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The expanding domain of Network Science facilitates the understanding of existing 

patterns of connection in nature and our own society, both physical and social. Social Network 

Analysis, the application of the broader field of Network Science, has received an increase of 

interest from the scientific community, due to its relevance in analyzing the intricate nature of 

social dynamics, emergent human behaviour, collaboration and influence. 

The goal of this thesis is to use Computer Science as an underlying tool for simulating 

complex models in a dynamic fashion, as well as to uncover crucial aspects regarding social 

and economic collaboration and emergent behaviour.  

 

The main objectives of this thesis are: 

1. Create a state-of-the-art emergent and collaboration network - by using the analytical 

power of computers (e.g. data-mining, machine-learning, etc.) -, based on real-world 

data, in order to analyze and compare its fundamental properties to other, similar 

networks. 

2. Propose a new metric capable of quantifying the sociability of a node in regard to the 

social features. 

3. Create a simulator capable of simulating emergent relationships between (economic) 

agents and releasing it as a tool. 

4. Using the created simulator as a tool, simulate and analyze the share of total payoff, the 

distribution of payoff, as well as the ergodicity of economic networks. 

 

In order to achieve the first two objectives, in the first part of this thesis I analyze the 

emergent network formed by musicians. By employing both traditional methods of analyzing 

complex networks, as well as original elements exposed with this thesis, I analyze the network 

of musicians not only from a collaborative point of view (i.e. between musicians), but from an 

economic point of view (i.e. their activity to produce musical content) as well. As such, I bring 

the following contributions to this thesis: 

 Big Data mining: the nature of information needed for this study meant that the data 

itself was not readily available and needed to be gathered from several online 

repositories. Furthermore, inspired by the Jazz musicians network, MuSeNet is not 

limited to one genre, but instead takes into account the bands and musicians from 

all musical genre. 

 Centrality analysis: I analyze MuSeNet from the perspective of important 

centralities. 

 Machine learning (unsupervised): by using the analytical power of computer 

analysis and simulation, I segregate fundamental communities with the help of a 2D 

force-directed (community detection) layout algorithm. Furthermore, I identify the 



 

 

overlapping of genres, detect influential agents, as well determine the “Kevin 

Bacon” of the music industry. 

 Motif analysis: I apply a novel approach of analyzing and differentiating networks 

by identifying existing motifs within these networks. 

 S-metric: by introducing a state-of-the-art metric into literature, I determine the 

sociability of several networks, and by comparing them to MuSeNet, I discuss their 

real-world effects. 

 

In the second part of the thesis I present a state-of-the-art socio-economic simulator, based 

on both empirical observations, as well as innovative economic models. Having precise 

simulation capabilities, it is used to analyze the processes behind collaborations and 

interactions, as well as the emergent distribution of payoff at the macroscopic scale, with 

specific, well-defined rules at a microscopic scale. As such, the contributions brought in the 

second part of this thesis refer to the creation of a state-of-the-art trade and economic simulation 

application, with the following features: 

 Driven by heuristics: with additional improvement to the mechanism to model the 

behaviour of economic agents, by using the tolerance-based interaction model as 

foundation. 

 Tailored according to main schools of economic thought: with high flexibility in terms of 

economic theories, agent models, and interaction assumptions. 

 Real-life features: complex network topologies, evolution of economic agent roles, dynamic 

creation of new economic agents, diversity in product types, dynamic evolution of product 

prices, and investment decisions at agent-level. 

 Valuable simulation application: by using TrEcSim, I analyze the following attributes of 

(economic) exchange networks: 

 Static and dynamic distributions of payoff: I analyze inter-agent dynamic and 

emergent behaviour. 

 Ergodicity: I employ computer simulation in order to obtain accurate insight 

regarding the intrinsic fairness of economic systems, based on network topology 

and producer/consumer placement. 

 

Thesis structure includes an introductory chapter, a chapter pertaining theoretical 

foundations, and one describing the state-of-the-art of the chosen field. In the next two 

chapters, I present the two emergent collaborative networks analyzed (MuSeNet and 

TrEcSim), each with its own dedicated chapter. The thesis ends with a chapter dedicated 

to the conclusions, contributions, as well as to the research direction, references (219 titles 

consulted and cited) and an annex. This thesis extends itself over 122 pages and contains 

62 figures and 15 tables. 

