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 In the thesis entitled „In silico solutions for researching genomic variants and patterns 

applying systems engineering methods” are presented a series of methods for processing genetic 

information obtained after secondary analysis of data generated by DNA sequencing 

equipment1.  

The thesis is structured in three parts with a total of six chapters (Fig. 1) distributed as 

follows:  
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1) the first part contains chapters 1 and 2 which are intended to present the topic and issues 

addressed in the thesis;  

 
1 HiSeq 2500, MiSeq, Sanger 3730xl. 
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2) the main part consists of chapters 3, 4 and 5 which present the solutions proposed for 

solving the problems dealt with in each chapter;  

3) in the last part the final conclusions and personal contributions are presented.  

 

The concrete aim of the thesis is to develop and use computer methods (in silico) that are 

able to identify the genetic structures that cause diseases. The contributions aim to highlight the 

existence of genetic variants and patterns for: (i) monogenic diseases, (ii) diseases caused by 

splicing, but also (iii) prediction of complex diseases (steatosis case study). 

We will continue to refer, very briefly, the essential aspects that are found in each chapter 

of the thesis. 

 

The first chapter presents the field of the thesis, the opportunity of writing the thesis and 

the pursued purpose and objectives. The thematic orientation of the thesis aims in principle: 

 Determining the disease using information about phenotype and genotype; 

 Identification of the disease or the genetic variant causing it based on the genetic 

signature; 

 Reducing the number of genetic variants using certain filtering strategies; 

 Determination of the variation of the splicing signal following genetic changes; 

 Identification of splicing regions; 

 Modeling of complex diseases based on genotype. 

 

For the development of the research and the realization of the work, major objectives with 

related sub-objectives were proposed, presented below.  

1) Development of a method or workflow capable of indicating a small number of genetic 

variants that explain the characteristics of a patient's phenotype, which includes: 

a) Identification of applications and research that address the issue of disease detection 

based on phenotype or genotype; 

b) Reducing the number of possible conditions of a patient depending on the targeted gene 

panel and its genotype; 

c) Identification of the optimal strategy for the use of in silico predictors for the detection 

of pathogenic genetic variants; 

d) Extraction of tolerance intervals for genetic variants, depending on the target gene panel. 

2) Identification of splicing regions using computational models of the splicing sequences and 

of the enhancer and silencer signals of this process. This involves performing the following 

tasks: 

a) Review of applications that identify splicing regions and intensity of splicing signals; 

b) Analysis of the performance of the methods for detecting the splicing regions and 

proposing models for their identification and extraction from the intronic regions; 

c) Development of an algorithm that allows the calculation of the splicing signal intensity; 

3) Generating a computational model for the prediction of a complex condition (steatosis) 

using a set of genetic markers, is the third objective and requires the following: 

a) Identification of genetic markers relevant to steatosis. 

b) Studying the performance of models generated by the methods used in machine learning 



 

for the prediction of complex diseases; 

c) Proposing models for predicting steatosis using methods based on a set of statistical 

models or methods. 

 

 In practical terms, the results of the research should facilitate the identification of the 

condition, in the case of undiagnosed patients, or the identification of the causative genetic 

variants, in the case of patients whose condition is known but the genetic reason is not known. 

Specifically, for the first objective, the series of algorithms (methods) will be applied on the 

genotype of a person, more precisely on the exonic variants, and their result will consist in the 

list of possible diseases. The second objective is to consider the genetic changes that affect the 

splicing process. The methods developed in this section aims to identify the changes that 

occurred in the splicing process. The ultimate goal is to generate models that should be able to 

predict with more than 80% accuracy the genetic predisposition to steatosis or even its presence. 

 

 Chapter 2 is structured in four subchapters. The first subchapter (2.1) aims to present 

some introductory notions to familiarize the reader (engineer, computer scientist) with elements 

of molecular biology and bioinformatics. In the case of molecular biology, some terms are 

explained that will be used quite frequently in the content of the thesis, such as; uninucleotide 

polymorphism, locus, gene, reference genome etc. After the presentation of the genetic terms, 

we move on to the presentation of the concepts of bioinformatics. The technology used for 

DNA sequencing is described, and then the secondary analysis workflow is presented. The last 

part of the subchapter presents some information in the field of machine learning and how to 

evaluate the performance of a model generated by such methods.  

