
UNIVERSITATEA POLITEHNICA TIMIŞOARA
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Chapter 1

Introduction

With the dawn of the 21st Century, the novel field of Network Science, or the Science of Com-
plex Networks, has surfaced and has gathered momentum to produce a prominent body of new
multidisciplinary research. Network Science is an interdisciplinary field by nature, with roots
embedded in mathematics, physics, statistics, computer science and information technology.
Its applicability, however, stretches over to encompass the biological, pharmacological, social,
economical, political sciences altogether.

From a historical standpoint, the study of networks has sparked the creativity of scientists
for several centuries. Many consider Leonhard Euler as the grounding father of graph theory,
back in the 18th Century, who solved the problem of the seven bridges in Konigsberg. The
Romanian-born psychologist Jacob Moreno introduced the sociogram – a methodology the to
model relationships between individuals. Also noteworthy, is the Hungarian mathematician
Denes Konig who formalized graph theory in the 20th Century. However, it is not until the
late 1950’s when Alfred Renyi and Paul Erdos formalized the random graph model [1], which
became the first conceptual complex network, possessing many of the properties found in
Big Data today. The next major scientific leap is represented by two parallel joint efforts
by Duncan Watts and Steven Strogatz, respectively Albert-Laszlo Barabasi and Reka Albert
who uncovered the fundamental properties of small-world -ness [2] and scale-free-ness [3] that
still drive our current understanding of the structure and dynamics of complex networks [4].

The formalization of complex Network Science – its scientific boundaries, methodologies,
taxonomy, and real-world applications – have been gradually defined over the last two decades,
based on both formalism and data-driven findings [5]. In particular, Network Science uses
graphs of non-trivial size and non-trivial structure to model the structure and function of
natural or man-made phenomena. The building blocks of these graphs are nodes (vertices)
– e.g., representing entities like individuals, routers, genes, patients – and the relationship
between nodes represented as edges (links) – e.g., representing friendships, acquaintances,
cables, chemical interactions, binding forces. Complex network theory differentiates itself
from classic graph theory through the size (i.e., often dealing with millions of nodes), and
structure (i.e., dealing with heterogeneous topologies instead of regular ones) of complex
networks. Furthermore, the dynamics enabled by such large networks are of higher complexity,
requiring computer simulation rather than analytical approaches to understand and predict
[6, 7].

Complex networks science covers an active area of scientific research inspired largely by
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2 CHAPTER 1. INTRODUCTION

the empirical study of real-world networks with applicability in computer engineering and
communication, computer science, health and pharmacological sciences, economics, politics,
and even warfare. Given the diverse applicability of this emerging field, we note four major
domains of interest driving the current state of the art:

• Biological networks dealing with the study of e.g., metabolic networks, transcription
regulatory networks, protein-protein interaction networks, protein structure networks,
neural networks, ecological networks, natural food chains [8, 9, 10];

• Social networks dealing with the study of e.g., friendship networks, citation networks,
voter networks, world markets, political structures [11, 12, 13, 14];

• Technological networks dealing with the study of e.g., computer networks, the WWW,
electrical circuits, road networks, power grids [15, 6, 16];

• Semantic networks dealing with the study of e.g., word nets, recipe networks, software
projects structure [17, 18, 19].

The interdisciplinary nature of Network Science, found at the crossroads of Computer
Science and Engineering, Mathematics and Physics, is detailed in Figure 1.1. Today, Network
Science research can be classified into one or more of the following fundamental topics: social
network analysis (SNA), biological network analysis, multilayer networks, dynamic network
analysis, link (prediction) analysis, and centrality (influence) analysis.

Figure 1.1: The interdisciplinary nature of Network Science found at the crossroads of Com-
puter Science and Engineering (Algorithms, Big Data, Modeling & simulation, Databases),
with Mathematics (Graph Theory, Statistics), and Physics (Statistical Physics, Complex Sys-
tems).
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Finally, it is worth mentioning that many of the methodologies, involving large amounts of
data and complex systems, are supported by Computer Engineering & Information Technol-
ogy [20]. For instance, Information Technology offers approaches where computer algorithms,
simulation tools and databases are used for the processing and understanding of biological,
medical, pharmacological, or social data. Recent developments in personalized education and
medicine are based on Big Data Analytics & Visualization [21], and computer science technolo-
gies such as Complex Network Analysis (CNA) and Machine Learning. Also, advancements
in online social network technologies have enabled social physics and computational epidemics
with global scale socio-economical impact [22].

1.1 Motivation

The main motivation of the research presented in this thesis, spanning from 2011–2021, is to
bridge the main field of Computers & Information Technology with the multidisciplinary field
of Network Science with real-world, impactful applicability. This fusion results in the newly
coined term of Computational Network Science [23, 24], motivated by the fact that Computer
Science and Engineering can change all other sciences through its data-driven approach [24].

In support of this recent trend, we find new journals being dedicated to Computational
Network Science as well as Computational Social Science, a sister field focusing solely on social
networks. Nature Publishing Group has launched a new journal named Nature Computational
Science in 2021 encouraging the development and use of computational procedures and math-
ematical models, including their utilization to solve complex problems across various scientific
disciplines. Also, IEEE has launched the journal IEEE Transactions on Computational Social
Systems addressing the modeling, analysis, simulation and understanding of social systems
from a quantitative or computational perspective.

When analyzing the list of the most prominent network scientists, we find these being
divided across the following fields:

• Social and behavioral sciences (e.g., J. Fowler, M. Granovetter, M.O. Jackson, D. Lazer,
D. Watts);

• Computers & Information sciences (e.g., L. Adamic, A. Clauset, J. Kleinberg, J. Leskovec,
F. Menczer);

• Physics (e.g., A-L. Barabasi, S. Havlin, Y. Moreno, M. Newman, A. Vespignani);

• Biology (e.g., U. Alon, D. Bassett);

• Mathematics (e.g., L. Lovasz, S. Strogatz).

Among other important personalities, considered within the top 10 most powerful data
scientists in the world, we enumerate: Larry Page (CEO, Google), Sebastian Thrun (Profes-
sor, Stanford University), Todd Park (CTO, Department of Health and Human Services of
the USA), Alex ”Sandy” Pentland (Professor, MIT). We conclude that Computational Net-
work Science is a very dynamic research field, targeting many relevant social, technological
and economical challenges in the present. Within this cross-disciplinary set of methods and
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Figure 1.2: Main research paths presented in this thesis focusing on the cross-disciplinary use
of Computers & Information Technology with Network Science represented by five distinct
tracks backed up by a Computational Network Science approach. Each of the five tracks
detail the nature of the data being used for modeling (Nature of data), the specific approach
suited for each type of data (Methodology/ Approach), and the applicability of the results
(Goals & Challenges).
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applications, Computers & Information Technology have a fundamental and distinguished
role.

In light of these premises, we started research in the field of Network Science in Po-
litehnica University Timisoara around the year 2011 (from zero) when this novel concept was
introduced to our research group by Prof. Mihai Udrescu, after a research visit and Carnegie
Mellon University (USA). During my PhD studies (2012–2016) we published the first scientific
results using a novel computational network approach, culminating with my PhD obtained
in Computers. The successful defense of my PhD in February 2016 has laid the first bricks
of a new School of Network Science within the Polytechnic context, and possibly the whole
Romanian academic context.

Since 2012, our research has extended along multiple tracks, as summarized by Figure
1.2. Our first important approach is to study the generation of realistic complex network
topologies, their growth in time, followed by the opinion diffusion over large evolving net-
works. For this, we analyze state of the art topological models, inspired by the small world
[2] and scale free [3] networks, and aiming to reproduce empirically observed properties of
real-world networks. To this end, we create a highly realistic social network model [25] using
a multi-variable genetic algorithm approach. Also, in contrast to the fundamental Degree
preferential attachment principle, advocated by Barabasi et al. [26], we further proposed the
concept of Betweenness preferential attachment for better explaining the growth of social net-
works [27]. Subsequently, we studied opinion spreading models using discrete and continuous
opinion [28, 29, 30], including ones which include stubborn agents [31, 32]. Given the com-
plex interplay of agent nodes, we chose computer simulation as a valid research methodology
to evaluate and quantify these opinion spreading models over large social networks, because
an analytical approach is not able to handle the high complexity of social network inter-
connectivity. We find that, on small proof-of-concept networks, regular lattices or meshes as
used for understanding dynamics on social networks [32]. Alternatively, random networks [1]
are used to employ a fully statistical analysis [33]. However, in both cases, the possible quan-
titative and qualitative insights are limited. When applying the analytical power of computer
modeling and simulation we show that our novel tolerance-based model for opinion interaction
and spreading generates realistic, reproducible patterns in social networks [34]. We extend
existing models [31, 32] by adding a tolerance parameter to each agent (node) which mea-
sures the degree of accepted influence by neighboring nodes’ opinions. While several existing
models have such trust parameters, we define tolerance as a time variable parameter depen-
dent on the interaction patterns with neighboring nodes. Our inspiration for the evolution of
tolerance derives from the idea that the dynamics towards tolerance and intolerance vary ex-
ponentially [35, 36], meaning that an agent under constant influence becomes indoctrinated
at an increased rate over time. Along this track, we also introduced a statistical tool for
measuring the structural similarity (fidelity) between any two complex networks [37]; mod-
eled complex network antifragility under sustained attack [38]; and, introduced an original,
reliable methodology for benchmarking node centrality measures in a competitive context
[39]. There are over 50 different node centralities used for the selection of spreader nodes in
networks, and our methodology can reliably determine the more efficient ones given a specific
topology.

Another important approach detailed in this thesis is the application of Network Medicine
(also Precision Medicine, Systems Medicine) providing computer-based solutions for medical
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and pharmacological challenges [40]. On one hand, we worked for the past 8 years in sleep
research, in order to offer computational solutions for predicting the severity and development
of Obstructive sleep apnea (OSA) and Chronic obstructive pulmonary disease (COPD). The
results are formed around a patient phenotype model [41], built through a dual clustering
technique, and a score usable by doctors in every day patient monitoring [42]. More recently,
we extended the state of the art in OSA severity monitoring by presenting a differentiated
phenotype model for each gender [43], as well as analyzing the causes of improved CPAP
treatment response [44]. All these results are aimed at developing personalized treatment
and precise diagnostics (like 4P Healthcare). On the other hand, we use the public database
Drugbank [45] in order to build a drug-drug interaction (DDI) network, where nodes represent
drugs and links represent drug-drug interaction relationships between the drugs [46]. More re-
cently, we have explored the potential of target based DDI [47], using the same dual clustering
technique. These results help researchers estimate possible new interactions and repurposing
alternatives for drugs, thus optimizing costly and time-consuming pharmacological studies.

Another undertaken track of interdisciplinary research has been that of adapting a com-
plex network approach in the analysis of educational data. Specifically, we analyzed data of
Romanian students/learners participating in MOOCs, and created a compatibility network of
such students, based on their motivations, expectations and perceived difficulties throughout
the courses. By applying clustering techniques on the network, we defined specific student
archetypes (i.e., corresponding to communities) [48]. Furthermore, we developed a fully origi-
nal gamification platform for student motivation in class [49], and conducted an exam cheating
study [50].

Finally, we mention two more recent research tracks (2018-present), that of computational
epidemics and political poll prediction. Given the COVID-19 pandemic, we were quickly
motivated to collaborate (with the University of Texas) and focus our efforts on modeling and
better understanding the impact of this outbreak. Ongoing research is under development
on two tracks: that of understanding the impact of isolation strategies adopted in early
2020 [51], and improving the underlying population model used for epidemic simulations [52].
Also, given the turmoil caused by local and global elections over the past years, we focused on
improving the accuracy of pre-election polls using time series analysis and network science.
We obtained encouraging results [53, 54, 54] compared to existing state of the art methods,
like Multilevel regression with poststratification.

Overall, we have presented a detailed motivation of the research path followed in this
thesis, during the period 2011-2021, with the focus on impactful applications in Computational
Network Science, thus bridging the field of Computers & Information Technology with the
multidisciplinary field of Network Science.

1.2 Research Path and Contributions

The author has graduated the Faculty of Automation and Computers, Politehnica University
Timisoara (UPT) in 2010, obtaining a degree in Computer Engineering. Two years later, the
author obtained his Master’s degree following the ”Software Engineering” program. Between
October 2012– February 2016, the author developed his PhD thesis, titled ”Structural and
Behavioral Analysis and Modeling of the Society” obtaining Excellent honors. Both the Mas-



1.2. RESEARCH PATH AND CONTRIBUTIONS 7

ter’s (2012) and PhD (2016) represent important milestones for Social Network Analysis in
our University, as they were the first titles obtained in the field of Computers offered to con-
tributions in the multidisciplinary field of Network Science. Since then, the author, alongside
the ACSA research group, has worked on embedding Network Science into a representative
research track within the Department of Computers and Information Technology of UPT.

The main fields of expertise in which the author has contributed with relevant scientific
activity (publications, projects) are:

• Social Network Analysis (SNA) – generation of network topologies using genetic algo-
rithms [25, 37, 55]; modeling network growth based on the original concept of Between-
ness Preferential Attachment [27], quantifying network antifragility under topological
attack [38]; community analysis [56, 57, 58]; centrality analysis, benchmarking and
spreader selection strategies [39].

• Computational Social Networks (CSN) – modeling and simulation of opinion diffusion
[34, 59], political poll prediction using time series and introducing temporal attenuation
[60, 54, 53].

• Network Medicine – sleep research for assessing OSA severity [42, 44] and phenotyping
patients [41, 43]; drug-drug interaction analysis [46, 47].

• Educational Science – MOOC student archetyping [48], gamification [49], and network
analysis of student collaborations during exam [50].

Figure 1.3: Timeline of the research path between 2011–2021. Diamonds highlight the most
significant career events (i.e., director of projects with orange, member of projects with green).
Important publication venues (e.g., conferences, journals) are highlighted with orange text
and arrows, and citation milestones are depicted using red text.

These research tracks are supported by consistent scientific publications and projects (as
director and team member, see Figure 1.3) with high impact. We summarize the overall
results as follows:

• Director of 2 national research projects financed by UEFISCDI.

• Member of 2 international project teams (including one Horizon 2020 project), and
member of 5 national project teams.
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• Author of 2 books, and 5 international book chapters.

• Author of 53 Web of Science (WoS) indexed articles, out of which 16 journals, with 11
Q1 and 1 Q2 articles (first author in 8 of these journal articles).

• Cumulative impact factor of over 45, and journal impact factors in the range 1.05–4.53.

• H-index of 9 and 171 WoS citations1; H-index of 12 and 333 citations in Google Scholar2.

• Reviewer for multiple journals and conferences, including Scientific Reports, Future
Generation Computer Systems, Complexity, Mathematics, Online Social Media Analysis
and Visualization, IEEE Transactions on Computational Social Systems, Physica A,
ASONAM, ENIC etc.

• PC/EB member for Online Social Media Analysis and Visualization, European Network
Intelligence Conference, International Conference on Engineering of Modern Electric
Systems.

• One Best Paper Award at an IEEE conference (organized in Sweden, 2015).

In Figure 1.3 we represent the main scientific achievements of the author using a timeline
from 2011–2021. During his PhD period (2012–2016) the author managed to publish a rep-
resentative number of WoS proceedings papers at important venues in the field of Network
Science (e.g., SCA, ASONAM, ENIC) and Computer Engineering & Information Technol-
ogy (e.g., SACI, ICSTCC, CSCS, SMART). Also, he obtained his first journal publications
(PeerJ CS, Computer Communications) and participated in two research projects as a team
member. Later, between 2016–2019 the author managed to diversify his research tracks, pub-
lished additional impactful journal papers (e.g., Scientific Reports, Complexity, Plos One),
participated in two additional PED projects, and managed his own PD project (acronym
IMPRESS). From 2019 until the present, the author was involved in multiple significant re-
search projects (one ARUT, one PED, one Horizon2020), and is managing his second project
as project director (acronym PollStream). Also during this period, the author surpassed the
300 citation milestone (in Google Scholar; 164 WoS citations), published additional journal
papers of high impact (e.g., Journal of Clinical Medicine, Pharmaceutics, Diagnostics), and
at important venues pertaining to Network Science (e.g., ASONAM, Complex Networks).

Our activity is supported by several national and international grants, including collabo-
rations with the West University Timisoara and ”Victor Babes” University of Medicine and
Pharmacy Timisoara. We further detail the list of projects (P) in which the author was di-
rector, respectively member, and the full publication list, including books (B), book chapters
(BC), in-extenso journals papers (J), and conference proceedings (C).

1Publons WoS profile: https://publons.com/researcher/3545438/alexandru-topirceanu/
2Google Scholar profile: https://scholar.google.ro/citations?user=pHiA3SkAAAAJ&hl=en&oi=ao

https://publons.com/researcher/3545438/alexandru-topirceanu/
https://scholar.google.ro/citations?user=pHiA3SkAAAAJ&hl=en&oi=ao
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• Project director/responsible:

P1 Alexandru Top̂ırceanu (director), ”IMPRESS: Improving the prediction of opinion
dynamics in temporal social networks: mathematical modeling and simulation
framework”, UEFISCDI PN-III-P1-1.1-PD-2016-0193, 28PD/2018 (Total value:
178.215 lei / 37.695 euro).

P2 Alexandru Top̂ırceanu (director), ”PollStream: Agent-based interaction models
with temporal attenuation for opinion poll prediction”, UEFISCDI PN-III-P1-1.1-
PD-2019-0379, PD7/2020 (Total value: 246.410 lei / 50.711 euro).

• Project member:

P3 Stefan Dan Mihaicuta (director), Universitatea de Medicina si Farmacie Victor
Babes Timisoara, ”Morpheus: A Screening and Monitoring System for Sleep Apnea
Syndrome”, Linde Realfund (2015–2016) - 75K euro.

P4 Gabriela Grosseck (director), Universitatea de Vest Timisoara, ”Novamooc: Inno-
vative development and implementation of moocs in higher education”, UEFISCDI
PN-II-RU-TE-2014-4-2040 (2015–2017) - 120K euro.

P5 Mihai Udrescu (director), Univeritatea Politehnica Timisoara, ”Inception: Internet
of things meets complex networks or early prediction and management of chronic
obstructive pulmonary disease”, UEFISCDI PN-III-P2-2.1-PED-2016-1145 (2017–
2018) - 120K euro.

P6 Lucian Prodan (director), Univeritatea Politehnica Timisoara, ”Wikitraffic: Ex-
perimental Assessment of a Self-Adaptive Intelligent Transportation System”, UE-
FISCDI PN-III-P2-2.1-PED-2016-1518 (2017–2018) - 100K euro.

P7 Alexandru Iovanovici (director), Univeritatea Politehnica Timisoara, ”Dormamu:
Prediction and management of road congestion using machine learning”, ARUT
1349/01.02.2019 (2019–2020) - 10K euro.

P8 Lucretia Udrescu (director), Universitatea de Medicina si Farmacie Victor Babes
Timisoara, ”Hyperion: S, tiint,a complexităt, ii ı̂n farmacia de precizie: predict, ia
interact, iunilor medicamentoase relevante folosind analiza ret,elelor complexe”, UE-
FISCDI PN-III-P2-2.1-PED2019-2842 (2020–2022) - 120K euro.

P9 Stefan Dan Mihaicuta (director), Universitatea de Medicina si Farmacie Victor
Babes Timisoara, ”Sleep Revolution: Revolution of sleep diagnostics and person-
alized health care based on digital diagnostics and therapeutics with health data
integration”, 965417 / Horizon 2020 (2021–2025) - 15M euro (total value), 131K
euro (local budget).

• Books

B1 Alexandru Top̂ırceanu, Marius Marcu, ”Introducere in programarea Android”,
Colectia “Programare”, 137 pg., Editura Politehnica, Timisoara, 2015, ISBN 978-
606-554-986-9.
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B2 Alexandru Top̂ırceanu, ”Hands-On Android Application Development with Google
Firebase”, Colectia “Calculatoare”, 155 pg., Editura Politehnica, Timisoara, 2021,
ISBN 978-606-35-0408-2.

• Book chapters (in chronological order)

BC1 Topirceanu, A., Udrescu, M., Vladutiu, M., ”Genetically Optimized Social Net-
work Topology Inspired by Facebook”, Online Social Media Analysis and Visual-
ization (pp. 163-179). Springer International Publishing, ISBN 978-3-319-13590-8,
DOI:10.1007/978-3-319-13590-8 8, 2014.

BC2 Topirceanu, A., Udrescu, M., Avram, R., Mihaicuta, S. (2016). Data Analysis
for Patients with Sleep Apnea Syndrome: A Complex Network Approach. In
Soft Computing Applications (pp. 231-239), ISBN 978-3-319-18296-4, Springer
International Publishing.

BC3 Topirceanu, A., Iovanovici, A., Cosariu, C., Udrescu, M., Prodan, L., Vladutiu,
M. (2016). Social Cities: Redistribution of Traffic Flow in Cities Using a Social
Network Approach. In Soft Computing Applications (pp. 39-49), ISBN 978-3-319-
18296-4, Springer International Publishing.

BC4 Iovanovici, A., Topirceanu, A., Cosariu, C., Udrescu, M., Prodan, L., Vladutiu, M.
(2016). Heuristic Optimization of Wireless Sensor Networks Using Social Network
Analysis. In Soft Computing Applications (pp. 663-671), ISBN 978-3-319-18296-4,
Springer International Publishing.

BC5 Top̂ırceanu A., Udrescu M. (2018) Strength of Nations: A Case Study on Estimat-
ing the Influence of Leading Countries Using Social Media Analysis. In: Alhajj R.,
Hoppe H., Hecking T., Bródka P., Kazienko P. (eds) Network Intelligence Meets
User Centered Social Media Networks. ENIC 2017. Lecture Notes in Social Net-
works. Springer, Cham.

• Journal papers (in chronological order):

J1 Topirceanu, A., Duma, A., Udrescu, M. (2016). Uncovering the fingerprint of
online social networks using a network motif based approach. Computer Commu-
nications, 73, 167-175 [IF=3.338, Q1 - Computer Science, Information Systems;
Engineering, Electrical & Electronic].

J2 Topirceanu, A., Udrescu, M., Vladutiu, M., Marculescu, R. (2016). Tolerance-
based interaction: a new model targeting opinion formation and diffusion in social
networks. PeerJ Computer Science, 2, e42. [IF=3.091, Q1 - Computer Science,
Theory & Methods].

J3 Suciu, L., Cristescu, C., Top̂ırceanu, A., Udrescu, L., Udrescu, M., Buda, V.,
Tomescu, M. C. (2016). Evaluation of patients diagnosed with essential arterial
hypertension through network analysis. Irish Journal of Medical Science(1971-),
185(2), 443-451 [IF=1.224, Q3 - Medicine, General & Internal].
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J4 Udrescu, L., Sbârcea, L., Top̂ırceanu, A., Iovanovici, A., Kurunczi, L., Bogdan,
P., Udrescu, M. (2016). Clustering drug-drug interaction networks with energy
model layouts: community analysis and drug repurposing. Scientific Reports, 6
[IF=4.259, Q1 - Multidisciplinary Sciences].

J5 Topirceanu, A., Udrescu, M. (2017). Statistical fidelity: a tool to quantify the
similarity between multi-variable entities with application in complex networks.
International Journal of Computer Mathematics, 94(9), 1787-1805 [IF=1.054,
Q2 - Mathematics, Applied].

J6 Mihaicuta, S., Udrescu, M., Topirceanu, A., Udrescu, L. (2016). Network science
meets respiratory medicine for OSAS phenotyping and severity prediction. PeerJ,
5:e3289 [IF=2.183, Q1 - Multidisciplinary Sciences].

J7 Top̂ırceanu, A. (2017). Breaking up friendships in exams: A case study for mini-
mizing student cheating in higher education using social network analysis. Com-
puters & Education, 115, 171-187 [IF=4.538, Q1 - Computer Science, Interdisci-
plinary Applications].

J8 Topirceanu, A., Udrescu, M., Marculescu, R. (2018). Weighted Betweenness Pref-
erential Attachment: A New Mechanism Explaining Social Network Formation
and Evolution. Scientific reports, 8(1), 10871 [IF=4.122, Q1 - Multidisciplinary
Sciences].

J9 Top̂ırceanu, A. (2018). Competition-Based Benchmarking of Influence Ranking
Methods in Social Networks. Complexity, 2018 [IF=2.591, Q1 - Mathematics,
Interdisciplinary Applications; Multidisciplinary Sciences].

J10 Top̂ırceanu, A., Udrescu, M., Udrescu, L., Ardelean, C., Dan, R., Reisz, D., Mihai-
cuta, S. (2018). SAS score: Targeting high-specificity for efficient population-wide
monitoring of obstructive sleep apnea. PloS one, 13(9), e0202042 [IF=2.766, Q1
- Multidisciplinary Sciences].

J11 Fierăscu, S. I., Pârvu, M., Top̂ırceanu, A., Udrescu, M. (2018). Exploring Party
Switching in the Post-1989 Romanian Politicians Networks from a Complex Net-
work Perspective. Romanian Journal of Political Science, 18(1), 108-136 [IF=0.421,
Q4 - Political Science].

J12 Barina, G., Udrescu, M., Barina, A., Topirceanu, A., Vladutiu, M. (2019). Agent-
based simulations of payoff distribution in economic networks. Social Network
Analysis and Mining, 9(1), 63.

J13 Top̂ırceanu, A., Precup, R. E. (2020). A framework for improving electoral fore-
casting based on time-aware polling. Social Netw. Analys. Mining, 10(1), 39.

J14 Udrescu, L., Bogdan, P., Chis, A., Sirbu, I. O., Topirceanu, A., Varut, R. M.,
Udrescu, M. (2020). Uncovering new drug properties in target-based drug-drug
similarity networks. Pharmaceutics, 12(9), 879 [IF=4.421, Q1 - Pharmacology
& Pharmacy].

J15 Top̂ırceanu, A., Udrescu, L., Udrescu, M., Mihaicuta, S. (2020). Gender Phenotyp-
ing of Patients with Obstructive Sleep Apnea Syndrome Using a Network Science
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Approach. Journal of Clinical Medicine, 9(12), 4025 [IF=3.303, Q1 - Medicine,
General & Internal].

