger (1449, 640× 480 images), with various scenes.

Based on the optical model described above, we synthesize the hazy scenes using

the reference (haze-free) image and its corresponding depth map. First, for each

image, the transmission map is estimated based on equation 27 using the depth

d and the medium attenuation coefficient β. β is set by default to 1, which

corresponds to moderate and homogenous haze. Additionally, for the atmospheric

light constant A∞ we assume a pure white value [1 1 1], and generate the hazy

images based on equations 20 and 27 as:

I(x) = J (x) e[−β d(x)] + A∞

[

1− e[−β d(x)]
]

(28)

Evaluated Techniques. In this study, using our new dataset D-HAZY, we evalu-

ate perform an comprehensive validation comparing several state of the art single

image dehazing techniques and one well-known enhancing method. For all tested

algorithms we use the original implementation provided by the authors. In the

following we briefly describe these techniques.

1. Tarel and Hautiere [17] introduce one of the first single dehazing image

approach. The method restores the visibility of hazy images based on a filtering

strategy. They assumes that the white-balance is performed as a pre-processing

step and estimates the transmission as a percentage of the difference between the

local average of image and the local standard deviation of it. The transmission is

refined based on an extended version of the median filter. The method has the
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Figura 31: Quantitative evaluation. For each image derived from the
Middleburry dataset we compute the SSIM and CIEDE2000 indexes between
the ground truth images and the enhanced results of the evaluated techniques.

advantage to be fast working for both color and grayscale images.

2. He et al. [15, 67] proposes a novel prior the dark-channel that is derived

from the dark object of Chavez [8]. They explore the statistics that in most of the

local regions which do not cover the sky, some pixels in general are characterized

by very low values in at least one color channel. These filtered pixels per patch

are used to estimate the haze transmission that is refined by an alpha matting

strategy. In our evaluation we employ the dark channel prior refined based on the

guided filter [84].

3. Meng et al. [71] introduce a regularization strategy that explores effectively

the boundary constraint on the transmission map. The boundary constraint of

the transmission is an extension of the well-known dark channel prior [15]. The

transmission is refined by an optimization problem using the boundary constraint

combined with a weighted L1-norm based contextual regularization.

4. Ancuti and Ancuti [1] describe an effective a multi-scale fusion strategy

for single-image dehazing. They derive two inputs, the first one is processed by

white balancing the original hazy image while the second input is obtained by

subtracting for each pixel the average luminance value of the entire image. Their

important features are filtered by computing several measures (weight maps) that

are blend in a multi-scale fusion strategy.
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5. Fattal [60] introduces an approach that explores the color lines, pixels of

small image patches typically exhibit a one-dimensional distribution in RGB color

space. A first estimate of the transmission map is obtained by computing the

lines offset from the origin. The final transmission map is produced based on a

Markov random field that refines the noise and other artifacts due to the scattering.

6. CLAHE (Contrast-limiting adaptive histogram equalization) [85]

is a well-known enhancing technique that restores the contrast of the images.

Desighned original for medical imaging CLAHE extends the adaptive histogram

equalization (AHE) by applying a contrast limiting procedure. CLAHE splits the

images into contextual regions and employs the histogram equalization to each of

the region. To generate the CLAHE results we used the original implementation

of Matlab2014b.

Validation. Qualitatively, as expected, CLAHE [85] yields the less visually com-

pelling results (see Fig. 30). While the method of Tarel and Hautiere [17] has the

advantage to be computationally efficient, the results produced by this method

look over-saturated with unpleasing halo artifacts. Guided by several perceptual

measures the method of Ancuti and Ancuti [1] mitigates the introduction of struc-

tural artifacts due to the multi-scale fusion strategy. Despite of its euristic built-in

concept, the method of He et al. [15] appears to perform generally better than the

other approaches both in color and structure restoration. However, it can be ob-

served that this approach yields over-corrected results in white and gray regions

where no color channel is dominant. Since it also builds on the dark channel prior,

it is not surprising to observe that the approach of Meng et al. [71] yields similar

results as He et al. [15], with slightly reduced artifacts, thanks to high-order fil-

tering of the transmission map. Whilst being quite effective on some images, the

technique of Fattal [60] regularly over-saturates some regions due to the color-lines

prior, and sometimes introduces unpleasing structural artifacts around the edges.

Quantitatively, to validate the different techniques described previously, we com-

pare their outcome with the ground truth haze-free images provided of the D-

HAZY dataset. Since PSNR has been proven to not be very effective in predicting

human visual response to image quality [77], we compute the well-known structu-

ral similarity (SSIM) index [86] that compares local patterns of pixel intensities
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that have been normalized for luminance and contrast. SSIM index yields decimal

values between -1 and 1, with maximum value 1 for two identical images.

Moreover, because in image dehazing restoration of the color is crucial and cannot

be evaluated reliably by SSIM we employ an additional evaluation metric. The

difference between two colors is a metric of high interest in color science. While the

earlier measures (e.g. CIE76 and CIE94) shown important limitations to resolve

the perceptual uniformity issue, CIE introduced CIEDE2000 [78, 87] which defines

a more complex, yet most accurate color difference algorithm. CIEDE2000 yields

values in the range [0,100] with smaller values indicating better color preservation,

and values less than 1 corresponding to visually imperceptible differences.

Table 31 presents a detailed validation for the 23 Middleburry dataset images and

table 2 shows the average values of SSIM and CIEDE2000 measured over the 1449

NYU-Depth images.

From these tables, we conclude that the method of He et al. [15] performs the best

in average. A second group of methods including Meng et al. [71], Ancuti and

Ancuti [1] and Fattal [60], perform relatively well both in terms of structure and

color restoration.

CLAHE Tarel Ancuti He Meng Fattal

SSIM 0.622 0.719 0.771 0.811 0.773 0.747
CIEDE2000 18.054 17.742 14.136 11.029 12.216 14.656

Tabela 2: Quantitative evaluation of the 1449 images generated based on the
NYU-Depth dataset. In this table are shown the average values of the SSIM and

CIEDE2000 indexes over the entire dataset (1449 images).

In general, all the tested methods introduce structural distortions such as halo

artifacts close to the edges, that are amplified in the faraway regions. Moreover,

due to the poor estimation of the airlight and transmission map from the hazy

image, some color distortions may create some unnatural appearance of the res-

tored images. In summary, there is not a single technique that performs the best

for all images. The relatively low values of SSIM and CIEDE2000 measures prove

once again the difficulty of single image dehazing task and the fact there is still

much room for improvement.





65

II.2 Enhancing Underwater Images and Videos

This section describes a novel strategy to enhance underwater videos and ima-

ges. Built on the fusion principles, our strategy derives the inputs and the weight

measures only from the degraded version of the image. In order to overcome the

limitations of the underwater medium we define two inputs that represent color

corrected and contrast enhanced versions of the original underwater image/frame,

but also four weight maps that aim to increase the visibility of the distant ob-

jects degraded due to the medium scattering and absorption. Our strategy is a

single image approach that does not require specialized hardware or knowledge

about the underwater conditions or scene structure. Our fusion framework also

supports temporal coherence between adjacent frames by performing an effective

edge preserving noise reduction strategy. The enhanced images and videos are

characterized by reduced noise level, better exposedness of the dark regions, im-

proved global contrast while the finest details and edges are enhanced significantly.

In addition, the utility of our enhancing technique is proved for several challenging

applications.

Underwater imaging is challenging due to the physical properties existing in such

environments. Different from common images, underwater images suffer from poor

visibility due to the attenuation of the propagated light. The light is attenuated

exponentially with the distance and depth mainly due to absorption and scattering

effects. The absorption substantially reduces the light energy while the scattering

causes changes in the light direction. The random attenuation of the light is the

main cause of the foggy appearance while the the fraction of the light scattered

back from the medium along the sight considerably degrades the scene contrast.

These properties of the underwater medium yields scenes characterized by poor

contrast where distant objects appear misty. Practically, in common sea water,

the objects at a distance of more than 10 meters are almost indistinguishable while

the colors are faded since their characteristic wavelengths are cut according to the

water depth.

There have been several attempts to restore and enhance the visibility of such de-

graded images. Mainly, the problem can be tackled by using multiple images [10],

specialized hardware [88] and by exploiting polarization filters [89]. Despite their

effectiveness to restore underwater images, these strategies have demonstrated se-

veral important issues that reduce their practical applicability. First, the hardware
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solutions (e.g. laser range-gated technology and synchronous scanning) are relati-

vely expensive and complex. The multiple-image solutions require several images

of the same scene taken in different environment conditions. Similarly, polarization

methods process several images that have different degrees of polarization. While

this is relatively feasible for outdoor hazy and foggy images, for the underwater

case, the setup of the camera might be troublesome. In addition, these methods

(except the hardware solutions) are not able to deal with dynamic scenes, thus

being impractical for videos.

In this section, we describe a novel approach that is able to enhance underwa-

ter images based on a single image, as well as videos of dynamic scenes. Our

approach, first published in [4] is built on the fusion principle that has shown

utility in several applications such as image compositing [39], multispectral video

enhancement [90], defogging [91] and HDR imaging [41]. In contrast to these

methods, our fusion-based approach does not require multiple images, deriving

the inputs and the weights only from the original degraded image. We aim for a

straightforward and computationally inexpensive that is able to perform relatively

fast on common hardware. Since the degradation process of underwater scenes is

both multiplicative and additive [92] traditional enhancing techniques like white

balance, color correction, histogram equalization shown strong limitations for such

a task. Instead of directly filtering the input image, we developed a fusion-based

scheme driven by the intrinsic properties of the original image (these properties are

represented by the weight maps). The success of the fusion techniques is highly

dependent on the choice of the inputs and the weights and therefore we inves-

tigate a set of operators in order to overcome limitations specific to underwater

environments. As a result, in our framework the degraded image is firstly white

balanced in order to remove the color casts while producing a natural appearance

of the sub-sea images. This partially restored version is then further enhanced by

suppressing some of the undesired noise. The second input is derived from this

filtered version in order to render the details in the entire intensity range. Our

fusion-based enhancement process is driven by several weight maps. The weight

maps of our algorithm assess several image qualities that specify the spatial pixel

relationships. These weights assign higher values to pixels to properly depict the

desired image qualities. Finally, our process is designed in a multi-resolution fa-

shion that is robust to artifacts. Different than most of the existing techniques,

our framework can deal with dynamic scenes. To preserve temporal coherence in

videos we apply temporal bilateral filtering [90] between adjacent frames.
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Original image Color correction White balance

Histogram equalization Our resultHistogram stretching

Figura 32: Traditional enhancing techniques that are found in commercial
tools presents limitations when dealing with underwater images.

Contributions. Our technique is characterized by the following main contri-

butions:

1. A straightforward fusion-based framework that effectively blends different well

known filters in order to enhance underwater images based on a single input.

2. Our strategy is able to enhance underwater videos of dynamic scenes. Until

now, this was demonstrated only using hardware-based solutions.

3. A robust white balancing techniques specialized for underwater scenes that was

validated based on an extensive study.

4. We demonstrate that the simple Laplacian pyramid yields effective results com-

parable with the recent edge preserving filters such as WLS [57].

5. To the best of our knowledge we are the first that demonstrate utility of an un-

derwater enhancement/restoration technique for several complex applications such

as segmentation, image matching by local feature points and image dehazing.

Related Work. An important class of techniques that restore underwater ima-

ges is represented by specialized hardware solutions [88, 93, 94]. For instance, the

divergent-beam underwater Lidar imaging (UWLI) system [88] uses an optical/laser-

sensing technique to capture turbid underwater images. Unfortunately, these com-

plex systems are very expensive and power consuming.
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Traditional enhancing techniques that are found in commercial tools such as co-

lor correction, histogram equalization and stretching, linear mapping and white

balancing presents limitations when dealing with subsea images since they sim-

ply process pixel values, ignoring the scene content (please refer to Figure 32 and

supplementary material). Based on these classical techniques, several specialized

underwater enhancing approaches have been introduced in the literature [95–97].

Similarly to traditional enhancing techniques, these approaches are only successful

when are applied to relatively well illuminated scenes and in general they intro-

duce strong halos and to distort the colors. We take a different approach that

effectively blends several filters in order to solve more challenging and diverse un-

derwater scenarios. Our strategy is designed to follow the spatial relations of the

pixels by defining proper weights. We show that our technique is robust to restore

a wide range of underwater images (e.g. different cameras, depths, light condi-

tions) with high accuracy being less prone to artifacts and recovering important

faded features and edges.

Due to some similarities of light propagation in these environments, the unde-

rwater restoration task could also be related to the problem of restoring images

degraded by fog and haze. Recently, several single image dehazing techniques have

been introduced [13, 15–17]. These dehazing techniques assume the Koschmieder’s

theory [18] on the apparent luminance of objects observed against background sky

on the horizon. Obviously, the underwater imaging is more challenging due to the

complexity of light scaterring and lack of scene illumination. Since dehazing could

be seen as a simplified underwater problem, we show that our technique is suitable

as well for the task of restoring hazy images.

Other descaterring approaches employ multiple images [10, 98] or a rough appro-

ximation of the scene model [11]. Narasimhan and Nayar [10] exploited changes

in intensities of scene points under different weather in order to detect depth di-

scontinuities in the scene. Deep Photo system [11] is able to restore images by

employing the existing georeferenced digital terrain and urban 3D models. Since

this additional information (images and depth approximation) is generally not

available, these methods are relatively impractical for common users.

Polarization methods are probably the most successful underwater restoration me-

thods. These approaches are based on different assumptions using several images

of the same scene that have been taken employing different degrees of polariza-

tion obtained by rotating a polarizing filter attached to the camera. Chenault
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and Pezzaniti [99] assumes that the natural illumination scattered toward the ob-

server is unpolarized while the radiance of the target object is polarized. Other

approaches [89, 100] assume the degree of polarization of the target objects to

be negligible. Even though in some cases these methods may better recover the

distant regions, the polarization techniques were not proved for videos and are

therefore limited when dealing with dynamic scenes.

II.2.1 Underwater Enhancing by Fusion

Our work proposes an alternative single image-based solution built on the multi-

scale fusion principles. We aim for a simple and fast approach that is able to in-

crease the visibility of a wide variation of underwater videos and images. Even tho-

ugh we do not explicitly follow specialized optical models (e.g. McGlamery [101]),

our framework blends specific inputs and weights carefully chosen in order to over-

come the limitation of such environments. For the most of the processed images

shown in this section the back-scattering component (yielded in general due to

the artificial light that hits the water particles and then is reflected back to the

camera) has a reduced influence. This is generally valid for underwater scenes

decently illuminated by natural light. However, even when artificial illumination

is needed, the influence of this component can be easily diminished by modifying

the angle of the source light [93].