 The second subchapter (2.2) deals with the issue of identifying genes and genetic 

variants that cause diseases. The types of diseases are cataloged according to [1] and the 

relativity of the information is presented when it comes to cataloging a genetic variant in 

databases such as ClinVar [2]. Silico prediction tools are used to identify pathogenic variants, 

which have associated pathogenicity scores for each genetic variant. It starts with the 

presentation of silico predictors such as: SIFT [3], CADD [4], PROVEAN [5], etc. It also 

presents a number of international initiatives concerned with the processing and cataloging of 

genetic information, such as the UK 100k Genomes project [6]. Below are the methods by 

which the filtering and selection of genetic variants is done. A first filter, which can be applied 

to these variants, is the elimination of those who have a high frequency in the population, ideally 

those in the population where the patient comes from. For the frequency in the population of 

genetic variants, one can use databases such as 1000 Genomes or Gnomad [7]. Also, in this 

subchapter are presented applications proposed in the literature for the analysis of genetic 

variants, such as Phevor2 [8], eXtasy [9], etc. 

 Subchapter (2.3) contains information on the pre-mRNA splicing. At the beginning of 

the subchapter is a brief presentation of the splicing process and how are the results analyzed 

in genetics. Although, initially the variants that were not part of the exons of a gene were 

ignored, in recent years specialists have begun to give more importance to variants that affect 

the splicing process and to study their role in the manifestation of diseases. To improve the 

results in terms of splicing regions, specialists use prediction software tools. The splicing 

sequence contains three important components: (1) the branch point (BRS), the pyrimidine tract 



 

and the acceptor site. Of these, the BRS and the pyrimidine tract are not well preserved [10]-

[12], only the acceptor site is preserved, being formed by the nucelotides AG. For the prediction 

of the splicing region, a series of applications are presented such as SplicePort, Automated 

Splice Site Analyzes, MaxEnt, etc. In addition, the regulatory elements (cis-acting) of the 

splicing are presented. These elements are represented by: the sequences between intron and 

exon, intronic enhahacers and silencers and exonic enhahacers and silencers.  

  The last subchapter (2.4) presents a short study on steatosis and genetic markers that 

indicate the presence of this condition. Hepatic steatosis is the accumulation of fat in the liver 

tissue and two forms of it are known (one due to alcohol consumption and another due to other 

factors). The literature indicates a number of genetic factors that may predispose a person to 

this condition. The main candidate for this condition is the rs738409 polymorphism, which will 

be discussed in Chapter 5. The paper [13] presents an analysis of genetic findings that are 

associated with fatty liver disease, including rs738409. Also, in this subchapter are presented 

methods in the field of machine learning used in the field of complex diseases. Initially, the 

studies that treated the problem of complex diseases were association studies. An alternative to 

this method is the Bayesian methods or the methods used in machine learning. Decision trees, 

ensemble methods, neural networks can easily identify the patterns that appear in 

multidimensional data sets. 

 

 The topics in Chapter 3 focus on a number of methods that help improve the detection 

of genes and genetic variants that cause disease. In most cases, geneticists have at their disposal 

several types of information about patients, such as the file with the genetic variants, the 

patient's symptoms and possibly the family history. Based on this information, doctors need to 

identify which genes are responsible for the ailments the patient suffers from. The first method 

presented involves an association of the characteristics of the phenotype with the elements of 

the genotype, thus resulting in a list of possible diseases. Several databases available online 

have been used to develop an automated system for identifying disease-causing genes. The 

Human Phenotype Ontology (HPO) database was used to obtain the list of symptoms, and the 

databases used to obtain the list of diseases were Online Mendelian Inheritance in Man 

(OMIM), Orphanet and DECIPHER. For the hierarchy of genes, respectively of variants, the 

use of similarity coefficients are proposed. After calculating the weights and similarity 

coefficients, the patient's genotype is applied together with the characteristics of the phenotype 

to determine the list of possible diseases. This method has satisfactory but not complete results.  

 In order to improve the performance of the previously presented method, in silico 

predictors can be used. Although in the literature there are various performance tests of these 

predictors, unfortunately they are not performed on the same database. Therefore, a 

performance test with a common database was performed. The database used was ClinVar, and 

the metrics used were accuracy, F1 score and average between specificity and sensitivity. 

Regarding the results, CADD and DANN identified the most pathogenic variants and had 

associated scores for more than 95% of the data set. The disadvantage of these predictors was 

that they had a relatively low specificity. REVEL, MetaSVM and PolyPhen-2 HVAR had the 

best overall performance, calculated with the arithmetic mean between specificity and 

sensitivity. As a routine for the correct classification of SNPs, pathogenic genetic variants could 

be determined with high-sensitivity instruments (CADD and DANN) and then balanced 



 

predictors can be used (REVEL, MetaSVM, PolyPhen) to prioritize them. [14]. 

