

IOSUD - Universitatea Politehnica Timişoara

Şcoala Doctorală de Studii Inginereşti

OPTIMIZATION OF PERFORMANCE AND ENERGY CONSUMPTION BY

BALANCED DATA LOCALITY FOR THE EXECUTION OF PARALLEL

APPLICATIONS ON NUMA SYSTEMS

PhD thesis - Abstract

for obtaining the scientific title of doctor at

Politehnica University of Timisoara

in the field of Computer Science and Information Technology

author ing. Știrb Iulia

Scientific leader Prof. PhD. Horia CIOCÂRLIE

Contents:

1. Introduction

2. The current state of research in the fields addressed in the thesis

3. Description of NUMA-BTLP and NUMA-BTDM algorithms

4. Experimental results

5. Conclusions and personal contributions

Summary content:

1. Introduction

 The motivation of this thesis was to create an algorithm called NUMA-BTLP [1], which

assigns at compile-time one type to each thread in the input code, the classification of the

threads being based on static criteria that we defined in the thesis, and another algorithm called

NUMA-BTDM [2] that maps threads (mapping establishes the cores that threads will run on)

at compile-time according to their type, aiming to improve the balanced data locality on NUMA

systems. NUMA-BTDM [2] takes into account the static behavior of the code when performing

the mapping and eliminates the disadvantages of dynamic mapping (execution time and extra

energy consumption during running) and some important disadvantages of static mapping:

unpredictability at compile-time of the number of threads and unpredictability of the latencies

of memory operations.

 In identifying the type of the thread I have considered the following:

1. The threads that do not have data dependencies with no thread created on the same level

in the hierarchy of generation of threads, are considered to be of the autonomous type.

The threads that are created by the main thread usually execute independent processing,

in which case they are considered to be of the autonomous type;

2. The threads between which there are data dependencies, such as, for example, those

created in a loop, are considered to be of the side-by-side type;

3. Threads that do not require immediate execution are considered to be of the postponed

type, these threads being usually found among the last ones created in a function. They

have the property that they have data dependencies only with the generator thread.

 The purpose of the research is to optimize both the execution time and the energy

consumption for parallel multi-threading C / C ++ applications that use task-level parallelism

obtained using the PThreads library [3] and can also use loop-level parallelism, through

optimization of balanced data locality when running on Non-Uniform Memory Access

(NUMA) systems (the relationship between threads and tasks is one-to-one in the case of the

POSIX parallel calculation model used by PThreads [3]). The optimization of parallel

applications is achieved by applying at compile-time the two algorithms presented in the paper

that have been implemented in the Low-Level Virtual Machine (LLVM) compiler [4], on the

input code in intermediate representation.

 Although a mapping at compile-time generally shows some inaccuracies due to changes

in dynamic behavior at execution, these inaccuracies are largely eliminated in the case of the

two algorithms by the novelty element brought by them, namely insertion at compile-time, after

each pthread_create call, that creates a thread, a pthread_setaffinity_np call, setting the cores

that the thread will run on. Thus, regardless of whether or not the thread will be created during

the execution (aspect related to the dynamic behavior of the application), its efficient mapping

at compilte-time is guaranteed, because this mapping only takes into account the processing

carried out by the threads in the function attached to each one and determined by static analysis.

An efficient mapping of execution threads optimizes the balanced data locality when running

parallel applications on NUMA systems, which leads to increased execution performance and

lower energy consumption.

 The analysis that led to the decision to implement the NUMA-BTDM algorithm [2] in

LLVM [4] had as a starting point the practical utility of this algorithm. If the algorithm were

implemented in the PThreads parallel computing library then users of this library could have

called the NUMA-BTDM [2] mapping algorithm in the code they are developing. But the call

of this algorithm requires the automatic assignment of one type to each thread based on the

static characteristics of the code, namely: (1) the category of autonomous threads, (2) the

category of side-by-side threads from the point of view of NUMA distance (i.e the data are

obtained from two sources - memories - near or the same) to the generating thread or to other

threads and (3) the category of postponed threads from the point of view of NUMA time (i.e.

data access time may be higher) compared to the generating thread. Each category has several

criteria which are based on the static characteristics of the code. Non-automated analysis (i.e.

done by the user) of a criterion requires advanced knowledge of internal memory management

in NUMA systems but also hardware and operating systems in general, which is why the

NUMA-BTDM algorithm [2] was not implemented in PThreads [3], but in LLVM [4], where

the NUMA-BTLP algorithm classification of threads could also be implemented [1].

