
 

IOSUD - Universitatea Politehnica Timişoara 

Şcoala Doctorală de Studii Inginereşti 

 

 

OPTIMIZATION OF PERFORMANCE AND ENERGY CONSUMPTION BY 

BALANCED DATA LOCALITY FOR THE EXECUTION OF PARALLEL 

APPLICATIONS ON NUMA SYSTEMS 

PhD thesis - Abstract 

for obtaining the scientific title of doctor at 

Politehnica University of Timisoara 

in the field of Computer Science and Information Technology 

author ing. Știrb Iulia 

Scientific leader Prof. PhD. Horia CIOCÂRLIE 

 

Contents: 

 

1. Introduction 

2. The current state of research in the fields addressed in the thesis 

3. Description of NUMA-BTLP and NUMA-BTDM algorithms 

4. Experimental results 

5. Conclusions and personal contributions 

 

Summary content: 

 

1. Introduction 

 

 The motivation of this thesis was to create an algorithm called NUMA-BTLP [1], which 

assigns at compile-time one type to each thread in the input code, the classification of the 

threads being based on static criteria that we defined in the thesis, and another algorithm called 

NUMA-BTDM [2] that maps threads (mapping establishes the cores that threads will run on) 

at compile-time according to their type, aiming to improve the balanced data locality on NUMA 

systems. NUMA-BTDM [2] takes into account the static behavior of the code when performing 

the mapping and eliminates the disadvantages of dynamic mapping (execution time and extra 

energy consumption during running) and some important disadvantages of static mapping: 

unpredictability at compile-time of the number of threads and unpredictability of the latencies 

of memory operations. 

 In identifying the type of the thread I have considered the following: 

1. The threads that do not have data dependencies with no thread created on the same level 

in the hierarchy of generation of threads, are considered to be of the autonomous type. 

The threads that are created by the main thread usually execute independent processing, 

in which case they are considered to be of the autonomous type; 

2. The threads between which there are data dependencies, such as, for example, those 

created in a loop, are considered to be of the side-by-side type; 

3. Threads that do not require immediate execution are considered to be of the postponed 

type, these threads being usually found among the last ones created in a function. They 

have the property that they have data dependencies only with the generator thread. 

 The purpose of the research is to optimize both the execution time and the energy 

consumption for parallel multi-threading C / C ++ applications that use task-level parallelism 



 

obtained using the PThreads library [3] and can also use loop-level parallelism, through 

optimization of balanced data locality when running on Non-Uniform Memory Access 

(NUMA) systems (the relationship between threads and tasks is one-to-one in the case of the 

POSIX parallel calculation model used by PThreads [3]). The optimization of parallel 

applications is achieved by applying at compile-time the two algorithms presented in the paper 

that have been implemented in the Low-Level Virtual Machine (LLVM) compiler [4], on the 

input code in intermediate representation. 

 Although a mapping at compile-time generally shows some inaccuracies due to changes 

in dynamic behavior at execution, these inaccuracies are largely eliminated in the case of the 

two algorithms by the novelty element brought by them, namely insertion at compile-time, after 

each pthread_create call, that creates a thread, a pthread_setaffinity_np call, setting the cores 

that the thread will run on. Thus, regardless of whether or not the thread will be created during 

the execution (aspect related to the dynamic behavior of the application), its efficient mapping 

at compilte-time is guaranteed, because this mapping only takes into account the processing 

carried out by the threads in the function attached to each one and determined by static analysis. 

An efficient mapping of execution threads optimizes the balanced data locality when running 

parallel applications on NUMA systems, which leads to increased execution performance and 

lower energy consumption. 