J16 Mihaicuta, S., Udrescu, L., Udrescu, M., Toth, I. A., Top̂ırceanu, A., Pleavă, R.,
Ardelean, C. (2021). Analyzing Neck Circumference as an Indicator of CPAP
Treatment Response in Obstructive Sleep Apnea with Network Medicine. Diag-
nostics, 11(1), 86 [IF=3.11, Q1 - Medicine, General & Internal].

• Conference proceedings papers (indexed in WoS)

C1 Topirceanu, A., Udrescu, M., Vladutiu, M. (2013, September). Network fidelity:
A metric to quantify the similarity and realism of complex networks. In Cloud and
Green Computing (CGC), 2013 Third International Conference on (pp. 289-296).
IEEE.

C2 Barina, G., Topirceanu, A., Udrescu, M. (2014, May). MuSeNet: Natural pat-
terns in the music artists industry. In Applied Computational Intelligence and
Informatics (SACI), 2014 IEEE 9th International Symposium on (pp. 317-322).
IEEE.

C3 Duma, A., Topirceanu, A. (2014, May). A network motif based approach for clas-
sifying online social networks. In Applied Computational Intelligence and Infor-
matics (SACI), 2014 IEEE 9th International Symposium on (pp. 311-315). IEEE.

C4 Alexandru Top̂ırceanu, Cezar Fles,eriu, Mihai Udrescu, ”Gamified: An Effective
and Innovative Approach to Student Motivation Using Gamification”. The 2nd
International Conference on Social Media in Academia: Research and Teaching
(SMART 2014), pp. 41-44.

C5 Alexandru Top̂ırceanu, Dragos, Tiselice, Mihai Udrescu. ”The Fingerprint of Ed-
ucational Platforms in Social Media: A Topological Study Using Online Ego-
Networks”. The 2nd International Conference on Social Media in Academia: Re-
search and Teaching (SMART 2014), pp. 355-360.

C6 Topirceanu, A., Barina, G., Udrescu, M. (2014, September). Musenet: Collabo-
ration in the music artists industry. In Network Intelligence Conference (ENIC),
2014 European (pp. 89-94). IEEE.

C7 Topirceanu, A., Udrescu, M. (2015, September). FMNet: Physical Trait Patterns
in the Fashion World. In Network Intelligence Conference (ENIC), 2015 Second
European (pp. 25-32). IEEE.

C8 Iovanovici, A., Topirceanu, A., Udrescu, M., Prodan, L., Mihaicuta, S. (2015). A
high-availability architecture for continuous monitoring of sleep disorders. In MIE
(pp. 729-733).

C9 Topirceanu, A., Udrescu, M. (2015, May). Measuring realism of social network
models using network motifs. In Applied Computational Intelligence and Infor-
matics (SACI), 2015 IEEE 10th Jubilee International Symposium on(pp. 443-447).
IEEE.
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C10 Udrescu, M., Top̂ırceanu, A. (2015, May). What Drives the Emergence of So-
cial Networks?. In 2015 20th International Conference on Control Systems and
Computer Science (pp. 999-999). IEEE.

C11 Topirceanu, A., Garcia, J., Udrescu, M. (2016, September). UPT. Social: The
Growth of a New Online Social Network. In Network Intelligence Conference
(ENIC), 2016 Third European (pp. 9-16). IEEE.

C12 Udrescu, M., Topirceanu, A. (2016, September). Probabilistic Modeling of Tolerance-
Based Social Network Interaction. In Network Intelligence Conference (ENIC),
2016 Third European (pp. 48-54). IEEE.

C13 Top̂ırceanu, A. (2017). Gamified learning: A role-playing approach to increase
student in-class motivation. Procedia Computer Science, 112, 41-50.

C14 Top̂ırceanu, A., Grosseck, G. (2017). Decision tree learning used for the classifi-
cation of student archetypes in online courses. Procedia Computer Science, 112,
51-60.

C15 Barina, G., Udrescu, M., Topirceanu, A., Vladutiu, M. (2018, August). Simu-
lating Payoff Distribution in Networks of Economic Agents. In 2018 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
(ASONAM) (pp. 467-470). IEEE.

C16 Topirceanu, A., Udrescu, M. (2018, August). Topological Fragility Versus An-
tifragility: Understanding the Impact of Real-Time Repairs in Networks Under
Targeted Attacks. In 2018 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining (ASONAM) (pp. 1215-1222). IEEE.

C17 Top̂ırceanu, A., Precup, R. E. (2019, August). A novel methodology for improv-
ing election poll prediction using time-aware polling. In Proceedings of the 2019
IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining (pp. 282-285).

• Conference proceedings papers (indexed in other databases)

C18 Marcu, M., Stangaciu, C., Topirceanu, A., Volcinschi, D., Stangaciu, V. (2010, De-
cember). Wireless Sensors Solution for Energy Monitoring, Analyzing, Controlling
and Predicting. In International Conference on Sensor Systems and Software (pp.
1-19). Springer Berlin Heidelberg [SpringerLink].

C19 Iovanovici, A., Topirceanu, A., Udrescu, M., Vladutiu, M. (2014, October). De-
sign space exploration for optimizing wireless sensor networks using social network
analysis. In System Theory, Control and Computing (ICSTCC), 2014 18th Inter-
national Conference (pp. 815-820). IEEE [IEEE Xplore].

C20 Topirceanu, A., Iovanovici, A., Udrescu, M., Vladutiu, M. (2014, October). Social
cities: Quality assessment of road infrastructures using a network motif approach.
In System Theory, Control and Computing (ICSTCC), 2014 18th International
Conference (pp. 803-808). IEEE [IEEE Xplore].
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C21 Topirceanu, M., Topirceanu, A., Udrescu, M. (2019, May). Exploring currency
exchange dynamics from a complex network perspective. In 2019 IEEE 13th In-
ternational Symposium on Applied Computational Intelligence and Informatics
(SACI) (pp. 63-68). IEEE [IEEE Xplore].

C22 Top̂ırceanu, A., Udrescu, M., Mărculescu, R. (2020, January). Complex Networks
Antifragility under Sustained Edge Attack-Repair Mechanisms. In International
Conference on Network Science (pp. 185-199). Springer, Cham [SpringerLink].

C23 Muntea, D., Giurgiu, M., Topirceanu, A. (2020, May). Network-based clustering
of book genres based on the connection between books bought together. In 2020
IEEE 14th International Symposium on Applied Computational Intelligence and
Informatics (SACI) (pp. 000041-000046). IEEE [IEEE Xplore].

C24 Top̂ırceanu, A. (2020, December). Analyzing the Impact of Geo-Spatial Organi-
zation of Real-World Communities on Epidemic Spreading Dynamics. In Inter-
national Conference on Complex Networks and Their Applications (pp. 345-356).
Springer, Cham [SpringerLink].

In addition to the list of enumerated journal papers (J) and proceedings papers (C), we
have published a number of 11 WoS & PubMed indexed medical congress abstracts (1–2
pages) indexed in journals of high visibility (e.g., Chest, European Respiratory Journal).

Moreover, as an appreciation for contributions in the field of Network Science, we received a
Best Paper Award for our paper [C6] at the 2nd European Network Intelligence Conference,
ENIC, Karlskrona, Sweden, 21-22 Sep, 2015: Alexandru Top̂ırceanu and Mihai Udrescu,
”FMNet: Physical Trait Patterns in the Fashion World” [58].

1.3 Theoretical Foundations of Complex Networks

This section introduces the basic theoretical elements and taxonomy that is used throughout
the rest of the thesis to refer to our Complex Network research. Please note that a full
introductory coverage of the field of Network Science is beyond the goal of this thesis. As
such, we provide references pinpointing to the detailed literature regarding the introduced
topics [4, 9, 61, 5, 10, 62].

1.3.1 Graphs as Complex Networks

Modeling a complex system often starts from identifying its components and possible inter-
action types. As such, graphs capture the building blocks of such systems conveniently, by
making use of nodes (vertices) and edges (links). Even though complex systems vary greatly
in terms of structure, function and goal, graphs offer a common modeling paradigm, and
enable the study of graph-specific properties. The data structure commonly used in mathe-
matics, computer science and engineering to model pairwise relations between objects is done
by defining a complex network G = (N,E), which consists of the set N of nodes, which are
interconnected via the set E of edges. We symbolize a node as ni ∈ N and any edge eij ∈ E
connects two nodes ni and nj. Based on the nature of the problem, and the set E, the graph
may be undirected, meaning that edges are equivalent in terms of the two ends (eij = eji),
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or directed from one node to another (eij 6= eji). In the directed scenario, we can state that
there is a path dij from ni to nj, but not necessarily vice-versa. In an undirected scenario all
paths are bidirectional.

Nodes

Nodes represent the abstraction of a natural or synthetic entity stemming from a process
(complex system) for which network science is employed. At the most basic level, each node
possesses an identity (id) and a set of edges through which it connects to other nodes, forming
its vicinity Ni. Often, nodes possess context-specific properties which are used to characterize
emergent clusters, using bipartite graphs [63], and community detection methods [64, 65, 62].

Formally, N represents the number of components in the modeled system, and is referred
to as the size of the network. Intrinsically, each node ni possesses a position x(ni) ∈ a2 −
dimensionalEuclideanspaceR2 (in some cases, networks can be modeled in higher degree
dimensions).

Edges

Edges represent a relationship between two nodes, connecting them in graph G. Edges can
be directed or undirected, respectively weighted or unweighted. Intuitively, if edge ei,j is
undirected then both nodes can be reached following the edge from the other end. Conversely,
if ei,j is directed then the edge can only be followed from ni to nj. Of course ei,j does not
imply the existence or absence of another edge eji ∈ E. In the context of undirected graphs,
an edge ei,j ∈ E may be associated a weight equal to wij = 1 when computing paths dij (or
costs). If the relationship between nodes implies different magnitudes, then weights may be
assigned to edges (wi,j > 0). A special case for edges are the self-loops ei,i, in which a node
redirects to itself (e.g., a web page having a link that redirects to itself).

Formally, each pair of nodes (ni, nj) can assign a Euclidean distance ‖x(ni) − x(nj)‖ to
each existing edge ei,j ∈ E. The number of edges E represents the total number of interactions
between all the nodes N in the graph G. More often, edges are identified through the nodes
which they connect rather than using a distinct label.

1.3.2 Metrics of Complex Networks

Node Degree and Network Average Degree

The degree of a node is the number of nodes with which it is connected through graph edges.
The degree can represent the number of acquaintances in a social network, the number of
emails received from a particular contact, the number of medications on a prescription, the
number of coauthors of a paper etc.

We use the notation ki for the degree of a node ni. In an undirected network we can
express the total number of edges E as the sum of node degrees as: E = 1/2

∑
i ki. In

directed graphs (also digraphs), a node has two degrees: an out-degree kouti for edges exiting
the node, and an in-degree kini for incoming edges. The sum kouti + kini is considered the total
node degree ki. In digraphs, the number of edges is expressed as E =

∑
i ki (without the

division by 2).
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The average degree 〈k〉 of an undirected network G is computed as:

〈k〉 =
1

N

N∑
i=1

ki =
2E

N
(1.1)

For directed networks, we express the average in-degree 〈kin〉 and average out-degree 〈kout〉
separately, as:

〈kout〉 =
1

N

N∑
i=1

kouti = 〈kin〉 =
1

N

N∑
i=1

kini =
E

N
(1.2)

A popular alternative to the symbol 〈k〉 used in state of the art papers is simply AD or
AvgDeg.

Degree Distributions

The degree distribution P (k) of a network is a statistical function describing the probability
that random node ni ∈ N has exactly degree k. P (k) is used to describe distribution of
node degrees over the whole network. Since the degree of any connected node is ki ≤ 1,
but we are using a probability distribution, the function P (k) must be normalized such that∑N

i P (k) = 1.

The degree distribution P(k) is defined as the ratio between the number of nodes with
degree k and the total number of nodes [10]:

P (k) =
Nk

N
(1.3)

where Nk is the number of nodes with degree k. The function P (k) describes the prob-
ability that a randomly selected node has degree k. For example, a regular lattice (i.e., a
chessboard with only vertical and horizontal links), with most nodes having similar degree
(k = 4), will have a distribution P(k) characterized by spike at the exact k = 4. The more
randomness (irregularity) is added to the network connections, the broader the spike becomes.
Conversely, a fully random network will have a Poisson-like distribution of degrees. Empirical
results however, show that many real networks follow a different distribution than the regular
Poisson distribution. The nodes tend to be connected like in a scale-free network, thus they
obey a power-law distribution [8]. Such a distribution is often expressed as:

P (k) ≈ k−β (1.4)

where β has been observed to be between 2 and 3 in a large variety of real-world networks.
As this form of distribution is not subject to network scale, it is a signature characteristic for
scale-free networks.

Nodes with a higher degree than other are called hubs, as they tend to facilitate commu-
nication for non-local nodes (i.e., nodes outside the vicinity). Also, according to the scale-free
network model, a more connected node has a higher chance of becoming even more connected
– the basis of Degree Preferential Attachment [3].
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Network Density

Based on the introduced notations, we call graph G a dense graph when the number of edges E
is close to the maximal number of edges E → Emax. The opposite of a dense graph is a sparse
graph, having E � Emax. The maximum number of edges is expressed as Emax = N(N−1)/2.
Complete graphs are very rare in nature, as most real-world networks are sparse. The exact
threshold between sparse and dense graphs is rather vague, and depends on the context. Two
different definitions exists for density Dns whether we refer to undirected or directed graphs.
For undirected graphs, the graph density Dns is defined as:

Dns =
2|E|

|N | · (|N | − 1)
=
|E|
|Emax|

(1.5)

Using equation 1.5 Dns can be considered the number of edges which exist in the graph,
divided by the maximum number of edges which can exist. For directed graphs, the graph
density equation is slightly modified to:

Dns =
|E|

|N | · (|N | − 1)
=
|E|
|Emax|

(1.6)

Equation 1.6 lacks the 2× multiplier because in directed graphs we have a double number
of maximum edges compared to undirected graphs. The minimum density Dns is 0, and the
maximum Dns is 1.

Average Clustering Coefficient

The clustering coefficient Ci of a node ni is a measure of the nodes’ tendency to cluster
together. This real-world property can be exemplified with a friendship network, where there
is a high probability that one person’s friend of a friend is also a direct friend of that person.
Rephrased, it is very likely that two friends of a person are also friends with one another,
forming a triadic closure. Thus, the clustering coefficient can be defined as the ratio between
the existing number of links between a node and his neighbors, and the total number of links
that can exist between the neighbors. More precisely, a node ni with degree ki has |Ni| = ki
neighbors. The maximum number of links between all neighboring nodes is |Ni|(|Ni| − 1)/2.
As such, we express Ci in an undirected network as:

Ci = 2 · Ei
|Ni|(|Ni| − 1)

(1.7)

where Ei is the existing number of links between the neighbors of ni. The average of the
coefficients of all nodes in the network is the average clustering coefficient C (or ACC) of the
network:

C =

∑N
i Ci
N

(1.8)

From equation 1.8 we conclude that the maximum value of C is 1. A network with C = 1 is
a fully connected graph with point-to-point connections, while a completely random network
has C ≈ 1/N . However, the clustering measured in random networks is much smaller than
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compared to observable networks which have their clustering coefficient satisfy the following
relationship:

1

N
� C < 1 (1.9)

This empirical observation means that most networks are neither random, nor fully con-
nected, and thus the triadic closure is a very important aspect of real networks. An illustration
of the clustering coefficient is depicted in Figure 1.4a.

Figure 1.4: (A) Illustration of the clustering coefficient of a node ni (violet). The size of its
vicinity is |Ni| = 8, and the neighbors have a number of Ei = 13 links between them. Given
Emax = 28 for 8 nodes, we compute Ci = 13/28 = 0.464. (B) Illustration of the shortest
distance between two nodes in a network. The nodes are connected via the red path with
length dij = 3.

1.3.3 Paths and Distances in Networks

The physical distance between entities is replaced by path length between nodes in a complex
network. A path connects any two nodes via a set of links, and its length is given by the
number of links contained in the path. The distinction between a path and the more generic
term walk, is that a walk may contain cycles, whereas a path may not contain a node twice.
Paths are highly studied in Network Science because most types of processes (diffusion) are
influenced by the general length of paths between nodes.

The distance between two nodes ni and nj in a network G is given by the number of links
of the shortest path between ni and nj denoted as dij. Note that in an undirected network
dij 6= dji, while in a directed network they are equal.

The diameter Dmt of a network is expressed as the longest shortest path in G. Intuitively,
Dmt measures the distance between the two furthest nodes.
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Average Path Length

The average path length (L, or APL) is one of the fundamental graph metrics used for
characterizing a network topology. The average path length L is the sum of all paths between
all pairs of nodes, divided by the number of all possible paths in the network:

L =
2

|N | · (|N | − 1)

∑
i6=j

dij (1.10)

where |N | is the size of the graph, and (i, j) are distinct node indices. For example,
in a network of friends, L is the average number of friends that form up the shortest way
connecting any two friends [10]. In a road network, L is the average number of roads a driver
has to change in order to get from one city to any other city. A particular aspect is that
natural networks (e.g, brain neural networks), even though having significantly more edges
than some simple synthetic networks (e.g., computer network), still have a very small average
path length L. This is the property known as small world effect found in small-world networks
[2, 66]. An illustration of the shortest path length is depicted in Figure 1.4b.

1.3.4 Community Formation

One of the main motivations behind graph modeling of natural or man-made complex sys-
tems is to analyze how the different entities (i.e., nodes) connect and cluster together - both
quantitatively and qualitatively [67, 65]. Most network-based modeling results in an emergent
community structure that has substantial importance in further understanding the dynamics
of the network. For instance, a highly clustered social community will imply a faster rate of
transmission of information or rumor among them than loosely connected communities [62].
Thus, if a network is represented by a number of nodes connected by edges, which signify a
certain degree of interaction between those nodes, then communities are defined as groups of
densely interconnected nodes that are only sparsely connected with the rest of the network
[68]. Hence, it is useful to identify the communities in networks since these can have different
graph properties (e.g., average node degree, clustering coefficient, and other centralities) than
the larger network G [69]. Consequently, community detection and analysis have received
much attention over the last two decades [70, 64, 65, 62, 9, 58, 41, 43, 63].

There are two parallel, non-exclusive, approaches to community detection and analysis.
First, we mention node partitioning into distinct clusters. There are multiple numerical
methods which imply assigning a community label to each node. We mention here two of the
more popular partitioning methods: the modularity algorithm [71] and the Louvain method
[72]. Second, given the visual nature of networks, force-directed layout algorithms are further
used to place the nodes in an intuitive manner in a 2-dimensional space. As such, nodes
that are clustered together tend to be more similar, and have an increased interconnectedness
compared to other distant nodes.

Network Modularity

Modularity (Mod) is a measure of the interconnectedness of networks. Mod is a quantitative
measure of the strength of division of a network into groups (also called modules, communities



20 CHAPTER 1. INTRODUCTION

or clusters). The value of Mod suggests that networks with high modularity have denser
connections between the nodes within communities, but sparser connections between nodes
in different communities. Numerically, Mod is defined as the ratio of edges which exist within
a given community minus the expected such ratio if edges were distributed at random. The
maximum value for modularity is 1 [73].

In a complex network G, a clustering algorithm via modularity is an assignment Am of
each node ni in one of the clusters Cj, with ∪mk=1Cj = N [44]. As such, when modularity
determines the assignment of nodes to their corresponding clusters Am = {C1, C2, ..., Cm},
the algorithm maximizes the modularity of clustering Am as follows:

ModAm =
∑
C∈Am

(
|ECj
|

|E|
−

1
2
k2
Cj

1
2
k2

)
(1.11)

where |E| is the number of edges in G, |ECj
| is the number of edges in cluster Cj, k is

the accumulated degree of nodes in G, and kCk
is the accumulated degree of nodes solely in

cluster Cj [47]. As such, |ECj
|/|E| translates to the edge density of cluster Cj relative to the

density of the whole network, and the term 1
2
k2
Cj
/1

2
k2 represents the expected relative density

of Cj [64].
There are different methods for calculating modularity [65]; in the most common version

of the metric, the randomization of the edges is done so as to preserve the degree of each
vertex. An example of two graphs with different modularity are generated and depicted in
Figure 1.5a.

Force Directed Layout Algorithms

A force-directed layout algorithm assigns each node ni ∈ N a coordinate in a 2-dimensional
space δi = (xi, yi) ∈ R2. Consequently, each edge has a length defined by the Euclidean
distance δi,j = |δi − δj|. A force-directed (or energy-based) layout generates the δi for each
ni using a dynamic, emergent process, where any two adjacent nodes ni and nj attract each
other, and any two non-adjacent nodes ni and nk repulse each other. We express such attrac-

tion/repulsion forces as |δi − δj|Φ ·
−→
δiδj, where Φ = a for attraction, Φ = r for repulsion, and

−→
δiδj is the unit vector. The attraction between adjacent nodes decreases and the repulsion
between non-adjacent nodes increases with the Euclidean distance between them; therefore,
we have a ≥ 0 and r ≤ 0 [44].

One of the most popular force directed layout algorithms is Force Atlas 2 [74] which
employs a dynamic complex process based on interacting attraction and repulsion forces to
attain minimal energy in the layout:

min

{ ∑
(ni,nj),i6=j

(
|δi − δj|a

a+ 1
− |δi − δj|

r

r + 1

)}
(1.12)

As such, force directed layouts can generate topological clusters, as some specific network
regions have higher than average edge densities. Noack [69] has demonstrated that modularity-
based and force-directed layout communities/clusters are equivalent when a > −1 and r > −1,
which, indeed, is the case for Force Atlas 2 [44].
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Noack et al. [69] demonstrated that force directed layouts and modularity are analogous
when a > −1 and r > −1 (which is the case for Force Atlas 2). As such, we will often
refer to the dual clustering technique in this thesis, which means applying both modularity
(numerically – quantitative) and a layout algorithm (visually – qualitative). The practical
impact of applying a force directed layout on a network dataset is exemplified in Figure Figure
1.5b.

Figure 1.5: (A) An overview of community detection in networks using a modularity based
approach. First, we depict a graph with a weak community structure, quantified by the
relatively small modularity Mod = 0.23. Second, we depict a graph with visibly stronger
community structure, and a modularity of Mod = 0.70. All nodes are colored according to
the community to which they belong. (B) The visual impact of applying a layout algorithm
on the same dataset.

The visualizations in Figure 1.5 are based on network models generated using proprietary
code implemented as a Java plugin in Gephi [75], an open source graph visualization tool.

1.4 Thesis Outline

The thesis is organized in six subsequent chapters, as follows. Chapter 2 outlines the algorith-
mic contributions aimed at improving our structural understanding of complex networks, with
direct applicability in social network analysis. Chapter 3 describes contributions in modeling
and computer simulation of processes over social networks, representing opinion formation,
dynamics and convergence. Chapter 4 summarizes two important tracks of contributions
using algorithmic methods in sleep research and pharmacology, with direct applicability in
patient phenotype definition and drug repurposing. Chapter 5 describes the applicability of
network science in educational Big Data.

The second part of the thesis, starting with Chapter 6, outlines future research directions
in computational epidemics. Indeed, there has been a recent rise in efforts to better model and
predict epidemic outbreak dynamics, and we are proposing robust computer simulation based
approaches for large scale analyses with high societal impact. The last chapter of the thesis
outlines the main obtained results from research projects, and sketches the perspectives for
future research projects in the context of Computers & Information Technology using Complex
Systems and Big Data. Finally, we list all relevant references from our work, other related
works, and from relevant state-of-the-art literature.
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Chapter 2

Contributions in Social Network
Analysis

2.1 Introduction

Social networks, in computer science, are a branch of complex networks, and their theory
is based on network theory, graph theory and network science. The main purpose of social
networks is to model the structure and relationships between persons in real or virtual societies
[76, 77, 78] implying e.g., friendship, collaboration, competition, economical, political ties.
The structure of social networks can be further generalized to multiple layers [79], represented
by groups of persons, clusters, cities, states etc., each layer with a particular set of defining
characteristics [80]. The area of Social Network Analysis (SNA) is relatively new, with its
fundamentals starting from the 1970s [81] and was initially based on empirical observations of
computer networks and human networks, with many ideas coming from the more distant field
of sociology. Even though 50 years old, only more recently (2010s) has this field started to
attract massive interest from universities and researchers around the world. Many important
Computer Science and Engineering Universities in Europe, North America and Asia have a
dedicated department to Network Science, Social Computing, or any related branches (e.g.,
ETH Zurich, Oxford, Cambridge, CEU, MIT, Stanford, CMU, Columbia, Penn State, USC
etc.).

In general, it is considered that the evolution of companies like Facebook and Google
has generated the increased interest of computer science in social networks [82]. Not only
does the available Big Data offer data scientists valuable feedback on their assumptions and
validations, but the ubiquitous usage of social sites is attracting more Computer Science and
Engineering students into this area of science.

A social network is a graph model G consisting of individuals (i.e., actors, agents) and
connections (i.e., relationships) between these individuals resembling a real social structure
of people. The scientific value of such a network model is to provide information on how
relationships evolve and how information is transmitted within the society, as determined by
the interactions, i.e., topology. The two important aspects of a social network are the network
topology and the (agent) interaction model. An important property of social networks is that
they are self-organizing and emergent [3, 83]. Emergence refers to the characteristic that
patterns observed at a small scale, inside a small group of agents, replicate at a greater scale.

23
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However, with increasing network size (e.g., million of agents), the dynamics of the model
become overwhelming for analytical approaches, and computer simulation is adopted. Also,
studies are aimed at groups of interest, rather than at cities or country levels.

Classically, there are three levels of the social network composition that are being studied
separately [62]:

• The micro level – studying an individual and relationships, and modeling its interaction
patterns,

• The middle (meso) level – studying small groups of individuals, like triadic closures and
cliques, where specific dynamics and polarization are observable.

• The macro-level – studying emergence of large populations and the global effects of
processes on these large topologies, regardless of the individual scale.