 

In the first chapter I present a brief introduction to the field of Network Science. 
Containing elements from exact sciences – e.g. computer science, physics, mathematics, etc. – 

Network Science facilitates the study of our society, its behaviors and relationships by using 

the computer as a tool for modeling and simulating Big Data. Social Network Analysis – one 

of the main branches of Network Science – has caught the attention of the scientific community, 

due to its applicability in analyzing and understanding of real-world networks, both from a 

topological level of a given network (i.e. how each nodes are connected to each other), and 

from a behavioural level (i.e. how each nodes interact with each other). Since both of these are 

analyzed using empirical studies (e.g. statistical analysis, direct measurements, indirect 

measurements, etc.), Social Network Analysis can lead to the creation of valid models for the 

observed real-world networks. 



 

 

The motivation behind the research presented in this thesis is to observe and understand 

the professional relationships of agents (both musical and economic), how they form new links 

based on their common attributes (e.g. role, profession, location, preference, etc.), and watching 

this collaboration network evolve with each new node, all the while staying within the 

framework of Computer Science. 

Ever since my Master of Science studies, after being exposed to the concept of complex 

networks, my research involved more and more often the usage of Network Science in 

Computer Science. As a result, I opted to use computer analysis and simulation as research 

methodology for this thesis as well, especially due to the fact that a purely mathematical 

approach would not offer the possibility of gathering, analyzing and modeling the huge amount 

of intricate data required to model complex networks. That being said, in order to make use of 

a mathematical approach, researchers are limited to a purely statistical analysis on networks 

with either a regular, or a random graph topology. Therefore, by using the analytical power of 

computer analysis and simulation, I show that the generated inter-agent relationships are indeed 

realistic and dynamic in nature, and as a result, they can be used in real-world applications. 

This research, along with its results allows us to elucidate the emergence and 

mechanisms of various social phenomenon and whether they share dynamical and structural 

features or not with other natural, social processes. Closely observing social phenomena like 

influential agents, collaborations between two or more agents, or even the formation of a new 

agent (or link) will constitute an excellent opportunity to understand network formation 

processes and influence dynamics. Indeed, Network Science brings a better understanding for 

the structure and behaviour of social and economic networks, thus proving that human 

interaction is not only important in Social Science, but it is also essential for many other fields 

such as technology and engineering. 

 

In the second chapter I present the theoretical foundations necessary for 

understanding this thesis. Thus, I present a classification of complex networks into four basic 

categories (i.e. biological, social, technological and semantic), basic topologies (i.e. regular 

mesh, random, small-world and scale-free), as well as metrics specific to complex networks 

(i.e. centrality, degree distribution, average path length, clustering coefficient, modularity) used 

in this thesis. Related to these metrics, I also present two novel approaches of analyzing 

networks, namely: network motifs and metric fidelity. 

One important common property of all networks is that they can be represented as 

graphs, as well as sub-graphs called (network) motifs. Motifs are defined as being recurrent and 

statistically significant sub-graphs or patterns of complex networks. Since each and every one 

of these sub-graphs, defined by a particular interaction-pattern between graph nodes, reflects a 

specific function in the network, as a whole, they can also be used to compare various networks. 

However, their detection is still computationally challenging. This is due to the large amount 

of combinations which need to be detected and compared. To this end, the smaller the size of 

the motif, the easier is to detect; as such, I rely only on motifs of size when analyzing MuSeNet 

and comparing it to other networks. Even though there are a few approaches by various authors 

studying network functionality using motifs of up to 6, I found that using smaller motifs not 

only do I obtain far less distinct patterns, but they are also much more numerous to be found in 

graphs, thus yielding far more relevant results. 

A new and alternative method of quantitatively comparing networks – one that is also 

used in this thesis – is to compute each network’s metric fidelity and to compare them among 

each other based on individual metric measurements. Tailored to express the similarity between 

any two generic vectors, it can offer insight on network model resemblance or synthetic model 

realism compared to a real world network. 

 



 

 

In the third chapter I present the state-of-the-art regarding the process of 

collaboration in complex networks.  In general terms, complex networks are formed by a set 

of social actors connected together based on certain rules. These nodes, though mostly 

autonomous, geographically distributed, and heterogeneous in terms of their operating 

environment, culture, social capital and goals, all share the same basic property: they 

collaborate with each other in order to achieve common or compatible goals. Thus, the more 

significant this outcome, the higher the participation and commitment level will be among the 

collaborators. From a structure-point-of-view, this process can be represented by a physical 

connection between the collaborating nodes. Studies performed over a variety of complex 

networks have resulted in mapping distinctive types of relationships, yet featuring similar 

properties, namely the desire to collaborate, in one way or another. As such, a handful of such 

examples are listed, most of which constitute prerequisites to MuSeNet: 

 Co-authorship Network: a contemporary landmark in the academic research of the 

collaboration process represents the study of the authors of different scientific 

publications. These authors are no longer isolated agents, but are part of a 

multidisciplinary collaborative network. Among other things, the analysis of these 

networks offers new perspectives regarding the number of published articles, their 

quality, the location of the authors, but also the evolution of the network over time. As 

a structure, this network is small-world, with clearly delimited communities. This is due 

to the fact that the collaborative action is adapted from one node (author) to another, 

based on the scientific area of the respective group. 