 The analysis that led to the decision to implement the NUMA-BTDM algorithm [2] in 

LLVM [4] had as a starting point the practical utility of this algorithm. If the algorithm were 

implemented in the PThreads parallel computing library then users of this library could have 

called the NUMA-BTDM [2] mapping algorithm in the code they are developing. But the call 

of this algorithm requires the automatic assignment of one type to each thread based on the 

static characteristics of the code, namely: (1) the category of autonomous threads, (2) the 

category of side-by-side threads from the point of view of NUMA distance (i.e the data are 

obtained from two sources - memories - near or the same) to the generating thread or to other 

threads and (3) the category of postponed threads from the point of view of NUMA time (i.e. 

data access time may be higher) compared to the generating thread. Each category has several 

criteria which are based on the static characteristics of the code. Non-automated analysis (i.e. 

done by the user) of a criterion requires advanced knowledge of internal memory management 

in NUMA systems but also hardware and operating systems in general, which is why the 

NUMA-BTDM algorithm [2] was not implemented in PThreads [3], but in LLVM [4], where 

the NUMA-BTLP algorithm classification of threads could also be implemented [1]. 

 

2. The current state of research in the fields addressed in the thesis 

 

 This chapter begins with a description of the characteristics of NUMA systems that 

determine the development of thread mapping algorithms. These are: 

- The speed of data fetch due to the structuring of the memory on several levels of private 

cache and common cache as well as the existence of several memory controllers [5], 

which helps to minimize the latency of the data fetch operations when the data is 

optimally placed in memory [6] (i.e optimum means that the data is managed by the 

appropriate controller) 

- Memory access times are uneven [5], local access (i.e. data access from the same 

NUMA node), being faster than remote access (i.e. data access from memory associated 

with another NUMA node) [7] 

 With the above advantages, NUMA systems offer the possibility to optimize the 

accesses to the memory with the help of the mapping algorithms that aim to improve the data 

localily. 

 Due to the fact that the mapping algorithm proposed in this paper is static, I have have 



 

analyzed and presented the aspects that make the compile-time prediction of the mapping 

algorithms difficult on the dynamic behavior of parallel applications. These aspects are [8]: 

- Not all the characteristics of the execution are known (dynamic behavior) 

- The access time of the volatile and non-volatile data is stochastic and non-deterministic 

- The existence of other programs running in parallel on other cores or on the same cores 

as the parallel application, using the common memory resources and emphasizing the 

non-deterministic character of the parallel application execution 

 Also, the mapping patterns based on the allocation policy were presented in which each 

thread remains allocated on the initial core until it completes its execution and the migration 

policy in which the threads are migrated from one core to another in the execution time 

according to the communication between them at the time before the migration, both types of 

mapping being applied to dynamic mapping. 

 All of these mapping or migration operations are resource-consuming, which is why the 

thread mapping should not be performed at execution because mapping at this stage would 

induce considerably more energy consumption due to the reassignment of the threads [9]. 

 In order to determine the optimal mapping / migration of the execution threads (either 

static or dynamic) two information are required in advance: 

- The way in which the threads access the common data, information that is most often 

represented by a communication matrix in which the element (i, j) represents the amount 

of communication (data) between the threads whose identifiers are i and j 

- Information related to the hardware architecture running the parallel program, such as 

number of processors, cores and cache levels (this information can be provided by the 

hwloc utility [10]) 

 In this chapter there have been presented software optimizations that streamline the 

execution of parallel applications on NUMA systems, as well as optimizations of the LLVM 

compiler [4] through which this is achieved. Some of the optimizations that improve automatic 

parallelization by reducing parallelization overhead are the following [11]: scalar expansion 

(i.e. the most efficient technique in this regard, involves converting scalar data into single or 

two-dimensional arrays), substitution reduction (the second most effective in this regard, 

involving substitution and then reduction), recurrent substitution, loop invariant code motion 

(i.e, code transformation so that the body of the loop does not depend on its induction variable), 

successive substitution (i.e. substitution of values in the same way which solves a system of 

linear equations) and loop interchange. Loop fusion contributes to the optimization of loop-

level parallelism by decreasing the total number of iterations of the loops, iterations executed 

in parallel. I detailed in the thesis this optimization, which we implemented in the LLVM 

compiler [4] prior to the doctoral program, because it can be used together with the algorithms 

proposed in the thesis for the optimization of parallel programs that contain both task-level 

parallelism (optimized by proposed algorithms), as well as loop-level parallelism (optimized 

by the loop fusion algorithm), such as real-time client-server applications. 