Our enhancing strategy consists of three main steps: inputs assignment (deriva-

tion of the inputs from the original underwater image), defining weight measures

and multi-scale fusion of the inputs and weight measures.

Inputs of the Fusion Process. When applying a fusion algorithm the key to

obtain good visibility of the final result is represented by the well tailored inputs

and weights. Different than most of the existing fusion methods (however, none

of them designed to deal with underwater scenes), our fusion technique processes

only a single degraded image. The general idea of image fusion is that the proces-

sed result, combines several input images by preserving only the most significant

features of them. Thus, results obtained by a fusion-based approach fulfills the

depiction expectation when each part of the result presents an appropriate appea-

rance in at least one of the input images. In our single-based image approach

two inputs of the fusion process are derived from the original degraded image.
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Our enhancing solution does not search to derive the inputs based on the physical

model of the scene, since the existing models are quite complex to be tackled.

Instead, we aim for a fast and simple technique that works generally. The first

derived input is represented by the color corrected version of the image while the

second is computed as a contrast enhanced version of the underwater image after

a noise reduction operation is performed (see figure 33).

White Balancing of the Inputs. White balancing is an important processing

step that aims to enhance the image appearance by discarding unwanted color

casts, due to various illuminants. In water deeper than 30 ft, white balancing

suffers from noticeable effects since the absorbed colors are difficult to be restored.

Additionally, underwater scenes present significant lack of contrast due to the poor

light propagation in this type of medium.

Considering the large availability of white balancing methods [102] we have sear-

ched for a proper solution to our problem. In the following are briefly revised

several important approaches that we have analyzed (more in-depth details are

found on [102]).

The Finlayson’s approach Shades-of-Grey [103] computes the illumination of the

scene for each channel by using the Minkowski p -norm. For p = 1, this expression

is a particular case of the Gray-World [102] while for p = ∞ it approximates the

White-Patch hypothesis [102]. Despite of its simplicity, the low-level approach of

Finlayson and Trezzi [103] has shown to yield comparative results to those of more

complex white balance algorithms such as the recent method of [50] that relies on

on natural image statistics. The Grey-Edge hypothesis of Weijer and Gevers [104],

similarly with Shades-of-Grey [103] can also be formulated by extending the p-th

Minkowski form.

In our experiments, we have noticed that solutions derived from the White-Patch

algorithm [102] generally fail since the underwater images contain only reduced

regions with specular reflection. Additionally, the solution of Gray-Edge algori-

thm [104] performs poorly in such cases, mainly due to the fact that underwater

images are characterized by low contrast and less visible edges than natural images.

However, we found that the most appropriate strategy is the Gray-World approach

of Buchsbaum et al. [102]. One common problem noticed during our tests for most

of the white-balancing techniques (observed either for the entire image or only for
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small regions of the image) is the color-deviation [102] that appears when the

illumination is poorly estimated. For instance in the underwater images, where

the appearance is overall blue, the parts that are miss-balanced will show reddish

appearance(that corresponds to the opponent color of the illumination).

Our approach minimizes this effect of color shifting for the entire scene. Related

to these previous approaches, our solution is similar to the Shades-of-Grey [103]

but much computationally effective. We found to be more robust to increase the

average value estimated with a percentage λ instead to variate the norm value of

p.

As a result, in our framework, the illumination is estimated by the value µI that

is computed from the average of the scene µref and adjusted by the parameter λ:

µI = 0.5 + λµref (29)

The average color µref is used to estimate the illuminant color (a common solution

derived from Gray-World [102]) and can be obtained based on Minkowski norm

when p = 1. Furthermore, to assign parameter λ we analyze the density and

the distribution on the color histogram. Consequently, we set a higher value

for λ when the detected set of colors is small. The value that variates in the

range [0, 0.5] of λ decreases inverse-proportionally with the number of colors. In

general, we have observed that a default value of 0.2 yields visually pleasing results

(since most of the processed underwater images present a relative uniform color

distribution). Despite of its simplicity, our white balance strategy is able to remove

effectively the color cast but also to recover the white and gray shades of the image,

while producing a natural appearance of the output. Our method overcomes the

standard Gray-World as well as the other considered techniques (please refer to the

supplementary material for an extensive study of different white balance techniques

applied for underwater images).

Practically, the first input of the fusion process is computed based on this strai-

ghtforward white balancing operation. Nevertheless, white balancing solely is not

able to solve the problem of visibility, and therefore we derive an additional input

(described in the next subsection) in order to enhance the contrast of the degraded

image.
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Underwater image

Input 1 Input 2

Our result

Corresponding normalized weights

Figura 33: Top line: degraded image and our result; Middle line: the two
inputs derived from the original image required by our fusion approach; Bottom

line: the corresponding normalized weight maps W̄ .

Temporal Coherent Noise Reduction. Due to the impurities and the special

illumination conditions, underwater images are noisy. Removing noise while pre-

serving edges of an input image enhances the sharpness and may be accomplished

by different strategies such as median filtering, anisotropic diffusion and bilateral

filtering. However, for videos this task is more challenging since both spatial and

temporal coherence need to be taken into account. The bilateral filter [105, 106]
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Input 1

Laplacian contrast Local contrast Saliency Exposedness

Input 2

Figura 34: The two inputs derived from the original image presented in
previous figure and the corresponding normalized weight maps.

is one of the common solutions being an non-iterative edge-preserving smoothing

filter that has proven usefull for several problems such as tone mapping, mesh

smoothing and dual photography enhancement. By considering the domain Ω of

the spatial filter kernel f (Gaussian with standard deviation σf ), the bilateral fil-

ter blends the center pixel s of the kernel with the neighboring pixels p that are

similar to s:

Js =
1

k(s)

∑

p∈Ω

f(p− s, σf )g(D(p, s), σg)Ip (30)

where D(p, s) = Ip − Is is the difference in intensities, the normalization k(s) =
∑

p∈Ω f(p− s, σf )g(D(p, s), σg),

g is the range kernel that is a Gaussian with standard deviation σg that penalizes

pixels across edges that have large intensity differences.

However, the bilateral filter does not guarantee the preservation of the temporal

coherence for videos. Even though, in the absence of motion, a simple average of all

pixels at each coordinate through time would represent a decent solution, for real

dynamic scenes this naive strategy yields undesirable ghosting artifacts. Inspired

by Bennet et al. [90] where the solution was used in context of multispectral video

fusion, we employ a temporal bilateral filter strategy on the white balanced version

of the frames that aims to reduce noise and smoothing frames while preserving

temporal coherence. Choosing an appropriate value of σg to simultaneously deal

with noise while still preserving edges is difficult. High values of σg would yield

halos while small values of σg are not able to reduce sufficiently undesired noise.

Instead of just comparing the intensities as D(p, s) = Ip− Is, we compute the sum

of squared differences (SSD) between small spatial neighborhood Ψ around s and

p weighted by a Gaussian Γ(x, y):

D(p, s) =
Ψ
∑

x

Ψ
∑

y

Γ(x, y)(Ip − Is)
2 (31)
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Typically, the size of neighborhood Ψ is 3 × 3 or 5 × 5. This simple approach

significantly reduces the ambiguity between noise and edges since the larger nei-

ghborhood Ψ reduces the impact of single-pixel temporal noise.

In our fusion framework, the second input is computed from the noise-free and

color corrected version of the original image. This input is designed in order to

reduce the degradation due to volume scattering. To achieve an optimal contrast

level of the image, the second input is obtained by applying the classical contrast

local adaptive histogram equalization [107]. To generate the second derived image

common global operators can be applied as well. Since these are defined as some

parametric curve, they need to be either specified by the user or to be estimated

from the input image. Commonly, the improvements obtained by these operators

in different regions are done at the expense of the remaining regions. We opted for

the local adaptive histogram since it works in a fully automated manner while the

level of distortion is minor. This technique expands the contrast of the feature of

interest in order to simultaneously occupy a larger portion of the intensity range

than the initial image. The enhancement is obtained since the contrast between

adjacent structures is maximally portrayed. To compute this input several more

complex methods, such as the gradient domains or gamma correction multi-scale

Retinex (MSR) [108], may be used as well.

Weights of the Fusion Process. The design of the weight measures needs

to consider the desired appearance of the restored output. We argue that image

restoration is tightly correlated with the color appearance, and as a result the

measurable values such as salient features, local and global contrast or exposedness

are difficult to integrate by naive per pixel blending, without risking to introduce

artifacts. Higher values of the weight determines that a pixel is advantaged to

appear in the final image (see figure 34).

Laplacian contrast weight (WL) deals with global contrast by applying a La-

placian filter on each input luminance channel and computing the absolute value of

the filter result. This straightforward indicator was used in different applications

such as tone mapping [41] and extending depth of field [56] since it assigns high

values to edges and texture. For the underwater restoration task, however, this

weight is not sufficient to recover the contrast, mainly because it can not distingu-

ish between a ramp and flat regions. To handle this problem, we searched for an

additional contrast measurement that independently assess the local distribution.
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Underwater image Naive blending

WLS blending Laplacian blending

Figura 35: Blending strategies. Considering the underwater image (top-
left) by directly performing the naive blending (equation 49) yields unpleasing
artifacts (top-right). On the other hand, by employing the multi-scale approa-
ches based on WLS filter [Farbman et al 2008] (bottom-left) and Laplacian
pyramid yield significant improvements. As may be observed, the difference

between WLS and Laplacian pyramid is negligible.

Local contrast weight (WLC) comprises the relation between each pixel and

its neighborhoods average. The impact of this measure is to strengthen the local

contrast appearance since it advantages the transitions mainly in the highlighted

and shadowed parts of the second input. The (WLC) is computed as the standard

deviation between pixel luminance level and the local average of its surrounding

region:

WLC(x, y) =
∥

∥Ik − Ikωhc

∥

∥ (32)

where Ik represents the luminance channel of the input and the Ikωhc
represents the

low-passed version of it. The filtered version Ikωhc
is obtained by employing a small

5 × 5 ( 1
16
[1, 4, 6, 4, 1]) separable binomial kernel with the high frequency cut-off

value ωhc = π/2.75. For small kernels the binomial kernel is a good approximation

of its Gaussian counterpart, and it can be computed more effectively.
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Saliency weight (WS) aims to emphasize the discriminating objects that lose

their prominence in the underwater scene. To measure this quality, we have em-

ployed the saliency algorithm of Achanta et al. [55]. This computationally efficient

saliency algorithm is straightforward to be implemented being inspired by the bi-

ological concept of center-surround contrast. However, the saliency map tends

to favor highlighted areas. To increase the accuracy of results, we introduce the

exposedness map to protect the mid tones that might be altered in some specific

cases.

Exposedness weight (WE) evaluates how well a pixel is exposed. This assessed

quality provides an estimator to preserve a constant appearance of the local con-

trast, that ideally is neither exaggerated nor understated. Commonly, the pixels

tend to have a higher exposed appearance when their normalized values are close

to the average value of 0.5. This weight map is expressed as a Gaussian-modeled

distance to the average normalized range value (0.5):

WE(x, y) = exp

(

−
(Ik(x, y)− 0.5)2

2σ2

)

(33)

where Ik(x, y) represents the value of the pixel location (x, y) of the input image Ik,

while the standard deviation is set to σ = 0.25. This map will assign higher values

to those tones with a distance close to zero, while pixels that are characterized

by larger distances, are associated with the over- and under- exposed regions. In

consequence, this weight tempers the result of the saliency map and produces a

well preserved appearance of the fused image.

To yield consistent results, we employ the normalized weight values W̄ (for an

input k the normalized weight is computed as W̄ k = W k/
∑K

k=1W
k), by constrai-

ning that the sum at each pixel location of the weight maps W equals one (the

normalized weights of corresponding weights are shown at the bottom of figure 33).

Multi-scale Fusion Process. The enhanced image version R(x, y) is obtained

by fusing the defined inputs with the weight measures at every pixel location (x, y):

R(x, y) =
K
∑

k=1

W̄ k(x, y)Ik(x, y) (34)

where Ik symbolizes the input (k is the index of the inputs - K = 2 in our case)

that is weighted by the normalized weight maps W̄ k. The normalized weights W̄
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are obtained by normalizing over all k weight maps W in order that the value of

each pixel (x, y) to be constrained by unity value (
∑

W̄ k = 1).

As can be seen in figure 35 the naive approach to directly fuse (to apply directly

equation 49) the inputs and the weights introduces undesirable halos. A common

solution to overcome this limitation is to employ multi-scale linear [56, 109] or

non-linear filters [57, 106]. The class of non-linear

filters are more complex and has shown to add only insignificant improvement for

our task (applying WLS [57] yields minor improvements compared with Laplacian

pyramid as depicted in figure 35). Since it is straightforward to implement and

computationally efficient, in our experiments the classical multi-scale Laplacian

pyramid decomposition [56] has been embraced. In this linear decomposition,

every input image is represented as a sum of patterns computed at different scales

based on the Laplacian operator. The inputs are convolved by a Gaussian kernel,

yielding a low pass filtered versions of the original. In order to control the cut-

off frequency, the standard deviation is increased monotonically. To obtain the

different levels of the pyramid, initially we need to compute the difference between

the original image and the low pass filtered image. From there on, the process is

iterated by computing the difference between two adjacent levels of the Gaussian

pyramid. The resulting representation, the Laplacian pyramid, is a set of quasi-

bandpass versions of the image.

In our case, each input is decomposed into a pyramid by applying the Laplacian

operator to different scales. Similarly, for each normalized weight map W̄ a Ga-

ussian pyramid is computed. Considering that both the Gaussian and Laplacian

pyramids have the same number of levels, the mixing between the Laplacian in-

puts and Gaussian normalized weights is performed at each level independently

yielding the fused pyramid:

Rl(x, y) =
K
∑

k=1

Gl
{

W̄ k(x, y)
}

Ll
{

Ik(x, y)
}

(35)

where l represents the number of the pyramid levels (typically the number of

levels is 5), L {I} is the Laplacian version of the input I, and G
{

W̄
}

represents

the Gaussian version of the normalized weight map W̄ . This step is performed

successively for each pyramid layer, in a bottom-up manner. The restored output

is obtained by summing the fused contribution of all inputs.
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The Laplacian multi-scale strategy performs relatively fast representing a good

trade-off between speed and accuracy. By independently employing a fusion pro-

cess at every scale level the potential artifacts due to the sharp transitions of the

weight maps are minimized. Multi-scale fusion is motivated by the human vi-

sual system that is primarily sensitive to local contrast changes such as edges and

corners.