 Marvel Universe: Marvel Entertainment has been in business for over 70 years, 

continuously developing characters, plots and media (e.g. movies, television shows, 

games, etc.), only to realize that for a newcomer, jumping into this plethora of 

information would be an intimidating process of manual and time-consuming research. 

Aiming to simplify this process, and to overcome its disadvantages, the community 

behind the Marvel universe resorted to the power of graphs. Thus, a connection was 

created between superheroes who appeared, even for a short time in the same movie, 

cartoons, series, game, etc. The network obtained - consisting of ~ 6,500 nodes 

(superheroes) and ~ 10,000 edges (relationships) -, although a synthetic one, is very 

similar to other naturally formed networks however, the clustering coefficient differs 

drastically from that of real-life collaboration networks, due to the way how characters 

are distributed throughout the media. This completely contradicts the way how real-life 

scientists collaborate in writing scientific papers, and is due to the networks ’artificial 

origins. 

 IMDB Actor’s Network: Derived from a famous statement made by Kevin Bacon 

himself, a whole science was dedicated to this, sparking an interesting concept in the 

domain of social networks: the Bacon number; it is defined as the number of degrees of 

separation any given Hollywood actor has from Kevin Bacon. The higher the Bacon 

number, the farther away from Kevin Bacon that particular actor is. The computation of 

a Bacon number for any given actor is based on the shortest path algorithm, applied to 

the co-stardom network. 

 Jazz musicians network: Similar to the previously presented studies, an analysis 

involving the collaboration network of Jazz musicians represents yet another 

prerequisite of MuSeNet. In this particular study, the authors present both the 

collaboration network formed between two individuals, where two musicians are 

connected if they have played together in the same band, as well as the collaboration 

band network. This network is formed by creating connections between bands who 

feature at least one common member. One of the most interesting results was the 



 

 

segregation of musicians in communities, either because of racial discrimination or 

because of their geographical location. 

 

 In the fourth chapter I create and analyze MuSeNet, the collaborative network or 

musicians. Based on the mentioned publications regarding collaboration in complex networks, 

we can notice the emergence of certain communities based on existing ties within the network. 

Inspired by these studies, I considered it paramount to address the existing relation-ships – both 

collaborative and economic – between musicians. As such, by staying within the framework of 

Computer Science, MuSeNet, a novel approach of mapping and analyzing the community 

formed by musical artists – without limiting it to just one genre –, was introduced into literature. 

The necessary data were collected from several sources, obtaining information on ~ 20,000 

musicians and ~ 5,000 bands. 

Network Analysis 

 In Figure 4.2 we can see the relevant emerging communities that form over MuSeNet 

based on genre, namely Pop/Rock 24.56%, Jazz 16.72%, Blues 15.8%, Classical 8% and 

Country 5.35%. Even though the proportion of music styles is already a known fact, what 

network analysis unveils are the existing spatial distributions as well as their overlapping 

properties. As such, the most popular genres are also the ones clustered together, as there are 

more collaborating artists. The topologically marginal genres are also the ones less popular, 

confirming the fact that there is a correlation between the communities ’center of gravity and 

their real-world popularity. As a general rule of thumb, the further a genre-community is from 

the absolute centre of MuSeNet, the less popular it is. This holds true for the opposite also. 

 As the most dominant music style, the community formed by Pop/Rock artists is very 

central and also tightly clustered, meaning that artists in this industry prefer to work together 

with others alike. On the opposite side lies the community formed by Jazz musicians. This 

community tends to dissipate and overlap multiple styles. This is due to the very collaborative 

nature of Jazz musicians together with musicians of various other genres. The same conclusion 

can be drawn for Classical music which, in today’s world, implies composing contributions for 

movie scores, commercials, and melodic lines for other genres. Finally, Country music shows 

a similarity to the pop/rock community, namely that all artists are linked more with each other 

rather than with musicians from other genres. However, the community has a more eccentric 

position which I correlate with its popularity. 