This thesis deals with all three levels of SNA and this section is oriented towards summa-
rizing contributions on the topological level of network. The rest of this section introduces
(i) fundamental complex network topologies used as inspiration for state of the art topolog-
ical research, (ii) network centralities used for studying influence ranking methods, and (iii)
network motifs used for the characterization of different types of social networks.

2.1.1 State-of-the-art Complex Network Topologies

A network topology is a term used to describe the interconnection pattern of the entities
composing the network. Linking elements can be done physically or logically. As social
networks describe combined human relationships, knowledge or collaboration, the links are
purely logical. Analyzing topologies is done with the help of graph theory, a mathematical
theory used to describe relationships between objects. Network Science divides the types of
topologies in two main categories [10]:

• Regular, or basic topologies -– are mostly find are configurations of simple (small-scale,
local) technological networks, studied by Computer Engineering and Communication.
These networks have simple, generally symmetric layouts of nodes with simple patterns
of interconnectivity [22]. Moreover, regular networks are also called non-complex net-
works because of the reduced number of nodes (e.g., tens of nodes instead of thousands).

• Complex network topologies -– are a more comprehensive set of interconnections that
bind larger numbers of nodes. Complex networks are characterized by high to very high
number of nodes (e.g., up to billions) which possess numerous links, both with local
neighbors, as well as links to distant nodes [5, 66]. Natural and man-made systems have
but recently been modeled and studied as networks [8].

The research goal of Network Science is to offer models which characterize real-world
systems in an accurate manner. As such, the analysis of complex systems which can be
modeled as graphs has revealed that real-world networks (technological, biological, social
or semantic [10]) are generally sparse with low density (Dns), have a short average path
length (APL), high clustering (CC), and complex, non-uniform degree distribution, such as
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power-law or Gaussian [26]. Also, many real-world complex networks also exhibit complex
distributions of other centralities like: betweenness Btw, closeness Cls, Eigenvector EC, or
PageRank PR [84, 70].

Random Networks

Random networks were first formalized by Paul Erdos and Alfred Renyi in the Erdos-Renyi
(ER) model [1]. Nodes in the ER model are randomly connected with a given probability p,
regardless of spatial localization. This algorithm results in the creation of a high proportion
of so-called long range links across the network. On inspection, random networks, show a
drastic decrease in the average path length APL, as long-range links are randomly inserted
in the network. On the other hand, the clustering coefficient CC remains low as there is
no rule to back up the creation of triadic closures. The resulting average degree 〈k〉 is pN ,
APL ≈ lnN/〈k〉, and CC = p = 〈k〉/N .

Even though random networks differ from most real-world network models, ER is a valu-
able complex network model because it first proved an existing phase transition from a discon-
nected to a connected random, based solely on the interconnectivity 〈k〉, given by p. Hence,
it is considered that networks become connected when p > lnN/N . ER are also used to
bridge regular networks with small-worlds [2], and to integrate statistics with graph theory
[10]. Also, ER models are frequently used in null hypothesis testing.

Regular Networks (Meshes)

Meshes are commonly used to describe any type of interaction bounded by geography or
location. Human society itself – in the pre-Internet Era – was best described by meshes, where
people had to travel in order to create now links. In meshes, each node ni may be connected
to one or more neighboring nodes, forming the vicinity Ni, within a close proximity (usually
given by a maximum range δ). This type of network allows advanced routing of information
along multiple paths, from a destination to a source, with increased reliability. In theory, any
node can have any number of connections (0 ≤ ki ≤ N(N − 1)/2); in practice, the average
degree of nodes is determined by the maximum connection distance δ and the link probability
p, and results in the so-called forest fire, or mesh topology [85].

Meshes have relatively large average path lengths (i.e., a linear relationship between APL
and N), simple sequences for degree distributions, high clustering coefficients CC, similar to
real-world networks (e.g., road networks).

Small-World Networks

The ”small world effect” was first experimented by s. Milgram [86] who concluded that we
live in a world with unexpected short average paths. The term ”six degrees of separation” was
also introduced to quantify the expected APL over the entire planet. The small-world (SW)
model of Watts-Strogatz (WS) was introduced in 1998 and represent a fundamental topology
which possesses properties found in real societies and systems [2]. The WS topology is based
on a graph with a generally low amount of interconnectivity, most nodes not being neighbors,
but in which the average path length between any two nodes is small. More specifically, as
the size N of the network grows, the length APL only grows at a logarithmic rate relative N .
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Small-world networks represent a trade-off between the random network’s short path
length, and the mesh network’s high clustering. Given a rewiring probability p, of trans-
forming a mesh into a ER network, we find the SW network, starting with small values of
p. In this sense, SW networks have high APL and high CC. Nevertheless, the majority of
real-world networks have power-law degree distributions P (k), i.e., not normally distributed
as is the case of SW (WS including) networks.

Overall, the Watts-Strogatz network model introduces a complex topology that encom-
passes one important real world property, namely the triadic closure with high CC; combined
with the small APL, WS is an appropriate model for many technological networks, such as
power grids, road networks, brain neural networks, food chains, the WWW router network.
However, as WS does not create a heterogeneous degree distribution it cannot be used alone
for representing social networks.

Scale-Free Networks

The second fundamental complex network topology was introduced by Albert-Laszlo Barabasi
and Reka Albert (BA) in 1999 [3]. The scale-free (SF) networks are dynamic, modeling
growth, and can describe many observable real world systems based on degree preferential
attachment (DPA). DPA produces the observed power-law degree distribution, based on the
idea that nodes with higher degree attract more nodes (rich get richer phenomenon). The
probability of a new node nj to connect to any of the existing nodes ni ∈ N in the network
is pji = ki/

∑
kn. The resulting degree distribution is P (k) ≈ k−β, with −2 < β < −3, such

that networks are further considered scale-free if their degree distribution slope β falls within
the interval (2, 3). The average path length is short, with APL ≈ lnN/ln(lnN), and the
clustering coefficient is also low, and scales with the network size CC ≈ N−3/4 [8].

In conclusion, the BA network model introduces an advanced topology that encompasses
one important real world property, namely the power-law distribution of its nodes; combined
with the small average path length, it is an appropriate way to model many classes of real
networks, such as the Internet (links between pages), collaboration relationships, airline net-
works, protein interactions etc. However, the BA topology creates a homogeneous clustering
coefficient, which scales with the degree and network size, so it cannot be used alone for
representing social networks.

2.1.2 Network Centralities

Quantifying node influence can lead to an improved understanding of the interaction patterns
in complex systems. The applicability of metrics for measuring the influence potential of nodes
has wide-ranging interdisciplinary applications [39]. The reviewed measures of centrality,
referred to in this thesis, are classified in one of three categories, based on the amount of
topological information needed, and on their deterministic nature, namely [87, 39]: structure-
based, location-based, and diffusion-based centralities.

Structure-based measures

Structure-based measures require the topological information of the graph - either local (e.g,
ego-network, vicinity) or global (e.g., path-based). Under local measures we first mention
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degree centrality (Deg) ki of a node vi; it is easy to use and efficient, but less relevant in some
real-world scenarios [88, 89], as some studies show that Deg fails to identify influential nodes
because it is limited to the ego-network of each node [39, 90, 88].

The local centrality measure (LC) was introduced as a trade-off between the low-relevant
degree centrality and other time-consuming measures [88]. LC of node vi considers both the
nearest and the next nearest neighbors, and is defined as:

LC(vi) =
∑
vj∈Ni

Q(vj), Q(vj) =
∑
vk∈Nj

N(vk) (2.1)

where Ni is the vicinity (set of neighbors) of node vi, N(vk) is the number of the nearest
and the next nearest neighbors of node vk, and Q(vj) is sum of N(vk) over each node in Ni.
LC can considered more effective than degree centrality because it uses more information from
the vicinity of distance 2, but has much lower computational complexity than betweenness
and closeness centralities [39].

Another method considered a local ranking measure is ClusterRank (CR), proposed by
Chen et al. [91]. CR quantifies the influence of a node vi by taking into account not only its
direct influence (out-degree kouti ), and influences of its neighbors (like in the case of PageRank),
but also its clustering coefficient ci [10]. Formally, the ClusterRank score CR(vi) of a node vi
is defined as:

CR(vi) = f(ci)
∑
vj∈Ni

(kouti + 1) (2.2)

where the term f(ci) represents the effect of vi’s local clustering, the term +1 results from
the contribution of vj itself, and Ni is the vicinity of node vi [39]. Based on empirical analysis
[91], the authors propose the exponential function f(ci) = 10−ci .

The local centrality with a coefficient, denoted as CLC by Zhao et al. [90], is a combination
of the previous CR and LC methods. The number of neighboring nodes is measured to
identify cluster centers, and is combined with a decreasing function f for the local clustering
coefficient of nodes, called the coefficient of local centrality c(vi), namely f(c(vi)) = e−c(vi)

[39]. Mathematically, the influence of node vi is measured as:

CLC(vi) = f(c(vi)) · LC(vi) (2.3)

Considering the global information of the graph can give better insights, so we adopt the
widely used betweenness Btw and closeness Cls centralities [10, 39]. Betweenness of a node vi
is expressed as the fraction of shortest paths between node pairs that pass through the node
vi, and is defined as [64]:

Btw(vi) =
∑

i6=j 6=k∈G

σjk(vi)

σjk
(2.4)

where σjk is the number of shortest paths between nodes vj and vk, and σjk(vi) denotes
the number of shortest paths between vj and vk which pass through node vi [39].

Closeness centrality of a node vi is defined as the inverse of the sum of distances to all other
nodes in G; it can be considered as a measure of how long it will take to spread information
from a given node to other reachable nodes in the network [10, 39]:
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Cls(vi) =

 ∑
vj∈G\vi

d(vi, vj)

−1

(2.5)

Location-based measures

Location-based measures also require the structural information of the graph, but focus
around the belief that the location of a node in a network is a more relevant. Driven by
the limitations of simple graph metrics, such as degree centrality, Kitsak et al. propose k-core
decomposition to quantify a node’s influence based on the assumption that nodes in the same
shell have similar influence, and nodes in higher-level shells are likely to infect more nodes
[92]. To this end, the k-core decomposition method was validated by several studies [92, 93].
. While this method is often found in literature under both the names of k-core or k-shell
decomposition, the two concepts differ. The k-core of a graph is the maximal sub-graph such
that every vertex has degree at least k. A k-shell (KS), on the other hand, is the set of vertices
that are part of the k-core but not part of the (k + 1)th-core [39].

Experiments show that by running a diffusion process on the network (e.g. SIR), the nodes
with the same ks values always have different number of infected nodes, namely spreading
influence [94]. This phenomena suggests that the k-core decomposition method is not appro-
priate for ranking the global spreading influence of a network. Liu et al. [94] propose to solve
this observed drawback by taking into account the shortest distance between a target node
and the node set with the highest k-core value. In terms of the distance from a target node
vi to the network core Gc, the spreading influences of the nodes with the same k-core values
can be distinguished using the following equation [39]:

θ(vi|ks) = (kmaxs − ks + 1)
∑
vj∈Gc

dij, i ∈ Gks (2.6)

In Equation 2.6, kmaxs is the largest k-core value of G, dij is the shortest distance from
node vi to node vj ∈ Gc, Gc is the network core, and Gks is the node set whose k-core values
equals ks [39].

We will also refer to the Hirsch-index. The h-index HI [95] is a hybrid location-local-
based centrality in which every node needs only a few pieces of information: the degrees
of its neighbors. It was originally developed as a means to measure the scientific impact of
scholars, but it now finds uses in quantifying the influence of users in social networks, or drugs
in pharmacological interaction maps. The h-index of a node vi is defined as the largest value
h so that vi has at least h neighbors with a degree ≥ h [39].

The algorithm is intuitive to apply, namely, for a node vi with vicinity Ni, we order all its
neighbors vj ∈ Ni in descending order of their degree kvj . The h-index HI(vi) is the position
h − 1 in the ordered list of nodes at which the degree of a neighbor becomes smaller than
the position in the list. For example, given the list of degrees L(vi) = {10, 8, 7, 6, 3, 1, 1}, we
deduce HI(vi) = 4, because L(vi)[4] > 4, but L(vi)[5] < 5 [39].
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Diffusion-based measures

Diffusion-based measures are based on obtaining a state of balance in the network after
applying a non-deterministic spreading processes, like a random walk. We make use of the
fundamental Eigenvector centrality EC, which supposes that the influence of a node is not
only determined by the number of its neighbors (i.e., degree centrality), but also by the
influence of each neighbor [96]. Inspired by EC, there are three additional algorithms we
discuss in this thesis [39].

PageRank (PR) was first implemented as a random walk on the network of hyperlinks
between web-pages [97]. A damping factor d is introduced as the probability for a user to
jump to a random website, and 1 − d is the probability for the user to continue browsing
through hyperlinks. The influence st(vi) of a node vi at time t is given by:

PR(vi) =
1− d
|V |

+ d

∑
vj∈G

PR(vj)

koutj

 (2.7)

where |V | is the number of nodes in G, koutj is the out-degree of node vj, and d = 0.85,
but d requires step-wise optimization based on the network [39].

HITS is similar to PR, based on the concept that good hub nodes will point to good
authority nodes, and good authorities will point by good hubs [98]. The hub score of all nodes
at time t = 0 is initialized with 1; the authority score Autt(vi), at any moment in time t, is
expressed as:

Autt(vi) =
∑
vj∈G

aji ·Hubt−1(vj), Hubt(vi) =
∑
vj∈G

aji · Autt(vj) (2.8)

Finally, the LeaderRank (LR) algorithm represents an improvement over PR, since the
probability parameter is adaptive, leading to a parameter-free algorithm directly applicable
on any type of complex network [99]. The method is applied by adding an additional ground
node vg that is connected to all other nodes, ensuring the graph is connected. A random walk
then adds a score of +1 to each visited node vi [39]. The ground node starts with sg(0) = 0,
and all other nodes in G have si(0) = 1. Using the notation st(vi) at time t for a node vi, the
evolving score can be expressed as:

st+1(vi) =
∑
vj∈G

pijst(vj) =
∑
vj∈G

aij
kouti

st(vj) (2.9)

The score st(vi) is proven to converge towards a steady state at time tc [99]; the score of
the ground node is then evenly distributed to all other nodes V ∈ G to conserve the scores
on the nodes of interest [39]. The final, stable LR score is expressed as:

LR(vi) = stc(vi) +
stc(vg)

|V |
(2.10)



30 CHAPTER 2. CONTRIBUTIONS IN SOCIAL NETWORK ANALYSIS

2.2 Network Growth using Betweenness Preferential At-

tachment

The dynamics of social networks is a complex process, as there are many factors that con-
tribute to the formation and evolution of social links. Currently, there is no accurate model
to provide a full understanding of social network dynamics, even if some real-world social
network properties (e.g., the scale-free property) are captured by the degree-driven preferen-
tial attachment (DPA) model. Nevertheless, other important properties such as community
formation, link weights, or degree saturation can not be completely explained [27].

Degree Preferential Attachment (DPA) is considered to be one of the key factors for
complex network emergence and evolution [10, 3]. The scale-free topologies generated with
the BA model can reproduce real-world social network properties such as low average path
length APL and power-law degree distribution P (k) = k−β, but DPA has its own limitations
[27]. First, real-world social networks are typically weighted; the BA model does not work
with weighted links [100]. Also, the BA model does not accurately describe how people
connect and how their social ties evolve over time [100, 101, 102]; this is because:

• People are limited, form a psychological and physical point of view, to a maximum
number of friendships in the real-world; this fact suggests a saturation on node degree
[103, 104]. Conversely, in the BA model no such limit exists.

• People develop weighted relationships, meaning that not all ties are equally important.
Studies show that a person knows, on average, about 350 persons, can maintain active
contact with 150 people (Dunbar’s number) [103], but only has very few strong ties
[105]. The BA model does not account for such weights.

We start with a topological analysis on a variety of real-world network datasets and show
that node betweenness (Btw) is power-law distributed and tightly correlated with both node
degree (Deg) and link weight distributions. We note that our findings are supported by previ-
ous research on some particular cases of social networks [102, 106]. To further investigate the
significance of betweenness, we experimentally test several alternative centralities as possible
drivers for the preferential attachment models. We conjecture that: (i) Node betweenness is
the main drive for new social ties, as opposed to degree or any other centrality metric, and
(ii) considering the weight of social ties is paramount for an accurate description of social
networks in the real-world [27].

Our main theoretical contribution is the introduction of the Weighted Betweenness Pref-
erential Attachment (WBPA) model which is an intuitive and fundamental mechanism able
to reproduce realistic social network topologies more accurately than state-of-the-art models
based on DPA or other specific network parameter tuning. We explain WBPA’s accuracy
from a socio-psychological perspective which emphasizes node betweenness as the crucial fac-
tor behind the emergence of social networks [27].

In all datasets, node degree, node betweenness, link betweenness, and link weights are
power-law distributed. Moreover, the power-law slope of degree distribution is steeper in
comparison with node betweenness distribution. More precisely, as presented in Figure 2.1a,
the average degree slope is βdeg = 2.097 (standard deviation σ = 0.774) and the average be-
tweenness slope is βbtw = 1.609 (σ = 0.431), meaning that βdeg is typically 30.3% steeper than



2.2. NETWORKGROWTHUSING BETWEENNESS PREFERENTIAL ATTACHMENT31

βbtw across all datasets. For all considered datasets there is a significant non-linear (polyno-
mial or exponential) correlation between node betweenness and node degree (see Figure 2.1b);
this further suggests that node betweenness may be the source of imbalance in node degree
distribution.

Figure 2.1: (a) Overview of centrality distribution slopes for all empirical datasets, high-
lighting the average slopes for degree (blue), and betweenness (red). (b) The representative
non-linear correlation of Btw and Deg. These results show that, in social networks, Deg
and Btw have a power-law distribution (with a steeper slope for degree), and that there is a
non-linear correlation between the two centralities.

The fundamental difference between the degree-driven and betweenness-driven preferential
attachment is illustrated in Figure 2.2a.; the upper panel shows that, under DPA, the nodes
with high degree (colored in orange) will gain an even higher degree. The lower panel in
Figure 2.2b shows that under BPA the nodes with high betweenness (orange) will attract
more links and increase degree, which in turn will redistribute and decrease betweenness,
thus limiting the number of new links per hub as a second order effect. This can explain why,
in real-world networks, the number of new links is limited for high degree nodes. Figure 2.2b
explains the proposed WBPA algorithm, step by step. As such, (a) all bidirectional links E
in graph G are initialized with weights wij, respectively wji. Each outgoing link weight of
node v1 is proportional to the fitness (indicated as w ∼ f) of the target neighbor nodes, and
then normalized such that the sum of outgoing weights is 1; (b) A new node v6 connects to
existing ones v1-v5 based on probabilities proportional to the normalized fitness (p ∼ f) of
the target nodes. Say, v6 connects only to v1 based on fitness f1; (c) Once v6 and v1 connect,
node v1 assigns a weight w1−6 on the new link that is proportional to fitness f6. As such, a
proportional weight ratio of w1−6/4 is subtracted (indicated with a minus sign) from the four
already existing links. If any of the newly resulting weights drop below 0, the corresponding
link is removed from node v1. According to the BPA principle, fitness f is represented by the
betweenness centrality.

In order to measure the similarity in terms of network parameters and centralities, between
the synthetic complex networks, generated according to each algorithm, and the real-world
network reference, we introduced the network fidelity metric ϕ [55, 37] as:

ϕj =


1
n

∑
i

mi

2mi−mj
i

if mj
i < mi

1
n

∑
i
mi

mj
i

if mj
i ≥ mi

(2.11)
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Figure 2.2: (a) The mechanisms of degree preferential attachment (DPA) versus betweenness
preferential attachment (BPA) depicted in terms of acquiring new links and limiting the
(excessive) accumulation of degree over time. In DPA, nodes with high degree attract even
more links, and thus increase degree ad infinitum. Conversely, in BPA, nodes attracting
new links because of their high betweenness will eventually lose betweenness to neighboring
nodes, thus limiting the acquired degree. (b) Network evolution according to the Weighted
BPA algorithm.
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In equation 2.11, j represents the index of the network being compared to the reference
network. The index of the network metric which describes the two compared models (e.g.,
average path length, average degree etc.) is denoted by i = {1, 2, ...n}, where n is the total
number of common metrics taken into consideration. Fidelity takes values between 0 and 1
(or as percentiles), with 1 representing perfect similarity. The metric measurements on the
reference model are mi, respectively mj

i on the model being compared [46].
A summary of the results is given in Table 2.2, where the upper half contains the average

fidelity ϕ [37] of WBPA, DPA and the two null model networks, towards the real-world
reference networks. The lower half of Table 2.2 contains the other state of the art synthetic
networks. Our WBPA obtains the highest fidelity towards the empirical references, e.g., 13-
68% higher ϕFB, 21-81% higher ϕOSN , 4-47% higher ϕTK than all other synthetic models.
As such, we prove the increased realism of our model in comparison with some elaborated
state-of-the-art models. Compared to DPA, our model produces networks with higher fidelity
values; when averaged over all empirical networks we obtain: ϕBtw = 0.831 and ϕDeg = 0.777.

Table 2.1: Statistical fidelity ϕ of WPBA, DPA, two Null models (random and small-world),
and four state of the art network (Cellular, Holme-Kim, Toivonen, Watts-Strogatz with degree
distribution) models, obtained by comparing the topologies with multiple real-world datasets.
Values in bold represent the highest fidelity on each column (i.e., most realistic topology).

Datasets ϕFB ϕGP ϕCoAu ϕOSN ϕBTC ϕMOvr ϕHEP ϕPOK ϕEmE
WBPA 0.835 0.842 0.735 0.801 0.897 0.814 0.845 0.771 0.837
DPA 0.694 0.796 0.778 0.634 0.754 0.692 0.836 0.758 0.851
Rand 0.681 0.719 0.681 0.597 0.816 0.761 0.779 0.754 0.733
SW 0.737 0.718 0.705 0.554 0.644 0.579 0.603 0.669 0.769
Cell 0.543 0.707 0.637 0.52 0.566 0.559 0.503 0.508 0.792
HK 0.704 0.778 0.578 0.66 0.687 0.679 0.522 0.577 0.787
Tvn 0.638 0.676 0.711 0.55 0.571 0.561 0.558 0.601 0.831
WSDD 0.497 0.708 0.673 0.443 0.547 0.535 0.511 0.556 0.825

We consider that BPA transcends the mere topological perspective on social relationships
evolution [27]. In the field of social psychology, individuals are perceived as social creatures
who strive for social recognition, validation, approval and fame [107, 100, 22, 108]. As such,
individuals tend to connect to either individuals who are popular in their communities (i.e.,
typically they have high degree), or individuals who connect multiple communities (having
high betweenness). The former type of connection is mostly related to the popularity of
individuals within local communities, and appears to be an epiphenomenon of the latter [27].

Towards this end, we introduce the concept of social evolution cycle [27], which revolves
around betweenness assortativity rather than degree assortativity [108, 109, 110]. Accord-
ing to our approach, individuals become more influential over time by increasing their own
betweenness. Therefore, the exhibition of one individual’s desire to increase his betweenness
will (i) attract new ties (i.e., increase in degree), and will create stronger ties (i.e., increase
in link weight); this process continues for the next generation of individuals who aspire to
climb the social ladder. As shown, this conclusion is supported by the evolution of networks
generated with WBPA [27].

We conclude that the WBPA model is quantitatively more robust than DPA, as it can
reproduce more accurately a wide range of real-world social networks. Also, WBPA explains
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the dynamic accumulation of degree and link weights, as well as the eventual degree saturation,
as a second order effect. Consequently, we believe our work paves the way for a new and deeper
understanding of the mechanisms that lie behind the dynamics of complex social networks
[27].

2.3 Structural Antifragility Under Sustained Attack

Antifragility is a counter-intuitive property of systems, which makes them even stronger when
being subjected to stressors such as attacks, volatility, or errors. The term was introduced by
N.N. Taleb [111] to describe a system that actually benefits from being exposed to attacks,
thus growing stronger (up to a point). Indeed, as opposed to conventional concepts such as
robustness or resiliency, antifragility does not represent a mere resistance to attacks [112].

The exploration of antifragility is relatively new to Network Science, having been only
recently addressed in [113, 38]. Similar to [114, 115], we interpret a robust network as being
characterized by a high connectivity between nodes, whereas a fragile network as having a
low connectivity. Accordingly, antifragility increases network connectivity when subjected to
attacks. Quantitatively, we measure the robust, fragile, and antifragile behaviors using the
largest connected component size (LCS) and the number of connected components (NCC),
as these parameters are directly related to network’s communication capacity [116, 117].

To uncover the topological features that foster antifragile behavior in complex networks,
we simulate multiple attack–repair scenarios on some generic synthetic topologies (random,
mesh, small-world and scale-free), as well as real-world network topologies. Accordingly,
the antifragile network behavior is detected at macro-scale if, as simulation unfolds, the
connectivity of the network (measured via LCS and NCC variations) does increase under
sustained attacks. The fragile network behavior under attack corresponds to the network’s
reduced tolerance to incurred faults (i.e., destroyed links), leading to degraded LCS and
NCC [15, 118, 119]. More precisely, a network is considered fragile if its LCS decreases
rapidly during simulation, and antifragile if its LCS increases during the attack-repair pro-
cess up to a specific stress point. To consider this scenario, we start our simulations with
disconnected networks (NCC > 1); depending on the attack-repair ratios, the LCS may –
counter-intuitively – increase, even though the network is losing edges overall (e.g., the attacks
mostly remove edges in smaller components, while edge repairs connect the new nodes to the
largest connected component). This is the antifragile effect that we intend to quantify [38].

The modeled edge attacks imply that, during each iteration, a fixed ratio α of edges
(which we call the attack rate) is removed. In [113], four α values are considered (α ∈
{1%, 2%, 5%, 10%}) to conclude that α = 0.05 (5%) is the optimal trade-off between speed
and amplitude of network destruction. State of the art attack strategies focus primarily on
node centralities [10, 6], but random attacks are also used. The response after each attack is
a set of edge repairs which happen with rate β. We analyze two different simulation settings:
one in which β < 1 (i.e., fewer edges are repaired than destroyed), and another in which β ≥ 1
(i.e., more edges are repaired than destroyed).