2. The current state of research in the fields addressed in the thesis

 This chapter begins with a description of the characteristics of NUMA systems that

determine the development of thread mapping algorithms. These are:

- The speed of data fetch due to the structuring of the memory on several levels of private

cache and common cache as well as the existence of several memory controllers [5],

which helps to minimize the latency of the data fetch operations when the data is

optimally placed in memory [6] (i.e optimum means that the data is managed by the

appropriate controller)

- Memory access times are uneven [5], local access (i.e. data access from the same

NUMA node), being faster than remote access (i.e. data access from memory associated

with another NUMA node) [7]

 With the above advantages, NUMA systems offer the possibility to optimize the

accesses to the memory with the help of the mapping algorithms that aim to improve the data

localily.

 Due to the fact that the mapping algorithm proposed in this paper is static, I have have

analyzed and presented the aspects that make the compile-time prediction of the mapping

algorithms difficult on the dynamic behavior of parallel applications. These aspects are [8]:

- Not all the characteristics of the execution are known (dynamic behavior)

- The access time of the volatile and non-volatile data is stochastic and non-deterministic

- The existence of other programs running in parallel on other cores or on the same cores

as the parallel application, using the common memory resources and emphasizing the

non-deterministic character of the parallel application execution

 Also, the mapping patterns based on the allocation policy were presented in which each

thread remains allocated on the initial core until it completes its execution and the migration

policy in which the threads are migrated from one core to another in the execution time

according to the communication between them at the time before the migration, both types of

mapping being applied to dynamic mapping.

 All of these mapping or migration operations are resource-consuming, which is why the

thread mapping should not be performed at execution because mapping at this stage would

induce considerably more energy consumption due to the reassignment of the threads [9].

 In order to determine the optimal mapping / migration of the execution threads (either

static or dynamic) two information are required in advance:

- The way in which the threads access the common data, information that is most often

represented by a communication matrix in which the element (i, j) represents the amount

of communication (data) between the threads whose identifiers are i and j

- Information related to the hardware architecture running the parallel program, such as

number of processors, cores and cache levels (this information can be provided by the

hwloc utility [10])

 In this chapter there have been presented software optimizations that streamline the

execution of parallel applications on NUMA systems, as well as optimizations of the LLVM

compiler [4] through which this is achieved. Some of the optimizations that improve automatic

parallelization by reducing parallelization overhead are the following [11]: scalar expansion

(i.e. the most efficient technique in this regard, involves converting scalar data into single or

two-dimensional arrays), substitution reduction (the second most effective in this regard,

involving substitution and then reduction), recurrent substitution, loop invariant code motion

(i.e, code transformation so that the body of the loop does not depend on its induction variable),

successive substitution (i.e. substitution of values in the same way which solves a system of

linear equations) and loop interchange. Loop fusion contributes to the optimization of loop-

level parallelism by decreasing the total number of iterations of the loops, iterations executed

in parallel. I detailed in the thesis this optimization, which we implemented in the LLVM

compiler [4] prior to the doctoral program, because it can be used together with the algorithms

proposed in the thesis for the optimization of parallel programs that contain both task-level

parallelism (optimized by proposed algorithms), as well as loop-level parallelism (optimized

by the loop fusion algorithm), such as real-time client-server applications.

 We have described and classified several mapping algorithms such as Limited Best

Assignment (LBA) [8], Opportunistic Load Balancing (OLB) [8] and other Greedy algorithms

described in [8], SCOTCH [12], METIS [13,14], the mapping algorithm part of the Zoltan

utility set [14], algorithms that identify patterns in the task communication graph by the method

described in [15], Treematch [16,17], EagerMap [18] and NUMA-BTDM [2] according to the

criteria: the moment of mapping, the method of mapping used, the consideration or not of the

harware architecture on which the application runs.