 In Figures 4.3 - 4.6 we can observe the distributions of centralities in MuSeNet, specific 

to other networks as well, namely a distribution of power-law, degree, eigenvector and 

pagerank. Noteworthy is the dominant cluster in Figure 4.5, consisting of nodes with a very 

high eigenvector. Upon close inspection, I determined that this community is made up of mature 

musicians, such as Alphonso Johnson, with a recording studio; the fact that most published 

music goes through their studio makes them,as a whole, the central community in MuSeNet. 

Referring to the previously mentioned idea of meritocracy vs. topocracy presented in a recent 

study by authors Borondo et al., this community is the one that thrives mostly in the topocratic 

environment of the music industry, making the most out of its influence in the music industry. 

This also holds true from an economic point of view, as content creation is a form of economic 

activity. Moreover, this real-world influence is replicated in the graph. 

 Finally, similar to the IMDB study which denotes Kevin Bacon as the most influential 

node in the Hollywood actor network, I identify Dave Grohl as the ”Kevin Bacon” of the music 

industry. This aspect is clearly visible in Figure 4.6, where I show the betweenness distribution, 

a classical method of computing influence. 

Graph Metric Analysis 

In order to obtain other relevant results, I compared MuSeNet with other distinct 

networks: Jazz and IMDB – due to their similar approach –, but also social networking models, 



 

 

such as Faccebook, Twitter or Google+, in order to put in perspective the particular features 

that artists have as opposed to everyday Internet users. Thus, I used the topological metrics 

which are specific for every complex network, namely: average degree, average path length, 

average clustering coefficient, modularity, graph edge density and graph diameter. 

Interestingly, the Facebook model is at an average level in terms of sociability, while 

the IMDB actor’s network is more sociable and MuSeNet on the contrary, less sociable. This 

difference can be explained as follows: Facebook users (i.e. everyday users) interact and create 

new friendships at what we call a normal rate. Actor’s everyday job, however, relies on co-

starring with other actors, in a different movie every time, due to the fact that casts for movies 

are very broad. This makes their network very clustered and thus seems more sociable, in our 

terms. Musicians, however, do not usually create art (work) with many others. They mainly 

rely on their own band (of approximately five members on average), and not more then on the 

other artists from their own genre. This makes links in MuSeNet less dense, clustering very 

high and the community structure powerful. By applying the sociability term on MuSeNet, it 

can easily be considered as a “non-sociable” network. 

Motif Distribution 

A popular approach in Network Science to analyze the functional abilities of a given 

network is by uncover structural design patterns – i.e. repetitive sub-graphs –, consisting of a 

well-defined number of nodes, which are specific only to that given network. For this particular 

study, I considered only size-3 motifs, due to the simplicity of detection, their large number of 

appearances in the network, as well as the relevance they offer. Therefore, I determined the 

distribution of patterns for each empirical network using the FANMOD algorithm, one of the 

fastest detection algorithms. As a result, I obtained Figure 4.7, in which we can see that the Jazz 

musicians network behaves more like a normal social network – having a uniform distribution 

of motifs – while the IMDB and MuSeNet networks have a predominant motif characterizing 

them. As the second and last step, I apply the fidelity metric to compare the motif distribution 

vectors with one another, where a value of 1 means complete similarity, while a value of 0 

means complete dissimilarity. 

 

In the fifth chapter I present TrEcSim, a novel socio-economic simulator, as well 

the simulation results obtained with it. Switching from the musical industry to the domain of 

Ecomomics, it is very important to understand the conditions in which certain economic agents 

fare better than others at individual-level. Also, it is important to discern the types of social and 

economic networks that are associated with the best outcomes at system-level; however, due to 

the fact that economic networks are non-linear, un-predictable complex systems, it is very 

difficult to analyze them based only on real-time quantitative observations. Another approach 

for the analysis of economic systems is to simplify them using mathematical models, or to 

simulate them with simulators capable of simulating complex agent behaviour. 

As such, I extend the existing economic models, simulators and empirical observations 

by creating TrEcSim. The Trade and Economic Simulator is a state-of-the-art economic 

network simulator, where agent decision is driven by certain heuristics, that were tailored 

according to main economic theories and is designed to support the following real-life features: 

complex network topologies, evolution of economic agent roles, dynamic creation of new 

economic agents, diversity in product types, dynamic evolution of product prices, and 

investment decisions at agent-level. Here, my scope is to gain a better understanding of 

economic networks and to analyze inter-agent dynamic behaviour by means of computer 

modeling and simulation. As such, by employing computer simulation, I want to address the 

following objectives: 

 Simulate economic networks based on four underlying network topologies – mesh, 

small-world, random and scale-free – in order to get a better insight on static and 



 

 

dynamic distributions of payoff. 

 Analyze the influence of topological features (i.e. network topology and placement 

of agents according to their roles) on the distribution of payoff. 