For each computer simulation, we obtain two time series, namely the evolution of LCS(t)
and NCC(t) over 100 iterations, t ∈ {1, ..., 100}. To quantify the antifragile response, we use
two intuitive measures:
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• The maximum improvement (I) of LCS for repair rate β, based on the maximum of
ensemble averages Ie(t = k), is defined as

Ie(t = k) =
average{LCS(0 < t ≤ k)}

LCS(t = 0)
, Iβ = max{Ie(t)}. (2.12)

• For a repair rate β, when I > 1 (i.e., antifragility is present), the duration of antifragility
Dβ is the time interval when LCS(t) ≥ LCS(t = 0),

Dβ = {t2 − t1 | LCS(t) ≥ LCS(t = 0), t1 ≤ t ≤ t2}. (2.13)

If the simulation exhibits any antifragile behavior, then I ≥ 1 and 0 < D ≤ 100. If the
edge repair rate is higher than the attack rate, we obtain a high duration, D ≈ 100. However,
to maintain a robust topology with minimal repair costs and limited resources for response,
we are most interested in scenarios where D > 0 for a repair rate of β < 1.

Our attack-repair mechanism implies edge repairs at every iteration. In the real world,
these edge repairs would incur corresponding costs. For instance, either we consider adding or
repairing power lines, creating new physical links between routers, or establishing new social
links, we need to minimize the cost of repairs [38].

We define the absolute cost at iteration t as the sum of degrees for all target nodes receiving
new links in that iteration costAbs (t) =

∑
j kj (t) (where kj (t) is the degree of node vj which

receives a new link at iteration t). Further, for each iteration, we define the absolute repair
efficiency as the gain/cost ratio LCS(t)/costAbs(t) [38].

In Table 2.2, we provide the improvements I and duration D measured on all datasets
in the context of random (Rand), degree (Deg), betweenness (Btw), and Eigenvector (Eig)
paired attack-repairs with repair rates of β = 0.7 (i.e., reduced repair rate) and β = 1 (i.e.,
balanced repair rate).

By analyzing the data in Table 2.2, we find that antifragility does occur in our simulations,
as LCS increases for a limited period although the network loses more edges than it regains
(β < 1).

The emergence of antifragile responses in synthetic and real-world networks seems to follow
a correlation with the complexity of the underlying topology. Namely, the real-world networks
(especially the natural ones) show the highest antifragile improvement of I ≈ 1.0 − 78.8,
followed by WD (I = 17.08), then SW (I = 1.24), SF (I = 1.03), and finally ER and Me
(I < 1).

In general, we conclude that the paired random repair-attacks are the best combination
for triggering an antifragile behavior in both synthetic and real-world networks. Second, the
betweenness attacks consistently rank as the most destructive strategy overall, regardless of
the repair strategy. Third, we find that the random strategy offers the highest improvements
I, on average, with the degree strategy providing slightly longer antifragile duration D [38].

When comparing paired and non-paired attack-repair strategies on synthetic networks we
conclude that:

• In terms of efficiency of random repairs, the mesh (Me) topology has a different response
than the other three topologies (ER, SW , SF ).
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Table 2.2: Topological improvement I and antifragile duration D (in parentheses) for paired
centrality attack-repairs on each network, with β = 0.7 (upper half) and β = 1 (lower half).
A higher I denotes a stronger antifragility, I < 1 means no antifragility. A higher D value
indicates a longer response measured as the number of attack-repair rounds, a dash (–) means
no antifragile response. The antifragile behaviors are shown in bold.

Network Rand Deg Btw Eig

β = 0.7

ER 0.98 (-) 0.97 (-) 0.94 (-) 0.94 (-)
Me 0.99 (-) 0.98 (-) 0.95 (-) 0.96 (-)
SW 1.19 (17) 1.24 (21) 0.73 (-) 1.07 (9)
SF 1.03 (16) 0.99 (-) 0.97 (-) 0.99 (-)
WD 17.08 (85) 14.76 (100) 12.88 (55) 11.83 (56)
UP 0.98 (-) 0.96 (-) 0.95 (-) 0.97 (-)
Rt 1.0 (10) 0.99 (-) 0.99 (-) 1.0 (-)
Em 1.03 (1) 1.02 (1) 1.03 (1) 1.03 (2)
Mo 0.99 (-) 0.98 (-) 0.98 (-) 0.99 (-)
Tw 78.82 (68) 74.49 (96) 49.06 (20) 67.31 (55)

β = 1

ER 1.03 (100) 1 (1) 0.94 (-) 0.96 (-)
Me 1.02 (100) 0.99 (-) 0.95 (-) 0.95 (-)
SW 1.49 (100) 1.35 (100) 0.85 (-) 1.17 (100)
SF 1.21 (100) 1.0 (5) 0.98 (-) 0.99 (-)
WD 18.02 (100) 14.97 (100) 13.84 (100) 13.04 (100)
UP 1.0 (6) 0.98 (-) 0.98 (-) 0.98 (-)
Rt 1.10 (68) 0.99 (-) 0.99 (-) 0.99 (-)
Em 1.00 (3) 1.0 (7) 1.0 (1) 1.0 (8)
Mo 1.02 (91) 0.99 (-) 0.98 (-) 0.98 (-)
Tw 81.73 (100) 75.22 (100) 57.03 (100) 70.19 (100)

• There is a transition around β = 1 between the efficiency of Deg (paired) versus Rand
(non-paired) repairs. On meshes, Deg is more efficient than the other repair strategies
for β > 1 and less efficient than Rand for β < 1. The opposite is true for the other
topologies.

Furthermore, we analyze the costs for topologies where antifragility is observed. In Figure
2.3 we depict the scaling of the proposed edge repair cost ratio: LCS(t)/costAbs(t) on the
SW and SF networks, and on the Mo and Tw networks respectively.

All the cost efficiency plots (LCS/costAbs) show that the random strategy is better at
first but – as the simulation progresses and a significant number of edges is lost – the network
becomes more fragile and, in this context, the degree-driven Deg strategy becomes more effi-
cient [38]. We validate the empirical results for real-world networks using their corresponding
rewired versions, which preserve the number of nodes, the number of edges, and the degree
distribution (see the dashed random rewiring (RR) and preferential rewiring (PR) lines in
Figure 2.3) according to [120, 121].

We have first shown that antifragility is more pronounced on more complex synthetic
topologies such as WD and real-world networks. We then have found that the random tar-
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Figure 2.3: Scaling of LCS(t)/costAbs(t) on the SW (a), SF (b), Mo criminal (c), and Tw
Twitter (d) networks using four different paired attack-repair strategies. All plots indicate
that the random Rand strategy is initially better, but as the network loses links, the centrality-
driven strategies (especially Deg) become more efficient.
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geting repair strategy provides the highest improvements at first, thus confirming the theory
stating that antifragility appears in the context of random solution searches, rather than
deterministic ones [111]. We have also found that betweenness-driven attacks are the most
destructive on all tested datasets. Another important observation is that natural real-world
topologies have a stronger drive towards antifragility than their technological counterparts.
Finally, the efficiency analysis based on costs shows that the random strategy is initially bet-
ter but, as the network becomes more damaged, the degree-driven HDF (high-degree first)
strategy becomes more cost-effective. Taken together, these results suggest that, for network
systems that require a high resilience, the evolutionary strategy of trying solutions at random
and then letting the environment perform the selection is more efficient when the system is
not too damaged and has enough time to react; otherwise, preferential attachment works best
[38].

We hope that our findings will stimulate new research towards developing dynamic edge
reconfiguration models based on the principle of antifragility. Further research will need to
consider more sophisticated repair strategies based on different node centralities.

2.4 Network Centrality Analysis and Benchmarking In-

fluence Rankings Methods

The development of new methods to identify influential spreaders in complex networks has
been a significant challenge in network science over the last decade. Practical significance
spans from graph theory to interdisciplinary fields like biology, sociology, economics and mar-
keting. Despite rich literature in this direction, we find small notable effort to consistently
compare and rank existing centralities considering both the topology and the opinion diffusion
model, as well as considering the context of simultaneous spreading. To this end, our study
introduces a new benchmarking framework targeting the scenario of competitive opinion diffu-
sion; our method differs from classic SIR epidemic diffusion, by employing competition-based
spreading supported by the realistic tolerance-based diffusion model. We review a wide range
of state of the art node ranking methods, and apply our novel method on large synthetic and
real-world datasets [39].

Novel approaches, combined with classic graph centrality measures have led to the emer-
gence of the three main categories of influence ranking methods [39]. A first category of
scientists argue that the location of a node is more important than its immediate ego-
network, and thus proposed k-core decomposition [92, 93], along with improved variants,
such as [122, 123, 94, 124]. A second category of scientists quantify the influence of a node
based solely on its local surroundings [88, 91, 125]. Finally, a third category of scientists evalu-
ate node influences according to various states of equilibrium for dynamical processes, such as
random walks [99, 89], or step-wise refinements [126]. Examples of commonly used measures
of node importance include node degree, node centralities (betweenness, closeness, PageRank,
HITS authority, Eigenvector), or node vulnerability (in dynamic context) [10, 127, 5].

State of the art benchmarking methodologies for spreading processes on complex networks
often rely on the SIR(SIS) model [128, 7]. With this approach, an initial subset of nodes is
infected according to a centrality measure, then the simulation measures how fast surrounding
susceptible nodes become recovered (i.e., including dead). Indeed, if we take the example of an
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epidemic, it spreads independently from other epidemics, and has its own temporal evolution.
On the other hand, if we consider opinion between social agents, it is often exclusive (in regard
to other contradicting opinions), and is also dependent on the timing with the spread of other
ideas [39].

We set out to discover fundamental drivers in the underlying graph structure which shape
and influence opinion spreading in complex networks. To this end, our experimental setup is
focused on a comparative benchmark analysis involving the reviewed node centrality metrics
defined in Section 2.1.2. For an objective comparison, we make use of two types of datasets:
synthetic data (10,000 node random, mesh, small-world and scale-free networks [10]), and
real-world data (consisting of large, representative complex networks sized between 1,900 and
29,000 nodes).

We let each of the n = 10 selected centrality measures compete in a one-to-one scenario
over the 4 synthetic and 4 real-world datasets. Every dataset comprises a total of n × (n −
1)/2 = 45 pairs of simulations, translating into 2 × 45 = 90 individual simulations due to
alternating the selection of spreaders. For statistical rigor, each experiment is repeated 10
times, consisting of a simulation batch of 20 simulations, leading to 45×20 = 900 simulations
per dataset, amassing to an overall 8 × 900 = 7, 200 unique experiments. Condensing the
simulation results, we present in Table 2.3 the average performance of the 10 ranking methods
on the 8 datasets. This performance is quantified as an average percentage of opinion coverage
ρ obtained from the one-to-one competition benchmarks (e.g., HITS obtains a coverage of
64.42% on the OSN dataset).

Table 2.3: Average performance of the 10 ranking methods on the 8 datasets. Performance is
expressed as opinion coverage (%) obtained in the one-to-one opinion diffusion competitions
with every other ranking method.

Centrality Rand Mesh SW SF OSN FB Emails POK
Deg 66.18 71.26 68.94 61.71 52.76 56.18 63.52 63.28
Cls 23.02 5.47 11.39 1.83 2.55 11.49 2.40 45.78
Btw 66.15 42.93 56.96 62.78 40.37 57.51 58.33 58.27
HITS 66.28 69.32 76.92 61.63 64.42 62.10 63.56 63.09
PR 77.16 65.35 71.93 55.74 41.08 55.99 63.55 63.94
HI 12.13 52.82 33.25 54.72 24.23 41.36 39.60 36.30
LR 76.95 67.57 66.72 61.53 64.39 68.06 63.97 66.87
KS 0.99 39.65 37.87 45.89 28.77 28.87 42.07 13.33
CLC 33.93 52.36 60.24 26.99 44.74 55.91 48.43 48.01
EC 23.12 32.96 39.43 43.09 62.83 44.54 51.49 32.27

Similar to the state of the art SIR epidemic benchmarking, our obtained results are easy
to understand, and offer the possibility of direct comparison between ranking methods on the
same dataset. On the other hand, we notice two improvements by applying our methodology:

1. There is much higher variation between measures on the same dataset. For example,
on the FB dataset we obtain Deg= 56.18% and Cls= 11.49%, which suggest an obvious
performance difference. On the other hand, using SIR as benchmark, the coverages are
ρDeg = 95.31% and ρCls = 95.17%.
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2. There is greater emergent granularity between measures on different datasets. For
example, Cls turns out to be much less efficient on a SF topology (1.83%) than on a
SW topology (11.39%) [39].

Assessing the results in Table 2.3, we find an objective comparison of state of the art
ranking methods used in current social networks research. The top three ranking methods,
according to our original proposed methodology, are LeaderRank (LR), HITS, and node degree
(Deg) [39].

Additionally, we provide a suggestive visual example of the opinion coverages at the end of
a simulation, after balancing is attained [59] with our used tolerance diffusion model [34]. The
Mesh topology is exemplified here because it offers the most intuitive 2D spatial feedback after
applying a Force-directed layout. To this end, Figure 2.4 shows the coverage of competing
centrality measures in three different scenarios:

• Two ranking methods with high overlapping and balanced outcome: Deg (orange)
56.70%–LR (blue) 43.30% (Figure 2.4a).

• Two ranking methods with moderate overlapping, and inefficient seed selection for one
method (Btw) : LR (orange) 74.26% – Btw (blue) 25.74% (Figure 2.4b).

• Two ranking methods with low overlapping and extreme outcome: Cls (orange) 5.24%
– HI (blue) 94.76% (Figure 2.4c).

Figure 2.4: Three opinion diffusion benchmarks highlighting the final opinion coverage over
the Mesh dataset (N = 10, 000). Orange nodes are influenced more by the first ranking
method, and blue nodes are influenced more by the second ranking method; whiter nodes are
closer to indecision (50%); larger nodes represent seeders (1% of N).

Finally, to highlight the superior quantitative power of our competition-based benchmark
we aggregate the results in Figure 2.5. When trying to discern between the top 2 ranking
methods on a particular dataset, SIR manages to place them apart by only ≈ 0−1.07% (0.31%
on average), while our method manages to produce higher differences within ≈ 0.28− 8.75%
(3.56% on average). Another advantage of our proposed method is the overall uniformity
obtained for the performances of each centrality across the 8 selected datasets. For instance,
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if LR and HITS result as the most efficient spreading methods on one topology, their perfor-
mance is replicated with high confidence on the other topologies as well. When employing SIR
benchmarking, the performances are not consistent across datasets. This aspect is suggested
visually in Figure 2.5, where we highlight the most (LR) and least (Cls) efficient centralities,
as they are ranked over the 8 datasets. It is easy to notice how LR is positioned in the top
3 and Cls in the last 2-3 methods overall. In the individual SIR benchmarking, there is no
such uniformity.

Figure 2.5: Visual representation of the uniformity in benchmarking influence ranking meth-
ods across different networks. We highlight the positions obtained by LR (top centrality in
terms of spreading) and Cls (least effective centrality) across our 8 datasets in the context
of individual (left panel) and competition-based (right panel) benchmarks. The position of a
centrality on the vertical corresponds to its obtained rank (1-10) after benchmarking. E.g.,
LR is 5th best on Random and 10th best on Mesh.

In conclusion, our benchmarking methodology – which is specifically designed for the com-
petitive social network context – provides significant quantitative separation between influence
ranking methods on synthetic and real social network topologies. This numerical separation
is over one order of magnitude greater than the one provided by classic SIR simulation – a
standard methodology used in epidemic spreading, where the diffusion context is less com-
petitive, and more ego-centered. Therefore, we encourage the use of our proposed method in
specific real-world applications of dynamic social networks.
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Chapter 3

Contributions in Computational
Network Analysis

3.1 Introduction

An important challenge in Network Science is the study and understanding of social opinion
dynamics and personal opinion fluctuations [13, 129, 130]. The benefit of understanding
these complex processes is also a major concern for research fields like psychology, philosophy,
politics, marketing, finances and even warfare [9, 131, 132]. The distribution of opinion in a
community, at a certain time, is a reflection of the distribution of socially influential people
in that particular community [133, 134]. Social influence is the ability of persons (agents)
to influence others in either one-on-one or group settings. Influential people motivate others
to participate in certain activities, agree with their ideas and eventually follow their lead.
Without social influence, the society would have a non-deterministic, erratic behavior which
would be hard to predict. Political, religious, and community leaders use social influence to
shape their communities. Consumer groups and public opinion influencers use social influence
to motivate others member of the society to act and to build a unified effort towards an
envisioned economic or political goal [10].

Marketing, for example, uses many techniques to understand the needs, strengths and
weaknesses of different social layers or groups. Current research focuses on understanding
when, how, where and why a product may be bought by people, and how the psychological
factors behind this process can be influenced [135]. Like in most market studies on opinion
formation and influence propagation, the buying process is modeled by combining elements
from psychology, sociology, anthropology and economics [136, 9].

Computer simulation brings Computer Science & Engineering and mathematical model-
ing together in order to better understand the theory and characteristics of complex systems.
Indeed, computer simulations help observe, evaluate, refine and enhance the models behind
simpler theories. There are a series of diverse tools for visualizing graph data, like Gephi, Cy-
toscape, GraphViz, Pajek, iGraph, Tulip, GUESS, Neo4J, yED, Walrus, and the R language
[75]. However, these tools offer in-built visualization engines, alongside layout, coloring, fil-
tering and other options; some offer development as they are open source. Nonetheless, there
is no available tool that brings a built-in framework for network simulations, particularly in
the area of opinion dynamics.

43
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Our solutions in computational network analysis (CNA) come in the form of a comprehen-
sive opinion dynamics simulation framework which allows the study of multiple topological
models, as well as customizable social interactions. Furthermore, we present a series of dis-
crete event simulations by defining a more refined interaction model, and propose the concept
of agent tolerance, a personality metric which evolves over time based on interactions with
other agents. Our simulations discover a previously unobserved phenomenon, namely a phase
transition in opinion dynamics that depends on varying concentration of opinion sources.
These results could only have been observed using simulation. Consequently, our two main
contributions in CNA are:

• We provide a probabilistic evaluation of our original tolerance-based social network
interaction model [34]. Namely, a Markov chain model is used in order to assess the
asymptotic behavior of social agents. In other words, the main result of this evaluation
is the probability of tolerant behavior as the time approaches infinity.

• We take inspiration from micro-scale temporal epidemic models and develop an original
time-aware (TA) forecasting methodology which is able to improve the prediction of
opinion distribution in an electoral context.

3.2 Modeling and Simulation of Opinion Dynamics

Existing studies on opinion formation and evolution [136, 32, 137, 130, 138, 12] revolve around
the contagion principle of opinion propagation. However, such studies offer limited predictabil-
ity and realism because they are generally based on opinion interaction models which use either
fixed thresholds [139], or thresholds evolving according to simple probabilistic processes that
are not driven by the internal state of the social agents [140, 141]. To mitigate these limi-
tations, the dynamical features of opinion spreading have to be targeted by a mathematical
model. Many recurring real-world observations can be explained using the tolerance model
introduced as a new social interaction model which takes into account the evolution of individ-
ual’s inner state [34]. The model was validated using empirical data from Yelp, Twitter and
MemeTracker, and by using our opinion dynamics simulation framework - SocialSim, which
includes multiple complex topological models, as well as customizable opinion interaction and
influence models [59].

3.2.1 The Tolerance-Based Agent Interaction Model

The tolerance model [34] is based on the classic voter model [28], being a refinement of
the stubborn agent model [32, 137], with the unique addition of a dynamic decision-making
threshold, called tolerance θi, for each node.

We further introduce the specific network science notations to mathematically define our
model. Given a social network G = {V, E}, the neighborhood of node vi ∈ V is defined as
Ni = { vj | (eij) ∈ E}. Exemplifying for a context with two competing opinions, we introduce
two disjoint sets of stubborn agents V0, V1 ∈ V which act as opinion sources. Stubborn agents
never change their opinion, while all other (regular) agents V \{V0∪V1} update their opinion
based on the opinion of one or more of their direct neighbors. We represent with xi(t) the
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opinion of agent vi at time t. Normal (regular) agents start with a random opinion value
xi(0) ∈ [0, 1]. We represent with si(t) the state of an agent vi at moment t having continuous
opinion xi(t). In case of a discrete opinion representation xi(t) = si(t), and in case of a
continuous opinion representation si(t) is given b equation 3.1.

si(t) =


0 if 0 ≤ xi(t) < 0.5

none if xi(t) = 0.5

1 if 0.5 < xi(t) ≤ 1

(3.1)

In the assumed social network, agents vi and vj are neighboring nodes if there is an edge
eij that connects them. Some agents may not have an opinion, or may not participate in
the diffusion process (i.e., si(t) = none), so interacting with these agents will generate no
opinion update. A regular node will periodically poll one random neighbor (simple-diffusion),
or all its neighbors (complex-diffusion), average the surrounding opinion x̄Ni

(t) (i.e., vicinity
Ni of an arbitrary node vi, at time point t), and update its opinion xi(t) using a weighted
combination of the past opinion and that of its neighbor(s), as:

xi(t) = θi · x̄Ni
(t) + (1− θi) · xi(t− 1) (3.2)

The tolerance θi parameter is the amount of accepted external opinion, and changes af-
ter each interaction based on whether a node has faced competing opinion, or supporting
opinion (in a binary context with opinions A and B). Once a node is in contact with the
same opinion for a long enough time, it becomes intolerant (θi(t) = 0), so that the network
converges towards a state of balance [59]. Opinion fluctuates, and is transacted by all nodes,
but stubborn agents are the only nodes which do not become influenced in turn, acting as
perpetual sources for the same opinion [32].

The evolution towards both tolerance or intolerance varies in a non-linear fashion, as an
agent under constant influence becomes indoctrinated at an increased rate over time. If that
agent faces an opposing opinion, he will eventually start to progressively build confidence in
that other opinion. As such, the tolerance model employs a non-linear fluctuation function,
unlike most models in literature [35, 36]. Based on realistic socio-psychological considerations
in the dynamical opinion interaction model, we model tolerance evolution as:

θi(t) =

{
max (θi(t− 1)− α0ε0, 0) if si(t− 1) = sj(t)

min (θi(t− 1) + α1ε1, 1) otherwise
(3.3)

Tolerance is decreased by −α0ε0 if the state of the agent before interaction, si(t−1), is the
same as the state of the randomly interacting neighbor sj(t). If the states are not identical
(i.e., opposite opinion), then the tolerance will be increased with the dynamic product of
+α1ε1. The two scaling factors, α0 and α1, both initialized with 1, act as weights (i.e.
counters) which are increased to account for every event in which the initiating agent keeps its
old opinion (i.e. tolerance decreasing), or changes its old opinion (i.e. tolerance increasing).
Therefore, scaling factor α0 is increased by +1 as long as an agent interacts with another
agents having the same state (i.e., si(t − 1) = sj(t)), and is reset to 1 otherwise. Scaling
factor α1 is increased as long as the interacting state is always different from that of the
agent, as is reset if the states are identical. We introduced the scaling factors to model bias,
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and are used to increase the magnitude of the two tolerance modification ratios ε0 (intolerance
modifier weight) and ε1 (tolerance modifier weight). The two ratios are chosen with the fixed
values of ε0 = 0.002 and ε1 = 0.01. We have determined these values as explained in [34].

3.2.2 Probabilistic Modeling of Tolerance-Based Interaction

In order to provide a probabilistic model for the tolerance-based model of social network
interaction, we consider that there are two pure states of the social agent (tolerance and
intolerance) and at least one intermediary state. State transition occurs at each interaction
with an agent that has an opinion; interaction with non-opinionated agents do not produce
state transitions. Interaction with a different opinion will generate a transition to the closest
more tolerant state of the agent. Also, interaction with the same opinion will cause a transition
to the closest less tolerant state of the agent.

in order to apply the Markov analysis, we assume that any agent in a given social network
topology, is characterized by a rate λ of encountering the same opinion and a rate µ of
encountering a different opinion. Of course, λ + µ ≤ 1 with λ + µ = 1 when there are no
agents without opinion. When the sum is less than 1, we have λ+µ+ ρ = 1 with ρ being the
rate of interacting with an agent that has no opinion. At the same time, we assume that λ and
µ are exponentially distributed, therefore the probability of encountering the same opinion is
1− e−λt and the probability of interacting with a different opinion is 1− e−µt [59].

If an agent encounters an opinion that it already holds, then the level of intolerance is
incremented, therefore one of the following transitions occur: S0 → S1 or S1 → S2. If the
agent is in S2, then its intolerance cannot be incremented, even if it encounters the same
opinion. The same rationale applies when the agent encounters a different opinion, so that its
tolerance level is decremented, S2 → S1, or S1 → S0. Figure 3.1 presents the Markov diagram
that corresponds to the entire process of tolerance evolution in social agents [59].