Results and Discussion. The proposed strategy was tested for real underwater

videos and images taken from different available amateur photographer collections.

As a result, images and videos have been captured using various cameras and

setups. However, an important observation is that we process only 8-bit data

format even though many professional cameras have the option to shoot in the

RAW mode that usually stores the unprocessed data of the camera’s sensor in

12-bit format.

Our technique is computationally effective taking approximately 2 seconds (Matlab

code) for a 800×600 frame but we believe that an optimized implementation could

run real-time on common hardware. The reader is referred to the supplementary

material for additional results (images and videos). By a general visual inspection

it can be observed that our technique is able to yield accurate results with enhanced

global contrast, color and fine details while the temporal coherence of the videos

is well preserved.

In figure 36 we compare our results with the polarization technique of Schechner

and Averbuch [89] that uses two frames taken with wide-field polarized illumina-

tion. By employing our technique on the provided white balanced version of one

of their inputs we are able to produce a more pleasing image version.

In Figure 37 we compare our technique with several specialized underwater enhan-

cing techniques. We considered the specialized single underwater image enhancing

techniques [95] but also the recent specialized dehazing technique [17]. By a closer

inspection (please observe as well the middle row of Figure 37) our result pre-

sents less halos and color distortions. For this example to visualize how contrast

is modified we employed the IQM metric [110] that was originally developed to

evaluate tone mapping operators. This metric utilizes a model of the human visual

system being sensitive to three types of structural changes: loss of visible contrast

(green), amplification of invisible contrast (blue) and reversal of visible contrast

(red). As a general remark, compared with the other considered approaches, the
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Underwater image Schechner & Averbuch [2007]

Our result

Figura 36: Comparison with polarization methods of [Schechner and
Averbuch 2007]. We applied our technique on the white balanced version of

one of the employed inputs provided by the authors.

most predominant structural change characteristic to our method is the amplifi-

cation of the contrast (blue) and only very few locations exhibit reverse (red) and

loss (green) of the contrast.

Our technique shown limitations when dealing with images of very deep scenes

taken with poor strobe and artificial light.In such cases, even some enhancement

could be obtained, the bluish appearance however still remains. Moreover, when

the illumination is poor the very distant parts of the scene cannot be recovered

reliably. The restoration of distant objects and regions represents also a general

limitation of our approach compared with hardware and polarization-based tech-

niques that in general perform better in such cases due to the additional available

information.
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Underwater image Bazeille et al. [2006] Tarel and Hautiere [2009] Our result

90-100

80-90

70-80

60-70

50-60

Loss Ampl Revers

Probability Scales(%)

Image quality metric

Figura 37: Comparative results. Compared with the outputs of other
enhancing methods our result is less prone to halos and color distortions. This
also results (bottom row) when applied IQM metric [110]. As may be observed,

based on this metric our approach mainly amplifies the contrast (blue).
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Applications. We found our technique suitable for several other applications

that are briefly described in the following section. More results are included as

well in the supplementary material.

Matching images by local feature points is a fundamental task of many

computer vision applications. We employ the SIFT [111] operator for an initial

pair of underwater images and as well for the restored versions of the images (see

figure 38). We use the original implementation of SIFT applied exactly in the

same way in both cases. For the initial case SIFT filters 3 good matches and

one mismatch while the matching of the enhanced image versions yields 43 valid

matches and no mismatches. These promising achievements demonstrate that our

technique does not introduce artifacts but mainly restores both global contrast

and local features of underwater images.

Underwater images

Our result

Figura 38: Local feature points matching. Compared with the initial
images (top) by applying standard SIFT on our enhanced versions (bottom)

the matching result is improved considerable.
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Segmentation aims to divide images into disjoint and homogeneous regions with

respect to some characteristics (e.g. texture, color). In this work we employ the

GAC++ [112] that represents a state-of-the-art geodesic active contours method

(variational PDE). Figure 39 proves that by processing underwater images with

our approach the segmentation result is more consistent while the filtered boun-

daries are perceptually more accurate. This task demonstrates that our technique

does not introduce halos close to object boundaries.

Underwater image Our result

GAC++ segmentation

Figura 39: Image segmentation. Processing underwater images with our
method, the segmentation result is more consistent while the filtered boundaries

are perceptually more accurate.
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Image dehazing [13, 59] is the process of removing the haze and fog effects

from the spoilt images. Because of similarities between hazy and underwater

environments due to the light scattering process, we found our strategy appropriate

for this challenging task. However, as explained previously, since the underwater

light propagation is more complex we believe that image dehazing could be seen as

a subclass of the underwater image restoration problem. Comparative results with

state-of-the-art single image dehazing techniques [13, 16] are shown in Figure 40.

Hazy images

Fattal [2008] Kratz and Nishino [2009]

Our results

Figura 40: Single image dehazing. Our approach is able to dehaze images
comparable to and even more accurate than the specialized single dehazing

techniques.
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Underwater images Our resultsOur white balanced inputManual white balanced Photoshop

Figura 41: From left to right: original underwater images, white balanced
results obtained by manually selecting the whitest point in Photoshop, white

balance used to generate our algorithm inputs and our results.
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Underwater images Our resultsAutolevels Photoshop

Figura 42: From left to right: original underwater images, images enhanced
using Autolevel operation of Adobe Photoshop and our results.
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Tan [2008]

Fattal [2008]

He et al. [2009]

Hazy image Kopf et al. [2008] Our  result

Tarel & Hautiere [2009]

Hazy image Our  result

Hazy image Our  result

Hazy image Our  result

Hazy image Our  result

Figura 43: Image dehazing. Comparison against state-of-the-art single
image dehazing methods (except for Deep photo - the method of Kopf et al.

[2008] uses additionally an approximated 3D model of the scene).
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Underwater pair of images

Underwater pair of images  +  SIFT matches

Restored pair of images

Restored pair of images +  SIFT matches

Figura 44: Matching by local feature points. For the first pair of images
by applying standard SIFT operator on the initial images only 3 good matches
(blue-yellow crosses) and one mismatch (red cross) are found. On the other
hand, applying SIFT in exactly the same way on the restored versions of the
images yielded by our technique, yields 43 valid matches (blue-yellow crosses)
and no mismatches. For the second pair of images, SIFT applied on the original
underwater images filters 4 good matches while applied on the preprocessed

images the same operator yields 14 valid matches.
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Original images Restored images GAC++ (restored images)GAC++ (original images)

Figura 45: Image segmentation. We employed the geodesic active contours
segmentation method (GAC++) for both original and preprocessed images. As
can be observed by preprocessing underwater images with our approach the
segmentation is more consistent while the filtered boundaries are perceptually

more accurate.
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II.2.2 Multi-scale Underwater Descattering

In this section we introduce a novel approach based on local estimation of the

back-scattering influence. The technique has been published recently by the can-

didate in [5]. Underwater imaging is required in many applications [93] such as

control of underwater vehicles [113], marine biology research [114], inspection of

the underwater infrastructure [115] and archeology [116]. However, as compared

with computer vision and image processing applications in the surface environ-

ment, image analysis underwater is a much more difficult problem, awing to the

dense and strongly non-uniform medium where light scatters, i.e. is forced to de-

viate from its straight trajectory. The poor visual quality of underwater images is

mainly due to the attenuation and back-scattering of illumination sources. Back-

scattering refers to the diffuse reflection of light, in the direction from which it

emanated.

Early underwater imaging techniques employed specialized hardware [88] and mul-

tiple images polarized over diverse angles [117], resulting in either expensive or

impractical acquisition systems. Recently, inspired by outdoor dehazing [1, 2, 14,

15, 59, 69, 70], several single-image based underwater image enhancement solu-

tions [4, 62, 118–121] have been introduced. Chiang and Chen [119] first segment

the foreground of the scene based on a depth estimate resulting from the Dark

Channel Prior (DCP) [15, 67], then perform color correction based on the amount

of attenuation expected for each light wavelength. Galdran et al. [121] introduce

the Red Channel to recover colors associated with short wavelengths in underwa-

ter. Ancuti et al. [4] derives two color corrected inputs and merge them using a

multi-scale fusion technique [56]. While the technique proposed in this part is also

based on a multi-scale fusion strategy, here, we derive three distinct inputs that

are robust in the presence of highly non-uniform illumination of the scenes (see

Fig. 46).

Despite these recent efforts, existing single-image underwater techniques exhibit

significant limitations in the presence of turbulent water and/or artificial ambient

illumination (see Fig. 22). This is mainly due to poor estimation of the back-

scattered light, which is generally assumed to be uniform over the entire image.

A unique global value of back-scattered light is only valid in relatively simple

underwater scenes having nearly uniform illumination, as is encountered in most

outdoor hazy scenes.
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Input image Treibitz & Schechner [2009]

Our result

He et al. [2011]

Emberton et al. [2015]Ancuti et al. [2012]

Figura 46: Underwater scene restoration. Special-purpose single-image
dehazing method of He et al. [67] and also specialized underwater dehazing me-
thods of Ancuti et al. [4] and Emberton et al. [62] are limited in their ability to
recover the visibility of challenging underwater scenes. While the polarization-
based technique (uses multiple images) of Treibitz and Schechner [117] is com-
petitive, our approach better restores both color and contrast (local and global)

in the underwater image.

Following the optical underwater model [101], we first compute the back-scattered

light by searching for the brightest location along each image patch. By simply

inverting the optical model using our local estimate of the back-scattered light,

we are able to obtain a good degree of visual restoration, even on in extreme

underwater scenes. Since the size of the patch should depend on multiple parame-

ters characterizing the captured underwater scene (e.g. the dimensions and colors

of objects in the scenes, nature of the ambient light, non-uniform illumination)

we use a variety (only two in practice) of patch dimensions, each size supporting

the recovery of distinct and complementary features of the scene. Specifically, a

first image is derived using a smaller patch to better restore the contrast, while

a second image is derived based on a large patch size, which makes it possible

to consistently recover regional color. To highlight and enhance the fine details

of the initial image, we also compute its discrete Laplacian. These three images

derived from the original image, guided by several quality measures, are seamlessly

blended using a multi-scale fusion approach [56].

We perform an extensive qualitative and quantitative evaluation against several
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existing specialized techniques. Despite its simplicity, our method proves quite

robust and produces competitive results on highly opaque and non-uniformly illu-

minated underwater scenes.

Underwater Image Formation. Based on the well-known optical model of

McGlamery [101], in the underwater medium the total radiance of an image I

that reaches the observer is due to three additive components: a direct component

ED, a forward-scattering component EFS and a back-scattering component EBS.

These components mainly result from the radiances of objects in the scene and

the ambient light.

The direct component ED represents the attenuated version (with distance) of the

reflected light, and is expressed at each image coordinate x as:

ED(x) = J(x)e−ηd(x) = J(x)t(x) (36)

where J(x) is the radiance of the object, d(x) is the distance between the observer

and the object, and η is the attenuation coefficient. The exponential term e−ηd(x)

is also known as the transmission t through the underwater medium.

Forward-scattering EFS, is the deflection of a portion of the incident light. In

general, it is associated with a small fraction of the overall image degradation

process.

Back-scattering, also known as the veiling light [100], is the principal cause for

the loss of contrast and the color shifting of underwater images. For reasonable

distances (between 3-10 m) this component may be expressed as [100]:

EBS(x) = B∞(1− e−ηd(x)) (37)

where B∞ is a scalar known as the back-scattered light or the water backgro-

und [122]. Assuming homogeneous lighting along the line of sight, this component

may be regarded as originating from an equivalent sources at infinity [100].

Incorporating these additive components and ignoring the forward scattering com-

ponent, the simplified underwater optical model employed in most existing des-

cattering techniques, becomes:

I(x) = J(x)e−ηd(x) +B∞(1− e−ηd(x))

= J(x)t(x) +B∞(1− t(x))
(38)
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Since the underwater camera model (38) has a similar form as the optical model of

Koschmieder [18], used to characterize the propagation of light in the atmosphere,

many recent approaches have proposed to restore underwater images based on the

extension of popular and effective outdoor dehazing methods. For instance, Chiang

and Chen [119] estimate the rough depth of the underwater scene based on the

Dark Channel Prior (DCP) [67], then adjust the bluish tone based on a wavelength

compensation strategy. Similarly, Galdran et al. [121] propose a variation of DCP,

in which the so-called Red Channel is used to recover colors associated with short

wavelengths underwater.

However, these outdoor dehazing-derived techniques appear to be successful mos-

tly on less challenging underwater scenes. They generally assume shallow unde-

rwater scenes with relatively transparent water and effective ambient illumination.

These cases, which are indeed similar to outdoor hazy scenes, represent only a frac-

tion of the underwater imaging problem. At greater depths and under artificial

illumination, the visibility degradation is more critical and dehazing approaches

suffer from important limitations when restoring contrast and color (see Fig. 22).

We explain in the rest of this part how (38) can be inverted in the case of arbitrary

underwater scenes.

Estimation of Transmission and Back-scattering. There are two unknowns

in the image acquisition model defined by equation (38): the transmission map

t(x) and the back-scattered light B∞.

Following recent techniques, we approximate the transmission t(x) based on the

Dark Channel Prior (DCP) of He et al. [67]. This prior assumes that natural

objects have a weak reflectance in one of the color channels. In other words,

the direct radiance is small, or dark, in at least one of the R,G,B color chan-

nels. Given this assumption, the transmission map, t(x), can be estimated from

the weakest color over a neighborhood of x. Formally, the DCP asserts that

miny∈Ω(x) (minc∈r,g,b J
c/B∞

c) = 0. Hence, the optical model (38) yields:

t(x) = 1− min
y∈Ω(x)

(

min
c∈r,g,b

Ic(x)/B∞
c

)

(39)

where Ω(x) represents a local patch centered at x.
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In practice, t(x) is reasonably well approximated by replacing the back-scatteredlight

B∞ with the maximal color intensity vector [1, 1, 1], so that:

t(x) ≈ 1− min
y∈Ω(x)

(

min
c∈r,g,b

Ic(x)

)

(40)

In the literature [67], the term miny∈Ω(x) (minc∈r,g,b I
c(x)) is referred to as the dark

channel image, and is denoted IDC(x).