 Implement a new mechanism for modeling the behaviour of economic agents, 

inspired by the tolerance-based interaction model. 

In short, TrEcSim allows the computational analysis of collaborative and emerging economic 

networks on a macroscopic scale, with parameters set at the micro level. 

One of the most interesting studies that has attracted the attention of the scientific 

community is the model described by the authors Borondo et al. regarding integrated economic 

systems, a model on which TrEcSim is based on. The analysis of these systems is particularly 

important because the creation of new economic ties is costly and often influenced by the social 

network that co-exists within them. Therefore, in a real economic system, revenues can be 

classified according to their source, either from the producer or from the middleman, the 

intermediary in a transaction. Thus, the authors Borondo et al. argue that once the number of 

connections in the network decreases, the network goes from a meritocratic state (fair, where 

the income is determined by the talent of the individual agent) to a topocratic state (unfair, 

where the topological position of the economic agent determines the obtained income). 

However, the model described by the authors Borondo is a simplified one, due to the 

mathematical and statistical approaches used: 

 Assumes only the random topology as the underlying network (i.e. random). 

 The number of economic agents and their roles as producer/rock-star or 

intermediary are predefined and fixed. 

 The agents only produce one type of product, with a fixed (pricing) value. 

 All analysis is done in a single iteration. 

All these aspects impact the realism of the model, as well as the study as a whole. Conclusively, 

I addressed these issues within TrEcSim: it uses any complex system as a basis for simulations, 

either created or imported. Moreover, the evolution of agents and roles is variable, and such an 

example can be seen in Figure 5.11: the producers of the product Pr1 on the left side can also 

be consumers of the product Pr2 on the right, in another simulation cycle. Similarly, the 

evolution of products, their quality and quantity, as well as their price, are also variable, and 

the income obtained by agents can be invested in various actions. 

Model Description 

The framework itself can be split into three main components: initialization phase, 

transactional phase and decisional phase; an overview of TrEcSim’s framework is presented in 

Figure5.10, corresponding to the implementation of the extended model. In the initialization 

phase four main processes take place, in order to create the simulation interface, namely: 

createNetwork, which creates the network of economic agents, based on the settings made or 

the imported data; createProducts which defines products and their attributes; 

createProductions which defines producers and their production attributes; and createNeeds 

which defines the sub-set of needs for each economic agent.  

In the transactional phase, economic agents identify current needs based on the 

importance factor, quality, quantity and price of the product. Thus, each new iteration of the 

transactional phase starts with the getBestProduction process, to compute the best option from 

where to procure the necessary products, while the getAffordableQuantity process determines 

the maximum quantity that can be obtained depending on the quality and quantity of the 

products. The transactional phase ends with the finalizeTransaction process, which completes 

the transactions according to the attributes mentioned above, and to determine the individual 

income, based on Equation 5.4. 

The transactional phase, while important from an economical point of view, does not 

entail by itself the network’s dynamicity. On the other hand, it is in the decisional phase where 



 

 

the dynamics of the network and its topology are determined. It is in this phase, where the 

economic agents probabilistically decide which of the following actions to adopt: 

 Action 1 (determined by the decideCreateLink process): creating new links between 

two economic agents and thus circumventing a given number of middlemen. Based 

on information gathered so far, the algorithm computes which economic agent 

would be best suited to link to, in order to improve the current agent’s economical 

stance.  

 Action 2 (determined by the decideCreateProduction process): investing in the 

creation of a new product by allowing the current economic agent to start producing 

a specific Pr product, based on demands 

 Action 3 (determined by the decideImproveProduction process): invest in 

improving current production quality or quantity by looking through all of economic 

agent’s current products and deciding upon improving either quality or quantity for 

a given product Pr. 

 Action 4 (determined by the decideExpand process): expanding the network by 

creating a new economic agent. This option requires that the algorithm analyzes 

several attributes before computing its outcome: the percentage of the current funds 

which will be transferred to the new agent; the advantages and disadvantages of 

creating different products; the advantages and disadvantages of being linked to the 

new agent; how much of the current agent’s debt it should inherit; etc. 

To compute the best investment action for the current economic agent 

(determineCurrentDecision process), the getPastDecisionScores and the 

getPastDecisionScoresFromNeighbours processes determine which of the past decisions were 

most profitable for the current agent and an arbitrary number of neighboring economic agents. 

Once an affordable decision has been computed, the makeDecision process – the last from the 

decisional phase – implements the decision. 