Figure 3.1: The Markov diagram for the 3-state model of tolerance evolution of a social agent.
State S0 represents total (or pure) tolerance, state S2 represents total intolerance, while S1

stands for borderline state (i.e., undecided between tolerance and intolerance

From Figure 3.1 we derive the state probability expressions at t + ∆t, assuming that we
know the current state at t:
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
PS0(t+ ∆t) = (1− λ∆t)PS0 (t) + µ∆tPS1 (t)
PS1 (t+ ∆t) = λ∆tPS0 (t) + µ∆tPS2 (t) +

+ [1− (µ+ λ) ∆t]PS1 (t)
PS2 (t+ ∆t) = λ∆tPS1 (t) + (1− µ∆t)PS2 (t)

(3.4)

Initially, at moment t = 0, we consider PS0(0) = 1 and PS1(0) = PS2(0) = 0. By applying
the Laplace transformation, so that variable t is substituted by s, we obtain state expressions:

PS0(s) =
s2 + (2µ+ λ) s+ µ2

s3 + 2 (µ+ λ) s2 + (µ2 + µλ+ λ2) s
(3.5)

and

PS1(s) =
λ (s+ µ)

s3 + 2 (µ+ λ) s2 + (µ2 + µλ+ λ2) s
(3.6)

Therefore, the probability of not getting to the intolerance state, in the 3- state Markov
model, is given by:

Ptol−3(s) = PS0(s) + PS1(s) =

= s2+2(µ+λ)s+µ2+µλ
s3+2(µ+λ)s2+(µ2+µλ+λ2)s

(3.7)

From 3.7, we get the probability of tolerance state at infinity, which can be interpreted as
the expected stable tolerance state of the social agent:

lim
t→∞

Ptol−3(t) = lim
s→0

sPtol−3(s) =
µ2 + µλ

µ2 + µλ+ λ2
(3.8)

If the number of agents without opinion is 0 or negligible, then µ+λ ' 1 and consequently:

lim
t→∞

Ptol−3(t) =
µ2 + µλ

µ2 + µλ+ λ2
=

µ (µ+ λ)

(µ+ λ)2 − µλ
' µ

1− µλ
(3.9)

Similarly, by repeating the same Markov model for four states (S0 − S3) we obtain the
probability of tolerance state as:

lim
t→∞

Ptol−4(t) =
µ3 + µ2λ

µ3 + µ2λ+ µλ2 + λ3
=

µ2

1− 2(µ2λ+ µλ2)
(3.10)

The probability of tolerance for t → ∞ (interpreted as corresponding a mature, stable
society) can be represented as a function of λ (i.e. the rate of a social agent interacting with
another agent with the same opinion). For a convenient graphical representation, ρ is fixed, so
that the expression from equation 3.8 becomes function of λ: Ptol−3(λ), respectively Ptol−4(λ)
as presented in Figure 3.2 [59].

We calculate λ throughout the computer simulations by polling each node in the following
manner: starting from the opinion of a node ni we can say that the ratio between direct
neighbors of the same opinion (filtered vicinity N∗i ) and direct neighbors of both opinions
(vicinity Ni) is equal to λ, i.e., the rate at which ni can come in contact with the same opinion.
This ratio is obtained as λi = |N∗i |/|Ni|, for each node, and averaged to λ = 1/n

∑
λi for the

whole network [59].
For each topology, we notice a variation in time for λ and run simulations until the real-

time measured λ and the updated median value is less than 3%, but not more than 50,000
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Figure 3.2: Representation for the probability of tolerance (a) Ptol−3(λ) in the 3-state model,
respectively (b) Ptol−4(λ) in the 4-state model, for three different values of ρ = {0, 0.25, 0.5}.

iterations. Table 3.1 shows the minimum, maximum and median values registered for λ.
These values strengthen the observations presented in [34], namely that:

• Regular and scale-free networks foster intolerance: the nature of the links between
nodes is such that closed opinion clusters emerge, and nodes remain in contact only
with adjacent (in meshes) or local hubs (in scale-free networks) that have the same
opinion. This type of interconnection lowers node tolerance in time and creates a social
network less prone to change and less dynamic. This observation is supported by our
results, namely λmesh = 0.82, respectively λSF = 0.81.

• Random and small world networks foster tolerance: links are displayed between nodes
such that even though opinion clusters may form, nodes will always have (random) long-
range links to other communities with different opinion. This type of interconnection
raises node tolerance in time and creates a social network open to change change and
more dynamic in terms of opinion. This observation is supported by our results, namely
λrand = 0.62, respectively λSW = 0.63.

Table 3.1: The minimum, median and maximum values of λ (rate of interacting with the same
opinion) obtained through simulation on mesh, random, small-world and scale-free networks
of 1000 nodes.

Mesh Rand SW SF
λmin 0.72 0.59 0.57 0.67
λmed 0.82 0.62 0.63 0.81
λmax 0.96 0.65 0.91 0.98

3.2.3 Discussion and Conclusions

The main conclusion of the tolerance model assessment, using probabilistic Markov chain
modeling, is that the probability of tolerance is much higher, for the average social agent,
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when the number of agents without opinion is small (or ρ is small). For the model with three
states, which assumes that the borderline state still represents some sort of tolerance, the
probability of tolerance decreases almost linearly with the rate of interacting with the same
opinion λ. However, when we consider the more realistic model with four states, we observe
that the tolerance probability decreases exponentially with λ.

The dynamics of opinion formation is influenced by topology, which may direct the evolu-
tion of opinion towards social balance or intolerance. Overall, the topology has the strongest
influence on opinion formation and spread, namely, random and small-world networks foster
opinion diversity and social balancing, being representative for a decentralized and democratic
society. On the other hand, mesh and scale-free networks act as a conservative, stratified and
oligarchic type of society which has a numb reaction to new stimuli [59].

3.3 Prediction of Macro-scale Opinion Distribution

One of the ongoing challenges in computational network science is to better understand and
reliably predict diffusion phenomena [7, 9]. Be it under the form of a rumor, a virus, a blog
post, or a product, diffusion (or propagation) processes are receiving substantial attention
from diverse fields of research, like epidemiology [142, 143], information propagation [144,
145, 39], social networks [9, 34, 146, 25], and even marketing [147, 148] or educational science
[49, 149, 50].

The modeling of diffusion processes can be inferred by designing interactions at micro-
scopic level (i.e., between individual social agents), and forecasting network evolution at
macroscopic level [150]. Namely, we often try to understand the macroscopic behavior by: (i)
monitoring when social agents become indoctrinated by their neighborhood (i.e., they adopt
information, get infected, buy merchandise [7, 9, 5]), then, (ii) being able to predict how
cascades of information flow, and eventually, how the diffusion process is percolated by indi-
viduals. Nevertheless, temporal aspects are shown to play an essential role in the diffusion of
influence [151]. Many predictive assumptions are made only by observing when an agent gets
indoctrinated, and not by considering the variable connectivity in the network, the dynamic
trust that builds in ego-networks, or the sources of information [152].

Based on the available studies, we know for sure that social networks have a decisive
role in the diffusion of information, and have proven to be very powerful in many situations
involving macroscopic behavior [13, 153]. Examples include, but are not limited to, decisively
influencing the Arab Spring in 2010 [154], and the U.S. presidential elections in 2008 [155],
2012 [156], and 2016 [157]. The popularity of such online frameworks permits (most) people to
spread information in a way that we can consider as new layer of social life [151]. Analyzing
the dynamics of this layer can offer substantial predictive power over the real-world social
networks they model. Studies on prediction are found in marketing and public relations [9],
epidemic spreading in a globalized world [158], hurricane forecasting [159], social media [157],
or even using tweets to forecast box-office revenues of movies [160].
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3.3.1 A Framework for Opinion Forecasting Based on Time-Aware
Polling

Our study focuses on the predictability of election polls. This area of research was originally
constructed by employing classic statistical models, applied on opinion polls prior to the
election day [161, 162]. Ever since the late ’70s, it became a scientifically proposed fact that
correct timing of the election date can be crucial for the outcome [162]. Bridging over to
social networks and media, there is a scientific debate on how the wide coverage of publicized
opinion polls in media can affect voters before election [163]. We build upon the premises to
extrapolate macroscopic behavior of a society during the pre-election period [60].

In this section we put several pieces of this puzzle together, as we consider the issue of
predicting the temporal dynamics of the diffusion process starting off from the assumption
that the macroscopic dynamics can be extrapolated solely from microscopic dynamics. Conse-
quently, as we propose a prediction model which encapsulates the topological and behavioral
properties of a network, all based on the properties of the microscopic level. As such, we
present:

• An analytic methodology for modeling the macroscopic evolution of a multi-opinion
system in a social network, targeting better election poll prediction.

• An experimental evaluation of the efficiency of our approach, and the validity of its
underlying assumptions.

• Using public survey data from three presidential elections (between 2012-2019), we
compare our proposed time-aware (TA) method with the best pollster predictions and
two standard statistical approaches (cumulative counting and survey averaging).

First, we define the discrete temporal election axis t = [0, e) as being relative to the date
of first pre-election poll (i.e., p(t = 0)), and the election day t = e. The discrete observations
we consider as opinion injection at any time 0 ≤ t < e stem from all public opinion polls p(t)
preceding the election day e. We use as datasets, the following four: the US12 dataset contains
326 individual opinion polls, arching over the period 2010/4/19–2012/11/5; US16 contains 259
polls spanning over the period 2015/5/26–2016/11/8; RO19 contains 21 polls over the period
2019/6/26–2019/11/03; UK16 contains 51 polls over the period 2012/2/21–2016/05/24.

Second, we note that studies applied in epidemiology have proposed three popular para-
metric models for the likelihood of disease transmission rates, taking time into consideration
[164, 165]: power-law, exponential, and Rayleigh. These functions model the damping (fading)
in time of infectiousness after exposure; nonetheless, they can be used to trace the damping
of opinion after each injection in the network.

Naturally, when opinion is injected in a network, we can measure an increase (like a spike)
in activity (e.g., number of tweets on a a topic); this increase then slowly dampens, fading
back towards a relaxed state (usually Ω(t→∞) = 0, no opinion). Overall, the whole process
resembles that of the electrical energy stored by a capacitor [60].

Here, we investigate the efficiency of the power-law time-aware (PA) model and the expo-
nential time-aware model (EA). In their original form, these models express the transmission
likelihood λv(t) of a disease in time, after a relative time ∆t since an individual v ∈ V was
infected, as expressed by the following two equations:
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λv(t) = αv ·∆t−βv (PA) (3.11)

λv(t) = αv · e−∆tβv (EA) (3.12)

Specific to the context of opinion contagion, we parameterize the models by adding an
amplitude factor αv and a damping factor βv, specific for every individual v ∈ V in the
network G. The αv factor determines the amplitude of the positive response when an opinion
is injected in the network, and the βv factor controls the damping speed towards the relaxed
state (λ(t→∞) = 0) for an individual.

We further extrapolate the microscopic interactions models (Equations 3.11-3.12), from
individual level, to the level of network G. Consequently, each of the two models (PA and
EA) are used to estimate the dynamic weight wi of each opinion i over the whole network G
in time, expressed as:

wi(t) = αi(t) · t−βi (3.13)

wi(t) = αi(t) · e−tβi (3.14)

In both PA and EA models we define two parameters: the time-aware amplitude factor
αi(t), and the constant damping factor βi. Here, index i represents the opinion i we are
modeling in network G. We consider a system with a variable sized set of opinions Ω, where
any opinion i ∈ Ω may evolve independently from any other opinion j ∈ Ω in the same
network; As such, we can have different values of αi and βi for different evolving opinions
[60].

Additionally, in the case of public opinion polls, it might be the case that either a certain
percentage of the voters do not follow all the polls, or that polls have an overall higher or
lower credibility. For instance, FiveThirtyEight currently ranks various polls based on their
credibility, with possible effects in the voting population. These variations translate into a
variation of opinion poll weight; as such, we introduce a credibility parameter ξ(t) to each
poll pi(t). Since credibility is applied to the entire poll, we have one single ξ(t) parameter
applied to each opinion i at time t. In this paper we will assign poll credibility as a uniform
vector ξ(t) = {1 | ∀t}.

The amplitude factor evolves according to the following rules: if at moment t there is no
opinion injection (i.e., @ poll pi(t)), then αi remains unchanged, so that, as time increases
t → t + 1, wi(t) will decrease; if there exists a poll pi(t) > 0 at the current moment, then
αi is increased by an amplitude proportional to the number of votes (or normalized number
of votes) times the credibility of that poll ξ(t). An initial value is set αi(0) = 1; next, the
evolution of αi is given by the following equation:

αi(t) =

{
αi(t− 1)t−βi + ξ(t)p∗i (t), if ∃ pi(t) > 0

αi(t− 1), if pi(t) = 0
(3.15)

Here, p∗i (t) represents the normalized number of votes expressed in support for opinion i
at time t. In order to handle variation in the amplitude of polls, we normalize each value in
the range [0, 100]% of the total expressed opinion at time t. In the validation data we have
polls ranging from about 400 to over 40,000 voters, so that a normalization of the amplitudes
is imposed [60].



52 CHAPTER 3. CONTRIBUTIONS IN COMPUTATIONAL NETWORK ANALYSIS

By measuring the evolution of each opinion weight in time, we can calculate the current
opinion poll Ωi by normalizing the weights of each opinion i in G by the sum of all weights
wi(t), as:

Ωi(t) = wi(t)/
∑
j

wj(t) (3.16)

In addition to our proposed time-aware method, we use cumulative counting (CC) and
survey averaging (SA) to serve as basic statistical methods for comparison, as well as multilevel
regression and post-stratification (MRP) estimates from the best pollsters. CC is applied by
summing up all votes expressed by the polls pi for each opinion i over the total polling period
[0, e). Note that for CC we do not normalize pi. SA is applied by averaging the current
normalized poll results with the previously computed average, over each independent opinion.
Here, we can express the opinion poll sΩi directly by using the normalized (∗) number of votes
for each poll pi. The main distinction between CC and SA is that the first method uses the
absolute number of votes for each opinion, whereas SA uses the same, but normalized values.
MRP is a state of the art methodology that anticipates the choice of an individual voter using
a statistical model for a sizeable national poll sample [166, 167]. Then, it applies local weights
to the model predictions in order to generate forecasts of the result in each district. While we
did not employ MRP ourselves, we know that many of the pollsters (e.g., Real Clear Politics,
FiveThirtyEight) rely on (in-house) variations of the MRP method [168].

In terms of simulation results of our time-aware (TA) methods, Figure 3.3, we infer the
evolution of poll results, in time, based on the measured weights w(t) for each candidate. Here
we focus only the last snapshot of the pre-election period (i.e., last 100 days). The snapshot
in Figure 3.3a shows how the CC method prediction is monotonous, as it clearly suggests an
advantage for the democratic (blue) candidate in US16 (i.e., Clinton). For CC, the variation
in predicted polls converges within large threshold of ≈ 5%. Nevertheless, Figure 3.3b shows
a much more dynamic prediction system where the advantage of the democratic candidate
(blue) ranges between [-0.94–4.90]% over the last 100 days before election. In panels 3.3c,d
we display an overview of the evolution of opinion over the full pre-election period. In case
of the CC method, it is easy to delimit the advantage between democratic and republican
candidates at any time (Figure 3.3c), but switching to the TA method (Figure 3.3d) suggests
that there are periods when both candidates had equal chances of winning (e.g., around t ≈
150 and 400).

The performances of all poll prediction estimation methods (PA, EA, CC, SA, best poll-
ster) are displayed in Figure 3.4. We highlight in Figures 3.4a,b the results for US12, alongside
the total poll estimations error. Similarly, Figures 3.4c-d, e-f, and g-h highlight the results for
US16, RO19, and UK16. For the RO19 dataset we chose to display only the top 4 candidates
(out of 8) in order to keep the figure readable.

The first column (gray) in each left hand-side panel represents the ground truth value,
i.e., the real election results. With pink we display the two statistical prediction methods,
with green the best pollster prediction, and with blue/red our two TA methods. The superior
prediction power of the PA and EA methods becomes visible, both visually as well as nu-
merically. For the US12 democratic candidate (BO) we measure offsets of 2.13–2.18% for the
TA methods, while CC and SA are offset by > 4%; for the Republican candidate (MR) we
measure offsets of only 0.35–0.42% for the TA methods, and CC and SA are offset by ≈ 3%.
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Figure 3.3: Overall polls Ω(t) evolution, calculated from weights w(t) for the US16 pre-
election period. We first provide snapshots of the final period before elections (t = 450−529)
using cumulative counting (a), and the time-aware method (b) to estimate polls. Here, we
exemplify the relative differences (Clinton–Trump) in polls at several time points. (c, d) We
also provide an overview of the whole poll evolution using the same two estimation methods.
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Figure 3.4: Predicted and real election results using the CC, PA, EA and SA methods and
best pollsters (RCP, IMAS, Survation). The caption above each column represents the offset
from the real election results. The total estimation error (for both candidates) is accumulated
and displayed in the right panel (green).
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For the US16 Democratic candidate (HC) we measure very small offsets of 0.14–0.16% for
the TA methods, while CC and SA are offset by 0.51–1.39%; for the Republican candidate
(DT) we measure offsets of 1.43-1.45% for the TA methods, and CC and SA are offset by
3.40–4.33%. For the RO19 top 4 candidates we measure offsets of -0.57–1.14% for the TA
methods, while CC and SA are offset by -6.43–6.39%; the best pollster measures offsets be-
tween -2.68–2.93. Finally, for the UK16 ”remaining” option we measure offsets of 0.59–0.68%
for the TA methods, while CC and SA are offset by 0.75– 0.78%; the best pollster is offset by
1.64; for the ”leaving” option we measure the same, but negative offsets.

3.3.2 Discussion and Conclusions

We worked towards improving the prediction of the popular vote using our time-aware (TA)
forecasting methodology [53, 60]. Indeed, we find studies especially tailored to systems like the
US, which are based on the college system [169, 167], and also tailored to systems employing
the direct popular vote, like in France [161]. The work of [169, 167] manages to forecast
presidential, senatorial, and gubernatorial elections at the state level by incorporating state
level demographics to better predict the college vote. Nevertheless, we have developed the
TA forecasting model to be usable outside any political context, as long as there is sufficient
and reliable pre-election poll data. This choice may give it a theoretical disadvantage in the
US system, but as our results show in practice, our model still yields superior performance.
Moreover, where other models may need specific tuning to be used in other countries of the
world, TA will work without the need for customization [60].

Indeed, our TA model also brings some limitations along, which we further discuss. For
instance, we consider social media as an ubiquitous diffusion mechanism, but there are also non
social media users. Even in this case, we argue that our model’s simplification remains robust,
as a study on political attitudes concludes that no statistically significant differences arise
between social media users and non-users on political attention, values or political behavior
[170]. We also consider that the opinion injected in the social network has a very high media
coverage. Recent studies, on how US adults keep informed about political candidates and
issues, show that TV (news) occupies the leading spot with 73%, followed by 45% for news
websites/apps, 24% for newspapers, and 21% specifically for social media [171]. Another
realistic simplification in our model allows us to consider the electoral system relatively hard
to shape from outside, so that we do not have to account for data beyond our reach. The
liberal democracy index was developed to measure the robustness of a political system, and,
according to a study by the Swedish V-Dem institute, the USA scores 0.75 (out of 1) and lies
within the top 20% liberal nations; the UK scores 0.80 and lies within the top 10% [172]. As
such, we can consider the studied electoral systems as robust.

Despite our simple assumptions, that we can apply a microscopic model to predict macro-
scopic response, our results pinpoint to the fact that time-awareness is more significant in poll
prediction performance than previously considered. For the 2012 US elections, we are able to
approximate the final results within a 2% margin, while SA and CC produce offsets of about
7%. Similarly, for the 2016 US elections, our method manages to come within 1.5% of the
real election results, while SA and CC stay outside the 4% margin; for the 2019 Romanian
elections, our method comes within 6% of the real election results, while SA and CC stay close
to the 16% margin; for the 2016 UK Brexit, our method manages to come within 1.2-1.3% of
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the real election results, while SA and CC stay outside the 1.5% margin. In terms of quan-
tifying the overall performance boost of our method, compared to the statistical benchmark
methods, TA proves to be ≈ 75% more accurate for the 2012 elections, ≈ 72% for the 2016
elections, respectively ≈ 69% for the 2019 elections. We also use non-presidential poll data
for validation, and here TA proves to be ≈ 21% more accurate for the Brexit Referendum.
Thus, we hope to pave a new path of research targeting dynamic and temporal social network
analysis, with immediate applicability in real-world systems where the needs for predictability
and control are paramount [60].



Chapter 4

Contributions in Network Medicine

4.1 Background and Motivation

References to the new term ”Network Medicine” started to surface as Albert-Laszlo Barabasi
popularized the term, in his book entitled Network Medicine – From Obesity to the Diseasome,
published in 2007, in the prestigious New England Journal of Medicine [21]. A-L. Barabasi
suggests that the majority of biological systems can be represented by entities interconnected
in complex relationships, similar to social and technological systems, and organized according
to the simple network principles.

In light of these claims, complex systems, such as biological ones, can be accurately de-
scribed by complex network models. Specifically, the networks used in ”Network Medicine”
use nodes to represent bio-specific entities, such as patients, genes, diseases, phenotypes; the
edges results results from respective common risk factors, shared metabolic pathways, physical
interactions, shared genes etc [173, 40].

Furthermore, in [21], A-L. Barabasi introduces three layers that need to be modeled in
order to properly understand human disease: (i) the metabolic network, (ii) the disease net-
work, and (iii) the social network in which an individual lives. It is believed that the root
causes and mechanisms of diseases can be explained, through network medicine, if we model
gene regulation networks, metabolic reaction networks, and protein-protein interactions net-
works with high enough accuracy. For instance, the work of Goh, Barabasi et al. [174] defines
a bipartite graph of the connections between genes and diseases. By projecting the diseases
node set, we obtain the human disease network, which represent diseases sharing common
genes (interactions). Using these insights, we can detect larger communities (classification) of
diseases, which are then analyzed based on the genetic relationships between nodes. As such,
network medicine is a modern, cutting edge tool for analyzing biomedical Big Data [175].

This section summarizes our contributions in Network Medicine, divided in two distinct
classes. First, we are collaborating with the ”Victor Babes” University of Medicine and
Pharmacy Timisoara (UMFT) since 2013, on a cross-disciplinary research path to improve the
diagnosis and severity prediction of Obstructive Sleep Apnea (OSA). With 3 research projects
(including an ongoing Horizon 2020 project), 4 Q1 journal publications [41, 42, 43, 44], and
over 10 medical congress abstracts, we have established a powerful Network Medicine team
with members from UPT and UMFT. Second, we have created collaborations with the Faculty
of Pharmacy (UMFT) and University of Southern California (USC) for employing drug-drug
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interactions and repurposing analysis using network medicine. Also, with 1 research project
and 2 Q1 journal publications [46, 47], we are forming a team of experts in the field of
pharmacology, by employing network medicine as our analysis tool.

4.2 Diagnosing Obstructive Sleep Apnea using a Network-

Based Approach

Network medicine has received a lot of attention during the last decade [176, 174, 21, 63];
this trend if fueled by the fact that complex network science can bring significant advances in
various medical fields like genomics [177, 178], drug-target interaction [179], or cell metabolism
[180, 181]. Consequently, it has been recently suggested that network medicine can be also
used for addressing important problems in respiratory medicine [182, 183].

Obstructive sleep apnea (OSA) is a serious sleep respiratory disorder, which has a preva-
lence that is considered by many authors as epidemic [184, 185, 186, 187, 188, 189]. OSA
consists of abnormal breathing pauses that occur during sleep, resulting in sleep fragmentation
and excessive daytime somnolence [190, 191]; it is considered as part of the wider category
named SDB (sleep-disordered breathing). In general, SDB produces an impaired quality of
life, including an increased risk of causing motor-vehicle accidents. SDB also increases the
mortality rate [192], because it contributes to the development of cardiovascular diseases
[193] such as hypertension [194], type 2 diabetes [195], cancer [196], and chronic kidney dis-
ease [197]. Because it is associated with many co-morbidities [198], SDB has several distinct
clinical phenotypes. If not properly diagnosed and treated, SDB may increase morbidity and
preoperative risks as well [199, 200, 201, 202, 203].

OSA severity is quantified with the Apnea-Hypopnea Index (AHI). Apneas are defined
as a decrease of at least 90% of airflow from baseline, which lasts for ≥ 10 seconds, whereas
hypopneas are defined as a ≥ 30% decrease of airflow that lasts ≥ 10 seconds; both are
associated with either an arousal or a ≥ 3% O2 saturation decrease [204]. The AHI represents
the mean number of apneas and hypopnoeas per hour of sleep. Clinically significant OSA is
characterized by AHI ≥ 30. However, some studies are adopting different AHI thresholds for
OSA, such as 15 (considered as the lower limit for moderate risk) or 20 [205]. Nonetheless,
the clinical relevance and consequences of mild obstructive sleep apnoea is still unclear [206].
Also, there is a variability in scoring the respiratory events across different countries [207].
In current practice, there are four major predictive models based on questionnaires, namely
Berlin, STOP, STOP-BANG, and NoSAS [208, 209, 210, 211, 212, 205]. Published studies
indicate STOP-BANG as the best available predictive score, due to its high sensitivity: 83.6%
for AHI > 5, 92.9% for AHI > 15, and 100% for AHI > 30. However, STOP-BANG
has a low specificity (56.4% for AHI > 5, 43% for AHI > 15, and 37% for AHI > 30)
[211, 212, 213] which prevents the usage of this score for population screening. NoSAS score
comes to improve the prediction specificity by a considerable margin (69%), while maintaining
a sufficient sensitivity value (79%). Although there are notable attempts for improving scores’
specificity [213], they are mainly targeting narrow-type cohorts such as perioperative patients.

Consequently, our research path is aimed at analyzing the general case, with all patient
categories being taken into account for screening, and not just some specific cohorts. To
this end, our research is underpinned by a complex network perspective on uncovering OSA
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phenotypes. Indeed, network science is already successfully used in medicine at disease-level
[40], including respiratory applications [182, 183]. Our network-based approach on OSA risk
factors allows for better, more accurate OSA phenotype identification, which in turn leads
to a new predictive score (SASScore). In comparison with the state-of-the-art, our OSA risk
prediction score achieves significantly better specificity in predicting actual AHI categories,
which makes our SASScore very appropriate for screening big populations as part of preventive
medicine programs.

4.2.1 From Patient Cohort to Network Model

In order to use network medicine for OSA research, we need real-world OSA patient datasets.
Unfortunately, OSA patients datasets are scarce and not public; such a situation is justified
by multiple aspects: big data techniques were only recently considered as tools for respira-
tory medicine and OSA, all patients must undergo hospital polysomnography (which entails
a complex, expensive and time-consuming process), while coordinated research efforts for
gathering data were only recently introduced. For instance, the biggest such OSA database,
namely European Sleep Apnea DAtabase - ESADA [214], is not public and it gathers data
from 15,956 patients in 24 sleep centers from 16 countries, since 2007. Also, a recent OSA
study [205] where the validation is similar to our approach, uses only one (private) validation
database, comprising 1101 patients [215].