 We have also described the factors that directly influence the efficiency of the thread

mapping on NUMA systems. These are:

- Factors related to hardware architecture: the bandwidth, which is indicated to be as high

as possible [19] and, less important than the bandwidth, the number of hops crossed in

the case of remote accesses [19], as well as the number of processors [20], which, the

larger, the more important the problem of mapping and data locality;

- The factor related to the execution of parallel applications: balanced data locality on

NUMA systems [20].

 We have shown in this chapter that the allocation of memory in the context of data

migration or threads migration, also contributes to the improvement of data locality. Thread

schedulers such as the Completely Fair Scheduler (CFS) [21], currently used by Linux have

(along with mapping algorithms) an important role because they focus on balancing the load

and using resources properly [22, 23]. Thread schedulers do not have information about the

dynamic behavior of the applications, which does not influence the scheduling. Scheduling

refers mainly to the order of execution, as opposed to mapping, which decides the place of

execution of the threads.

 At the end of the chapter I explained some factors that increase the energy consumption

of parallel processing compared to the sequential one, such as saving and restoring the

execution context, scheduling the jobs or degrading the data locality [24]. Mapping algorithms

aim to improve these energy-consuming aspects, as well as the performance by which,

indirectly, energy consumption can be optimized.

3. Description of NUMA-BTLP and NUMA-BTDM algorithms

 The research aims to optimize the parallel C / C ++ applications that use the PThreads

Library [3] for the management of threads, through two algorithms, one for static classification

of the threads and the other for their static mapping. Algorithms eliminate some of the

disadvantages of not knowing the dynamic behaviorat compile-time, such as not knowing the

number of threads. The algorithms optimize the execution time and power consumption of the

applications by improving the balanced data locality when running these applications on

NUMA systems.

 Through a static analysis that classifies the execution threads into three types:

autonomous, side-by-side and postponed (NUMA-BTLP algorithm [1]), static mapping

according to the type of thread (NUMA-BTDM algorithm [2]) ensures the placement in

execution of threads that use common data, on the same optimally identified cores and

independent ones, on different cores.

 The decrease of the power consumption is due to the decrease of the dynamic power,

the decrease of the dynamic power is due to the optimization of the use of the cache memory,

and the optimization of the use of the cache memory is realized by improving the balanced data

locality on NUMA systems, obtained by the two algorithms.

 Increased performance is achieved by optimizing the balanced data locality on NUMA

systems, optimization due to the fact that the communicating threads are mapped on the same

cores and the other threads are evenly distributed on the cores.

 The two algorithms, NUMA-BTLP [25] and NUMA-BTDM [2], are implemented in the

LLVM compiler [4]. In their implementation, the algorithms use two tree structures: the

generation tree of the threads and the communication tree of the threads [25].

 The thread generation tree is constructed according to the following rules [25]:

1. The main thread (executes the main function) is the root of the tree, representing the

first level of the tree;

2. The threads created directly from the main function, through pthread_create calls, are

the son nodes of the root, forming the second level in the tree;

3. The execution threads created directly from the functions attached to the threads created

from the main function, represent the third level in the tree and so on.

 After obtaining the generation tree of the threads, it is traversed in preorder and each

thread in the tree is assigned one type, this type being the output of a static analysis for the

respective thread [25].

 A thread is autonomous if there is no data dependency between it and each other thread.

I considered that the autonomous thread does not have data dependencies when:

1. Another thread does not write any date that the autonomous thread reads;

2. The autonomous thread does not write any date read by any other thread;

3. The autonomous thread can read the data read only by all the threads.

 The thread i is side-by-side relative to the thread j if there is at least one data dependency

between them. The property is not usually transitive, that is, if the thread i is side-by-side

relative to the thread j and the thread j is side-by-side realtive to the thread k, i is not side-by-

side relative to k, unless the two use in common at least a data. Any two threads can be side-

by-side, regardless of the position in the thread generation hierarchy. If one thread is side-by-

side relative to at least one other thread, then it can no longer be autonomous.

 A thread i is postponed if the thread has data dependencies only with the thread j, where

j is the generating thread of the thread i. The thread generating the postponed thread executes

with priority the other son threads, with which the postponed thread does not have data

dependencies. The postponed thread does not write data read by the threads on the same or

lower levels in the thread generation tree.