Simulation Results 

To get conclusive results, I used the same initial settings in all my simulations. As such, 

we generated 10 networks of 100,000 agents each and with different densities for each basic 

topology: mesh, small-world, random and scale-free. Thus, the networks obtained are presented 

in Table 5.3, and are created to simulate two cases for each topology: one where the producers 

are assigned randomly to the existing economic agents, and one where the algorithm within 

TrEcSim assigns the producer roles based on a probability that is proportional to the agent’s 

degree; as a result, the higher the agent’s degree, the higher its probability of becoming a 

producer. 

Simulation Results for the Extended Model 

By plotting the amassed payoff of both producers and middlemen for all of the 10 

distinct densities (in each of the considered topologies) based on the random allocation of 

producers and averaging the values, I uncover the difficulty that producers encounter when 

trying to surpass the payoffs gained by the middlemen. In the 2D mesh (Figure 5.14), small-

world(Figure 5.15) and random (Figure 5.16) networks the producers surpass the 50% threshold 

of the total (network-wide) payoff only after a significant number of iteration cycles (≈230). 

However, in the scale-free network (Figure 5.17) the total payoff earned by the producers does 

not surpass that of the middlemen. Therefore, when randomly assigning the producers 

throughout the network, increasing only the network density does not guarantee that the 

producers will get the larger portion of the total payoff. Such a result can be attributed to the 

presence of many highly connected middlemen which act as exchange hubs. 

 On the other hand, when preferentially assigning the roles of producers to the economic 

agents with the highest degrees, and plotting the share of total payoffs resulted from 

simulations, I obtain an evident transition from a topocratic network layout (i.e. where the 



 

 

middleman obtain most of the payoff) to a meritocratic one (i.e. where the producers obtain the 

largest share of the payoff), as presented in Figure 5.18 (mesh network), Figure 5.19 (small-

world network), Figure 5.20 (random network), and Figure 5.21 (scale-free network). This 

scenario, however, is not completely accurate with respect to the real-world, as the layout of 

economic networks are not (necessarily) governed by such prerequisites. Furthermore, the 

simulation results contradict the conclusion that an increased network density alone 

automatically leads towards a meritocratic economic network. 

 By analyzing the evolution of payoff for both cases, I can clearly identify the unfair 

advantages of a topocratic environment over a meritocratic one (regardless of the underlying 

topology), as well as the presence of emergent behaviour among the economic agents. As such, 

each agent is adapting to its current environment and is investing in viable actions accordingly. 

This is most prominent in the scale-free network topology, where the presence of hubs limits 

the payoff of each agent. 

Simulation Results for the Distribution Payoff 

 To obtain the distribution of income for each economic role, I used the previously 

obtained data and carefully analyzed the distributions between the two categories: producers 

and middlemen, obtaining the charts presented in Figures 5.22 - 5.25.  

 When producers are assigned randomly throughout the network, the averaged income 

for the producers is represented by positively skewed distribution; in other words, only a 

handful of agents benefit from an increased income compared to the rest of the producing 

agents. Conversely, the normalized share of total payoff for the middlemen closely resembles 

a normal (i.e. Gaussian) distribution, meaning that there are a lot more economic agents that 

gain (percentage-wise) the maximum payoff when comparing their payoff to both their 

producing counterparts, and the rest of the middlemen. When using the scale-free topology and 

assigning the producers randomly throughout the network I obtain a log-normal distribution. 

This is not only due to the presence of hubs in the network, but also because some hubs become 

producers. 

 Upon assigning the producers preferentially to high-degree agents in the mesh, small-

world and random networks, I obtain a Gaussian distribution of payoff for the producers, as 

presented in Figures 5.26 - 5.28, while for the middlemen I obtain a positively skewed 

distribution. The fact that in both cases the distribution patterns alternate indicates that the 

physical location of economic agents plays an important role regarding the payoff of the agents, 

not only for the middlemen, but also for the producers acting as intermediaries. When the 

producers are assigned preferentially in scale free networks (Figure 5.29), the obtained charts 

clearly depict a fat-tailed, power-law distribution of payoff for producers, where only a handful 

of economic agents earn a lot (i.e. those in a favorable topological location), while the rest of 

them benefit from minimal payoff. Additionally, I obtain a log-normal distribution of payoff 

among the middlemen. Similarly, as in previous cases, the obtained results are a clear indication 

of emergent behaviour among the economic agents, adapting to the way they were assigned 

throughout the network. 