Given the current context, we build our own Apnea Patients Database (APD), consisting
of consecutive patients with suspicion of sleep breathing disorders, which were evaluated at
“Victor Babes” Regional Hospital from Timisoara (Western Romania) starting from March
2005, to the present day, under the supervision of the hospital’s Ethics Committee (internal
briefing note no. 10/12.10.2013). Each patient had respiratory polygraphy performed using
both Philips Respironics’ Stardust polygraph (2005) and MAP’s POLY-MESAM IV (1998).
PSG was carried out with Philips Respironics’ Alice 5 Diagnostic Sleep System, according to
the appropriate guidelines [216]. The polygraphy was performed both at home and at the hos-
pital, whereas PSG measurements were performed at the hospital under medical supervision.
To preserve the information accuracy, all collected data were carefully verified; throughout
this process, we have ensured complete data confidentiality. Our observational, retrospec-
tive study employs only procedures that are standardized and non-invasive, by excluding all
useless investigations. Moreover, visits did not entail additional effort for the patients or
supplemental budget for the clinic. [41]

Our first significant study [41] uses a cohort of N = 1371 patients with completed sleep
study protocol and signed informed consent are included in the APD, each with corresponding
108 breathing parameters and anthropometric measurements. In order to verify if there is any
difference between apnea and non-apnea populations in terms of how risk factors associate
and converge, we built a 611 people non-OSA database NAD (using the same procedure as
for the APD). Also, to evaluate the prediction score derived from our study, we gathered
a distinct test database TD (fall of 2013) consisting of 231 patients, by following the same
procedure. Figure 4.1 presents the distinct roles of our 3 databases, as well as the relationship
between them.

Next, we build the unweighted Apnea Patients Network (APN), by assigning vertices
and edges: each node corresponds to a distinct patient in our OSA patients database APD,



60 CHAPTER 4. CONTRIBUTIONS IN NETWORK MEDICINE

Figure 4.1: The main Apnea Patients Database (APD), comprising 1371 consecutive patients,
is is used to build patient phenotypes and to render the SASScore. The distinct Test Database
(TD), comprising 231 consecutive patients, is used to verify the sensitivity and specificity of
predicting patient’s AHI and OSA categories. The Non-OSA patients Database (NAD) uses
consecutive assessed people which are not diagnosed with OSA in order to test for cluster
consistency (i.e. compare how risk factors converge in clusters for OSA patients in comparison
with people without OSAS).

while an edge (link) is created between two vertices if there is a risk factor compatibility
between the patients represented by the two vertices (nodes). The risk factor compatibility
is a binary function fRFC ∈ {0, 1} (0 means incompatibility and 1 means compatibility)
based on six parameters with high relevance for OSAS: age, gender, BMI, neck circumference,
blood pressure (systolic and diastolic), and Epworth Sleepiness Score. We build our APN by
considering that fRFC = 1 if at least 4 out of 6 parameters are identical; otherwise fRFC = 0.

The six parameters are selected from the pool of all relevant risk factors, because they can
be measured easily and objectively; such objective measurements can be performed anywhere,
and are widely accepted in the medical literature [191]. In contrast, other scores consider
snoring and witnessed apnea episodes as factors, but these are parameters which cannot be
observed or measured objectively [41].

The reason for adopting the 4-out-of-6 criterion is that it assures the right amount of link
density in the APN, meaning that there are enough links so that the APN is connected, but
not too many links so that communities (i.e. clusters) can be rendered with energy model
layouts [69]. Figure 4.2 shows that the 4 out of 6 link filtering represents the best alternative,
we use this criterion to build the APN. To the best of our knowledge, this link filtering
procedure is original and has not been used before in such network-based approaches [41].

The APN is clustered using our dual clustering methodology, i.e., a complementary use of
energy-model layouts and modularity based partitioning. We have adopted similar approaches
in [46, 43, 41, 44, 58, 57]. To this end, use the Force Atlas 2 algorithm [74] as network layout;
this layout is very effective in clustering various types of complex networks, as it is based on
previous theoretical foundation of force directed attraction-repulsion algorithms [217].



4.2. DIAGNOSING OBSTRUCTIVE SLEEP APNEA USING A NETWORK-BASED APPROACH61

Figure 4.2: APN edge filtering, by considering different definitions for fRFC = 1, when we
adopt the x-out-of-6 criteria (x = 1, 2, 3, 4, 5, and 6). The visual result indicate x = 4 as
the best solution, because the edge density is convenient for rendering topological clusters
with energy model layouts. If a lower threshold is used (i.e., less strict) too few, dense
and overlapping communities emerge. Conversely, if a higher threshold is used (i.e. more
strict) to many, non-representative communities emerge and many nodes become completely
disconnected from the giant component (GC) of the network.

4.2.2 Patient Phenotype Definition based on Our Dual Clustering
Technique

The APN and NPN representation resulted from our clustering methodology is presented
in Figure 4.3, where the distinct colors correspond to distinct modularity classes, and the
well-defined topological clusters are explained accordingly. In Figure 4.3a, we interpret the
8 topological clusters as distinct phenotypes, and provide the risk factors prevalence as per-
centages (L, Mi, Mo, Se)% for each such cluster/phenotype. Upon visual inspection, Figure
4.3b suggests that in the non-OSA control population there are more patterns of risk factors
association, which leads to a number of 12 topological clusters and modularity classes that
are not correlated with OSA or AHI risk groups. As such, according to our network-based
methodology, it occurs that the 6 considered risk factors consistently converge only for the
individuals with OSAS.

classifying new patients in one of the phenotypes can be performed by adding the new
patient to the APN and then running the modularity class and force-directed layout algorithms
in Gephi [75] again. However, in clinical practice, physicians are often unable to perform these
rather complex and time consuming computational steps. In order to deal with this problem,
we propose a simplified solution for classifying de novo patients, using a computer algorithm
that is implemented as a web-based/mobile application on Google Play: Morpheus: Sleep
Apnea Syndrome 1. Our mobile application employs a simplified algorithm for classifying
new patients in one of the 8 phenotypes.

1URL: https://play.google.com/store/apps/details?id=aerscore.topindustries.aerscore

https://play.google.com/store/apps/details?id=aerscore.topindustries.aerscore
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Figure 4.3: (a) Apnea Patients Network and (b) Non-Apnea Patients Network obtained with
data from the APD, and NPD, according to the risk factor compatibility relationship, using
our dual network clustering methodology. The assigned colors correspond to modularity
classes, and the topological clusters are indicated. (a) For each topological cluster, statistics
are provided in red (as percentages) for all AHI risk groups.

4.2.3 Gender-Based Differences in OSA Phenotyping

Our subsequent study [43] proposes the distinction between two networks, one for each patient
gender. As such, we build the male patient network (MPN) and female patient network (FPN)
based on our WestRo dataset with N = 2796 patients. The mapping of risk classes over the
MPN and FPN is depicted in Figure 4.4. By visualizing the mappings, we can easily identify
phenotypes’ categorization into healthy (green) or sick (red).

We note that our dual clustering method renders relatively distinct phenotypes for both
genders, meaning that different risk factors do associate in specific patterns. From a medical
standpoint, this observation is consistent with several state-of-the-art studies that hold gender
as an essential predictor of OSA severity [218, 219]. For each gender, we obtain 8 phenotypes
that can be differentiated by the association of four main risk classes (obesity OB, thick neck
TN, hypertension HT, and daytime sleepiness SL), as depicted in Figure 4.5a. Consequently,
we uncover insightful patterns of OSA development for each gender through the differential
comparison provided in Figure 4.5b. We find several identical phenotypes, e.g., the male Ph5
is the same as the female Ph3 (patients with SL). Conversely, we find multiple phenotypes
that do not have a correspondence in the other gender; these are phenotypes Ph2, Ph6, Ph7,
Ph8 for males and Ph2, Ph7, Ph8 for females, respectively.

By analyzing all enumerated male-only specific phenotypes, we find that all 4 of them have
TN as a common risk class; furthermore, 3 out of 4 include SL, one includes HT, and another
OB. This leads to the conclusion that TN is a major OSA predictor for male patients, and
is associated—in order—with SL, and HT or OB. By analyzing all enumerated female-only
specific phenotypes, we find that all 3 of them have HT as a common risk class. Moreover, 2
out of 3 include OB, and one includes SL; this leads us to the conclusion that HT is a major
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Figure 4.4: Mapping of OSA risk classes on the MPN (a-d) and FPN (e-h), where ellipses
mark the eight identified phenotypes, for identifying: hypertension (HT), thick neck (TN),
obesity, and daytime sleepiness.

Figure 4.5: Gender phenotypes comparison. (a) Male and female phenotypes described by
the four main associated risk classes (red – sicker, green – healthier). (b) Association of
risk classes for the two genders (males – blue, females – red); the upper panel represents
overlapping phenotypes, while the lower panel represents gender-specific phenotypes.

OSA predictor for female patients, and is associated—in order—with OB, and SL.

In conclusion, we applied a novel clustering method based on network medicine, which
results in new gender-specific OSA phenotypes [43]. This innovative approach—based on as-
sessing five objective patient parameters—results in identifying eight unique phenotypes for
each gender. Some of the detected clusters match for both genders (e.g., the severe or mild
OSA phenotypes), while others present a unique pattern of OSA risk factor association that
is specific for each gender. As such, for males, we find that large NC – sleepiness – hyper-
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tension/obesity represents a typical association pattern; for women, we find the association
pattern hypertension – obesity – sleepiness. We believe that our work will stimulate future re-
search in sleep medicine, help OSA prediction, and foster a personalized patient management
process.

4.2.4 Developing a Tool for Population-Wide monitoring of OSA

Present practice shows that the existing screening tools (e.g., STOP-Bang, NoSAS [205]) have
limited effectiveness when monitoring large populations (e.g. groups of more than 100, 000
people). In other words, current scores mainly focus on simplicity and high sensitivity, be-
cause these characteristics are paramount for clinical problems such as a rapid diagnosis of
preoperative patients – the unfortunate consequence is a high rate of false positives.

Therefore, our follow-up study [42] aims at defining a score for OSA severity targeting
high specificity. At the same time, to address the needs of practitioners in sleep laboratories,
we simplify the computation of the score, so that it may easily be applied in daily scenarios.
Altogether our contributions can be summarized as follows:

1. We redefine our computer-based algorithm that calculates SASscore in a form that can
also be used by practitioners in a much simpler way, without the need to employ dedi-
cated in silico tools. To this end, we only marginally reduce the accuracy of the original
SASscore, while significantly increasing its usability.

2. We validate the simplified SASscore on a cohort of N = 2595 patients diagnosed in
several sleep centers from Western Romania.

3. We optimize the performance of our SASscore, to maximize its specificity (using area-
under-curve analysis AUC).

4. We compare SASscore with state of the art monitoring tools (i.e. STOP-Bang, NoSAS)
in terms of sensitivity, specificity, AUC, to conclude that SASscore is indeed better suited
for monitoring large populations.

Originally, SASscore was created in such a way that, for every new patient, computer-
based algorithmic processing is required to insert the patient into our curated apnea patient
network [41]. Then, the patient is automatically assigned to one of the 8 graph clusters
(phenotypes); after performing this assignment, the patient’s SASscore is computed with the
following equation:

SASscore =
BMI

BMIcluster
+

NC

NCcluster
+

SysBP

SysBPcluster
+

ESS

ESScluster
(4.1)

In Eq. 4.1 the index of the assigned cluster is cluster ∈ {1..8}. Each cluster has a
set of precomputed average measures for body-mass index (BMI), neck circumference (NC),
systolic blood pressure (SysBP), and Epworth Sleepiness Scale (ESS) [220]. Thus, the new
patient’s anthropometric parameters are normalized towards the cluster’s average values, so
that his/her SASscore represents a relative risk as compared to the cluster average. Such
an approach is owing to the normal/Gaussian distribution that was identified in all relevant
parameters and anthropometrics [41].
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However, the computational steps entailed by calculating the original SASscore require
specialized, computer-based software tools. Therefore, while maintaining our initial focus on
building a high specificity and sensitivity OSAS monitoring tool, we simplify Eq. 4.1 according
to the following principles: (i) all relevant patient parameters are considered, (ii) instead
of performing the dual clustering technique, we use fixed average values for the considered
parameters. In Eq. 4.2 the fixed average values for BMI, NC, SysBP , and ESS are standard
values that can be found in literature and that are used in clinical practice.

SASscore =


BMI

30
+ NC

40
+ SysBP

140
+ ESS

11
, for women

BMI
30

+ NC
43

+ SysBP
140

+ ESS
11

, for men
(4.2)

The resulted score is a rational number with no strict lower or upper bound. Nevertheless,
due to specific limits of anthropometric and physiological measures, we found that scores
mainly range within the [2, 7] interval. Because the score is consistently proportional with
the patient’s AHI, we also provide a direct risk classification which corresponds to the AHI-
based risk groups:

SASRisk =


Low if SASscore < 3
Mild if 3 ≤ SASscore < 3.5
Moderate if 3.5 ≤ SASscore < 4
High if 4 ≤ SASscore < 5
V ery high if SASscore ≥ 5

(4.3)

The performance results of our score are presented in Table 4.1. The prevalence of OSAS
in the cohort, as can be defined by adopting different AHI cut-off values are as follows: 2519
(97.1%) for AHI ≥ 5, 2390 (92.1%) for AHI ≥ 10, 2238 (86.2%) for AHI ≥ 15, 2033
(78.3%) for AHI ≥ 20, 1671 (64.4%) for AHI ≥ 30, and 1093 (42.1%) for AHI ≥ 45. Table
4.1 provides the performance comparisons for the AHI = 30 cut-off.

Table 4.1: Performance of STOP-Bang, NoSAS, and SASscore in the WestRo cohort (N =
2595) when AHI ≥ 30 events/h is considered the diagnosis criteria.

Prevalence AUC Sensitivity Specificity PPV NPV
STOP-Bang 2404 (92.6%) 0.69 (0.66-0.73) 0.968 0.149 0.673 0.723
NoSAS 2157 (83.1%) 0.66 (0.63-0.68) 0.901 0.294 0.698 0.621
SASscore 1977 (76.2%) 0.73 (0.71-0.75) 0.829 0.359 0.701 0.537

The data within parentheses (from the ’AUC’ column) represent 95% confidence intervals.
AUC = area under the curve. PPV/NPV = positive/negative predictive value.

Overall, we notice that the prevalence according to the SASscore (76.2%) is the closest
to the real one (64.4%) – as obtained after rigorous polysomnography – and the AUC has
the highest value (0.73) for SASscore. In terms of sensitivity, SASscore performs marginally
weaker (0.829), yet it offers the best specificity among the three scores (0.359). These results
mean that SASscore obtains a specificity that is 140.9% higher than that of STOP-Bang.
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4.2.5 Conclusions

Our results show that, using patient measurements that are easily available in primary care
practice, the customizable SASscore allows for reliable determination of clinically significant
OSA, with a high and adjustable specificity, ranging from 0.359 to 0.607. Compared with
existing state of the art screening scores, such as STOP-Bang (0.149 specificity) and NoSAS
(0.294 specificity), SASscore is indeed the most appropriate for monitoring large populations.

In conclusion, as suggested by the higher AUC and correct classification proportion (with
respect to the other scores), our SASscore has the potential of representing a better compromise
between sensitivity and specificity, allowing clinically significant SDB to be reliably ruled out,
without yielding too many unnecessary sleep investigations.

Our score can be a useful tool for OSAS/SDB screening in large population categories
such as professional drivers, because, from January 2016, the new 2014/85/EU directive [221]
targeting professional drivers is recommended across the entire European Union (Commission
Directive 2014/85/EU of 1 July 2014 amending Directive 2006/126/EC – European Parlia-
ment and the Council on driving licenses). We are confident that our line of network medicine
research [41, 42, 43, 44], with direct applicability in sleep research, represents a timely ad-
vancement in the field of OSAS monitoring and severity prediction.

4.3 Predicting Drug Interactions and Repurposing us-

ing Network Pharmacology

Conventional drug design has become expensive and cumbersome, as it requires large amounts
of resources and faces serious challenges [222, 223]. Consequently, although the number of
new FDA drug applications has significantly increased during the last decade, the number
of approved drugs has only marginally grown [224, 225], calling for more robust alternative
strategies [226].

One of the most effective alternative strategies is drug repurposing (or drug repositioning)
[227, 228], namely finding new pharmaceutical functions for already used drugs. The extensive
medical and pharmaceutical experience reveals a surprising propensity towards multiple indi-
cations for many drugs [229], and the examples of successful drug repositioning are steadily
accumulating. Out of the 90 newly approved drugs in 2016 (a 10% decrease from 2015),
25% are repositionings in terms of formulations, combinations, and indications [225]. Fur-
thermore, drug repositioning reduces the incurred research and development time and costs,
as well as medication risks, which makes it particularly efficient for developing orphan/rare
disease therapies [229, 230].

The recent developments confirm computational methods as powerful tools for drug repo-
sitioning [47]:

• The wide availability of omics (e.g., genomics, transcriptomics, proteomics, metabolomics)
analytical approaches have generated significant volumes of useful Big Data [231, 232].

• Ubiquitous digital devices and social media, has tremendously expanded the amplitude
of the process of gathering data on drug-drug interactions and drug side-effects [233,
234].
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• The recent developments in physics, computer science, and computer engineering have
created efficient methods and technologies for data exploration and mining, such as
complex network analysis, machine learning, or deep learning [235, 232, 179, 236, 237,
238].

We developed a novel, network-based, computational approach to drug repositioning. To
this end, we build a weighted drug-drug network, i.e., a complex network where the nodes
are drugs, and the weighted links represent relationships between drugs, using information
from the accurate DrugBank database [239]. In our drug-drug similarity network (DDSN), a
link is placed between two drugs if their interaction with at least one target is of the same
type (either agonistic/ activator or antagonistic/ inhibitor). The link weight represents the
number of biological targets that interact in the same way with the two drugs. A target
tk ∈ T (T is the set of targets) on which drug nodes vi and vj act in the same way, either both
agonistically or both antagonistically. Within this framework, we build the DDSN graph G
using drug-target interaction information from Drug Bank 4.2 [239]. We base our analysis
on the largest connected component of the DDSN, consisting of |V | = 1008 drugs/nodes and
|E| = 17963 links resulted from the analysis of the drug-target interactions with |T | = 516
targets [47].

To gain insights from the DDSN topological complexity, we identified specific drug clus-
ters (or communities) using our dual clustering technique based on modularity-based graph
partitioning [71], and the Force Atlas 2 layout algorithm [74]. In the case of DDSN, the
clusters correspond to drug communities Cx, x ∈ N∗, such that V =

⋃m
i=1Cx. Using the

constructed DDSN from Drug Bank 4.2 and expert analysis, we label each cluster according
to its dominant property (i.e., the property that better describes the majority of drugs in
the cluster), which may represent a specific mechanism of pharmacologic action, a specifically
targeted disease, or a targeted organ. Figure 4.6 illustrates the resulting DDSN, where the
node colors identify the distinct modularity clusters [47]. We assess the ability of our method
to uncover new repositionings by confronting our results with the latest (version 5.1.4) Drug
Bank and with data compiled from interrogating scientific literature databases.

4.3.1 Network Centralities as Hints for Drug Repurposing

In our characterization of drug-drug similarity networks, a high degree node represents a drug
with already documented multiple properties. Also, a high betweenness (i.e., the ability to
connect network communities) indicates the drug’s propensity for multiple pharmacological
functions. By this logic, the high-betweenness, high-degree nodes may have reached their full
repositioning potential, whereas the high betweenness, low degree nodes (characterized by
high betweenness/degree value (b/d or simply bpd) may indicate a significant repositioning
potential.

To explore the capability of bpd to predict the multiple drug properties, we exploit the
community structure of DDSN by following a two-step approach.

First, we assign a dominant property to each community using expert analysis. Figure 4.6
illustrates the 26 DDSN communities as well as their dominant functionality. The dominant
community property can be a pharmacological mechanism, a targeted disease, or a targeted
organ. For instance, community C1 consists of antineoplastic drugs which act as mitotic
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Figure 4.6: The drug-drug similarity network, where nodes represent drugs and links represent
drug-drug similarity relationships based on drug-target interaction behavior. We identify 26
topological clusters with rounded rectangles and provide the functional descriptions for each
of them.

inhibitors and DNA damaging agents; C13 consists of cardiovascular drugs, mostly beta-
blockers. Second, in each cluster Ci, we identify the top t drugs according to their bpd values.
From these selected drugs, Bt

i ⊂ Ci, some stand out by not sharing the community property
or properties, and thus, can be repositioned as such. To this end, for i = 1,m eliminated
from Bt

i the drugs whose repurposings were already confirmed (i.e., performed by others and
found in the recent literature), thus producing m = 26 lists of repurposing hints yet to be
confirmed by in silico, in vitro, and in vivo experiments, Bh

i = Bt
i \Bc

i .

The community Id depicted in Figure 4.7 identifies each top bpd node, excepting Meproba-
mate (in community C25) and Acarbose (C19), because these drugs do not seem to possess
their community’s main property; this indicates Meprobamate as antifungal (i.e., the prop-
erty of community 25) and Acarbose as antiarrhythmic, anticonvulsant (i.e., the properties
of community 19). As such, our clustering results indicate two top bpd drug repositionings,
i.e., both repositionings refer to properties currently unaccounted in the DrugBank version
5.1.4 and the scientific literature we have screened. Meprobamate is a member of the (green)
community of psychotropic drugs but is also well connected to the (dark blue) community
of antifungal drugs. The placement of Meprobamate and the high bpd value suggest that it
may also have an antifungal effect. A a last validation procedure, we use molecular docking,
to further confirm the repurposing of Meprobamate.

Molecular docking represents an alternative, in silico simulation approach to drug discov-
ery, which models the physical interaction between a drug molecule and a target (or a set of
targets). With molecular docking, we estimate the free energy values of the molecular inter-
actions to offer a good approximation for the conformation and orientation of the ligand into
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Figure 4.7: (a) The DDSN where node sizes represent their bpd values. The arrows indicate
the top bpd node in each community. (b) Detail showing Meprobamate as the node with the
biggest bpd in its community.

the protein cavity [240]. Along with many available molecular docking models, DOCK [241] is
a dedicated software tool used in drug repurposing. Meprobamate is a known oral drug. How-
ever, when considering its potential antifungal activity, we cannot exclude the topical route
of administration. To this end, we suggest that further investigations on biopharmaceutical
properties (e.g., solubility, lipophilicity, octanol/water partition coefficient) are required [47].

4.3.2 Discussion

Our research in drug-drug interactions and repurposing using network medicine has led us
to the definition of drug similarity based on drug-target interactions [46, 47]. As such, we
built weighted Drug-Drug Similarity Networks (DDSN) according to the drug-drug similarity
relationships. Using our dual clustering technique, we generate drug communities that are
associated with specific, dominant drug properties. However, we find that 13.59% of the drugs
in these communities seem not to match the dominant pharmacologic property. Thus, we
consider them as drug repurposing hints. The resources required to test all these repurposing
hints are considerable. Therefore we introduce a mechanism of prioritization based on the
betweenness/degree bpd node centrality. By using bpd as an indicator of drug repurposing
potential, we identify the drug Meprobamate as a possible antifungal. Finally, we use a
robust test procedure, based on molecular docking, to further confirm the repurposing of
Meprobamate.

Overall, our prediction of pharmacologic properties is validated for 85% of the drugs
with functional information [46]. Hence, motivated by this high prediction accuracy, we
argue that it is extremely likely that the predicted properties will also be confirmed for the
remaining 15%. Theoretically, drug-drug interactions actually express the way that drug
behaviors interfere, constructively or destructively. Consequently, we consider our work as
a strong argument for the multi-level network approach to drug repurposing, an approach
that integrates the behavioral and structural perspectives [21]. In this context, we identify
Diseasome (the Human Disease Network), the Human Connectome, and Human Genome
Projects as appropriate platforms for our dual clustering approach.



70 CHAPTER 4. CONTRIBUTIONS IN NETWORK MEDICINE

Our described methodology was also used successfully for clustering patients in medical
databases, for instance in cardiovascular disorders [242], sleep apnea syndrome [41, 43].These
studies prove that disease risk factors do not associate at random, they rater converge towards
well-defining patient phenotypes, which in turn provide valuable information for network
medicine and personalized medicine approaches.
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Chapter 5

Laboratories and Infrastructure

In this second part of the habitation thesis we discuss the candidate’s career evolution plans,
as well as his research and teaching directions to be considered. Furthermore, we describe
the strategies and approaches to put these plans into practice. We underline the capability
of leading research teams, implying support for PhD research opportunities. As such, we
enumerate available resources (personnel and infrastructure) and future research thematic,
infrastructure, and financial offers for prospective PhD students.

The second part of the thesis is structured into a detailed overview on laboratories and
infrastructure (present and planned), research project results and opportunities, financial
support, future research directions, and teaching perspectives.

5.1 The Advanced Computing Systems and Architec-

tures Research Group

The ACSA group was founded by Prof.emerit. Mircea Vladutiu and has grown, in time, into
a dynamic team of experts in the fields of Computer Architectures, Reliability of Computa-
tion, Bio-inspired Computation, Quantum Computing, Reconfigurable Hardware, Computer
Engineering in general, as well as newer directions like Complex Network Analysis, Network
Medicine, Internet of Things, Big Data, and Machine Learning.

ACSA was built on the legacy of digital computing architectures, as our research ap-
proached topics in unconventional computing in an attempt to further the borders of known
principles and mechanisms of information processing. We develop algorithms that are more
efficient and map them to novel architectures in order to accommodate more complex com-
putational phenomena and to achieve new levels of reliability and fault-tolerance. We search
to uncover and exploit new computing architectures by observing biological processes and
importing them into digital silicon. We strive to understand the intricate science of the
new paradigm of quantum computing as a cross-breed of computer science and engineering,
physics, and mathematics in order to devise new algorithms and deliver fast and accurate
performance assessments. Finally, we approach real-life issues, aiming at improving and ex-
panding their current solutions. Digital devices and algorithms can be of assistance in sleep
apnea disorders and cognitive disabilities, to name a few. And they can help to better un-
derstand the complex interactions that make up the common urban traffic for the purpose of
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maximizing its flow and providing improved management.
Given our experience in coordinating PhD students over a broad range of scientific topics,

we consider our group as an attractive opportunity for PhD programs. With the newest
inclusion of Network Science in our research portfolio – since 2011 – we are able to offer a
full-fledged PhD program using Network Science in the field of Computers and Information
Technology. To the best of our knowledge, we are also the first Computers Department to
offer this opportunity at national level.