Global Back-scattering Estimation.The other unknown that is required to

invert the optical underwater acquisition model is the back-scattered light B∞,

which represents the light that is scattered back by floating particles. This is the

main cause of contrast and color degradation in underwater images.

Most existing underwater descattering strategies compute a global value of the

back-scattered light over the entire image. Similar to what is done in outdoor

dehazing [13, 14, 67], this value is usually determined in the brightest region of

the dark channel image [120, 121]. This is because, when IDC(x) → 1, equation

(40) implies that t(x) → 0, and the optical model then states that I(x) → B∞.

Formally, following He et al. [67], the back-scattered light can be estimated as:

B∞ = I(y∗), with

y∗ = argmax
y|IDC(y)>IDC

99.9

(

Ir(y) + Ig(y) + Ib(y)
) (41)

In this equation, y∗ denotes the location of the brightest pixel among those pixels

whose dark channel value lies above the 99.9th percentile IDC
99.9, while r, g, b refer

to the red, green and blue color components, respectively. The above equation

can be written on a color component basis, as:

Bc
∞ ≃ max

y|IDC(y)>IDC
99.9

Ic(y), (42)

where c corresponds to each one of the color channels (c = [r, g, b]) and IDC
99.9

denotes the 99.9th percentile of the dark channel over the entire image.

To achieve robustness to specular reflections and glowing effects that tend to mi-

slead the color estimator defined by (41) and (42) in underwater mediums [123],

we introduce an alternative definition of the global back-scattered light estima-

tor that finds and uses the minimum of Ic over a small neighborhood around y.
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Input image

Descattering using (eq.6)

Dark channel

Descattering using (eq.8) Local descattering using (eq.9)

Our final result

Figura 47: Global vs. Local descattering in uniform underwater me-
dium. Compared with global estimates of the back-scattering, the strategy
based on our patch-based estimation of back-scattering allows for better resto-

ration of visibility, even in a uniform underwater medium.

Formally, we define:

Bc
G∞

= max
y∈MI

DC

(

min
z∈Ω(y)

Ic(z)

)

(43)

where Ω(y) is a neighborhood around y, and M I
DC is the set of locations in the

image support I where the dark channel reaches its global maximum value IDC
max,

i.e. M I
DC = {y|IDC(y) = Imax

DC }. Hence, instead of keeping an arbitrary 99.9th

percentile, we retain the entire set of coordinates where IDC is maximum. Since the

dark channel IDC(x) is defined based on minimization over a patch, M I
DC always

include multiple locations. Our validations reveal that using M I
DC (instead of the

99.9th percentile), does not negatively impact the global estimation. Moreover, it

makes the expression easier to generalize to a local estimator, as explained in the

next sub-section. Before moving to our proposed local estimator, we first point out

the equivalence and the limitations of the two global estimators defined by (41)

and (43). As shown in Fig. 47, expressions (41) and (43) yield comparable results

when inverting the optical model (38), and provide satisfying approximations in an

underwater medium with relatively uniform illumination. However, as illustrated

in Fig. 48, both global estimators fail in the presence of non-uniform illumination.

Local Back-scattering Estimation. The problem of non-uniform back-scattering

becomes especially challenging at greater depths, where artificial illumination is
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Figura 48: Global vs. Local descattering in non-uniform underwater
medium. While global estimation of the back-scattering performs poorly in
such challenging underwater scenes, the same restoration strategy yields consis-

tent improvement by using our local estimation of back-scattering.

required. Local estimation of the back-scattered light has been recently conside-

red for underwater dehazing by Emberton et al. [62]. They designed a hierarchical

rank-based method, using a set of features to find those image regions which are

the most haze-opaque. Here, we introduce an alternative approach to be able to

adapt locally to the back-scattered light. Our proposal achieves visually improved

descattering, as attested by the results presented in Fig. 50 and Fig. 52. Starting

from equation (43), we propose to compute the back-scattered light at location x

as:

Bc
L∞

(x) = max
y∈M

Ψ(x)
DC

(

min
z∈Ω(y)

Ic(z)

)

(44)

where Ψ(x) is a square patch centered at x. As for the global estimator, M
Ψ(x)
DC

denotes the set of positions in Ψ(x) where the dark channel is maximum, i.e.

reaches the value of its local maximum over Ψ(x). In practice, the patch Ψ is

typically larger than Ω. We use a default value of 2 for the ratio between the

sizes of the Ψ and Ω patches. A higher ratio is recommended for processing

underwater scenes with relatively uniform illumination and less turbidity. As

shown in Figs. 47 and 48, the contrast and color are better recovered when

inverting the underwater acquisition model based on our proposed local back-

scattering estimator as compared to inverting based on the global method.

Descattering by Multi-scale Fusion. A critical issue related to equation (44)

lies in the selection of the patch size Ω. Using a large patch tends to reduce the

impact of specular reflections and glowing effects in underwater mediums, but also

tends to preserve the undesirable hazy appearance with reduced improvement of

the contrast as compared to using a smaller patch (see Fig. 49).

Inspired by our previous approach [4], of keeping the best from among small and

large patches, we propose a multi-scale fusion approach to blend the images ob-

tained with both a large and a small patch size. Image fusion is a well-known

process that aims to optimize the appearance of a reconstructed scene by effecti-

vely blending the information of multiple inputs. Multi-scale fusion based on the
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Laplacian pyramid [56] has been shown to be effective for various computational

imaging applications such as extended depth-of-field [36], image editing [37], image

compositing [39], HDR imaging [41], image decolorization [6, 68] and single image

dehazing [1, 58]. The fusion process is typically guided by several spatial weight

maps that capture, the contribution of each input image to the final output. These

weight maps typically assess contrast, saturation and saliency.

Our fusion technique is a single image-based approach that derives several inputs

from an original underwater input. First, we derive inputs based on our patch-

based estimation of the back-scattering influence, as discussed in the previous

section. We observed that choosing different patch sizes yields good recovery either

of contrast (small patch) or color (large patch). Since we cannot simultaneously

obtain good restoration of both of these important factors using a single patch

size, we derive two inputs generated using two different patch sizes.

Using a large patch size better restores color while choosing a small patch size is

more effective in restoration of the visibility (global contrast).

As a result, to remove most of the hazy appearance of the underwater images we

derive a first input based on our local back-scattering estimation (44) computed

using a small patch size (e.g. 20 × 20 for an image of size 800 × 600). Moreover,

to better restore color we derive, using the same approach, a second input using

a larger patch size (e.g. 60× 60 for an image of size 800× 600). Our experiments

have revealed that considering additional patch sizes does not deliver any added

value to the reconstruction.

However, as can be seen in Fig. 49, those two inputs fail to capture the finest

detail. To also transfer this important information to the final result we derive a

third input which is the discrete Laplacian of the original image.

Inspired by our previous fusion underwater approach [4], we derive three weight

maps. This ensures that locations of high contrast or high saliency will receive

greater emphasis in the fusion process.

Local contrast weight detects the degree of local variation of each derived

input. Estimated similarly as in [1, 41] it assigns high values to edges and texture

variations, by computing the L1 norm of Laplacian filter applied to the luminance

channels of each input .
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Second input (large patch)First input (small patch)

Third input (Laplacian) Our fused result

Figura 49: Derived Inputs. Our single image-based fusion algorithm
considers three derived inputs. The first one estimates back-scattering on a
small patch and removes most of the hazy appearance, the second estimates
back-scattering on a large patch and primarily restores the color, and the third

computes the Laplacian of the original to preserve fine details.

Saturation weight map is motivated by the fact that humans generally prefer

images containing a high level of color saturation. This measure is computed as

the standard deviation across color channels at each pixel coordinate.

Saliency weight map advantages the most conspicuous regions of an image.

This weight is computed using the saliency technique of Achanta et al. [55].

Each of those weight maps is scaled so that its range lies between 0 and 1. A

pixelwise product of those three normalized maps is then used to derive a single

map.

Since naive fusion implementation (directly blending the inputs and weight maps)

causes unpleasing halo artifacts [4], we instead employ the multi-scale Laplacian
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Input images Our resultsTreibitz & Schechner [2009] Emberton et al. [2015]

Figura 50: Comparative results on underwater scenes with non-uniform ligh-
tning.

decomposition [56]. Using the same number of levels, the Gaussian and Laplacian

pyramids are independently fused at each level:

Rl(x) =
∑

k

Gl

{

W̄k(x)
}

Ll {Ik(x)} (45)

where l is the level of the pyramid, k is the input index, L {I} denotes the Lapla-

cian of the input I, and G
{

W̄
}

is the Gaussian-smoothed normalized weight map

W̄ . Here, the normalization ensures that the sum of weights over the three inputs

is equal to unity at each pixel. The final fused result R is processed by summing

the contributions from all the computed levels of the pyramid.

Results and Discussion. Our approach has been extensively tested on a large
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Figura 51: Quantitative assessment of the results based on the VM
and PCQI indices. Several associated images are shown in Fig. 52.
From left to right we compare with the methods of Carlevaris-Bianco
et al. [118], He et al. [67], Drews-Jr et al. [120], Galdran et al. [121]

and Emberton et al. [62].

number of underwater images captured in various environments. We compared

our results with those produced by recent special-purpose underwater enhancment

methods [62, 118, 120, 121] and also with the seminal dehazing techniques of He

et al. [67].

Fig. 50 presents several images taken from the work of Tali and Schechner [117].

These images are artificially illuminated and, due to multiple scattering pro-

cess [117], the light is non-uniformly spread over the entire scene. Even if Ember-

ton et al. [62] estimates back-scattering influence locally, it fails to restore both

the contrast and the color of the scene. As shown also in Fig. 22, outdoor deha-

zing techniques [67] exhibit similar limitations. On the other hand, our approach

performs considerably better than the polarization approach of Treibitz and Sche-

chner [117] that employs two images (taken with different states of the light-source

polarizer).

Fig. 52 completes the comparative analysis by presenting the results obtained when

restoring underwater scenes with relatively uniform illumination. In this particular

case, existing underwater approaches [62, 118, 120, 121] generally lead to satisfying

results. For this less challenging case, we performed a quantitative evaluation. We

considered the same set of 10 underwater images used by Emberton et al. [62] to

assess the various underwater techniques [4, 119–121].

As quantitative assessment metrics, we employed two contrast-based measure-

ments: the hazy visibility metric (VM) [124] also used in [62], and the recent

patch-based contrast quality index (PCQI) of Wang et al. [125]. Table 51 shows

that our approach generally achieves the best results based on the VM and PCQI
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Drews-Jr et al. [2013]Carlevaris-B. Et al. [2010] Emberton et al. [2015]Galdran et al.[2015] Our resultsInitital image He et al. [2011]

Figura 52: Comparative results on underwater scenes with uniform
lightning. From a set of ten underwater images used in [62] and evaluated in
Table 51, the comparative results for images referred as Ancuti2, Ancuti3,

Galdran1 and Reef1 are shown.

indexes. This conclusion is confirmed by careful inspection of the images presented

in Fig. 52.

In summary, while existing underwater approaches are generally competitive on

underwater scenes with reasonable and uniform illumination, our fusion technique

demonstrates significant improvements when restoring visibility on more challen-

ging artificially illuminated underwater scenes.
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II.3 Laplacian-Guided Image Decolorization

The decolorization (color-to-grayscale) process converts a three-channel color image

into a single channel image version. Many image processing and pattern recog-

nition applications operate on a single image channel (grayscale) and therefore

the loss of information produced by the decolorization operator has to be minimi-

zed. Moreover, different monochrome devices and black-and-white printing require

perceptually plausible decolorised (grayscale) images.

Traditionally, the standard decolorization conversion is simply employed as the lu-

minance channel of different color spaces (e.g. CIEL∗a∗b∗, YCbCr, HSL/HSV ) [126].

However, this simple global mapping disregards important chromatic informa-

tion and therefore in many cases the output grayscale images do not preserve

the original appearance of the color while important transitions and details are

often faded and misidentified (please observe the L∗ channel shown in figure53).

This limitation has been addressed by various techniques [127–134]. Roughly, the

existing techniques can be divided in two main classes: local [68, 129, 135] and

global [127, 128, 130, 132, 136, 137] mappings. While local mapping techniques

preserve better the local features, global mapping techniques are able to map bet-

ter over the entire image the same color to the same gray level (crucial in such

transformations).

In this part we introduce a novel local grayscale mapping strategy that filters the

features and transitions based on the Laplacian information. The work has been

published recently by the candidate in [6]. Our grayscale transformation, designed

in RGB color space, takes as individual inputs the three color channels (R, G, B).

As can be observed in Fig. 53 although the edges are not visible on the luminance

channel L∗ (due to linear mapping strategy) they are relatively well defined on at

least one of the RGB color channels. Since we aim to preserve most of the visible

edges of the original color image, our algorithm is guided by two weight maps that

transfer in the final result the most significant information of each derived input

( RGB color channels). The first weight map, defined based on the Laplacian

operator, filters the local contrast map assigning high values to local transitions

of the image. The second weight map is designed to emphasize not only the most

significant values, but also the regions characterized by high contrast in RGB color

space. In order to minimize artifacts introduced by the weight maps, our approach

is designed in a multi-scale fashion, using a Laplacian pyramid decomposition of
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the inputs combined with the Gaussian pyramid of normalized weights. Multi-

scale fusion is a well-known concept that has been demonstrated to be less prone

to introduce artifacts for many enhancing applications [1, 4, 39, 41, 58, 68, 69].

The presented work is inspired by our previous fusion approach [68] and the local

mapping method of the method of Smith et al. [129] that has been classified in

the Cadik’s study [138] as the most perceptually accurate. However, due to the

unsharp mask-related strategy, Smith et al. [129] method is prone to introduce di-

scontinuities along edges. In comparison, our multi-scale fusion algorithm shown

to perform faster yielding less local artifacts (please refer to Fig.53 and Fig.57

but also to the supplementary material). On the other hand, unlike our former

strategy [68] the proposed technique is a simplified one since we use only 3 inputs

(the approach of [68] employs 4 inputs that include also an input that aims to

conserve the contrast based on Helmholtz-Kohlrausch effect). Moreover, here we

use only 2 (different than in [68]) weights compared with 3 weights used in [68].

As a result, the fusion strategy presented in this part is less complex and there-

fore more computationally effective, yielding results with less local distortions as

demonstrated in the validation section.