 A second tree structure used by the two algorithms is the communication tree of the

threads [25]. It is built on the basis of the following rules [25]:

1. If the thread is autonomous or postponed, add the thread as son of the generating thread;

2. If the thread is side-by-side, add the thread as son of all the threads in relation to which

it is side-by-side, already added to the tree.

 Static analysis for a thread implies the use of an algorithm that receives as its parameter

the parent and its parent in the generation tree [1]. The analysis identifies the data dependencies

between the thread and all the threads in the subtree that has the root the parent of the thread, if

these dependencies exist [1]. With the help of specific classes in the LLVM compiler [4], the

implementation of static analysis also takes into account the alias dependencies. The term alias

refers to the same memory area indicated by two different variables.

 Mapping threads (NUMA-BTDM algorithm [2]) implies mapping all autonomous

threads, side-by-side threads and postponed threads respectively, in this order.

 Mapping autonomous threads is done by traversing in preordered the communication

tree and adding autonomous threads to a list. Then, the algorithm maps the nodes in the list

evenly, on cores, as follows: divide the number of threads i into the number of cores j resulting

the real number k and obtains the core for each thread by successively summing k with itself

starting from to 0 and applying, the functions modulo to j (number of cores) and floor, to each

partial result.

 The mapping of the threads is done as follows:

1. Traverse the communication tree in inorder and set the CPU affinity for each node of

the side-by-side type: make the reunion between the cores on which the node (i.e.

thread) is executed and the cores on which the parent node is executed and set the CPU

affinity of the side-by-side thread with the result.

2. The root and side-by-side threads on the first level are mapped, starting with core 0,

except those side-by-side relative to the root (Point 1 applies).

 The mapping of the postponed threads is done in the following way: the communication

tree is traversed in postorder and each posponed thread identified is mapped in turn on the least

loaded core at that time (from the application perspective, not the whole system). The core load

is statically determined and represents the number of threads mapped to it at a given time. A

postponed thread that has no other brother thread is set with priority as side-by-side.

 In conclusion, I have detailed the sequence of calls of the two algorithms:

1. Identifying the number of logical cores and the number of logical cores per CPU at

compile-time (NUMA-BTLP [25]);

2. Creating the thread generation tree from the intermediate LLVM IR representation of

the input code (NUMA-BTLP [25]);

3. Determining the type of each thread based on a static analysis and adding it to the

communication tree (NUMA-BTLP [25]);

4. Mapping the threads based on the communication tree obtained in the previous step

(NUMA-BTDM [2]);

5. Identifying in the intermediate LLVM IR representation of the input code, a

pthread_create call, which creates the thread (NUMA-BTLP [25]);

6. Addying after each pthread_create, a pthread_setaffinity_np call, which sets the CPU

affinity of the thread created according to the mapping obtained in the previous step

(NUMA-BTLP [1]).

4. Experimental results

Conclusions of the experimental results for the CPU-X real benchmark

 Following the application of the NUMA-BTDM algorithm [2], the experimental results

indicate an average optimization of 0.27 W / s of the power consumption of the NUMA system

running the CPU-X real benchmark [26] and with 0.32 W / s of the UMA system, for a number

of side-by-side threads less than 12. Optimization is obtained by subtracting from the average

power consumption when the NUMA-BTDM algorithm [2] is not applied, the average power

consumption when the algorithm is applied. The optimization variance is obtained in the same

way, that is, subtracting from the average variance when the NUMA-BTDM algorithm [2]

is not applied, the average variance when the algorithm is applied and has the value ~ 0.06 for

the NUMA system and 0.13 for the UMA system. Due to the fact that the variance is smaller

than the optimization, it can be concluded that there is an optimization. This is due to the

increase in the cache hit rate, more precisely the rate of obtaining the data from the first and

second levels of cache used in common by the side-by-side threads, mapped by the

NUMA-BTDM algorithm [2] on the same core. Increasing the cache hit rate leads to an increase

in the number of local accesses at the expense of remote ones (i.e. those accesses to another

NUMA node), resulting the optimization.