5.2 Available Infrastructures

In terms of available computing infrastructure for potential PhD students, our ACSA group
disposes of two laboratories for student activities. As such, B520a is equipped with 18 desktop
PC stations for individuals use of students during laboratory hours. The lab also provides
an Epson projector and projecting screen, bought from the department’s budget. The PCs
were donated by the company Nokia. Laboratory B521 is a newer addition to our group, and
is also equipped with newer and decently powerful desktop computers. Both rooms serve as
teaching spaces for subjects like Computer Architecture, Computer Organization, Computer
Engineering, Hardware-Software Codesign, Reconfigurable Hardware, Fault Diagnosis and
Design for Testability, Big Data Visualization, Emergent Systems, Big Data in Healthcare
etc,, used for both the Bachelor and Master programs. We also offer the B520b office for PhD
meetings and group member meetings. The room is equipped with AC, WiFi, a multitude of
computers and monitors, and extensive materials for development.

In addition to equipment obtained though donations and internal Department strategies,
we have successfully added important computing hardware to our group’s infrastructure. As
such, we have bought a server (running a Linux distribution), financed by UEFISCDI project
PN-III-P2-2.1-PED-2016-1145 ”Inception: Internet of things meets complex networks or early
prediction and management of chronic obstructive pulmonary disease”, currently hosted by
the Faculty of Pharmacy at UMFT. A second server (running Windows) was bought through
the UEFISCDI project PN-III-P1-1.1-PD-2016-0193 ”IMPRESS: Improving the prediction
of opinion dynamics in temporal social networks: mathematical modeling and simulation
framework”, currently hosted in our B520b office.

Our Computers and Information Technology Department (DCTI) provides a set of cloud
services, maintained and kept up-to-date by our System Administrator. We enumerate the
following services made available by the DCTI network:

1. Personal department email service (@cs.upt.ro) with access to webmail, and email client.

2. VPN access available both for staff members as well as for students (after an explicit
request), backed up by user-personalized access rules.

3. Web hosting and hosting of personal profile pages.

4. Access to a Linux system by staff.

5. Restricting student access by staff per laboratory.
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6. Control and clean-up of computers in the laboratory by the teaching personnel (available
only for laboratories with Linux).

7. Department GIT versioning system. The service is valid for both staff and students (at
the explicit request of a coordinating professor).

8. Hosting virtual machines on VirtualBox infrastructure or own Cluster with Proxmox
infrastructure (96 CPUs, 128 GB RAM, 8 TB storage).

9. Automatic installation of laboratory computers.

10. Active Directory infrastructure for managing laboratories with Windows Operating Sys-
tem.

11. Multiple GPU video card processing cluster. Currently we provide: NVIDIA Tesla
K40m, NVIDIA GeForce GTX 1050 Ti, NVIDIA GeForce RTX 2080 Ti.

Another, newer solution offered by our department is the Vision cloud system which
provides staff (including external collaborators) with cloud services similar to those offered
by Google and Microsoft. The main purpose of the provided service is to offer department
staff with cloud facilities while maintaining privacy (confidentiality). As such, the Vision
cloud is hosted in the department’s own data center, using its own infrastructure, and is
protected by UPS and incremental backup systems.The platform used is Nextcloud, an open
source platform that wants to help those who want facilities similar to those offered by major
cloud providers, but, at the same time, want to keep confidentiality and total control over
their data; as such, NextCloud is a private, open-source alternative to existing public cloud
infrastructures.

The main functionalities of our cloud service are: file sync and storage (similar to Google
Drive), file sharing with both registered users of the platform and with external users through
temporary links, collaborative Document Web Editor (via OnlyOffice, and similar to Google
Docs), Forms (similar to Google Forms), Contacts Manager (similar to Google Contacts),
Calendar (similar to Google Calendar), Password Manager (installed as a plugin that offers
an encrypted storage of users passwords with a strong facility to organize by categories and
offers protection with an additional master password; the plugin easily integrates with Mozilla
Firefox or Google Chrome), Maps (via OpenStreetMaps, similar to Google Maps), Instant
messaging Chat (similar to Google Talk). The current storage space was upgraded from 5GB
to 200Gb per user, which is far more than any free alternative on the market.

Also, in the current pandemic context, our ACSA team has successfully launched a vir-
tual teaching laboratory equipped with a professional video camera, microphone, lighting
conditions, computer, monitor, WiFi and a glass board for writing. The special glass board,
combined with white markers, works best in dim lighting conditions as it is lit by several
LED bands, placed along its top and bottom margins, which facilitate a unique (3D-like)
visualization for students. Furthermore, the department has also equipped and opened an
online teaching area. The special dedicated space is equipped with two computers, monitors,
microphone, camera, graphical tablet etc.

The university also offers support with its Virtual Campus (CV) (www.cv.upt.ro), which
is an online educational environment of academic support for all UPT faculties and for distance

www.cv.upt.ro
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learning. As such, in terms of teaching perspectives for prospective PhD students, we are
confident that teaching will be an efficient process.

The available research infrastructure, used throughout the directed research projects, and
available to all department personnel (including PhD students) is the ERRIS infrastructure
“Centrul de Cercetări ı̂n Calculatoare şi Tehnologia Informaţiei” located in Politehnica Uni-
versity Timis,oara (http://erris.gov.ro/UPT-CCCTI). As published on the ERRIS platform,
the current infrastructure supports research on modeling and simulations, network science,
big data, graph algorithms, and data mining, all of which are directly contributing research
fields to our group.

In May 2020, Politehnica University Timisoara (UPT) started the implementation of the
CloudPUTing project, a ”High Performance Cloud Platform at Politehnica University of
Timis,oara”, which has as main result the creation of a heterogeneous HPC cloud node dedi-
cated to research projects.

The aim of the project is to increase the research and innovation capacity of UPT by
creating an energy efficient, private cloud based on open technologies, attached to national
and international networks of research cloud infrastructures, with applicability in collection,
storage, analysis, distribution and the protection of the heterogeneous data masses, produced
within the research and innovation initiatives carried out in the western region of Romania.

The main and direct target group of the project consists of all UPT researchers and
PhD students, regardless of the research field in which they operate, who can benefit from the
services provided by tools specific to the Computers & Information Technology field, provided
in the form of centralized computing services, storage and productivity.

The project has an implementation period of 2 years, benefiting from a budget of over 4
Million Lei, of which 3.8M LEI are non-reimbursable funds financed by the program POC /
398/1-Development of networks of R&D centers, coordinated at national level and connected
to European and international networks and ensuring researchers’ access to European and
international scientific publications and databases.

Overall, we are confident that the infrastructures offered by the ACSA laboratory, the
Vision NextCloud platform of the Department, the Virtual Campus, and the future available
CloudPUTIng HPC platform will offer any PhD student enough support for a large diversity
of teaching and research tasks.



Chapter 6

Research Project Results and
Opportunities

This chapter is dedicated to describing the main research tracks and results obtained from
the two directed projects: IMPRESS (period 2018–2019) and PollStream (period 2020–2021).
The first project was aimed at bringing contributions to Social Network Analysis, and the
second project opens new possibilities with contributions in Computational Network Science.

6.1 Improving the Prediction of Opinion Dynamics in

Temporal Social Networks: Mathematical Model-

ing and Simulation Framework

This project aims to create a modeling and simulation framework for better predictability
on the dissemination of public opinion, on a predefined population, over time, by offering an
improvement over the classical statistical approach based on opinion polls. The most common
classical prediction methodology is based exclusively on data collected from a small subset
of the target population, from which statistics are extracted. This method has a limited
perspective due to its static presentation [243]; on the other hand, the approach we propose,
using complex networks, involves simulating the dynamics of opinion using diffusion models,
which can provide a better prediction of the distribution of opinions. Accuracy is further
enhanced by examining the temporal and spatial distribution of opinion sources [244, 245].

The results of this project can be applied in the context of industry, such as marketing
research. For example, web marketing and referral systems are becoming more popular for
spreading the influence, scientific support is needed for revenue maximization strategies, ap-
plicable on social platforms like Facebook or Twitter. As such, the results of the project could
explain which are the optimal opinion propagators to target, at what time and for how long to
maintain the injection of opinion in a social context, thus minimizing marketing investments
and maximizing the impact of a campaign. To achieve the goal of the project we formulated
the following objectives (illustrated in Figure 6.1):

(O1) Topological analysis based on graph metrics and similarity analysis on empirical
data sets to determine statistically relevant communication patterns, and how they relate to
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Figure 6.1: The main scientific objective of creating a dynamic model for injecting opinion,
able to better predict the distribution of opinion at a given time t, taking into account the
position, time and latent influence of each opinion expressed in the social network (upper
panel). Implementation of the scientific model on the online platform, based on the data
collected and storage on a cloud service. Time and location information is used to estimate
influences and interaction patterns in the vicinity of the node (bottom panel).

opinion sources. (O2) The development of an innovative model of social interaction, con-
sidering the temporal aspect of opinion sources. (O3) Definition of a robust methodology
for selecting opinion sources by analyzing the distribution of node and edge centrality for a
better understanding of the emergence and growth of social networks. (O4) Synergy of results
(O1-O3) with direct applicable socio-economic impact by developing a crowd-sourcing web
platform for collecting anonymous empirical data from users (e.g., opinion, time, location).
Each vote will represent an opinion injected into the topology of the social network, active
for a predefined time interval, as defined by the results of the O2 research. Based on this
information, the social simulation will run based on the results from O1 and O3, providing
an improved predictability of opinion.

The activities carried out by the team members led to the achievement of all the planned
results. As such, we worked on defining a framework for the comparison (benchmark test
type) of the existing node centralities using the newly introduced concept of competitive
diffusion.

Specifically, our method differs from the classical spread of SI, SIR, SEIR epidemics [7],
by using the competition-based spread supported by our realistic tolerance-based diffusion
model [34]. We studied a wide range of methods for estimating the influence of nodes [10,
64, 90, 99], and applied our new method to large, real-world synthetic datasets. To highlight
the limitations of using a SIR simulation, we illustrate an example in Figure 6.2. In the first
two panels, we apply two distinct classification methods (orange and blue), one at a time,
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Figure 6.2: Limitations of comparing a dissemination process only from the point of view
of a single opinion, although the real world context involves simultaneous dissemination and
competition between several opinions.

and suggest that the diffusion process is unrestricted; we also suggest that the orange opinion
manages to cover the network in time T1, faster than the blue opinion in T2, due to the greater
dispersion of three original sources of orange opinion. In a SIR context, the two simulations
may lead to the conclusion that the orange classification method is better (i.e., more efficient)
than the blue one. In reality, we consider the scenario in the third panel to be the most likely.
Opinions will be broadcast simultaneously and will face constraints due to competition on
each node, i.e., orange and blue are mutually exclusive. In this case, we intuitively suggest
that blue could gain in terms of network coverage because it has a closer initial community.

The computer simulations we employ show that our methodology offers a much larger
quantitative differentiation between classification methods on the same data set and, in par-
ticular, the high granularity for a classification method on different data sets. We are able to
identify - consistently - which classification method offers better performance than another,
on a certain complex network topology. Our testing framework can provide a leap forward
when analyzing real-time competition between agents. These results can bring great bene-
fits to combating social unrest, spreading rumors, political manipulation and other vital and
challenging applications in the analysis of social networks.

In terms of project results, we planned 4 deliverables: 1 impact journal publication, 2
conference proceedings papers, and 1 crow-sourcing web platform. Following the four actions
provided for stages 1 and 2 of the IMPRESS research project, we exceeded the initial estimates
as follows: 1 Q1 journal paper [39], 1 Q4 journal paper [246], 1 WoS journal paper [247], 4
conference proceedings papers [113, 248, 53, 249], and the web platform.

Indeed, further developments of our method are possible. For example, we can increase
the number of opinion sources that operate simultaneously in a network. Consequently, the
allocation of alternative opinions needs to be changed to suit all sources of opinion. A recent
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study discusses the importance of targeting specific localized objectives, rather than achiev-
ing high network coverage [250]. Our method can be easily implemented to measure target
coverage during or at the end of a spread simulation. Another study finds that each complex
network can have a small ”control set” of nodes, which, when triggered, will influence the en-
tire network [251]. These control sets are considered to be surprisingly small (5-10% of nodes)
and can also be associated with our benchmarking methodology. Overall, we believe that our
work addresses a significant challenge in the study of opinion dissemination phenomena, and
is a good starting point for many unresolved issues and new ideas found in the literature.

6.2 Agent-Based Interaction Models with Temporal At-

tenuation for Opinion Poll Prediction

This project proposes to corroborate its theoretical research results and apply them into an
applicative context, namely that of electoral poll forecasting. To this end, we build upon the
premises that we can extrapolate the macroscopic opinion dynamics of a society by inferring
microscopic temporal dynamic models during the pre-election period. Our hypothesis is that
the timing of publicizing opinion polls (i.e., opinion injection) plays a significant role in how
opinion oscillates.

Current state of the art in electoral forecasting employs multilevel regression and post-
stratification (MRP) [167]. However, MRP method is often cumbersome to apply, needing
economic indices and detailed demographics to be accurate. Alternatively, we propose to
elaborate on the concept of temporal attenuation (TA) [53, 60], which models the timed oscil-
lation of poll data as opinion momentum. For this, we propose a research methodology based
on computer simulation of information diffusion, on large datasets, using novel agent-based
models [34], and integrating them with TA in order to improve the forecasting performance of
opinion polls. We strongly believe that the contributions highlighted in this project proposal
answer important and timely scientific and social issues, and will constitute an incentive for
further research and collaboration.

The idea of influence maximization (IM) in networks is a nonlinear problem, which repre-
sents an element of difficulty for modeling and predicting dynamical systems represented as
complex networks [252, 253]. Identifying an optimal, namely minimal set of spreader nodes,
remains unsolved despite the vast use of heuristic strategies [7, 254]. Answering these ques-
tions can lead to developing a set of ubiquitous strategies for efficient control of information
diffusion with direct impact in marketing, sociology and business applications.

In [255], we develop a new framework of computational intelligence, called ”Optimal Ge-
netic Selection of Opinion Distributors” (GenOSOS), to optimize IM, compared to state-
of-the-art methodologies in selecting distributor nodes based on node centralities (degree,
betweenness, PageRank and k-shell). Overall, (i) we propose the GenOSOS model, a genetic
algorithmic approach to the IM problem, which is an original attempt to address the trade-off
between spacing between distribution nodes and diffusion coverage; (ii) we propose a mod-
eling specific to the problem of population and chromosome representation. Moreover, we
implement the fitness function based on a graph coloring algorithm, which can accelerate the
convergence of the spreading process. (iii) we define an individual (chromosome) as a unique
set of diffusion, bringing customized implementations of crossover and mutation operators;
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(iv) we estimate the effectiveness of GenOSOS on synthetic and real-world networks. The ex-
perimental results show that our algorithm has competitive performances compared to similar
selection methods based on centralities. The GenOSOS genetic algorithm, shown in Figure
6.3, is based on three customized genetic operators – elitism, crossover and mutation.

Figure 6.3: Flowchart of GenOSOS emphasizing the main algorithmic steps: input/output
(orange), generation control (blue), and genetic operators (green). According to the flowchart,
the algorithm finds an optimal solution sji for placing p spreader nodes in a graph G, and runs
k genetic iterations consisting of three operators that are used to generate n new solutions,
from generation j, for the next generation j + 1. The output consists of a set of p nodes
marked as spreaders in graph G.

The detailed analysis on three categories of network datasets show that the potential of our
proposed solution is not only viable, but offers superior results compared to the state of the
art centrality approach. Specifically, GenOSOS obtains a 11.45% higher coverage, averaged
over all (12) used datasets. In essence, our solution is superior to the state of the art on 7
out of 12 datasets (58.3%) in terms of diffusion coverage.

In addition, we have formalized the temporal attenuation (TA) framework for electoral
forecasting. From a scientific point of view, this work builds upon the premises that we are
able to extrapolate the macroscopic behavior of a society (here, in the context of elections)
by inferring microscopic temporal dynamic models during the pre-election period. TA uses
solely pre-election poll data to improve electoral forecasting accuracy. The novelty of TA
relies on characterizing the dynamic momentum of opinion, which builds up and dampens in
the general population, according to the injection of pre-election polls data.

The efficiency of our forecasting model is measured using the Mean Absolute Percentage
Error (MAPE) and Root Mean Squared Error (RMSE) criteria. Our results are benchmarked
against ARIMA models, fitted to our pre-election data, and the best pollster predictions for
the US Presidential elections ranging from 1968–2016, including more recent pollsters using
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MRP (2012, 2016).
In this project, (i) we formulate an analytic methodology for modeling the macro-scale

evolution of a multi-opinion system, targeting better election poll forecasting; (ii) we define an
experimental setup, based on pre-election data, to validate the underlying assumptions of our
approach; (iii) we present a comprehensive case study on US Presidential Elections, ranging
between 1968–2016, to measure the efficiency of our approach, using MAPE and RMSE,
against state of the art forecasting estimates, including ARIMA and MRP, as recently used
by the best pollsters in the USA; (iv) we explore the feasibility of applying TA in real time,
during an ongoing pre-election period, and benchmark its performance against MRP at several
points in time, relative to the election day. An overview of our TA framework is exemplified
in Figure 6.4.

Figure 6.4: Overview of the temporal attenuation (TA) model applied on two candidates (C1-
blue and C2-red) with 6 days before election. (A) Surveys are collected for the two candidates
at t = {2, 3, 5, 6}. From these, set P is assembled consisting of poll vectors p0(t) and p1t. (B)
A higher β translates into a more abrupt damping of the momentum. (C) Momentum Mi(t)
for PTA and ETA corresponding to the poll vectors p0(t) and p1(t). Individual votes are
displayed in absolute value on the graphs. The simulation using dataset P corresponds to the
pre-election period (0 < t ≤ 6). (D) Opinion Ωi(t) evolution for PTA and ETA corresponding
to the momemtum in panel (c). Several poll differences are displayed at t = {2, 4, 6} using
the color of the virtual winner at that moment.

The planned results for the PollStream project are: 2 journal publications, 2 conference
proceedings papers, and one mobile/web simulation platform for diffusion processes on large
social networks. By April 2021, we have published: 2 conference proceedings papers [255,
52]. In addition, we have 2 journal papers (Scientific Reports–Q1, Expert Systems with
Applications–Q1), and 1 conference paper (KES-2021) under review.

The importance of this project consists in defining a complementary electoral forecasting
method, which does not need any demographic, economic, or political information related to
the context of the election. This distinction represents a significant advantage for TA over
alternatives, like MRP, since our method may be applied, given enough reliable public polls,
in any political region of the world. In this sense, the results further presented in this paper
did not need consideration of any additional information about the USA during the period
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1968–2016. Since we address an ongoing socio-political challenge, we believe our investigations
will have a high societal relevance, especially in industry and governments, as they provide
insights into better understanding the dynamics of electoral systems.

6.3 Career Opportunities

In this section we discuss some of the financial, research and professional (didactic) career
opportunities that can open for prospective PhD students joining our ACSA research group.

To provide a quantifiable example, we detail the financial opportunities that have been
available during the during the 10-year (2011-2021) research activity of the candidate. As
such, in addition to the academic-didactic activities in the department, we managed (as
director) 2 national research projects (38K euro & 51K euro), financed by UEFISDCI. we
also joined as project members 2 international project teams and 5 national project teams.
The international projects were financed by Linde (75K euro), respectively by the Horizon
2020 framework (131K euro). The national projects were financed by ARUT (10K euro) and
UEFISCDI (120K euro, 120K euro, 100K euro, 120K euro).

On behalf of these projects a number of technical equipment was bought to serve each team
member. For instance, we bought two servers and two sets of personal laptops (in 2013, 2019).
Also, we were able to publish several open-access journal papers, e.g., [46, 27, 39, 43, 47, 44],
and participate at several conferences in Europe and North America.

The two projects managed by the thesis candidate generated additional indirect costs
(i.e., regie) which can be used for upgrading technical equipment, conference participation,
open-access journal publications, and other motivated professional development. Obviously,
these project savings can be used to boost the early career of new doctoral students. Given
the current and planned project savings, we have the possibility of supporting 2-3 years of
conference participation for students. Also, given the financial support of the University for
high impact journal publications, we are confident that students will be able to publish their
results in a timely manner.

Also, in terms of open research ideas, we mention contributions in educational science
using network science, and contributions in sleep research using machine learning and big
data analysis. To this end, based on data gathered during the NOVAMOOC project (2015–
2017), we started a follow-up study on student archetyping. This collaborations with the
West University is open for research.

Our work focuses on placing a cornerstone for a framework of personalized MOOCs (mas-
sive open online courses) in the future. While some students will always be more prepared
than others to embrace online education, we consider that the mass education of the future
needs to be personalized [256, 257]. Even though this concept sounds difficult to apply, we
suggest a step wise refinement through which we define increasingly reliable and specific pro-
files for online students. This work sets such an example, though which one could classify
newly joining students into a specific profile, and thus personalize their way of being taught,
graded, involved in social activity and projects, given responsibility etc. We believe that our
study will enhance the understanding of how students relate to MOOCs, and thus open a new
path of personalized online education.

The current drafted work aims to make a leap further in educational science, and combine
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complex network analysis and sociology to model and analyze the emerging profiles of the
new digital student. As such, we curate data through a large-scale online questionnaire, and
analyze the opinion of 637 students from Romania regarding the advantages, disadvantages
and reasons to choose MOOCs. Based on their expressed opinion, we create two graph
models of compatibility based on key individual traits, and find six distinct student profiles
in terms of engagement in MOOCs, and seven profiles for non-participants. Furthermore,
we discuss these profiles and explain the implications, limitations and perspectives of this
study. We consider our findings an important milestone both in understanding the needs of
future modern students, and in optimizing the way online courses are developed to serve the
challenges in personalized education.

In parallel, we aim to submit new project proposals, such as a TE (Tinere Echipe) or
PED (Proiect Experimental Demonstrativ) project. Given the current ACSA members, we
find both alternatives feasible. The TE can be targeted in the field of computational epidemics
(a current impactful hot topic sub-field of computational network analysis). The PED may
be targeted at the implementation of a sleep research related tool (for OSA).

Finally, the current Horizon 2020 project (2021–2025), in which several members of the
ACSA and UMFT team are involved (same partners as for the projects on OSA and COPD
diagnosis), open up endless possibilities for current Master’s students, as well as current and
future PhD students. Given the large number of research centers involved in the project,
most research publications will have a solid scientific impact, this opening opportunities of
visibility for all participants.

6.4 Conclusions

All the mentioned scientific achievements illustrate the high potential of the thesis candidate as
an independent researcher and his ability to manage research teams and future PhD students.
Furthermore, he is actively collaborating with several research groups, with some notable
results: Carnegie Mellon University (CMU) / University of Texas (Prof. Radu Marculescu)
[34, 27, 38], University of Southern California (USC) (Prof. Paul Bogdan) [46, 47], and
Central European University (research visit supported by the IMPRESS project). In the
near future, and based on contact at conferences, we propose establishing collaborations
with the DSG group at Wroclaw University of Science and Technology (Prof. Przemys law
Kazienko), the Collide group at Universitaet Duisburg-Essen (Prof. Ulrich Hoppe), and the
DNDS department at CEU (Prof. János Kertész). These scientific collaborations should
positively strengthen the international visibility, high originality of research, and relevancy of
the work of ACSA group, as all mentioned teams work within the field of network science.

Furthermore, the high number of projects in which we participated over the last 10 years (2
as director, 7 as member) illustrate the accumulated experience and potential of attracting new
funds for future ACSA members, within the UEFISCDI TE and PED programs. Moreover,
the personal and University financing frameworks can support the open-access publication
and conference participation of doctoral students in the near-term future.
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Future Research Directions

In this section we enumerate current research development plans in the areas of computational
epidemics, network analysis in educational science, and network medicine. The diversity of
these areas ensures a high attractiveness for potential new doctoral students. Furthermore,
our experience, visibility and project partnerships can further boost the impact of future
research for potential members in the ACSA group.

7.1 Computational Epidemics using Network Science

Understanding the dynamics of large, resurgent epidemics is an ongoing scientific effort aimed
at controlling and preventing the spread of infectious diseases. Disease epidemiology, com-
putational epidemics, network science, and computer science are some of the major scien-
tific fields involved in this high impact social challenge. Notable research has been con-
ducted over the past 30 years, answering important questions on the processes driving epi-
demics, and proposing strategies for prediction and control [258, 259, 260, 261]. The heavy
socio-economical burden of epidemics has been demonstrated repeatedly during crises like
SARS[262], Ebola [263] or recent COVID-19 [264]. To this end, we need to be able to predict
long-term epidemic evolution, and the impact of governmental interventions, like isolation,
travel restrictions, and vaccination/immunization of the population [265, 51, 266, 267, 268].

Along this new research direction, fueled by the novel Coronavirus pandemic, we propose
two possible research directions. First, we need to understand the effectiveness of isolation
strategies, as adopted by many countries starting with March 2020. In particular, we aim
to model centralized and decentralized strategies of isolation, and compare them, based on
a novel epidemic model (SIRCAS), using large heterogeneous network topologies. Second,
we study heterogeneous population structures and mobility models (multi-scale, hierarchical)
which increase the realism of epidemic simulations.

7.1.1 Centralized and Decentralized Isolation Strategies and Their
Impact on Epidemic Dynamics

In the absence of an approved pharmaceutical treatment (or vaccine) and in-depth knowledge
of the spreading mechanism, the best strategies against COVID-19 consist of reducing the
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interactions between susceptible and infected individuals, e.g., through early detection and
social distancing [265]. Indeed, such non-pharmaceutical interventions (NPIs) turned out to
be very effective during previous pandemics [269, 270].