Moreover, compared with the method of Ancuti et al. [68] that employs color infor-

mation, the presented method uses instead local contrast guidance for estimating

the weight maps. This is motivated by simultaneous contrast experienced by color

perception. Simultaneous contrast is more intense when two color are comple-

mentary e.g. red-green, blue-yellow. For instance analyzing the yellow-blue pair

in Fig. 53, it can be observed that on the blue channel there is a high contrast

between the yellow and blue regions.

Our comprehensive experiments demonstrate that our technique is able to yield

more consistent results compared to the state-of-the-art local mapping techniques

and comparable with the more complex global approaches. Moreover, our method

is straightforward to implement and computationally effective. It demonstrates

consistency over varying palettes being able to maintain temporal coherence of

videos.

As a second main contribution, we perform a comprehensive qualitative but also

a quantitative evaluation of the state-of-the-art decolorization operators. We sta-

tistically interpret a simple blind contrast assessment that measures the saturated
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Red channel Green channel Blue channelCIE *L

Color image Our  resultSmith et al.Bala & Eschbach

Figura 53: On the top line, from left to right are shown the initial color image,
the luminance channel L∗ (standard conversion) in the CIEL∗a∗b∗ color space
and our result. On the bottom line from left to right are presented the R,G,B
color channels. Please observe the visibility level of edges and local contrast
of the red and blue channels. Our technique does not act as a simple channel
selector, since the final result contains both local information of the blue and red

channels (notice the center of the image).

pixels between the initial and the decolorised image versions. The results on na-

tural and synthetic images demonstrate the utility and the robustness of the novel

decolorization technique.

II.3.1 Our Decolorization Technique

In practice, the standard decolorization approach employs a global linear mapping

such as:

L = wRR + wGG+ wBB (46)

where the weights wR, wG, wB are scalar parameters that represent the contribu-

tion ratio of each channel to the final grayscale result. For preserving the range

consistency of the luminance result, the weights are normalized such as the sum

of all weights (for each pixel (x,y) of the image) to sum one (wR(x, y)+wG(x, y)+

wB(x, y) = 1). Obviously, this linear blending does not account for image charac-

teristics such as local contrast and differences in color-to-gray mapping, as shown

in Fig. 8.

On the other hand, non-linear mapping techniques are built based on some local

information represented by specific weight maps. These weights are computed
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independently for each pixel. Unlike linear mapping, the weights (weight maps)

are vectors. While the non-linear methods guided by appropriate weight maps

are more effective to represent in the same time the local and global appearance,

compared with linear-mapping, they are prone to introduce additional unpleasing

local artifacts (e.g. please notice the results of Fig.8 and Fig.57). These visual

degradations are introduced mainly close to the locations where the transitions

(high frequencies) of estimated weights do not match the transitions of the original

image.

To overcome these limitations, we introduce a non-linear mapping algorithm built

on the fusion principle. Deriving several inputs and weight maps (vectors) from

the original color image, the inputs are mixed into a single output, by preserving

only the most significant features of the derived inputs. As already mentioned,

our fusion technique defines three inputs derived from the original color image

(the R,G and B color channels). As will be detailed below, our weight maps

are designed in order to minimize both the local and global information (some)

inevitable loss due to compression process.

Laplacian weight computes the amount of local variation of each derived input.

Since Laplacian operator L {I(x, y)} = ∇2I(x, y) is a simple but robust indicator

for local contrast [41], we define the first weight map as:

Wk
L(x, y) = L {Ik(x, y)}+

∣

∣L
{

Ik(x, y)
}∣

∣ (47)

where k is the index of the input channels (k = 1..3 since we have three inputs:

R, G, B color channels). The first term represents the arithmetic mean of the

Laplacian computed for each input channel. It reflects the total amount of impor-

tant transitions (edges), while the second term (the absolute value of Laplacian)

indicates the location of the existing transitions. This weight map assigns high

values to the important signal transitions, related in general to edges and texture.

Additionally, the first term (arithmetic mean) ensures a consistent temporal cohe-

rence of our operator for videos (please refer to Fig. 56). Similar contrast measures

built on Laplacian have been used previously but for different applications such

as extended depth-of-field [36] and tone mapping [41].

While this measure can be derived from other more complex filters, we opted

to prove our concept based on the Laplacian, a fundamental filter. However,

employing only this weight, our fusion strategy is not able to render accurately
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Laplacian weight maps

Figura 54: Weight maps. It is noticeable that the Laplacian weight maps
emphasize the local transitions but are not able to conserve the global infor-
mation. On the other hand, the original global appearance is preserved and
transferred in the final result by our second weight map (Global contrast wei-

ght).

the original global appearance of the color input (please refer to Fig.54). To

overcome this limitation we define a second measure described next.

Global contrast weight filters and propagates the important global values in

each of the input channels. In general, analyzing an image one expects that high

contrast regions in rapport with their neighborhoods to be visually highlighted

(to appear brighter). Therefore, we searched for a simple but efficient measure

to satisfy this perceptual feature of human visual system. Basically, this measure

has to assign high values to regions that have higher contrast compared to the

estimated average contrast of the scene. Mathematically, this global weight map

is expressed by subtracting from each input its arithmetic mean of the Laplacian:

Wk
G(x, y) =

[

Ik(x, y)− L {Ik(x, y)}
]δ

(48)

Computed on each of the three inputs (R,G,B color channels), this measure assigns

small values for those values close to estimated arithmetic mean of Laplacian.

The parameter δ has the default value δ = 2 (increasing this value, intensifies the

global discriminability in the output result, as well). This weight represents a good

tradeoff solution since comparing every region with all the others (as employed by

the approach of Gooch et al. [127]) shown to be computationally prohibitive.



107

Obviously, this weight map is not able to ensure distinct values for adjacent regions

that are equally distant compared to the mean value L {Ik(x, y)}. In such cases our

first defined weight map overcomes this issue preserving the original appearance

due to the filtered edges.

The three inputs (R, G, B) and the weight maps (Laplacian and Global contrast

weight maps) are fused by our strategy as described in the following. Generally,

fusion techniques simply define how every pixel of the inputs are mixed guided by

the the weight maps. Basically, we aim to preserve in the grayscale output the

most relevant pixels of each input filtered by the defined weight maps. This is

achieved by simply assigning high values to the locations where the weight maps

have high values. Mathematically, the naive result is obtained by the following

expression:

F(x, y) =
∑

k

W̄k(x, y)Ik(x, y) (49)

where the index k counts the number of the inputs, while each pixel (x, y) of F

is obtained by summing the corresponding locations of the inputs Ik that are

balanced by the normalized weight maps W̄k.

Color image Multi-scale FusionNaive Fusion

Figura 55: Naive vs. Multi-scale fusion. As can be seen compared with
the multi-scale strategy, the naive fusion implementation (equation 49) yields
inconsistent results characterized by unpleasing halos artifacts close to the edges.

This naive implementation (equation49) has shown to yield inconsistent results

characterized by unpleasing halos artifacts close to the edges (see Fig. 55). To over-

come this problem we employ the multi-scale pyramidal refinement strategy [40,

56]. As a result, for each of the three inputs, a Laplacian multi-scale pyramid is

computed by applying Laplacian operator at different scales. At the same scales,

for each normalized weight map W̄ , a Gaussian pyramid is built. The blending

between the Laplacian inputs and Gaussian normalized weights is performed at
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each level independently. Mathematically, each pyramid scale level l of the fused

result is expressed as:

F l(x, y) =
∑

k

Gl
{

W̄k(x, y)
}

Ll
{

Ik(x, y)
}

(50)

where l represents the number of the pyramid levels (the number of pyramid levels

is image dependent being determined as logarithm of the image size) and Ll {I}

is the Laplacian version of the input I at scale l. Gl
{

W̄
}

represents the Gaussian

version of the normalized weight map of the W̄ at the same scale level l. The final

decolorised image is obtained by summing the fussed contribution of all levels F l

of the resulted pyramid.

This multi-scale fusion strategy is able to avoid effectively seams artifacts by blen-

ding the features of the inputs selected by the weight maps. By employing inde-

pendently a fusion process at every scale level the potential artifacts due to the

sharp transitions of the weight maps are significantly reduced.

II.3.2 Results and Discussions

Our novel decolorization operator has been tested extensively for a large data-

set that includes images of various natural scenes but also challenging synthetic

images. In Fig. 57 are shown several comparative results. As ca be observed, com-

pared with the local mapping state-of-the-art techniques [68, 128, 129, 135, 137]

our fusion-based decolorization is less prone to artifacts being able to yield com-

parable results with the global mapping techniques, as well. Moreover, compared

with Rache et al. [128] and Lu et al. [137] we are able to preserve the white color

in the decolorized output which is an essential requirement of a grayscale operator

(see the butterfly image in Fig. 57).

Additionally, our operator has demonstrated to produce consistent results also for

videos. Decolorization of videos is not a trivial task being demonstrated for the

first time in the work of Smith et al. [129]. In contrast, one of the most perceptu-

ally accurate technique (classified in the study of Cadik’s [138]), Grundland and

Dodgson [130] is not able to preserve the temporal coherence. This is proved in

Fig.56 and also in our supplementary video.



109

Color frames
Grundland&

Dodgson
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Figura 56: Temporal coherence. Compared with Smith et al. [129] and
our strategy, the global method of Grundland and Dodgson [130] is not able to
preserve temporal coherence. Please check the video of the supplementary

material.

In addition, our operator is simple and computationally inexpensive. We are able

to process 10 fps (800x600 resolution) using a common portable PC with a 2.5

Ghz Intel Core i7 CPU and 8 GB memory (very close to the computation times

reported by the optimized implementation of Lu et al [137]). We believe that this

is an important advantage of our operator. In comparison, the approach of Ancuti

et al. [68] processes the same image in approx 2 seconds, the approach of Smith et

al. [129] takes more than 10 sec, the technique of Grundland and Dodgson [130]

takes approx. 3.5 seconds while the method of Kim et al. [131] takes approx. 1

sec.
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Figura 57: Comparison with the local and global mapping techniques.

II.3.3 Validation

Besides the visual evaluation we propose a quantitative validation of the recent

decolorization techniques. We define a visual descriptor to evaluate the level of

local artifacts introduced by different methods. Basically, we are interested to

measure how many pixels became black or white in the decolorized result compared

with the original image. Inspired from the blind measure of Hautiere et al [24] we

define the descriptor χ:

χ =
ns

MI ×NI

100 (51)

where ns represents the number of pixels that become black or white while MI and

NI denote respectively the width and the height of the image I. The descriptor

χ measures the level of saturated pixels that as shown by [24] is a good estimator

of the level of artifacts for local contrast manipulation techniques. In the work

of Hautiere et al [24] a similar indicator was used to measures the local artifacts

for two related applications: tone mapping and contrast enhancement. Basically,

small values of χ are associated with a reduced level of artifacts.

The quantitative validation has been performed on the set of 24 images used

in the perceptual evaluation of Cadik [138]. We evaluate the techniques of Go-

och et al [127], Grundland and Dodgson [130], Kim et al. [131],Bala and Esch-

bach [135],Rasche et al. [128], Smith et al. [129], Ancuti et al. [68] and our strategy.

The results shown in Fig.58 have been interpreted statistically using analysis of
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Figura 58: Statistical (ANOVA) representation of the indicator χ.

variance (ANOVA) [139]. In this representation the red line of the boxes corres-

pond to the mean values of each method. A small mean value is desirable since it

is associated with a reduced level of local distortions.

Interpreting the statistical results of descriptor χ shown in Fig.58, in general the

class of local methods from which our techniques belongs to (Smith et al. [129],

Rasche et al. [128] and Bala and Eschbach [135]) tend to introduce unpleasing

degradations close to edges (please observe the level of the red line of each box).

Indeed, these artifacts are visible by a close inspection. A similar conclusion

corresponds also to the global method of Kim et al. [131]. Moreover, compared

with the fusion-based approach of Ancuti et al. [68] the presented technique is a

less complex and therefore it is able to perform faster. Moreover as demonstrated

by our validation and the results shown in Fig.57 it yields results with less local

distortions.

Our fusion strategy shown to perform similarly to the global mapping methods

of Grundland and Dodgson [130] and Gooch et al. [127]. However, compared

with these two global techniques, our technique has the advantage to be suitable

for videos being also extremely fast compared with the optimization technique

of Gooch et al. [127]approach (needs 25.7 seconds for a 200x200 image - GPU

implementation).
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II.4 Single-Scale Fusion: An Effective Approach
to Merging Images

The advent of advanced image sensors has empowered effective and affordable

applications such as digital photography, industrial vision, surveillance, medical

applications, automotive, remote sensing, etc. However, in many cases the optical

sensor is not able to accurately capture the scene content richness in a single shot.

For example, the dynamic range of a real world scene is usually much higher than

can be recorded with common digital imaging sensors, since the luminances of

bright or highlighted regions can be 10,000 times greater than dark or shadowed

regions. Therefore, such high dynamic range scenes captured by digital images are

often degraded by under or over-exposed regions where details are completely lost.

One solution to obtain a complete dynamic range depiction of scene content is to

capture a sequence of LDR (low dynamic range) images captured with different ex-

posure settings. The bracketed exposure sequence is then fused by preserving only

well-exposed features from the different exposures. Similarly, night-time images

are difficult to be processed due to poor illumination, making it difficult to capture

a successful image even using the HDR (high dynamic range) method. However,

by also capturing with a co-located infrared (IR) image sensor, it is possible to

enrich the visual appearance of night-time by fusing complementary features from

the optical and IR images.

Challenging problems like these require effective fusion strategies to blend informa-

tion obtained from multiple-input imaging sources into visually agreeable images.

Image fusion is a well-known concept that seeks to optimize information drawn

from multiple images taken of the same sensor or different sensors. The aim of

the fusion process is that the fused result yields a better depiction of the original

scene, than any of the original source images.

Image fusion methods have been applied to a wide range of tasks including exten-

ded depth-of-field [36], texture synthesis [140], image editing [37], image compres-

sion [56], multi-sensor photography [141], context enhancement and surrealist vi-

deo processing [142], image compositing [39], enhancing underexposed videos [90],

multi-spectral remote sensing [143], medical imaging [144].