 Subchapter 3.4 dealt with the detection of quality and quantity errors of the genetic 

variants identified following the sequencing process. A method for identifying errors using 

tolerance intervals is applied. The intervals presented are indicative, but at the same time they 

can be used as a reference for error detection. It is recommended that each laboratory use such 

methods to determine the quality of sequencing. In addition to possible errors, these intervals 

may signal certain causes of the condition such as inbreeding. 

 

 In Chapter 4 we analyzed the elements of the RNA sequence that are part of the splicing 

process, namely the sequence and the splicing signals. These elements were processed from the 

perspective of DNA.  

 The study carried out in subchapter 4.1 identified some splicing regions that have two 

or more sequences that correspond to branch point (BRS) of the spliceosome. The experiment 

was structured in two stages. The first stage consisted in defining a model for the splicing 

sequences, based on works from the literature [10] as well as on the results of the analysis of 

over 11000 splicing sequences from chromosome 21. The second step was to use the definition 

of the model generated in step 1 to identify pseudo-splicing regions in the intronic area. The 

results obtained in the first stage indicated a degree of redundancy of the BRS regions for certain 

exons, which may be due to the pyrimidine region or which may have a biological significance 

- this requires a more detailed investigation. The branch point regions were often located near 

positions 16 and 28, upstream of the three prim exon. The model of a splicing region, following 

the results obtained in the first stage, consists of: (1) a BRS region which has the YTnAy model, 

(2) an AG acceptor region and (3) a pyrimidine region which consists of 75 % pyrimidine 

nucleotide bases with a length of at least 17 bases [15]. Using this model, intronic sequences 

were also identified in silico that are similar in structure to the splicing regions. The biological 

role of these sequences cannot be validated in silico, but can be tested in vitro or in vivo 

experiments [16]. 

 The study in section 4.2 consisted of analyzing the splicing sequences in the Homo 

Sapiens Splice Site Dataset database using various methods. Following the analysis, a series of 

statistical information on the structure of splicing sequences were presented and a series of 

models were generated that were meant to validate these regions. The models initially presented 

were based on equations generated from the structure of the splicing regions (order of 

nucleotides, tuples, etc.). The accuracy of the prediction of these models was between 70% and 

80%. Although it is a decent level, the targeted accuracy was around 90%, the performance of 

the MaxEnt method. In the last part of the chapter, a method was proposed for the detection of 

splicing regions based on the distance from the neighboring sequences. A number of methods 

were analyzed to calculate the distance, and the one finally chosen was Needleman-Wunsch. 

Using this method, a computational analysis was performed to determine an optimal sequence 

length and an optimal number of neighbors. The results indicated that the sequence should be 

20 nucleotides long and the ideal number of neighbors is nine. Using these values it was possible 

to obtain an accuracy of 85.61%. 

 The purpose of the study in subchapter 4.3 was to develop a method to annotate VCF 

files with information about splicing signal variations. In the first phase, the databases with 

nucleotide sequences which were considered as signals for the splicing process were gathered. 



 

These sequences, in their initial form, had various criteria for calculating the signal strength, 

which limited their simultaneous use. Therefore, a series of equations were developed to 

determine the signal strength of a sequence. Next, to calculate the amplitude difference between 

two sequences, the initial one and the one containing the genetic modification, the average 

intensity of the non-zero position vector related to the sequence was calculated. The amplitude 

calculation is performed both for the splicing enahancer signal and for the splicing silencer 

signal. The general direction is given by the analysis of these two components. The validation 

of the method was performed on a database that contains the genetic sequences (normal and 

modified) and that contains the indication of the behavior of the splicing process. In addition, 

the results correspond to the detailed information indicated by the Human Splicing Finder. The 

method can be used to filter and prioritize genetic variants [17]. 

 

 A series of models for the prediction of steatosis based on a list of genetic markers are 

presented in Chapter 5. The first subchapter presents the used materials and the list of genetic 

variants used to make the models. In the second subchapter, a descriptive analysis of the records 

in the database is performed according to the targeted genetic variants. Also in this subchapter 

is analyzed the correlations between genetic variants and the degree of steatosis.  

 The third subchapter presents a series of prediction models for different degrees of this 

condition. The first model investigated is the one generated using the Stohastic-Gradient 

Descent (SGD) method. For the individual stage prediction, the SGD model has an average 

accuracy of about 70%, but for the prediction of the five states of steatosis, simultaneously, this 

value decreases significantly, being 25%. Next, decision trees were used for multi-class 

prediction. To determine the optimal configuration, a number of parameters were analyzed. The 

average accuracy score for multiple-stage steatosis was 30%. Also in this subchapter, an attempt 

was made to model the steatosis stage using a set of decision trees (Random Forest). The 

accuracy in this case was 36%, marginally higher than in the case of a single decision tree. 