 According to the same type of reasoning as the one in the previous paragraph, the CPU

consumption when running the CPU-X real benchmark is not optimized (an optimization of

0.17 W with a variance of the optimization of 1.92). This is due to the performance degradation

caused by the large number of active-idle transitions and vice versa, the threads being all

mapped on the same core. However, the optimization of power consumption due to the

efficiency of the operations with memory is greater than the degradation due to the large number

of active-idle transitions and vice versa, thus resulting the optimization of the power

consumption of the whole system in the previous paragraph.

 The experimental results also indicate that, as the number of side-by-side threads with

high L1 and L2 cache hit rate increases, the higher the power consumption optimization,

reaching a pick of 15% for less than 12 side-by-side threads.

Conclusions of the experimental results for the CPU real benchmark

 The execution time on the NUMA system for the CPU real benchmark [27], composed

of the CPU applications [27], Flops [27] and Iops [27], is optimized with a very small value

(0.03 s relative to the total execution time of 600 s of Flops [27] and Iops [27] and 0.02 s

compared to the total execution time of 0.59 s of the CPU application [27]), so it can be

considered that the execution time is kept with the optimization of the applications through the

two algorithms.

 In the case of Flops [27] and Iops [27], the optimization produced by the NUMA-

BTDM algorithm [2] following the experiments, is not very large (0.03 s), since the mapping

of a large number of threads (2400) produces a runtime degradation (due to

pthread_setaffinity_np calls and parallelization overhead). However, the degradation is

covered by the execution time gain resulting from the application of the NUMA-BTDM

algorithm [2], finally obtaining a performance gain.

 At CPU [27], the same runtime is retained (as in the case of the CPU-X real benchmark

[26]), but it reduces the power consumption of the NUMA system by 0.9 W / s and of the UMA

system with 7.56 W / s. The variance of the optimization is also calculated as the difference

between the average variance of the power consumption measurements of the system running

the non-optimized application and the average variance of the power consumption

measurements of the system on which the optimized application runs. The optimization

variance is much greater than the optimization itself, so the CPU application [27] is not

considered optimized. Optimization of the execution of the Flops application after applying the

NUMA-BTDM algorithm [2] on the NUMA system is 0.6 W / s and 0.3 W / s on the UMA

system. This is considered to be an optimization given that the optimization variance is smaller

than the optimization itself (the optimization variance has the value 0.14). The Iops application

[27] is not optimized by the NUMA-BTDM algorithm [2], resulting in higher power

consumption on average when the algorithm is applied than when it is not applied.

Conclusions of the experimental results for the Context Switch real benchmark

 The execution time of the Context Switch real benchmark [28] on the NUMA system is

not improved when applying the NUMA-BTDM algorithm [2]. Due to the small number of

threads that the application uses, namely two autonomous execution threads, mapped to

different cores by the algorithm, the time with which the total execution time of the application

is reduced, following the application of the NUMA-BTDM algorithm [2], is smaller than the

execution time consumed with the actual mapping of the execution threads on cores through

pthread_setaffinity_np calls, resulting an insignificant performance degradation (0.44 s,

compared to 41.9 s, the average running time of the application).

 The experimental results indicate an average optimization with 0.32 W / s of energy

consumption for the Context Switch real benchmark [28] running on the NUMA system using

two autonomous threads, i.e. an optimization of up to 5%, while maintaining the same execution

time. The reduction of energy consumption is caused by the reduction due to the mapping of

the number of active-idle transitions and vice versa, of the threads.

5. Conclusions and personal contributions

 NUMA-BTDM [2] is a mapping algorithm, applied at compile-time to parallel

applications, which decides the CPU affinity of each thread based on its type. The thread type

is returned based on the static characteristics of the code by the NUMA-BTLP algorithm [1]

which classifies the threads into autonomous, side-by-side and postponed following a static

analysis of the data dependencies. NUMA-BTLP [1] and NUMA-BTDM [2] contribute to

achieving balanced data locality, optimizing the mapping of threads on NUMA systems. After

applying the two compile-time algorithms on the parallel applications that use the PThreads

Library [3] in order to obtain the task-level parallelism, the task-level parallelization will be

combined with the balanced data locality at runtime, which optimizes the energy consumption.

NUMA-BTDM [2] uses the PThreads Library [3] to set the CPU affinity of each thread,

allowing the threads to run as close in terms of NUMA time and distance to the data they use.