 We have described and classified several mapping algorithms such as Limited Best 

Assignment (LBA) [8], Opportunistic Load Balancing (OLB) [8] and other Greedy algorithms 

described in [8], SCOTCH [12], METIS [13,14], the mapping algorithm part of the Zoltan 

utility set [14], algorithms that identify patterns in the task communication graph by the method 

described in [15], Treematch [16,17], EagerMap [18] and NUMA-BTDM [ 2] according to the 

criteria: the moment of mapping, the method of mapping used, the consideration or not of the 

harware architecture on which the application runs. 

 We have also described the factors that directly influence the efficiency of the thread 

mapping on NUMA systems. These are: 

- Factors related to hardware architecture: the bandwidth, which is indicated to be as high 

as possible [19] and, less important than the bandwidth, the number of hops crossed in 



 

the case of remote accesses [19], as well as the number of processors [20], which, the 

larger, the more important the problem of mapping and data locality; 

- The factor related to the execution of parallel applications: balanced data locality on 

NUMA systems [20]. 

 We have shown in this chapter that the allocation of memory in the context of data 

migration or threads migration, also contributes to the improvement of data locality. Thread 

schedulers such as the Completely Fair Scheduler (CFS) [21], currently used by Linux have 

(along with mapping algorithms) an important role because they focus on balancing the load 

and using resources properly [22, 23]. Thread schedulers do not have information about the 

dynamic behavior of the applications, which does not influence the scheduling. Scheduling 

refers mainly to the order of execution, as opposed to mapping, which decides the place of 

execution of the threads. 

 At the end of the chapter I explained some factors that increase the energy consumption 

of parallel processing compared to the sequential one, such as saving and restoring the 

execution context, scheduling the jobs or degrading the data locality [24]. Mapping algorithms 

aim to improve these energy-consuming aspects, as well as the performance by which, 

indirectly, energy consumption can be optimized. 

 

3. Description of NUMA-BTLP and NUMA-BTDM algorithms 

 

 The research aims to optimize the parallel C / C ++ applications that use the PThreads 

Library [3] for the management of threads, through two algorithms, one for static classification 

of the threads and the other for their static mapping. Algorithms eliminate some of the 

disadvantages of not knowing the dynamic behaviorat compile-time, such as not knowing the 

number of threads. The algorithms optimize the execution time and power consumption of the 

applications by improving the balanced data locality when running these applications on 

NUMA systems. 

 Through a static analysis that classifies the execution threads into three types: 

autonomous, side-by-side and postponed (NUMA-BTLP algorithm [1]), static mapping 

according to the type of thread (NUMA-BTDM algorithm [2]) ensures the placement in 

execution of threads that use common data, on the same optimally identified cores and 

independent ones, on different cores. 

 The decrease of the power consumption is due to the decrease of the dynamic power, 

the decrease of the dynamic power is due to the optimization of the use of the cache memory, 

and the optimization of the use of the cache memory is realized by improving the balanced data 

locality on NUMA systems, obtained by the two algorithms. 

 Increased performance is achieved by optimizing the balanced data locality on NUMA 

systems, optimization due to the fact that the communicating threads are mapped on the same 

cores and the other threads are evenly distributed on the cores. 

 The two algorithms, NUMA-BTLP [25] and NUMA-BTDM [2], are implemented in the 

LLVM compiler [4]. In their implementation, the algorithms use two tree structures: the 

generation tree of the threads and the communication tree of the threads [25]. 

 The thread generation tree is constructed according to the following rules [25]: 

1. The main thread (executes the main function) is the root of the tree, representing the 

first level of the tree; 

2. The threads created directly from the main function, through pthread_create calls, are 

the son nodes of the root, forming the second level in the tree; 

3. The execution threads created directly from the functions attached to the threads created 

from the main function, represent the third level in the tree and so on. 

 After obtaining the generation tree of the threads, it is traversed in preorder and each 



 

thread in the tree is assigned one type, this type being the output of a static analysis for the 

respective thread [25]. 