 In subchapter four, the degree of complexity is reduced by eliminating the stages of 

steatosis and replacing them with the simple presence of the disease. In this situation, using the 

decision trees, it was possible to obtain a model that managed an accuracy of 91%, the average 

score being 81% [18]. The same performance was obtained in the case of the set of decision 

trees. As presented in the literature [19], [20], both methods generated patterns indicating that 

the SNP rs738409 is associated with steatosis.  

  Decision trees performed better in the second phase, when the steatosis stage was 

reduced. This may indicate that the sample size used was too small to model the output, but was 

optimal for determining whether the pathology is present. In addition, the difference between 

male and female subjects was not taken into account. Some SNPs may be more or less relevant 

based on gender. One configuration, with the best accuracy for decision trees, was the use of 

the Gini Index function with MDL prunnig and random sampling.  

 In subchapter five, a method was developed that generates prediction models according 

to the frequency of occurrence and "expertise" of each SNP. Using this method, the condition 

of steatosis being binary, an accuracy of 82% was obtained. This model has a lower 

performance than that of decision trees and overall prediction models. However, the method 

has several advantages such as the generation of voting maps that make it much easier to 

identify the relationships between SNPs and the condition. In fact, a number of relationships 



 

have been highlighted for steatosis. For example, SNPs rs2167444 and rs7848 on the 

heterozygous SCD gene appear to have an affinity for the zero stage of steatosis; or the SNPs 

on the ABCB4 gene appear to indicate an affinity for steatosis state 2. 

  

 Chapter 6 presents the conclusions, personal contributions and future directions of 

development. The main personal contributions: 

1. Development of a method for the determination of pathogenic genetic variants 

according to the characteristics of the phenotype and the variants detected in patients; 

2. Carrying out a study to identify the best method of using in silico predictors in filtering 

genetic variants. Presentation of results and suggesting prioritization strategies; 

3. Propose a method for determining the tolerance ranges used in the detection of 

sequencing errors. This method can also be used to quickly identify the causes of 

diseases such as inbreeding; 

4. Carrying out a study of all introns on chromosome 21 to generate a statistical model of 

the splicing sequence; 

5. Implementation of a computer method for the detection of parasitic splicing sequences 

in intronic regions; 

6. Development of a method for calculating the variation of the splicing signal in case of 

DNA sequence modification; 

7. Identification of redundant sequences for branch point in the splicing region; 

8. Presentation of a method for the detection of splicing regions according to the distance 

between the target sequence and the neighboring sequences using the Needleman-

Wunsch algorithm;; 

9. Carrying out a statistical study that presents the structure of the splicing region; 

10. Determination of in silico models using decision trees for the prediction of the presence 

of steatosis, respectively determination of its stage based on genotype; 

11. Development of a method for predicting the presence of steatosis and its stage based on 

the frequency of genetic variants; 

12. Implementation and validation of the aforementioned methods using data from the 

Center for Genomic Medicine (UMFT).  

 

 

At the same time, in the thesis are referred, out of the 14 papers published by the author of the 

thesis as first author or co-author, the 5 that validated the research results. In short, according 

to the level of impact at which the various scientific results were communicated, the grouping 

of published works is as follows: 

 2 papers in indexed journals Web of Science (ISI) – IF 7.2 

 3 works in volumes of scientific manifestations (proceedings) indexed Web of 

Science (ISI) 

 2 papers in BDI indexed journals (IEEE Xplore) - submitted for integration in 

Web of Science (ISI) 

 7 papers in the volumes of scientific events. 

  

 



 

 The consistency of the research results from the paper "Splice Site Pattern Analysis and 

Identification of Similar Sequences in the Deep Intron Areas of Human Chromosome 21" led 

to the 3rd prize at the 2017 EHB conference, and following the paper "Detection of high-risk 

intron areas that can cause splicing errors” was awarded a Young Scientist Fellowship. 

 The thesis has 146 pages, of which: 116 pages structured in 6 chapters, 10 pages of 

bibliography and 20 pages dedicated to the annexes. The paper contains 64 figures and 151 

bibliographic titles. Some of the contributions presented have been published in scientific 

papers in which the author of the thesis is the author or co-author, and others will be the subject 

of future papers and collaborations. 
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