Many different strategies to fuse a set of images have been introduced in the lite-

rature [145]. The simplest methods, including averaging and principal component

analysis (PCA) [146], straightforwardly fuse the input images’ intensity values.
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Multi-resolution analysis has also been extensively considered to match processing

the human visual system. The discrete wavelet transform (DWT) was deployed by

Li et al. [147] to accomplish multi-sensor image fusion. The DWT fusion method

computes a composite multi-scale edge representation by selecting the most salient

wavelet coefficients from among the inputs. To overcome the shift dependency of

the DWT fusion approach, Rockinger [148] proposed using a shift invariant wa-

velet decomposition. Tessens et al. [149] used the directional curvelet transform

(CVT) to separate high and low frequency image components while capturing

image structures as a sparse set of coefficients. Another alternative is the contour-

let transform [150], which combines the Laplacian pyramid with a directional filter

bank. Zhang and Guo [151] deployed an undecimated, shift-invariant contourlet

transform for image fusion. In another category of methods, Tang [152] introduced

a discrete cosine transform (DCT)-based algorithm to enhance the contrast of the

input images to be fused. Image fusion based on MRF models for remote sensing

applications was described by Xu et al. [153]. Neural networks were employed

by Fay et al. [154] to fuse night-vision images from multiple infra-red bands. A

gradient-based method was introduced by Petrovic and Xydeas [155]. In their me-

thod, input images were represented at each resolution level using gradient map

signals rather than absolute grey-level values. Liang et al. [156] formulated a ten-

sor decomposition technique and used SVD to fuse multiple images. More recently,

in the context of multi-exposure fusion, Shen et al. [157] introduced generalized

random walks to achieve an optimal balance between two quality measures, i.e.,

local contrast and color consistency, while capturing scene details from different

exposures. The problem of balancing color consistency and local contrast has been

approached by estimating the probabilities of each output pixel belonging to one

of the input images. Li et al. [158] proposed an effective framework built on

guided filters [159] to improve the spatial consistency of fusion between the base

and detail layers.

One of the most successful image fusion strategies is based on the Laplacian pyra-

mid decomposition (see Fig. 59). Introduced by Burt and Adelson [56] in the

context of extended depth of field, the Laplacian pyramid has been employed for

applications ranging from image compression to image denoising. In the context

of multi-scale fusion, the Laplacian pyramid decomposition has recently been de-

monstrated to be effective for several interesting tasks such as HDR imaging [41],

image filtering [161, 162], single image dehazing [1, 69], image and video decolo-

rization [68] and underwater image enhancement [4].
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Figura 59: Comparative results of different fusion techniques for merging
multi-exposure images. Top row (from left to right), are shown the original
two inputs, the result of averaging the inputs and the fusion results of [146–
148, 160] . Bottom row (from left to right), are shown the results of the fusion
approaches of [56, 149, 151, 155, 157, 158], and our single-scale fusion result
. As can be seen, most of the fusion techniques yield results very similar to the
simple average value of the two inputs. While most of the traditional fusion
approaches yield results similar to the result obtained by simply averaging the
inputs, the Laplacian multi-scale fusion [41, 56] is more robust and delivers re-
sults comparable to those of more recent fusion techniques such as GRWF fusion

method of Shen et al. [157].

Multi-scale fusion (MSF) based on the Laplacian pyramid became rapidly popular

due to its effectiveness, but also to its intuitive method of deployment. The MSF

process is guided by a set of measures (weights maps) that indicate the contribution

of each pixel (of each input) to the final result. The weight maps capture the degree

to which each input fits some desirable qualities (e.g. contrast, saliency) that are

to be preserved in the fused result. Due to their inherent capacity to handle

information at multiple scales, MSF based methods have been demonstrated to

avoid the introduction of visual artifacts in image blending process.

However, despite of its popularity, MSF methods are generally computationally ex-

pensive and difficult to implement , especially in terms of data storage and transfer

management [163, 164]. These limitations are particularly observable when pro-

cessing large images since the number of levels of the multi-scale decomposition

increases with the input image resolution. Decreasing the number of levels is not a

solution, since it generally introduces unpleasing artifacts in the fused result (e.g.

Fig. 67).
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With these problems in mind, we have developed an easy-to-implement and com-

putationally efficient alternative to the MSF strategy that fuses the multiple inputs

in their native resolution, using weight maps defined on a single scale. Our fu-

sion technique has been published recently in [7]. We first show how the MSF

decomposition can be approximated using a single-scale decomposition in a way

that eliminates redundant computations. Interestingly, the single-scale expression

obtained from the MSF approximation also provides insightful cues regarding how

the MSF process manipulates weights and image features to compute a visually

pleasant outcome. It also helps explaining why MSF works, as compared to a

simple weighted average of the inputs using low-pass weight maps.

We then demonstrate the generality and effectiveness of our proposed single scale

fusion (SSF) in a variety of well-known fusion applications such as HDR imaging,

image compositing, extended depth of field, medical imaging and blending IR with

visible images. We also supply a quantitative evaluation that demonstrates that

our single-scale fusion (SSF) strategy is able to yield results that are competitive

with traditional multi-scale fusion (MSF) methods.

In summary, our work provides, as original contributions:

- the first single scale strategy for fusing multiple images that yields results that

are highly competitive with classical multi-scale approaches;

- a mathematical derivation that identifies those components of the conventional

MSF that are most critical to the blended image quality, which helps explain why

MSF works;

- an extensive demonstration of the effectiveness of the single-scale fusion concept

over a wide palette of applications;

II.4.1 Image Fusion: Background and Notations

Generally, image fusion can be defined as a process of effectively blending several

input images (e.g. [41, 56]) or versions of the same original image (e.g. [1, 4]) into a

single output image that retains the most naturalistic, high-quality elements from

among all the source inputs. It is desirable that the fused results be free of any

unpleasant artifacts not present in the scene. In order to generate a desired output,

the fusion process is guided by several quality measures or weight maps. These
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Inputs Weights

Multi-scale fusion

Our result: Single-scale fusion

Naive fusion

Figura 60: Naive, multi-scale fusion and our single-scale result. Both involve,
a similar degree of complexity, while our single-scale fusion method is able to

deliver results competitive with the multi-scale approach.

quality measures are generally defined dependent on the application, and aim to

retain only those input features that transfer seamlessly to a visually satisfactory

output result.

Before developing our single-scale fusion solution, we review the basic steps that

define the classical image fusion process. We begin by briefly discussing the naive

fusion solution, then we elaborate the multi-scale image fusion (MSF) approach

based on the Laplacian decomposition.

Image fusion typically relies on set of weight maps that are used to transfer the

most relevant features to the output. In its simplest form, the inputs Ik are directly

weighted by some specific measures (weight maps) W̄k, that indicate the amount

that each image’s pixels contribute to the final result. This approach, called naive

image fusion (NF), is quite straightforward and computationally efficient. The
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naive fusion result RNF can be expressed as:

RNF (x) =
K
∑

k

W̄k(x)Ik(x) (52)

where K is the number of inputs. The weights W̄k are normalized to ensure that

the intensity range of the result is similar to the dynamic range of the inputs:
∑

k W̄k(x) = 1, for each coordinate x.

The naive fusion implementation involves a minimum number of operations, and

has the additional advantage of preserving most of the available high frequencies

in the final result. Unfortunately, the output of the naive fusion strategy contains

distracting halos artifacts (see Fig. 60), especially in the regions containing strong

transitions in the weight maps that have no correspondence with the input content.

As pointed out in [41] and further discussed in next section (and depicted in

Fig. 62), simple low-pass filtering of the weight maps is insufficient to remove

those artifacts.

To overcome the limitations of the naive approach, the blending process can be

performed in a multi-scale fashion. In order to explain our simplification we begin

with the multi-scale image decomposition based on Laplacian pyramid originally

described in Burt and Adelson [56]. The pyramid representation decomposes an

image into a sum of bandpass images. In practice, each level of the pyramid

does filter the input image using a low-pass Gaussian kernel G, and decimates the

filtered image by a factor of 2 in both directions. It then subtracts from the input

an up-sampled version of the low-pass image (thereby approximating a Laplacian),

and uses the decimated low-pass image as the input for the subsequent level of

the pyramid. Formally, using Gl to denote a sequence of l low-pass filtering and

decimation, followed by l up-sampling operations, we define the N levels of the

pyramid as follows:

I(x) = I(x)−G1 {I(x)}+G1 {I(x)} , L1 {I(x)}+G1 {I(x)}

= L1 {I(x)}+G1 {I(x)} −G2 {I(x)}+G2 {I(x)}

= L1 {I(x)}+ L2 {I(x)}+G2 {I(x)}

= ...

=
N
∑

l=1

Ll {I(x)}+GN {I(x)}

(53)
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Figura 61: The final level of a Laplacian pyramid includes a Gaussian blurred
version of the original image. The top row depicts the upsampled versions of
the five downsampled Laplacian and Gaussian signals shown in the bottom row.
Note also that for better visualization the absolute value of each Laplacian image
pixel is presented. This is to render the small Laplacian intensities in black and

their large values in white, whatever their sign.

As a result, the last component of the decomposition in (53), is a Gaussian blur-

red version of the input image with a large kernel (see Fig. 63). This is quite

different from the other levels, which contain middle-to high frequencies. Ll and

Gl represent the lth level of the Laplacian and Gaussian pyramid, respectively. In

the rest of this part all those images have been up-sampled to the original image

dimension.

In the traditional multi-scale fusion (MSF) strategy [41], each source input Ik, is

decomposed into a Laplacian pyramid [56] while the normalized weight maps W̄k

are decomposed using a Gaussian pyramid. Assuming that both the Gaussian and

Laplacian pyramids have the same number of levels, the mixing of the Laplacian

inputs with the Gaussian normalized weights is performed independently at each

level l :

Rl(x) =
K
∑

k=1

Gl−1

{

W̄k(x)
}

Ll {Ik(x)} (54)

where 0 < l ≤ N denotes the pyramid levels and k refers to the number of

input images. The last component in (53) induces a last contribution RN+1 =
∑

k GN {Wk}GN {Ik}. For a single level decomposition N = 0, G0

{

W̄k

}

equals

to W̄k and MSF reduces to naive fusion defined by equation (52). In practice, the

number of levels N depends on the image size, and has a direct impact on the

visual quality of the blended image (see Fig. 62).

This blending step is performed successively at each pyramid layer, in a bottom-up

manner. The final multi-scale fused result RMSF is obtained by simply summing
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up the contribution from each level:

RMSF (x) =
N+1
∑

l

Rl(x) (55)

MSF- one scale level MSF- two scale levels MSF- three scale levels

MSF- four scale levels MSF- five scale levels MSF- six scale levels MSF- seven scale levels

Naive Fusion

Figura 62: Illustration of the influence of the number of levels in the multi-
scale fusion approach. As can be observed, the number of levels affects the degree
to which the higher image frequencies are revealed. Reducing the number of levels

causes high frequency artifacts similarly to the naive fusion approach.

II.4.2 Single Scale Fusion

This section derives our proposed single scale fusion strategy as an approximation

of the conventional multiscale fusion approach. All along the section, to illustrate

and justify our approximations, we present image samples corresponding to HDR

imaging, using the well-known exposure fusion technique [41]. However, as will

be illustrated in the next section, our approach is general, being suited to other

scenarios and applications that are built on the multi-scale fusion process.
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Figura 63: Fusion pipeline. The Laplacian and Gaussian versions have been
upsampled to the original size of the image.

As discussed in previous section, the MSF builds on the Laplacian pyramid, and

the contribution associated with the kth input image Ik may be expressed (for

simplicity, omitting index k and coordinate x):

R =
N
∑

l=1

Gl−1

{

W̄
}

Ll {I}+GN

{

W̄
}

GN {I} (56)

To derive a single scale approximation of (56), we first observe that the empirical

distribution of Laplacian of an image is heavily concentrated near zero, except

near edges (black pixels are associated values near zero in Fig. 63). Hence, the

lower levels of the pyramid only impact those regions that are characterized by

significant gradient values. As a consequence, sharp transitions in the weight maps

have little impact on the fusion process, unless they are aligned with similar events

in the input. Based on this observation we could consider replacing Gl−1 {W} by

GN {W} in (56). Then (56) becomes:

R =
N
∑

l=1

GN

{

W̄
}

Ll {I}+GN

{

W̄
}

GN {I} (57)
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Figura 64: As a first order MSF approximation, we had envisioned approxi-
mating the expression L1 {I}G0 {W}+L2 {I}G1 {W}+ ...+LN {I}GN−1 {W}
by L1 {I}GN {W}+L2 {I}GN {W}+ ...+LN {I}GN {W}, thereby turning the
MSF into a SSF. However, as illustrated in Fig.65, this approximation is not
satisfying, thereby motivating our refined approximation derived from (58) to

(66).

In this equation, GN

{

W̄
}

can be put in evidence and the sum of GN

{

Ī
}

with the

N Laplacians equals the image I. Hence, this approximation reduces the fusion

process to a single scale process, that is equivalent to the naive fusion strategy,

but with Gaussian-filtered weights. Figures 65 and 67 reveal that, even if some

image details are lost, the resulting outcome is free of any dramatic and visually

disturbing artifacts.

This is an interesting finding, since until now it was commonly believed that

smoothing the weight maps was inducing severe artifacts in the fused output (see,

for example, the explanation and Figure 4 in Mertens et al. [41]). As may be seen

in Fig. 65 , this observation from [41] is only partly valid since using a Gaussian

filter with sufficiently large kernel size results in relatively artifact-free outcomes.

The reasonably good visual quality resulting from the simplification adopted in

(57) also indirectly explains why MSF performs so well compared to the naive

fusion strategy: abrupt transitions in the weight maps, which often introduce

unpleasing artifacts into results produced by the naive method, tend to be canceled

in the multi-scale fusion output, since discontinuities in the weight map tend to

co-locate with abrupt changes in the inputs. Thus the MSF method also benefits

by the contrast masking phenomenon [165], inherent in visual perception, which

reduces the visibility of the artifacts in high contrast regions, especially when the

artifact has similar orientation and location as the masking signal.

The importance of reducing or removing high-frequencies in the weight maps in

regions that correspond to smooth inputs signals is confirmed when considering

the number of levels involved in the MSF. In Fig. 62, we indeed observe that
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SSIM=0.965 SSIM=0.958

Multi-scale fusion

Fusion results usion using approximation 3 . 3L {I} G {W} L {I} G {W}k k-1 k N

Structure similarity map and index between MSF (above) and approximation (below)

Our single-scale fusion

Figura 65: Limits of straightforward single scale approximation derived from
L1 {I}G0 {W}+L2 {I}G1 {W}+ ...+LN {I}GN−1 {W} ≈ L1 {I}GN {W}+
L2 {I}GN {W} + ... + LN−1 {I}GN {W}. The top row shows the multi-scale
fusion (MSF) results while the results obtained by the above approximation are
shown in the third row. The second row shows structure similarity (SSIM) maps
and index values computed between the MSF and the fusion results yielded by
the mentioned approximation. The approximated MSF results are artifacts-free
but important details are missing. In contrast, our SSF results (bottom row)

preserve the details, as the MSF technique.

decreasing the number of levels makes high frequencies in the weight maps much

more disturbing, with unpleasant artifacts, similar to the naive strategy. This

reveals that, to obtain a visually pleasant result, the multi-scale fusion strategy

requires a sufficient number of pyramid levels which is computationally expensive

and memory demanding on large images.