 A thread is autonomous if there is no data dependency between it and each other thread. 

I considered that the autonomous thread does not have data dependencies when: 

1. Another thread does not write any date that the autonomous thread reads; 

2. The autonomous thread does not write any date read by any other thread; 

3. The autonomous thread can read the data read only by all the threads. 

 The thread i is side-by-side relative to the thread j if there is at least one data dependency 

between them. The property is not usually transitive, that is, if the thread i is  side-by-side 

relative to the thread j and the thread j is side-by-side realtive to the thread k, i is not side-by-

side relative to k, unless the two use in common at least a data. Any two threads can be side-

by-side, regardless of the position in the thread generation hierarchy. If one thread is side-by-

side relative to at least one other thread, then it can no longer be autonomous. 

 A thread i is postponed if the thread has data dependencies only with the thread j, where 

j is the generating thread of the thread i. The thread generating the postponed thread executes 

with priority the other son threads, with which the postponed thread does not have data 

dependencies. The postponed thread does not write data read by the threads on the same or 

lower levels in the thread generation tree. 

 A second tree structure used by the two algorithms is the communication tree of the 

threads [25]. It is built on the basis of the following rules [25]: 

1. If the thread is autonomous or postponed, add the thread as son of the generating thread; 

2. If the thread is side-by-side, add the thread as son of all the threads in relation to which 

it is side-by-side, already added to the tree. 

 Static analysis for a thread implies the use of an algorithm that receives as its parameter 

the parent and its parent in the generation tree [1]. The analysis identifies the data dependencies 

between the thread and all the threads in the subtree that has the root the parent of the thread, if 

these dependencies exist [1]. With the help of specific classes in the LLVM compiler [4], the 

implementation of static analysis also takes into account the alias dependencies. The term alias 

refers to the same memory area indicated by two different variables. 

 Mapping threads (NUMA-BTDM algorithm [2]) implies mapping all autonomous 

threads, side-by-side threads and postponed threads respectively, in this order. 

 Mapping autonomous threads is done by traversing in preordered the communication 

tree and adding autonomous threads to a list. Then, the algorithm maps the nodes in the list 

evenly, on cores, as follows: divide the number of threads i into the number of cores j resulting 

the real number k and obtains the core for each thread by successively summing k with itself 

starting from to 0 and applying, the functions modulo to j (number of cores) and floor, to each 

partial result. 

 The mapping of the threads is done as follows: 

1. Traverse the communication tree in inorder and set the CPU affinity for each node of 

the side-by-side type: make the reunion between the cores on which the node (i.e. 

thread) is executed and the cores on which the parent node is executed and set the CPU 

affinity of the  side-by-side thread with the result. 

2. The root and side-by-side threads on the first level are mapped, starting with core 0, 

except those side-by-side relative to the root (Point 1 applies). 

 The mapping of the postponed threads is done in the following way: the communication 

tree is traversed in postorder and each posponed thread identified is mapped in turn on the least 

loaded core at that time (from the application perspective, not the whole system). The core load 

is statically determined and represents the number of threads mapped to it at a given time. A 

postponed thread that has no other brother thread is set with priority as side-by-side. 

 In conclusion, I have detailed the sequence of calls of the two algorithms: 

1. Identifying the number of logical cores and the number of logical cores per CPU at 



 

compile-time (NUMA-BTLP [25]); 

2. Creating the thread generation tree from the intermediate LLVM IR representation of 

the input code (NUMA-BTLP [25]); 

3. Determining the type of each thread based on a static analysis and adding it to the 

communication tree (NUMA-BTLP [25]); 

4. Mapping the threads based on the communication tree obtained in the previous step 

(NUMA-BTDM [2]); 

5. Identifying in the intermediate LLVM IR representation of the input code, a 

pthread_create call, which creates the thread (NUMA-BTLP [25]); 

6. Addying after each pthread_create, a pthread_setaffinity_np call, which sets the CPU 

affinity of the thread created according to the mapping obtained in the previous step 

(NUMA-BTLP [1]). 