 The novelty of the two algorithms are:

1. The ability to allow parallel C / C ++ applications that use PThreads [3] to customize

and control thread mapping based on the static characteristics of the code, rather than

allowing the operating system to perform this mapping randomly.

2. Eliminating the disadvantage of not knowing the dynamic appearance of the number of

threads, in the compilation phase, by inserting at compilation a pthread_setaffinity_np

call immediately after each pthread_create call, the call mapping the thread(s) created

by the pthread_create call, according to the NUMA-BTLP algorithm [1], regardless

of their number and eliminating the disadvantage of the unpredictability of the amount

of latencies of the remote accesses during the compilation phase, by favoring the local

accesses to the detriment of the remote ones as a result of mapping the side-by-side

threads using the same data, on the same cores

3. Defining some original static criteria for classifying the execution threads into 3

categories and defining these categories

4. Mapping threads according to their type

5. Integration of the algorithms for classifying the threads and mapping them into a modern

compiler

6. Mapping threads using 2 trees: one describing data dependencies and another describing

the generation hierarchy [25]

7. Ensure the portability of the algorithms on any NUMA architecture running the Linux

operating system by inserting in the source code, when compiling, some system calls

that execute commands through which the number of cores and the number of logical

cores per CPU of the hardware architecture are identified at the execution of the parallel

application, required to run the NUMA-BTDM mapping algorithm [2]

 NUMA-BTDM [2] is one of the few compile-time optimizations dedicated to a particular

type of system, in this case dedicated to NUMA systems. In addition to this, these algorithms

obtain the balanced data locality in a new way introduced by this work, namely: the balanced

distribution on cores of the autonomous threads, the proximity in time and distance NUMA of

the side-by-side threads to the data and the existence of postponed threads that do not "steal"

the cache from critical threads that require immediate execution, being mapped to the least

loaded core.

 Although the NUMA-BTLP [1] algorithm inserts, at compile-time, additional function

calls that set the CPU affinity of each thread, the NUMA-BTLP [1] algorithm does not degrade

either the runtime or the power consumption of NUMA or UMA systems, for tested

applications, but improves the runtime and power consumption for small number of

autonomous threads and only power consumption for large number of autonomous threads and

a small number of side-by-side threads.

Bibliografie

[1] Iulia Știrb. „NUMA-BTLP: A static algorithm for thread classification”. In 2017 5th

International Conference on Control, Decision and Information Technologies (CoDIT)”, p.

882–887. IEEE, 2017.

[2] Iulia Știrb. „NUMA-BTDM: A thread mapping algorithm for balanced data locality on

NUMA systems”. In 2016 17th International Conference on Parallel and Distributed

Computing, Applications and Technologies (PDCAT), p. 317–320. IEEE, 2016.

[3] POSIX Threads. 2017.

[4] The LLVM Compiler Infrastructure Project. https://llvm.org/, 2018. Accessed: 9.10.2018.

[5] Nakul Manchanda și Karan Anand. Non-uniform memory access (NUMA). New York

University, 4, 2010.

[6] Manu Awasthi, David Nellans, Kshitij Sudan, Rajeev Balasubramonian, și Al Davis.

„Handling the problems and opportunities posed by multiple on-chip memory controllers”. In

2010 18th International Conference on Parallel Architectures and Compilation Techniques

(PACT), p. 318–330. IEEE, 2010.

[7] Matthias Diener, Eduardo HM Cruz, Marco AZ Alves, Philippe OA Navaux, și Israel Koren.

„Affinity-based thread and data mapping in shared memory systems”. ACM Computing

Surveys (CSUR), 49(4):64, 2017.

[8] Robert Armstrong, Debra Hensgen, și Taylor Kidd. „The relative performance of various

mapping algorithms is independent of sizable variances in run-time predictions”. In

Proceedings Seventh Heterogeneous Computing Workshop (HCW 98), p. 79–87. IEEE, 1898.

[9] Haris Ribic și Yu David Liu. “Energy-efficient work-stealing language runtimes”. In ACM

SIGARCH Computer Architecture News, vol. 42, p. 513-527. ACM, 2014.