Simulation Results Pertaining the Ergodicity in Economic Networks 

 In economic networks, it is important to analyze both static (i.e. population-level) 

payoff distribution, as well as dynamic (i.e. time distribution at individual-level) payoff 

distribution. Furthermore, it is also important to compare and correlate the two distributions 

according to the ergodic theory: if the two distributions are similar, then the economic system 

is ergodic and may be considered as being fair: the individual agent has good chances of 

improving its payoff if it takes the right decisions, but it can also be punished if it takes the 

wrong decisions. If the two distributions are substantially different, then the system is non-

erogodic (or path-dependent) and considered as unfair. I investigate ergodicity further by 

analyzing the distribution of wealth based on the number of iterations (time) spent in a particular 



 

 

payoff category, as well as on the number of economic agents (space) in each payoff category 

and comparing their payoff distributions, in order to determine the fairness of economic 

exchange networks 

 After identifying each distributions, I obtained the data from the Tables 5.5 - 5.8. This 

fitting process was done by employing EasyFit, a software system for data fitting in dynamical 

systems. The numerical analysis shows that there is variable similarity between the payoff 

distributions in space (i.e. number of economic agents) and time (i.e. time interval), depending 

on the underlying topology. In general, the scale-free topology (Figures 5.36 and 5.37) is the 

only one with significant differences in distributions (between 22% and 80%), while the mesh 

(Figures 5.30 and 5.31), small-world (Figures 5.32 and 5.33) and random (Figures 5.34 and 

5.35) networks have small to very small variation (between 2% and 27%), proving that our 

economic (extended) model is ergodic. An investigation of all simulation scenarios makes us 

conclude that assigning the producers preferentially rather than randomly does not change the 

ergodicity of the tested models, with the notable exception of the scale-free topology. 

 

In order to obtain more, in-depth information regarding the ergodicity of economic networks, I 

also investigate if there are any economic agents, who based on the outcome of the chosen 

actions of investments, have reached a point where they can no longer afford to undertake – i.e. 

invest in – any additional action(s). As a result, the percentages of bankrupt economic agents 

are indeed within the margins of empirical observations for all the fundamental network 

topologies – albeit more pronounced in the case of the scale-free topology –, both for random 

and preferential agent assignment; this leads us to the conclusion that the obtained results are 

indeed good ergodicity indicators for economic exchange networks. 

 

 In the last chapter I reiterate over the relevant conclusions from this thesis. 
Complex networks are comprehensively studied due to their important applications in various 

fields, from Medicine and Sociology, to Architecture, Music, Engineering and Economy, as 

well as an amalgam of these fields. They can also be considered collaboration networks, 

because they represent actors (indirectly) connected through their common collaboration entity, 

be it movie acting or economic activity.  

 In the first half of this thesis, I presented a state-of-the-art analysis of MuSeNet, an 

emergent network formed solely by musical artists. Very similar to other complex networks, 

MuSeNet presents all of the usual properties: it is scale-free – meaning that artists ’connectivity 

distributions are in a power-law form – and has a high degree of centrality. With this study, the 

sociability of several networks were also highlighted via graph metrics: MuSeNet is a more 

closed network than the IMDB actors network – and other usual friendship networks –, due to 

the fact that music artists do not usually work with many others, since they rely on their on band 

and associated acts; additionally, links are also formed at a much slower rate, compared to the 

Facebook model. Motif-based analysis was also used to numerically express the characteristic 

aspects of collaboration networks, a technique that has recently been adopted from Systems 

Biology. In light of the study nominating Kevin Bacon as the most influential node in the IMDB 

actor network, I found Dave Grohl to be the ”Kevin Bacon” of the music industry. Moreover, 

by analyzing MuSeNet from the perspective of important centralities, I reached the conclusion 

that similar to both the IMDB actors network and the Jazz musicians network, certain artists 

have higher centrality indices than the rest. As such, I found artists like Greg Errico to have the 

highest degree and Pagerank, and Alphonso Johnsonto have the highest eigenvector centrality. 

A second important empirical observation is the existence of a small single dominant 

community of nodes with very high eigenvector centrality. This is the community formed by 

artists who currently own a record studio. It is through their studios that most music is recorded 

and produced and it is because of this topocratic environment they managed to secure a thriving, 



 

 

central role in MuSeNet. With the broader perspective of social networks analysis in mind – 

namely to better understand and model complex networks –, the obtained results pave the way 

for a better understanding of the particular concepts of social collaboration, our society as a 

whole and the role we play in it, especially from a socio-economic point of view. For instance, 

we would often identify individuals who would benefit from a topological opportunity, though 

without any creative contribution to the network itself. Hence, we can not fully understand a 

meritocratic network without factoring in topocracy.  