 
4. Experimental results 

 

Conclusions of the experimental results for the CPU-X real benchmark 

 

 Following the application of the NUMA-BTDM algorithm [2], the experimental results 

indicate an average optimization of 0.27 W / s of the power consumption of the NUMA system 

running the CPU-X real benchmark [26] and with 0.32 W / s of the UMA system, for a number 

of side-by-side threads less than 12. Optimization is obtained by subtracting from the average 

power consumption when the NUMA-BTDM algorithm [2] is not applied, the average power 

consumption when the algorithm is applied. The optimization variance is obtained in the same 

way, that is, subtracting from the average variance when the         NUMA-BTDM algorithm [2] 

is not applied, the average variance when the algorithm is applied and has the value ~ 0.06 for 

the NUMA system and 0.13 for the UMA system. Due to the fact that the variance is smaller 

than the optimization, it can be concluded that there is an optimization. This is due to the 

increase in the cache hit rate, more precisely the rate of obtaining the data from the first and 

second levels of cache used in common by the           side-by-side threads, mapped by the 

NUMA-BTDM algorithm [2] on the same core. Increasing the cache hit rate leads to an increase 

in the number of local accesses at the expense of remote ones (i.e. those accesses to another 

NUMA node), resulting the optimization. 

 According to the same type of reasoning as the one in the previous paragraph, the CPU 

consumption when running the CPU-X real benchmark is not optimized (an optimization of 

0.17 W with a variance of the optimization of 1.92). This is due to the performance degradation 

caused by the large number of active-idle transitions and vice versa, the threads being all 

mapped on the same core. However, the optimization of power consumption due to the 

efficiency of the operations with memory is greater than the degradation due to the large number 

of active-idle transitions and vice versa, thus resulting the optimization of the power 

consumption of the whole system in the previous paragraph. 

 The experimental results also indicate that, as the number of side-by-side threads with 

high L1 and L2 cache hit rate increases, the higher the power consumption optimization, 

reaching a pick of 15% for less than 12 side-by-side threads. 

 

Conclusions of the experimental results for the CPU real benchmark 

 

 The execution time on the NUMA system for the CPU real benchmark [27], composed 

of the CPU applications [27], Flops [27] and Iops [27], is optimized with a very small value 

(0.03 s relative to the total execution time of 600 s of Flops [27] and Iops [27] and 0.02 s 

compared to the total execution time of 0.59 s of the CPU application [27]), so it can be 



 

considered that the execution time is kept with the optimization of the applications through the 

two algorithms. 

 In the case of Flops [27] and Iops [27], the optimization produced by the          NUMA-

BTDM algorithm [2] following the experiments, is not very large (0.03 s), since the mapping 

of a large number of threads (2400) produces a runtime degradation (due to 

pthread_setaffinity_np calls and parallelization overhead). However, the degradation is 

covered by the execution time gain resulting from the application of the NUMA-BTDM 

algorithm [2], finally obtaining a performance gain. 

 At CPU [27], the same runtime is retained (as in the case of the CPU-X real benchmark 

[26]), but it reduces the power consumption of the NUMA system by 0.9 W / s and of the UMA 

system with 7.56 W / s. The variance of the optimization is also calculated as the difference 

between the average variance of the power consumption measurements of the system running 

the non-optimized application and the average variance of the power consumption 

measurements of the system on which the optimized application runs. The optimization 

variance is much greater than the optimization itself, so the CPU application [27] is not 

considered optimized. Optimization of the execution of the Flops application after applying the 

NUMA-BTDM algorithm [2] on the NUMA system is 0.6 W / s and 0.3 W / s on the UMA 

system. This is considered to be an optimization given that the optimization variance is smaller 

than the optimization itself (the optimization variance has the value 0.14). The Iops application 

[27] is not optimized by the NUMA-BTDM algorithm [2], resulting in higher power 

consumption on average when the algorithm is applied than when it is not applied. 