From the above discussion and observations, it should be clear that reducing high-

frequencies in the weight maps is an important step towards obtaining visually



124

pleasing blended output images. However, even in the absence of any distur-

bing artifacts, the images resulting from (57) lack of details as compared to the

MSF results (see Fig. 67 and Fig. 65). Therefore, we propose a second order

approximation of (56), which aims to preserve details in the inputs, while remai-

ning single scale. Formally, given that by definition of the Laplacian pyramid

Gl−1

{

W̄
}

= GN

{

W̄
}

+
∑N

p=l Lp

{

W̄
}

, then (56) becomes:

R =
N
∑

l=1

[

N
∑

p=l

Lp

{

W̄
}

Ll {I}
]

+GN

{

W̄
}

N
∑

l=1

Ll {I}+GN

{

W̄
}

GN {I} (58)

By grouping the two last terms, the previous expression becomes:

R =
N
∑

l=1

[

N
∑

p=l

Lp

{

W̄
}

Ll {I}
]

+GN

{

W̄
}

I (59)

Histogram of |L {I}|1 Histogram of |L {I}|2 Histogram of |L {I}|3 Histogram of |L {I}|4

Figura 66: Histograms of L1 {I}, L2 {I}, L3 {I} and L4 {I}. As expected, the
histograms reveal that the largest values of L1 {I} are bigger than the largest
values of Lk {I}, with k > 1. This supports the approximation made to go from

(59) to (60).

We can assume that the first term of the sum (l=1) dominates the others since the

largest values, in L1 {I} tend to be much larger than the largest values in Lk {I},

with k > 1 (see their histograms in Fig. 66). Here, we focus only on the largest

values of Lk {I} because they are the only ones that matter when the products

Lk {I}Lp

{

W̄
}

are added to GN

{

W̄
}

I.

We adopt a similar approximation for the Laplacian of the weight maps, (e.g
∑N−1

p=1 Lp

{

W̄
}

≈ L1

{

W̄
}

). These approximations lead to the following expres-

sion:

R ≈ GN

{

W̄
}

I + L1

{

W̄
}

L1 {I} (60)
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MSF- three scale levels MSF- four scale levels MSF- five scale levels MSF- six scale levels MSF- seven scale levels

Corresponding fusion results based on approximation 3 3L {I} G {W} L {I} G {W}k k-1 k N.

SSIM=0.982SSIM=0.987SSIM=0.992SSIM=0.996SSIM=0.996

Structure similarity map and index

Figura 67: The impact of the number of scales when approximating in (56)
L1 {I}G0 {W}+L2 {I}G1 {W}+ ...+LN {I}GN−1 {W} by L1 {I}GN {W}+
L2 {I}GN {W}+ ...+ LN {I}GN {W}. We observe in this figure that (i) it is
important to consider a sufficient number of scales in MSF to achieve artifact-
free reconstruction, and (ii) the difference between MSF and the straightforward
single scale approximation increases with the number of scale. We conclude
that we should derive a more accurate SSF than the one simply replacing all

Gaussian weights by GN {W}.

By observing that L1

{

W̄
}

has a reasonably similar shape with L1 {I}, in locations

where L1 {I} is large (positive or negative), we obtain a preliminary version of our

SSF simplification (see also Fig.68):

R ≈ GN

{

W̄
}

I + βL1 {I}L1 {I} (61)

In this expression, L1 {I} is only significant at pixels that are close to an edge.

Hence, we investigate how to approximate L1 {I} at a location x that lies close

to an edge inflexion point x0. For this purpose, we assume that the edge profile

approximates a logistic function along the gradient orientation, in a small neigh-

borhood around its inflexion point. The relevance of approximation is confirmed

through extensive simulations in previous section, thereby experimentally valida-

ting our approach. Using a first order approximation, and the fact that at the

inflexion point I(x0) ≈ G1 {I(x0)}, we have:

L1 {I(x)} = I(x)−G1 {I(x)} ≈ (x− x0) [∇I(x0)−∇G1 {I(x0)}] (62)

and

I(x) ≈ I(x0) + (x− x0)∇I(x0) (63)
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L {I}1 L {W}1 L {I} L {W}1 1 L {I} L {I}1 1

SSF using L {W}1 SSF using L {I}1

Figura 68: Top two rows show L1 {I}, L1

{

W̄
}

, L1 {I} .L1

{

W̄
}

and
L1 {I} .L1 {I} of two inputs shown in Fig.60. L1

{

W̄
}

has a shape that is
similar to that of L1 {I}, in locations where L1 {I} is large, and therefore we
can simplify (60) to (61). Spurious edges could be transferred to the output if
L1 {I} was approximated with L1

{

W̄
}

in (60) (see red boxes). In the bottom
row are shown the results based on our SSF expression if using L1

{

W̄
}

and
L1 {I}, respectively.

By merging (62) and (63), we have:

L1 {I(x)} ≈ [I(x)− I(x0)]
[∇I(x0)−∇G1 {I(x0)}]

∇I(x0)
(64)

where the factor [∇I(x0)−∇G1 {I(x0)}]/∇I(x0) is smaller than one, and tends

to zero when the width of the edge increases , i.e., when the steepness of the

logistic curve decreases. To simplify notation, we denote this factor γ(x0), and

write the second term in (61) as:

βL1 {I(x)}L1 {I(x)} ≈ βγ(x0)L1 {I(x)}
[

1−
I(x0)

I(x)

]

I(x)

≈ α |L1 {I(x)}| I(x)

(65)

The first approximation is obtained by replacing L1 {I} in (61) using the appro-

ximation derived in (64). The second approximation results from the fact that

(1 − I(x0)
I(x)

) is a small value having the same sign as L1 {I(x)}. Parameter α is

introduced to reflect a reasonable average value for βγ(x0)
[

1− I(x0)
I(x)

]

around the

inflexion point of different kinds of edges. In practice, it is set empirically, as

discussed in previous section.
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SSF - with ,  ( =0.2)" "| |L {I}1SSF - with , ( =2)" "| |L {I}1 MSF (8 levels)

Figura 69: The influence of the parameter α used in our single-scale fusion
method (66). If we increase the impact (α=2) of L1 {I}, some small artifacts
appear around edges. Experimentally, we found that a default value of α=0.2 is

well suited to all investigated scenarios.

Multi-scale fusion Single-scale fusion (Eq. 9) Single-scale fusion (Eq. 15)

SSIM=0.952 SSIM=0.949

Figura 70: Single-scale fusion results generated using (60) and (66). As may
be observed, visually and also based on the SSIM evaluation [86] our approach
yield very similar results as the traditional MSF approach. Since both single-
scale fusion (60) and (66) produce almost identical results, all the results have
been generated using the last derivation described in (66) using the default pa-

rameter α = 0.2.

Replacing the second term in (61) with the approximation (65), and coming back to

the detailed notation (i.e., replacing I by Ik(x) and W̄ by W̄k(x)), the contribution

of the kth input to our final simplified SSF formulation becomes:

RSSF,k(x) =
[

GN

{

W̄(x)
}

+ α |L1 {I(x)}|
]

I(x) (66)

Since the convolution of two Gaussian kernels is a wider Gaussian kernel, GN

{

W̄
}

can be directly computed with a kernel whose variance is N times the variance of

the initial Gaussian kernel. Hence, no need to apply N times the Gaussian filter to

deriveGN

{

W̄
}

. By aggregating the contributions of all inputs, our SSF expression

becomes RSSF (x) =
∑

k RSSF,k(x).



128

Inputs G {W}N á|L {I}|1 G {W} +    |L {I}|N 1á

Figura 71: The weights of our final SSF expression (66). From left to right:
the inputs, the corresponding two weights (GN

{

W̄
}

and α |L1 {I}|) of (66) and
their sum.

Fig. 70 depicts differences between results obtained using our single-scale fusion

(60) and (66) and the MSF expression. As can be observed visually and also

based on the SSIM evaluation [86], both (60) and (66) yields very similar results

compared as traditional MSF. While both SSF equations (60) and (66) produce

almost identical outputs, all the results presented in this part have been generated

using the last derivation described in (66) using the default parameter α = 0.2.

Interestingly, (66) increases the magnitude of the weights in the image regions with

large Laplacian values, thereby reinforcing edges in the blended outcome. This is

similar sharpening an image by subtracting from it a fraction of its Laplacian. This

observation offers a novel perspective with respect to understanding the success

of MSF: MSF promotes the regions of the images with high Laplacian magnitude,

thereby reinforcing the contrast of the blended image.



129

II.4.3 Results and Discussion

Since the primary contribution of this part lies in the simplification of multi-

scale fusion algorithm, our validation primarily aims at demonstrating that our

proposed single scale simplification is valid in a large variety of use cases. We

begin by introducing a set of weights commonly used in multiscale fusion, then

validate our single scale fusion strategy on a variety of application problems.

As previously mentioned, due to its robustness and simplicity, multi-scale fusion

(MSF) based on the Laplacian pyramid decomposition is employed in a wide vari-

ety of image processing tasks. However, although the concept remains the same,

the solution may vary based on the inputs that are processed and on the criteria

(quality measures) that are used to derive their associated weight maps. Here we

employ four of the most general quality measures used in previous fusion-based

approaches [1, 4, 41, 69]: local contrast, saturation, exposedness and saliency.

Local contrast weight map measures the amount of local variation of each

input and is computed by applying a Laplacian filter to the luminance of each

processed image. As shown in [1, 41] this assigns high values to sharp transitions in

images such as edges and texture by computing the absolute value of the Laplacian

response.

Saturation weight map enables algorithms to adapt to chromatic information

by boosting the luminance of highly saturated regions. This measure is usually

computed [4, 41] as the standard deviation within color channels around each

pixel location. This is motivated by the observation that saturated color pixels

take large values on at least one or two color channels. This weight map is simply

computed (for each input Ik) as the deviation (for every pixel location) between

the R,G and B color channels and the luminance L of the input Ik:

Wk,C =
√

1/3 [(Rk − Lk)2 + (Gk − Lk)2 + (Bk − Lk)2] (67)

Exposedness weight map estimates the degree to which a pixel is exposed. This

weight promotes a constant appearance of local contrast, neither exaggerated nor

understated. Pixel values are generally better exposed when they have normalized

values, closer to the average value, as in [41, 69]. This measure for input Ik is



130

Multi-scale fusion [Mertens et al.] Single-scale fusionNaive fusion

Drago et al.[2003]

Durand & Dorsey [2002]

Reinhard et al. [2002]

Mantiuk et al. [2006]

Mantiuk et al. [2008]

Fattal et al. [2002]

Figura 72: HDR imaging. Comparison of single-scale fusion (SSF) with multi-
scale fusion (MSF) for HDR imaging. Also shown are comparative results with

several well known tone mapping techniques [166–172].

expressed as a Gaussian-modeled distance to the average normalized value (0.5):

Wk,E = exp

(

−
(Ik − 0.5)2

2σ2

)

(68)

where the standard deviation is set to σ = 0.25.
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Saliency weight map identifies the degree of local visual conspicuity, by high-

lighting visually attractive regions of an image. As in the recent fusion techniques

of [1, 69] we employ the well-known saliency technique of Achanta et al. [55].

Its computation is inspired by the biological concept of center-surround contrast

being computed as a difference between a Gaussian smoothed version of the input

and its mean value. The saliency weight is defined as:

Wk,S = ‖Ik,ωhc
− Ik,µ‖ (69)

where Ik,µ is the arithmetic mean of the input Ik while Ik,ωhc
is a Gaussian filtered

version of the same input.

To derive the W̄k maps, those four weight maps are first summed up for each input

image k. The K resulting maps are then normalized on a pixel-per-pixel basis, by

dividing the weight of each pixel in each map by the sum of the weights of the

same pixel over all maps.

In the following sections we will briefly discuss several well-known fusion-based

applications and show that our single-scale fusion (SSF) method produces highly

competitive results compared to traditional multi-scale fusion (MSF). We will then

discus the advantages of SSF in terms of computational complexity and ease of

implementation.

High Dynamic Range Imaging.

Various tone mapping techniques [166–172] aim to create a LDR depiction from

an HDR image by compressing the wide dynamic range to a narrower range.

Conversely, a well-known HDR imaging approach, exposure

fusion [41] skips the step of computing a HDR image, and immediately fuses the

multiple exposures into a high-quality, low dynamic range image that is ready for

display.

We compare our single-scale fusion approach with the well-known exposure fusion

technique of Mertens et al. [41], which extends the original MSF approach of Burt

and Adelson [56]. For a fair evaluation we use the same weight maps in the process

of fusing the multiple exposure images.
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Multi-scale fusion Single--scale fusion Multi-scale fusion Single--scale fusion

Figura 73: HDR imaging. Comparison of the MSF with SSF for several set
of images used in the TMQI evaluation shown in Table 3. From left to right
and top to bottom (arno, belgium house, cave, chairs, chinese garden,

kluki, mask, ostrow, memorial, laurentian library).

Figure 72 shows comparative results between SSF and MSF (the exposure fusion

approach of [41]) and also the results generated by several tone mapping techni-

ques [166–172] that have been generated by using the publicly available software

Luminance HDR3.