 Conclusively, in the second half of this thesis, I presented a state-of-the-art economic 

simulator; TrEcSim was specifically created to simulate economic activities with high 

flexibility in terms of economic theories, agent models, and interaction assumptions. One such 

simulated economic model concludes that an increased economic interconnectivity fosters 

meritocracy, as opposed to topocracy, which is promoted in a poorly connected network. At 

first glance, the findings presented by Borondo et al. were also confirmed after simulating 

multiple network topologies. However, by analyzing the payoff distribution in a meritocratic 

environment based on agent roles, I showed that the topological placement of the economic 

agents directly influences the payoff distribution within the separate categories of producers 

and middleman. Indeed, the payoff distribution within the same economic agent category is 

strongly non-uniform, often following a fat tailed, power-law distribution. This observation 

holds true for both middlemen and producers acting as intermediaries. Nevertheless, I found 

that the distribution inside each agent role is not influenced by the network’s topology, but 

instead by the placement strategy of agents within the net-work. Indeed, when producers are 

assigned randomly to topological positions, the payoff distribution within the producers 

category is fat-tailed (only a handful of producers benefit from an increased payoff), while the 

payoff of the middlemen category closely resembles a Gaussian distribution. Conversely, when 

the topological positions of producers are assigned preferentially, the payoff distributions of 

the two role categories reverse. Taken together, these results also highlight the emergent 

behaviour economic agents exhibit on a macroscopic scale, in order to further themselves in a 

specific economic community. By applying a new, state-of-the-art approach, I gained even 

more valuable insight regarding the distribution of the income for each agent-role in various 

economic exchange networks. In all cases, the evolution of the total payoffs closely followed 

the overall results already obtained by other means, and offered yet another argument in 

reference to the un-fair advantages of a topocratic economic network over a meritocratic one, 

regardless of the network’s topology, as well as the presence of emergent behaviour among the 

economic agents. By analyzing both time and space payoff distribution fitting, I concluded that 

the payoff distribution generated with TrEcSim is indeed ergodic – i.e. fair – for all topologies 

except the scale-free topology; moreover, the ergodicity seems to be determined by the 

topology type alone, as agent-role assignment does not play a role in this case. A good 

ergodicity indicator is also the presence of a (limited) number of financially bankrupt economic 

agents, otherwise non-existent in the rockstar model.  

Admittedly, the contributions brought with this thesis to the field of Network Science 

are significant. The tools and results presented leave room to further the research and 

experimentation I started many years ago; moreover, the work started also promotes new 

approaches and research in the field of Social Network Analysis. 

Future Research Directions 

Obtaining relevant results is the driving force for any researcher, even more so when 

the domain one is working in is still in its relative infancy. As such, in light of the recent 

advancements in the field of Social Network Analysis and the direction my studies have brought 

me in this field during my studies, I foresee the following contributions to have immediate 

effect on the research I started: 



 

 

 Improved heuristic algorithm: additional effort will be put into the enhancement of 

TrEcSim’s heuristic algorithm. Currently, the algorithm analyzes past decisions 

made by the economic agents and computes its outcome, however it will be 

improved as to allow the heuristic algorithm to use this information and create a 

buffer simulation; in other words, the algorithm will create a side-simulation based 

on several steps ahead and (probabilistically) analyze its results, greatly improving 

the accuracy of choices in the process. 

 Genetic algorithm: converting from the existing heuristic algorithm to a genetic 

algorithm will improve TrEcSim in more than just a couple of ways. The 

implementation of said algorithm will allow users to find fit solutions in a short 

computational time, while the random mutation guarantees a wider range of 

solutions. 

 Economic theories: improved implementation of the main schools of economic 

thought will greatly increase TrEcSim’s applicability and usability in the field of 

social network analysis, herein including the economic domain as well; two such 

theories are ”the theory of marginality” and ”the labor theory of values”. 

 Realism: by implementing new mechanisms into TrEcSim, it will undoubtedly 

improve the realism of the simulator further by taking into consideration several 

real-world factors like information asymmetry – which often occurs in transactions 

– as well the role of government involvement and regulatory red-taping. Adding 

cost (or other form of burden on the economic agent) in maintaining certain actions 

in place (e.g. links, new products, improved production, etc.) will also contribute to 

said realism. 

 Interface: an even more customizable interface is necessary in order to interface the 

mentioned improvements with the user, as well as to allow flexibility during and 

after simulations. 

 Extensive simulations: the simulations in this thesis represent just a few possible 

scenarios that we can realistically analyze using TrEcSim. Consequently, continuing 

the research and simulating real-world economical systems by using other possible 

configuration settings within TrEcSim can yield significant results, for instance 

pertaining product saturation and product shortage. 
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