 

Conclusions of the experimental results for the Context Switch real benchmark 

 

 The execution time of the Context Switch real benchmark [28] on the NUMA system is 

not improved when applying the NUMA-BTDM algorithm [2]. Due to the small number of 

threads that the application uses, namely two autonomous execution threads, mapped to 

different cores by the algorithm, the time with which the total execution time of the application 

is reduced, following the application of the NUMA-BTDM algorithm [2], is smaller than the 

execution time consumed with the actual mapping of the execution threads on cores through 

pthread_setaffinity_np calls, resulting an insignificant performance degradation (0.44 s, 

compared to 41.9 s, the average running time of the application). 

 The experimental results indicate an average optimization with 0.32 W / s of energy 

consumption for the Context Switch real benchmark [28] running on the NUMA system using 

two autonomous threads, i.e. an optimization of up to 5%, while maintaining the same execution 

time. The reduction of energy consumption is caused by the reduction due to the mapping of 

the number of active-idle transitions and vice versa, of the threads. 

 
5. Conclusions and personal contributions 

 

 NUMA-BTDM [2] is a mapping algorithm, applied at compile-time to parallel 

applications, which decides the CPU affinity of each thread based on its type. The thread type 

is returned based on the static characteristics of the code by the NUMA-BTLP algorithm [1] 

which classifies the threads into autonomous, side-by-side and postponed following a static 

analysis of the data dependencies. NUMA-BTLP [1] and NUMA-BTDM [2] contribute to 

achieving balanced data locality, optimizing the mapping of threads on NUMA systems. After 

applying the two compile-time algorithms on the parallel applications that use the PThreads 

Library [3] in order to obtain the task-level parallelism, the task-level parallelization will be 

combined with the balanced data locality at runtime, which optimizes the energy consumption. 



 

NUMA-BTDM [2] uses the PThreads Library [3] to set the CPU affinity of each thread, 

allowing the threads to run as close in terms of NUMA time and distance to the data they use. 

 The novelty of the two algorithms are: 

1. The ability to allow parallel C / C ++ applications that use PThreads [3] to customize 

and control thread mapping based on the static characteristics of the code, rather than 

allowing the operating system to perform this mapping randomly. 

2. Eliminating the disadvantage of not knowing the dynamic appearance of the number of 

threads, in the compilation phase, by inserting at compilation a pthread_setaffinity_np 

call immediately after each pthread_create call, the call mapping the thread(s) created 

by the pthread_create call, according to the         NUMA-BTLP algorithm [1], regardless 

of their number and eliminating the disadvantage of the unpredictability of the amount 

of latencies of the remote accesses during the compilation phase, by favoring the local 

accesses to the detriment of the remote ones as a result of mapping the side-by-side 

threads using the same data, on the same cores 

3. Defining some original static criteria for classifying the execution threads into 3 

categories and defining these categories 

4. Mapping threads according to their type 

5. Integration of the algorithms for classifying the threads and mapping them into a modern 

compiler 

6. Mapping threads using 2 trees: one describing data dependencies and another describing 

the generation hierarchy [25] 

7. Ensure the portability of the algorithms on any NUMA architecture running the Linux 

operating system by inserting in the source code, when compiling, some system calls 

that execute commands through which the number of cores and the number of logical 

cores per CPU of the hardware architecture are identified at the execution of the parallel 

application, required to run the NUMA-BTDM mapping algorithm [2] 

 NUMA-BTDM [2] is one of the few compile-time optimizations dedicated to a particular 

type of system, in this case dedicated to NUMA systems. In addition to this, these algorithms 

obtain the balanced data locality in a new way introduced by this work, namely: the balanced 

distribution on cores of the autonomous threads, the proximity in time and distance NUMA of 

the side-by-side threads to the data and the existence of postponed threads that do not "steal" 

the cache from critical threads that require immediate execution, being mapped to the least 

loaded core. 

 Although the NUMA-BTLP [1] algorithm inserts, at compile-time, additional function 

calls that set the CPU affinity of each thread, the NUMA-BTLP [1] algorithm does not degrade 

either the runtime or the power consumption of NUMA or UMA systems, for tested 

applications, but improves the runtime and power consumption for small number of 

autonomous threads and only power consumption for large number of autonomous threads and 

a small number of side-by-side threads. 
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