[10] François Broquedis, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie Furmento, Brice

Goglin, Guillaume Mercier, Samuel Thibault, și Raymond Namyst. „hwloc: A generic

framework for managing hardware affinities in hpc applications”. In 2010 17th Euromicro

International Conference on Parallel, Distributed and Network-Based Processing (PDP), p.

170–176. IEEE, 2010.

[11] Imen Fassi și Philippe Clauss. “Xfor: filling the gap between automatic loop optimization

and peak performance”. In 2015 14th International Symposium on Parallel and Distributed

Computing (ISPDC), p. 100–109. IEEE, 2015.

[12] François Pellegrini și Jean Roman. „Scotch: A software package for static mapping by dual

recursive bipartitioning of process and architecture graphs”. In International Conference on

High-Performance Computing and Networking, p. 493–498. Springer, 1896.

[13] George Karypis și Vipin Kumar. „A fast and high quality multilevel scheme for

partitioning irregular graphs”. SIAM Journal on Scientific Computing, 20(1):359–392, 1898.

[14] Karen D Devine, Erik G Boman, Robert T Heaphy, Rob H Bisseling, și Umit V

Catalyurek. „Parallel hypergraph partitioning for scientific computing”. In Proceedings 20th

IEEE International Parallel & Distributed Processing Symposium, p. 10–pp. IEEE, 2006.

[15] Eduardo HM Cruz, Matthias Diener, și Philippe OA Navaux. „Using the translation

lookaside buffer to map threads in parallel applications based on shared memory”. In 2012

IEEE 26th International Parallel and Distributed Processing Symposium, p. 532–543. IEEE,

2012.

[16] Hao Zhou și Jingling Xue. „A compiler approach for exploiting partial SIMD parallelism”.

ACM Transactions on Architecture and Code Optimization (TACO), 13(1):11, 2016.

[17] Emmanuel Jeannot și Guillaume Mercier. „Near-optimal placement of MPI processes on

hierarchical NUMA architectures”. In Euro-Par 2010-Parallel Processing, p. 189–200, 2010.

[18] Eduardo HM Cruz, Matthias Diener, Laércio L Pilla, și Philippe OA Navaux. „An efficient

algorithm for communication-based task mapping”. In 2015 22rd Euromicro International

Conference on Parallel, Distributed and Network-Based Processing (PDP), p. 197–204. IEEE,

2015.

[19] Baptiste Lepers, Vivien Quéma, și Alexandra Fedorova. „Thread and memory placement

on NUMA systems: Asymmetry matters”. In USENIX Annual Technical Conference, p. 267–

279, 2015.

[20] Timothy Brecht. „On the importance of parallel application placement in NUMA

multiprocessors”. In Symposium on Experiences with Distributed and Multiprocessor Systems

(SEDMS IV), p. 1–17, 1893.

[21] Chee Siang Wong, Ian Tan, Rosalind Deena Kumari, și Fun Wey. „Towards achieving

fairness in the Linux scheduler”. ACM SIGOPS Operating Systems Review, 42(5):34–43,

2008.

[22] David Tam, Reza Azimi, și Michael Stumm. „Thread clustering: sharing-aware scheduling

on SMP-CMP-SMT multiprocessors”. In ACM SIGOPS Operating Systems Review, vol. 41,

p. 47–58. ACM, 2007.

[23] Tong Li, Dan Baumberger, și Scott Hahn. „Efficient and scalable multiprocessor fair

scheduling using distributed weighted round-robin”. In ACM Sigplan Notices, vol. 44, p. 65–

74. ACM, 2009.

[24] Candy Pang, Abram Hindle, Bram Adams, și Ahmed E Hassan. „What do programmers

know about software energy consumption?”. IEEE Software, 33(3):83–89, 2016.

[25] Iulia Știrb. „Extending NUMA-BTLP algorithm with thread mapping based on a

communication tree”. Computers, 7(4):66, 2017.

[26] Cpu-benchmarking. https://github.com/pdpriyanka/CPU-Benchmarking, 2016. Accessed:

16.08.2018.

[27] Cpu-x. https://github.com/X0rg/CPU-X, 2018. Accessed: 16.08.2018.

[28] contextswitch. https://github.com/tsuna/contextswitch, 2016. Accessed: 16.08.2018.