3http://qtpfsgui.sourceforge.net/
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S score N score Q score

Image Name MSF SSF MSF SSF MSF SSF SSIM

arno 0.8305 0.7745 0.7535 0.8311 0.9197 0.9156 0.9640
belgium house 0.8422 0.8274 0.9817 0.9853 0.9566 0.9530 0.9649
cave 0.7453 0.7265 0.7545 0.7730 0.8954 0.8925 0.9571
chairs 0.7313 0.7540 0.8353 0.8412 0.9034 0.9110 0.9854
chateau 0.7971 0.8110 0.8134 0.8518 0.9195 0.9291 0.9793
chinese garden 0.8554 0.8480 0.8137 0.8342 0.9358 0.9368 0.9869
foyer 0.8345 0.8262 0.8861 0.9021 0.9407 0.9407 0.9862
grandcanal 0.8347 0.8273 0.7850 0.7868 0.9257 0.9240 0.9483
kluki 0.8658 0.8484 0.7805 0.8885 0.9336 0.9449 0.9770
laurentian library 0.8431 0.8419 0.8184 0.8275 0.9331 0.9341 0.9684
mask 0.8351 0.8087 0.9535 0.9461 0.9506 0.9421 0.9853
memorial 0.8746 0.8756 0.7882 0.7813 0.9371 0.9363 0.9636
ostrow 0.8696 0.8302 0.7310 0.7683 0.9270 0.9220 0.9131

Average 0.8276 0.8154 0.8227 0.8475 0.9291 0.9294 0.9677

Tabela 3: Qualitative comparison between MSF and our SSF approach based
on the tone mapping metric quality index TMQI [173]. All three constituent
sub-indices (S- structural fidelity, N - statistical naturalness, Q- TMQI score)
of TMQI are shown, while the last column shows the values of the structure

similarity index (SSIM) between the MSF and SSF results.

Qualitative visual evaluation of Fig. 72 and Fig. 73 reveals minor differences be-

tween our strategy and the multi-scale fusion approach. We have also performed

a detailed quantitative evaluation, by employing a recent specialized model of the

quality of images produced by tone mapping operators TMQI [173].

TMQI uses the well known structural similarity (SSIM) index [86, 174, 175] along

with a natural scene statistics (NSS) model [176]. TMQI evaluates the quality of

the resulted LDR images using the HDR image as a reference. It combines the

multi-scale SSIM [174] with a statistical naturalness measure to generate a general

TMQI index.

For the quantitative evaluation we tested 13 sets of images (results on ten of them

are shown in Fig. 73 while the other three are included in Fig. 72 ). Table 3

contains the values of all three TMQI indexes (S- structural fidelity, N - statistical

naturalness, Q- TMQI overall score) that comprise the TMQI quality assessment

model (the values of the TMQI indexes are in the range [0,1]). Besides the TMQI

indexes, the last column of the Table shows the SSIM values between MSF and

SSF results.

As a general remark, it may be observed that our single-scale fusion strategy deli-

vers similar TMQI results as MSF. However, some structure information may be

lost (the index S is slightly lower on SSF as compared with MSF) the naturalness
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appearance of the SSF results are slightly improved compared with the MSF re-

sults (index N). Indeed, a close inspection of the level of similarity between the

SSF and MSF results reveals very little difference. These observations are also

supported by the SSIM index values shown in the last column of the Table 3.

General evaluation.

To evaluate the applications described in the following series of sections, we com-

pare the results of multi-scale fusion (MSF) with the output of our single-scale

fusion (SSF)approach. Since PSNR has been proven to be an ineffective way of

predicting human visual responses to image quality [77], we also compute the well-

known structural similarity (SSIM) index [86, 174, 175] on the results. Analyzing

the resulting PSNR and SSIM values reveals that both indicate that SSF delivers a

good approximation (e.g. the SSIM values were greater than 0.95 for all examples

in our experiments) to the MSF technique.

Source 1 Weight 1

Single-scale fusion

Grundland et al. [2006]

Source 2

Source 1

Weight 2

SSIM=0.989

PSNR=33.11

Figura 74: Image Compositing.

Image Compositing.

Image compositing is an important image/video editing task that deals with the

problem of combining component images in order to generate an integrated com-

posite image. Known also as photomontage, this artistic technique has been con-

sidered since the advent of photography [177]. Overlayed or superimposed images

are combined with the aim of transmitting artistic thoughts or expressions to

the viewer. Image compositing challenges consist of preserving the contrast, the

sharpness and creating seamless transitions in the composed output.
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Source 1

Grundland et al. [2006]

Linear Blending Multi-scale fusion

Single-scale fusionSource 2

SSIM=0.946

PSNR=27.52

Figura 75: Image Compositing.

Multi-scale fusion has been successfully applied for this task [39]. As shown in

the examples in Fig. 74, our technique performs on a par with the specialized

multi-scale fusion approach of [39] and also with the classical MSF approach using

the same weight maps as the ones described in the beginning of this section.

Moreover, it may be observed that our algorithm preserves the degree of apparent

local contrast as well as salient regions, while seamlessly blending multiple inputs

(see Fig. 75 for another example).

Source 1 Source 2 Multi-scale fusion Single-scale fusion

SSIM=0.996

PSNR=35.92

SSIM=0.987

PSNR=37.16

SSIM=0.991

PSNR=30.94

Figura 76: Extended Depth of Field.
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Extended Depth-of-Field.

This task seeks to blend several images that were obtained by focusing at different

depths to create an output image having an extended focal range. Extended depth-

of-field methods have utility in fields such macro photography and microscopy [36],

where the depth of field may be extremely limited. This task was performed

automatically over the entire image for the first time in[56] using a multi-scale

fusion strategy based on Laplacian pyramids. Figure 76 demonstrates that SSF is

able to produce comparable results as traditional MSF techniques (using the same

weight maps).

Source 1 Source 2 Multi-scale fusion Single-scale fusion

SSIM=0.998

PSNR=41.65

SSIM=0.996

PSNR=30.99

Figura 77: Medical imaging: fusing MRI/CT images.

Medical Imaging.

In the medical field, image fusion is important for integrating multi-modal images

into a single output result that may contain more details and a more complete

depiction. For instance, combining MRI with CT images [144, 178] is a com-

mon strategy that yields a more accurate description of the scanned body, since

information provided by these different scanning techniques may provide comple-

mentary information. Such MRI/CT fused output images have been shown to

provide both anatomical and functional information that can be important for

planning surgical procedures. Using two well-known MRI/CT image pairs [178],

Fig. 77 demonstrates that our simplified approach is able to yield results that

preserve the contrast and finest details in a manner similar to the classical MSF

approach (observe also the overlaid SSIM index values).
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Source 1 Source 2 Multi-scale fusion Single-scale fusion

SSIM=0.993

PSNR=35.67

SSIM=0.997

PSNR=43.69

Figura 78: Fusing visible and infra-red information.

Multi-band Image Fusion.

Multi-band image fusion considers the composition of images from different light

frequency bands, such as visible light and IR images. For instance, fusing radar

data and IR images can considerably enhance accuracy when estimating the po-

sitions of different objects [141, 145]. Additionally, in the context of nighttime

surveillance, existing techniques combine the IR image information with visible

image data in order to better detect and localize persons in an analyzed scene.

Figure 78 presents two examples that fuse the visible with IR information. Both

close visual inspection and structure similarity (SSIM index) validation, stron-

gly indicates that the SSF technique produces very similar results as the MSF

approach.

Figura 79: Comparative computation times (expressed in seconds of MA-
TLAB code) of NF, MSF and SSF strategies for different input sizes. As shown
, our approach has similar complexity (the same number of levels) as the naive
fusion approach, but able to deliver comparable or better results than the multi-

scale fusion approach.

While the computation complexity of our SSF technique is similar to that of the

naive fusion implementation (please refer to the Table 79), our single scale fusion

technique it is able to produce high quality results. Unlike naive fusion (NF),

the multi-scale fusion (MSF) approach has the advantage that it can preserve
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both relevant high and low frequencies into the final result, while strongly miti-

gating most visual artifacts (see Fig. 60). In contrast, the main disadvantage of

MSF is a higher computation complexity and more complex memory management

procedures. As described in the literature dealing with the resource efficient imple-

mentation of multiresolution processes [163, 164], data transfer and cache memory

management is non-trivial in systems that process signals at distinct resolution

levels, simply because manipulating multiple resolutions penalizes memory access

bandwidth (more data are manipulated) and/or memory access locality (when sub-

band coefficients associated to the same image location are stored in distinct parts

of the memory). The problem is especially critical for embedded systems with

highly constrained resources. On general purpose platforms, the memory access

platform is less prominent. In this case however, the computational complexity

is still larger for MSF than for SSF.To compare the SSF and MSF computational

complexity, Table 79 presents the running time of different fusion algorithms for

different image sizes. Codes have been written in Matlab, and run on [CPU i7 ,

8GB RAM]. As expected, our single-scale fusion (SSF) approach has the same ru-

nning time as naive fusion (NF) strategy , which is significantly faster than MSF.

This reflects the advantage of implementing the fusion as a single scale procedure.

II.4.4 Conclusions

We have introduced a simplified single-scale approximation to the well-known

multi-scale fusion based on the Laplacian decomposition. Before introducing our

single scale strategy for fusing multiple images, we first identify the most critical

components of the traditional MSF that helps to explain why MSF performs so

well. Our SSF method has a complexity comparable to the naive fusion solution.

However, our extensive qualitative and quantitative evaluations demonstrate that

our simplified fusion approach has the advantage to produce similar high quality

results as the multi-scale fusion approach.

In the future work, we plan to explore the use of perceptually relevant natural

scene statistics [179] to perceptually optimize the fusion process [180].
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My extensive experience in academic research has been motivated me to continue

my work and build an academic carrier. The habilitation will enable me to un-

dertake a novel and an exciting role and also the possibility to engage future PhD

students to achieve professional maturity and independence.

During my early academic career, I was focused on several fundamental problems

of computational photography. Computational photography is a fairly novel re-

search topic that merges computer graphics and computer vision techniques, re-

ferring broadly to sensing strategies and algorithms that extend the capabilities

of digital photography. Among them image decolorization [68, 132] was one of

the most important direction. Since image decolorization is quite subjective, we

believe that one single solution will hardly satisfy all the expectations. The main

reason is the fact the color is a perception information and is the way our brain

respond to the wavelengths. However, the main target of image processing is to

preserve the perceptual aspects of the image. One of the major drawbacks is in-

fluenced by the saliency algorithm, that identifies the most salient regions in the

image. Visual salience is considered to be the strategy of our brain that speed-up

selection and processing of items and locations. In many situations the image

content plays a key role and therefore saliency detection may fail. In future work,

we intend to extend the saliency algorithm by extending its processed information

with additional data such as scene classification, or objects identification. During

tests of the fusion algorithm, we have observed that since only the global contrast

differences are accounted, the employed saliency can fail to produce a consistent

regional contrast. We plan to extend this technique in order to account simultane-

ously for global contrast and the spatial coherence. We believe that the algorithm

can demonstrates its robustness and to be included by other applications such as

edge preserving filtering, single image depth estimation and segmentation. Addi-

tionally, we intend to investigate the potential of our algorithm for several other

pattern recognition applications that are still relying to the standard decolorizing

technique. Last but not least, we would like to introduce an objective color-to-

grayscale measure capable to deal with asses certain image qualities such as the

potential of preserving the original discriminability and also the finest details.

Another direction is image dehazing [1, 181, 182]. As a future direction, we intend

as well to extend our dehazing strategies to the problem of videos. Additionally,

we plan to address the more complex case when the images are characterized by

non-homogenous haze. We would like to investigate a more comprehensive optical
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model that would allow to restore more generally the images. We plan to extend

the algorithm for visibility recovery for underwater images. We believe that a

promising direction is to combine the dehazing with superresolution and image

denoising techniques, since in many cases the recovered regions require further

enhancement mainly due to the noise.

I have also extended my experience in several fundamental computer vision pro-

blems that are built on local feature points [61, 183–185]. Feature points have

extensively demonstrated their utility in various computer vision-related applica-

tions, considering their ability to depict distinctively local but also global content

of images. In the future work we would like to extend the classic approach by

considering the global information, that we believe also needs to be more dee-

ply analyzed. Aside from segmentation, information of the texture represents an

important global characteristic that is a challenge that should be explored more

efficiently, in order to filter feature points that have similar properties. In ad-

dition, since we involved only SIFT in our robustness demonstrations (regarding

photometric transformations), we plan to built up a comprehensive evaluation of

the proposed approach and to test it against other detectors descriptors which are

concerned.

Regarding the image deblurring in our previous work[186, 187] the strategy is to

take additional information by using sharp images of the same scene. Moreover, to

increase the robustness of our outputs, we plan to consider several changes into the

reference image such as additional noise and variation of the lighting. Moreover,

I plan to improve the robustness of our algorithm for larger geometric distortion

between images and also to consider more challenging blurs (e.g. shift-variant, out-

of-focus). A more challenging research direction is the case when both photographs

have been damaged by unknown motion blur. This research area presents a great

potential for complex applications, and it is known that deconvolution technique

can deal with other restoration problems that require edge preservation, such as

image denoising or surface reconstruction.

Considering our expertise using fusion fusion strategies [1, 68], we plan to enlarge

the explored area to various topics such as satellites remote sensing image fusion,

image saliency, image detail manipulation and segmentation.

Last but not least, in collaboration with my future PhD students, I will continue to
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carry out and manage different research directions in computer vision and compu-

tational photography. This will be reflected in my publication activity and also by

the activity as reviewer for different prestigious publications such as IEEE Tran-

sactions on Image Processing, International Journal of Computer Vision (IJCV),

Computer Graphics Forum Journal, Pattern Recognition, IEEE Transactions on

Pattern Analysis and Machine Intelligence (TPAMI), Pattern Recognition Letters,

Visual Computer but also to the main computer vision conferences: IEEE Com-

puter Vision and Pattern Recognition (CVPR), IEEE International Conference on

Computer Vision (ICCV), European Conference on Computer Vision (ECCV).

As a professor, my intentions are to cover my area of expertise such as classes

in computer science but also subjects related to computational photography, al-

though there are many adjacent subjects that also has arose my interest. I’m

convinced that it represents a great opportunity to teach and review fundamental

techniques in related areas such as mathematics and computer science. I strongly

believe that my devotion for research will be reflected also in comprehensive and

well-illustrated courses.

As a researcher, my eagerness to learn new things reflects a high degree of motiva-

tion. I believe that a professor helps constructing the flow of the lab, both scienti-

fically and personally. As well, I aim to foster and stimulate scientific discussions,

write papers and grants, teach others experimental design and analysis, and pre-

sent the findings of my research. My interests in academic education range widely,

although teaching experience shaped and is been shaped by my research interests.

My plans revolve around the development of usable, high-fidelity computational

photography and computer vision techniques. This habilitation will reinforce my

role and will enable me to undertake new collaborations by exchanging experience

with researchers and students from other universities. It is a great opportunity to

motivate my PhD students to develop novel and effective algorithms and practical

tools in subjects such as: HDR imaging, super resolution, deblurring, white ba-

lancing, image matching, dehazing, underwater image and video restoration etc.

In addition, considering my personal experience, I will actively support them to

get involved in different national and international grants.
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