The potential effect of social distancing interventions on the COVID-19 has already been
studied in Singapore [271]. Indeed, Singapore was among the first regions to report imported
cases and has so far succeeded in preventing community spread [51]. However, the scale and
severity of the Singapore interventions are small in comparison with the measures imple-
mented in China in response to COVID-19. The core Chinese interventions include shutting
down schools and workplaces, closing roads and transit systems, canceling public gatherings,
and imposing a mandatory quarantine on uninfected people (even those without known expo-
sure to the virus) [272]. Although these actions seem to be working so far, imposing similar
restrictions in other countries represents an ongoing challenge. To convince people, govern-
ments, and public authorities around the world that such extreme limitations are necessary,
we need to back them up with scientific evidence. Indeed, in the absence of clear evidence,
some countries will hesitate to adopt the strong social distancing actions, and this may have
dire consequences. For instance, Sweden took only mild restrictions, with restaurants and
bars still being open, playgrounds and schools too, and the government relying on voluntary
action to stem the spread of COVID-19 [266].

Given the dynamics of COVID-19 spreading, we can assess the efficiency of the control
measures for this novel pathogen by using mathematical modeling coupled with computer
simulations of infectious spread under various scenarios. To this end, we propose [51] a
new agent-based outbreak model called SICARS (Susceptible - Incubating - Contagious -
Aware - Removed — Susceptible), which allows us to assess the impact of the centralized
and decentralized isolation strategies on COVID-19 spreading across complex heterogeneous
networks. Consequently, we run simulations of SICARS and test two fundamentally different
strategies, as well as their combined effects:

1. Centralized (C) strategy, such as the government-imposed lockdown or quarantine; this
means social distancing by the synchronized removal of a specified ratio of node social
ties from the entire social network.

2. Decentralized (D) strategy, such as aware-isolation (DA) and auto-isolation (DI); this
means an individual-level social distancing by asynchronously removing a specified ratio
of personal social ties. More precisely, in DA, the individuals who become aware of
their sickness cut the social links in their ego-network. In contrast, in DI, the healthy
neighbors of sick individuals isolate themselves from the infected. In both scenarios, the
social ties are removed repeatedly (e.g., daily) based on a probability parameter.

3. Hybrid (C+D) strategy, whereby both policies are combined, hence the removal of the
social ties involves both centralized and individual-level decision mechanisms. To this
end, a fraction of social links are synchronously removed from all nodes in the network,
then followed by repeated asynchronous distancing through self-aware isolation of sick
nodes (DA), as well as auto-isolation of healthy nodes from their sick neighbors (DI).

The SICARS pandemic simulation is based on the model depicted in Figure 7.1a and ex-
emplified in Figure 7.1b, with a small example network of five connected nodes, which become
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infected [265]. By splitting the infectious stage into two sub-states, contagious and aware,
the model becomes unique in its capability of implementing centralized and decentralized
isolation strategies. In Figure 7.1b, the outbreak seed is node A which needs a period of
δIncubation days to become contagious. After becoming contagious, node A spreads the disease
to its neighbors B and C; these, in turn, become incubating after several days of contact with
A. Node A is still not aware that it became a disease carrier, nor that it has infected his
neighbors. After a delay of δAware days, node A becomes aware of its infectious condition (or
state). At this point, nodes B and C know that A is a threat, but are unaware if they have
contacted the disease. In the same manner, nodes B and C become contagious, then aware.
Nodes D and E are further infected, and the process continues similarly. After δRemoval days
(measured individually for each infected node), every node changes to one of three states:
recovered (B, E), dead (C, D), or susceptible (A). The susceptible node A may start the same
process all over again, going through all the SICARS states.

Figure 7.1: (a) The states and parameters defining the SICARS model. (b) Example of an
outbreak process according to our SICARS model, when used over a hypothetical contact
network with five nodes (A–E), starting with infected node A.

Taken together, we aim to improve the state-of-the-art with the following contributions:

• In contrast with the COVID-19 epidemic modeling proposed in [273, 268, 265], where
isolation is modeled by reducing the size of the susceptible compartment, our network-
centric approach targets isolation strategies as (local and global) edge removal mecha-
nisms, hence an emergent and more realistic transmission dynamics.



88 CHAPTER 7. FUTURE RESEARCH DIRECTIONS

• As the differential equations of SEIR do not apply to COVID-19, we use distributed sim-
ulation on well-known complex topologies instead of the compartmental models based on
random uniform contact networks that are typically used to study epidemics spreading
[274, 275, 276, 277, 268].

• Instead of focusing on assessing a specific isolation strategy (e.g., Singapore), our study
aims at differentiating the efficiency of centralized (global, government-imposed), decen-
tralized (local, self-imposed), and hybrid isolation while using the SARS-CoV-2 specific
biological parameters.

• We focus on providing a more accurate quantification of the impact of different lev-
els of social distancing, and explore the realistic scenarios of delayed and progressive
application of isolation, in the context of the current pandemic.

7.1.2 Geo-Hierarchical Population Mobility Model for Spatial Spread-
ing of Resurgent Epidemics

We find recent studies that are predominantly augmenting mass-action models into tools
suitable for analyzing large scale epidemics [278, 279, 280, 265, 268, 281]. However, in most
cases, we notice that their underlying epidemic models (e.g., SI, SIS, SIR, SEIR, SIRS) adopt
homogeneous mixing of the population (i.e., all individuals are fully connected inside single
scale compartments or stochastic blocks) [282, 283, 284, 280, 281]. This over-simplification
of social organization lacks the complexity of global scale population organization, which
is dictated by geographical, historical, demographic and economic factors. Consequently,
numerical simulation of such simplified models can lead to over- or under-estimations in
terms of epidemic size [266, 273, 281] or duration [280, 282, 268, 265].

Conversely, we find some important studies which developed more robust and realistic
models for epidemic dynamics and contagion, for heterogeneous population organization and
human mobility. Without a doubt, the structure of networks is found to be paramount in
explaining infectious spreading patterns [261] seen in empirical data for transmissible diseases;
also, community structure is a known key factor influencing the speed of epidemics [285]. This
research direction aims to prove the importance of incorporating accurate population modeling
and human mobility, which represent ongoing challenges due to their theoretical complexity as
well as limitation in available data for validation. Thus, we propose the novel geo-hierarchical
population mobility model (GHPM) which lies at the crossroads of population organization
and mobility, both of which are key aspects to consider when targeting realistic large-scale
resurgent epidemic outbreaks [52]. We propose the novel idea of distributing a population
into spatially organized communities (i.e., human settlements), which are then organized into
a hierarchy of administrative divisions (i.e., district, neighborhood, street, block, household).
Thus, the population is partitioned with very high granularity all the way down to household-
/family-level, containing just a few individuals, but where the transmission risks are highest
[286]. Embedded into our population model, we further propose a novel mobility algorithm
based on the geographical distance between settlements and their size, which determines
the complexity of the underlying hierarchical structure. Altogether, to test the complex
interplay between the population mobility model of GHPM and the dynamics of a custom
SIRV epidemic model with relapse, we use detailed computer simulations.
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In contrast to other computational models like GLEaMviz [287], RAPIDD Ebola fore-
casting [288], or [7], our GHPM model is, to the best of our knowledge, the first of its kind
to combine a geo-spatial and a hierarchical model to structure population. Using available
empirical data on influenza and COVID-19, we show how GHPM reproduces similar epidemic
dynamics (e.g., size, waves). The main focus of this study is to determine how the population
organization, travel distance and travel frequency affect the spread of diseases on large scales
(country-level), and how restriction and immunization strategies can be applied efficiently to
control epidemics.

Figure 7.2 represents both a conceptual example of computing the GHPM mobility prob-
abilities based on position and populations size, as well as a real-world mapping over the
Kingdom of Spain. In Figure 7.2b, the modeled population is 33M inhabitants (70% of real
size) placed in 735 settlements, all within a bounding area of 1000km × 850km (the Canary
Islands have been omitted from the figure, but are included in the data model).

Figure 7.2: (a) Conceptual representation of the inter-settlement mobility on an example
GHPM with 4 settlements s1−s4. Any individual from s1 (green) has an associated probability
to remain within the same settlement or move to s2 − s4. The parameters affecting the
probabilities are: target settlement population Ωj, and distance dij to settlement. (b) Example
of GHPM mapping of 735 settlements over Spain.

In this research track, we address the issue of modeling mobile heterogeneous population
systems, where the community structure is defined by actual real-world geo-spatial data (i.e.,
position and size of human settlements). We summarize the research plan as follows:

• We introduce the geo-spatial hierarchical population model (GHPM) to investigate how
the duration δ, size ξ and dynamics of an epidemic are quantified, comparing to a similar
homogeneous mixing model and to real COVID-19 data [289]. Our research focus on
the community structure and individual mobility [52], as well as introducing the original
SIRV transmission model into computer simulations.

• We define the population system (e.g., a country) as a stochastic block model (SBM)
where blocks (or communities) are modeled by real-world settlements from a chosen
country. Their size and spatial positioning (latitude, longitude) are set by real-world
data.
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• We further define original individual mobility patterns based on the population (size)
and distance between any pair of communities. Intuitively, individuals are more likely
to move to a larger and/or closer settlement, than to a smaller and/or distant one [290].

• We show that the number of settlements in the population system, as well as altering the
settlements’ density (leading to more compact, or more sparse geo-spatial organization
of communities) can directly impact the outbreak duration and size.

7.2 Network Analysis in Educational Science

The current learning environment is characterized by openness and dynamism, so that a
significant proportion of students have a declared preference for flexible learning [291, 292],
through which they can fulfill their academic pursuits, as well as job responsibilities and
family chores [48]. The amount of data generated by virtual learning systems sometimes
overwhelms educators, who are unable to process the information without the support of
special business intelligence tools and techniques specific for large data and Big Data analysis
and visualization [293].

The performance of students enrolled in both offline and online education is important for
many institutions, because their strategic programs can be planned to improve this perfor-
mance [48]. There are studies in this sense, taking into consideration the average grades upon
graduation, or track completion [294, 295], based specifically on data mining techniques in
order to predict the drop out rate of students. In particular, decision tree techniques [296, 48]
are applied to create surveys that predict the likelihood to drop out from college, then these
are turned over to management for direct or indirect intervention [295].

Following our study on decision tree learning used for the classification of student archetypes
in MOOCs (massive open online courses) [48], we plan further follow-up studies based on our
results from the NOVAMOOC project. As such, as a novel analytical approach, we rely on
network science to go beyond the perspectives made possible by means of a classic statis-
tics [5, 9]. More specifically, the methodological novelty for this study consists of clustering
students based on their expressed reasons to participate or avoid online courses, by mod-
eling students in a complex network where edges between them are formed by overlapping
compatibility.

Our dataset is based on an online survey and consists of 69 questions from which we
extract relevant data, such as Demographics (Gender, age, university, faculty, specialization,
study year), Participation in past MOOCs (duration, language, finalization and certificate
attainment), Reasons for not participating in MOOCs, or Advantages and disadvantages of
participating in MOOCs, Interests in a future MOOC. At the time the study was conducted,
we gathered N = 637 unique answers, out of which 472 students did not participate in a
MOOC in the last 3 years or at all, and 165 students who participated in MOOCs before.

After collecting the data, we can create a compatibility graph of students, similar to our
previous state-of-the-art methodology [57, 146, 58, 41]. What differs in the current approach
is that the bipartite graph we start from is not based on social collaboration or physical
resemblance between modeled nodes, but on common educational and individual aspects
of each student. The reason for creating such an innovative graph representation is that
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individual personality patterns are more relevant than physical or social personal features in
the context of academic participation.

We represent students as nodes S in a graph G = {S,E}, and add links E based on student
compatibility. Particularly in this study, compatibility is defined as the number of common
individual traits two students si and sj share in common. The more traits two nodes have in
common, the greater is the weight wij of the edge eij connecting them. We focus on analyzing
how common individual traits affect the emergence of clustering of students in the context
of MOOC participation and awareness, though other educational, physical or psychological
insights may be considered for future work.

Out of large number of questionnaire answers (69), we must select the criteria used as
input for building the graph. The input parameters are used for classification/clustering,
leaving all other answers as output /descriptive parameters. The dataset can be divided in
two major, non-overlapping sets: students which have participated in MOOCs, from which we
can analyze the advantages and disadvantages from their point of view; and students which
have not participated in MOOCs, from which we can analyze the reasons for not doing so.
As such, we use the following input/output parameters for classification for the two datasets:

1. G1 (165 students which have participated in MOOCs)

• Input has 7 parameters based on course elements such as participation, costs,
finalization, certification, knowledge, gender.

• Output consists of 10 advantages and 10 disadvantages of MOOCs, plus basic
information.

2. G2 (472 students which have not participated in MOOCs)

• Input has 10 parameters based on 9 reasons for not participating in MOOCs, and
gender.

• Output consists of 10 advantages and 10 disadvantages of MOOCs, plus basic
information.

By analyzing the layout of the 6 resulting communities in G1, we can support the claims
through the visual observation presented in Figure 7.3. Namely, homophily plays an impor-
tant role such that each node is placed in the vicinity of other nodes with the same seven
chosen traits. By overlapping the measurable output properties we can describe each of the
6 communities in G1 in a unique way. The same approach, can be applied for network G2.

Our future work focuses on placing a cornerstone for a framework of personalized MOOCs
in the future. While some students will always be more prepared than others to embrace online
education, we consider that the mass education of the future needs to be personalized [297,
256, 257]. Even though this concept sounds difficult to apply, we suggest a step wise refinement
through which we define increasingly reliable and specific profiles for online students. This
work sets such an example, though which one could classify newly joining students into a
specific profile, and thus personalize their way of being taught, graded, involved in social
activity and projects, given responsibility etc. We believe that our study will enhance the
understanding of how students relate to MOOCs, and thus open a new path of personalized
online education.
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Figure 7.3: Representation of G1 consisting of the 165 students which participated in MOOCs.
The large panel shows the six emerging communities of students (profiles), and the smaller
panels show nodes colored by different binary metrics regarding the online course. Green nodes
are students who positively answered questions, and red nodes represent negative answers

Another, well-known and persisting problem in modern education is academic dishonesty.
There are various forms of such dishonesty, like plagiarism, which is often debated in the
media, but cheating during examination perpetuates, and remains one of the oldest and
most impactful forms of altering one’s educational outcome and diminishing an institution’s
reputation. The applied prevention of this phenomenon is the subject of scientific attention,
but the existing methods are most of the time insufficient or poorly applied. By analyzing
the types of problems that occur during written exams, we have developed and implemented
an innovative solution to decrease the amount of unwanted collaboration among students, by
using their underlying friendship topology to the students’ disadvantage [50].

Consequently, we have introduced an original student placement strategy inspired by the
interdisciplinary field of social networks analysis, and compared it to no placement strategy
at all, and to the state-of-the-art random method [50]. Our method is based on acquiring
the social network of students participating in the exam, and using genetic algorithms to
rearrange them in seats, such that there is minimal overlapping between real-world friendships
and seated neighbors. The three methods have been applied independently on six different
pools of students over the period 2013–2016, resulting in an extensive case study on N = 586
students in the Romanian higher education system. In [50] we discuss the meaning of the
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results, as well as the applicability and limitations of our method. The analysis is presented
both through empirical measurement of interaction between students during exam, as well as
statistically, by introducing a metric for the placement effectiveness ε. Our proposed solution
offers average improvements of ×2.8 in terms of breaking up real-world friendships, and a
×3.3 reduction in terms of empirically measured student interaction. On the other hand, we
showcase that the easier to implement random placement brings about lower improvements of
×1.7 (statistical) and ×2.3 (empirically measured), over no seating strategy. Considering that
many educational systems are unaware how vital the customization of student rearrangement
is, we consider this case study to beacon an important institutional problem all around the
world.

Given the increased availability of digital educational data, we foresee an improvement of
our placement strategy [50] using datasets corroborated with individual information from a
platform such as our Universities Campus Virtual. Hence, a bipartite graph between students
and their online achievements (weekly attendance, assignments, activity, quiz grades) can be
defined. Arching over our numerical analysis, the meaning of our case study analysis is that
there is room for improvement in present-day cheating prevention systems. Apart from the
reduced unwanted communication, we are able to change the subjectively perceived attitude of
students, who are surprised, to some extent, by the unusual examination procedures. This in
turn makes them focus more on the exam at hand, knowing that they are actively discouraged
to communicate and cheat.

7.3 Network Medicine, Machine Learning and Engi-

neering for OSA Diagnosis

The outline of the Horizon 2020 project, entitled ”Sleep Revolution”, is that obstructive sleep
apnea (OSA) is associated with a high economic burden, and is currently rising. Almost 1
billion people worldwide are estimated to have OSA. The current diagnostic metric, how-
ever, relates poorly to these symptoms and comorbidities. It merely measures the frequency
of breathing cessations without assessing OSA severity in any other physiologically relevant
way. Furthermore, the clinical methods for analyzing PSG signals are outdated, expensive
and laborious. Due to this, the majority of OSA patients remain without diagnosis or have
an inaccurate diagnosis leading to sub-optimal treatment. Thus, it is evident that more per-
sonalized diagnostics are required including predictive and preventive health care and patient
participation. The Sleep Revolution project aims to develop machine learning techniques to
better estimate OSA severity and treatment needs to improve health outcomes and quality
of life. These techniques are implemented to high-end wearables developed in this project to
alleviate the costs and increase the availability of PSGs. Finally, we aim to design a digital
platform that functions as a bridge between researchers, patients and healthcare professionals.

These goals are to be achieved through extensive collaboration between sleep specialists,
computer scientists and industry partners. The collaboration network consists of over 30 sleep
centers working together to provide the needed retrospective data (over 10000 sleep studies).
The multi-center prospective trials involve experts and end-users to assess and validate the
new sleep revolution diagnostic algorithms, wearables and platforms. With the commitment
of the European Sleep Research Society and Assembly of National Sleep Societies (over 8000
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Figure 7.4: Overview of datasets and study design. The network based analysis stage uses
cohort D1 to model a CPAP patient network. By corroborating the community structure
of this network with the CPAP treatment response of each patient (i.e., measured as AHI
improvement), we extract NC as the most significant indicator of AHI improvement. We
further use this information in the statistical analysis stage, which uses a larger D2 + D3

supporting cohort to find an optimal NC threshold value for OSA-diagnosed patients. Cohort
D3 is the non-OSA control group. The study results in the definition of a rule of thumb
guideline for CPAP treatment prioritization of patients with OSA (blue).

members), we have the unique possibility to create new standardized guidelines for sleep
medicine in the EU.

This project provides our ACSA team with access to the ESADA database, i.e., the largest
and most complete database of apnea patients [214]. ESADA allows for the development of
complex retrospective studies on apnea patients, like kidney diseases [197] or cPAP treatment
response. Our recent study [44] aimed at analyzing neck circumference as an indicator of
CPAP treatment response in OSA can benefit from access to the ESADA database.

In [44] we explore the relationship between OSA, patients’ anthropometric measures, and
the CPAP treatment response. We use a cohort including 145 subjects with a one-night CPAP
therapy, and create a CPAP-response network of patients to find neck circumference NC as
the most significant qualitative indicator for apnea-hypopnea index (AHI) improvement. We
confirm the correlation between NC and AHI (ρ = 0.35, p < 0.001) and show that 71%
of diagnosed male subjects have a bigger NC than subjects with no OSA (area under the
curve is 0.71, with 95% CI 0.63–0.79, p < 0.001); the optimal NC cutoff is 41 cm, with a
sensitivity of 0.8099, a specificity of 0.5185. Our NC = 41 cm threshold classifies patients’
CPAP responses—measured as the difference in AHI prior and after the one-night use of
CPAP—with a sensitivity of 0.913 and a specificity of 0.859.
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Figure 7.4 offers a flowchart representation comprising the usage of all three patient
datasets D1 −D3, and the design of our retrospective study.

The CPAP patient network (n = 145 patients) is depicted in the center of Fig 7.5, where
we show the network with its distinctly colored communities (i.e., purple, olive, orange, cyan),
and around them, we present how each of the six measured criteria is associated with each
cluster. Excepting the age group, all the other five measurements consistently associate with
specific communities. We recorded AHI for all the patients in D1 before and after the CPAP
treatment to uncover a possible correlation between the four obtained communities and the
effect of the CPAP treatment. We measured AHI before and after the one-night treatment.
The sizes of each community are: C1 = 55 patients, C2 = 32 patients, C3 = 29 patients and
C4 = 29 patients.

Figure 7.5: The network of 145 patients with overnight CPAP treatment shows the mapping
of the six measurements (age, gender, blood pressure, BMI, Epworth scale, and neck circum-
ference) that are relevant for the four patient communities detected for OSA (central panel).
The four communities (purple, olive, orange, cyan) emerge from the modeled risk compatibil-
ity between patients and are used to study the association between patient risk factors and
CPAP treatment response.

Our research group reports previous studies using network science to identify subgroups
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(phenotypes) of patients with OSA [42, 41, 298]. However, in this retrospective study, we
focus on using network analysis explicitly to analyze patients’ response to CPAP treatment.
To this end, D1 (n = 145 patients) is the core dataset of our analysis, as it is the cohort of
patients with one night CPAP treatment.

Our study emphasized the classification ability of neck circumference for CPAP responsive-
ness, in a population cohort of people referred to sleep labs for OSA evaluation and treatment
[44]. The network analysis discovers NC as the best marker correlating with CPAP treat-
ment, and our statistical analysis confirms a certain NC threshold for reliable treatment and
prioritization. Moreover, we find that male patients with NC ≥ 41 cm should have a higher
priority for the overnight sleep study and treatment. Measures of OSA severity, such as AHI
alone, appear more weakly associated with CPAP adherence [299].

In line with this study, a future development for our statistical analysis could be to de-
scribe the optimal OSA risk thresholds that optimize trade-offs between true positives, true
negatives, false positives and false negatives, through the use of a total cost function [300].
Also, we could define a complementary patient network leading to new insights, based on an
alternative inference method which consists in the identification of a significant maximum
mutual information (MI) network [301]; in this case, two patients are connected with each
other if their shared MI value is maximal with respect to all other patients for at least for
one of the two patients. Finally, replication of thus study on the much larger ESADA cohort
remains open for prospective PhD students.



Chapter 8

Teaching Perspectives

In this section we discuss current and future courses and practical applications (laboratories,
projects) being taught by the thesis candidate, and available for the career development of
future doctoral students. We also mention several related courses from other ACSA members
that may fall in line with the research topic of Master’s and PhD students enrolled in our de-
partment. Finally, we detail an original gamification platform used for the in-class motivation
of students.

8.1 Courses and Practical Applications

The thesis candidate currently teaches several distinct courses on varied topics in the field
of Computers and Information Technology, such as Computer Engineering (3rd year, CTI
Romanian section), Mobile Systems and Applications (4th year, CTI English section), and
Big Data Visualization (1st year, Master of Machine Learning and Artificial Intelligence).

The Computer Engineering Course focuses on the idea of large scale communication. As
such, we outline current trends in CPU and GPU development, which, limited by Moore’s
Law, have turned towards increasing the number cores and optimizing inter-process commu-
nication. To this end, we mention Networks-on-Chip and Systems-on-Chip as a motivation
to study large scale, heterogeneous complex systems. The course is a mixture of engineer-
ing and network science aimed at offering Bachelor students an objective overview of the
inter-dependency between computation, data and communication. Paradigms such as com-
plex networks, topologies, computational social networks, Big Data, processes on networks
are introduced. The laboratory of Computer Engineering is very bidding for PhD students
who would like to start their teaching career in parallel to their research path. Over the past
years, we had a constant number of four student sub-groups which could be managed wholly
by one student.

Mobile Systems and Applications introduces students to the world of mobile operating
systems and programming on mobile platforms. Specifically, we detail the Android OS ar-
chitecture, and programming paradigms, such as activities, intents, activity lifecycle, task
stack, services, broadcast receivers, and content providers. The laboratory has three student
sub-groups and is dedicated towards developing tasks and projects of medium complexity.
For proficient and motivated students, we are organizing the annual mobile applications de-
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velopment student competition in UPT 1. After nine organized editions (2013–2021), we are
confident that students in the 4th years are capable of producing impressive results, worth
presenting to local industry specialists (forming the panel of juries), to local newspapers
(Renasterea Banateana), local Radio, and television (TV Politehnica).

Furthermore, the candidate has published two books in the area of mobile development.
The first is entitled ”Introducere in Programarea Android”, authored together with Prof. Mar-
ius Marcu, and presents an overview of Android OS programming using Eclipse. The second
book is entitled ”Hands-On Android Application Development with Google Firebase”, and
combines Android OS specific programming with the Google Firebase platform for creating
robust applications with a backend-as-a-service. This book is a welcome source of knowledge
and practical guiding on specific concepts, application design aspects and programming exam-
ples for mobile platforms. It is a necessary and very useful material which addresses mainly
the students in Computer and Information Technology area, but also all the professionals
and enthusiasts interested in mobile application development and programming. Through its
detailed content, with a lot of information and practical code examples, the book is addressed
to all those who are passionate about programming mobile applications in Android and the
Google Firebase platform, which have steadily become dominant players in the market of
mobile apps. For future engineers, the book is important in that it offers them new skills,
baked up by code examples, for integrating a Backend as a Service into their solutions.

The Big Data Visualization (BDV) course was newly introduced at our new Master on
Machine Learning and Artificial Intelligence. This course is well suited for prospective doctoral
students as well, since it introduces several key aspects of network science, as well as creating
meaningful statistics, all supported by powerful visualizations. The BDV course was entered
in the prestigious ANIS Scholarships Program for 2020, and has won a scholarship for the
best new course on Big Data 2.

We consider BDV a timely course in the current data-driven and computationally-driven
engineering context. As such, data visualization is a useful tool for analyzing both small-scale
and large-scale data. One of the main skills of a data scientist (current or future) is the
ability to create a story from available data. This process often involves viewing data and
discoveries in an affordable and stimulating way. The current course starts from a series of
new specializations that have appeared at major universities / companies in the world. Exam-
ples include Data Science: Visualization at Harvard, Data Visualization at the University of
Illinois at Urbana-Champaign, Fundamentals of Visualization with Tableau at the University
of California, Introduction to Data Science in Python at the University of Michigan, Applied
Plotting, Charting & Data Representation in Python at the University of Michigan, Data
Visualization with Python held by IBM. The BDV course at the Polytechnic University of
Timis,oara is addressed to students who want to discover what data visualization means, how
it can be used to better understand data, and what are the steps for applying techniques
on large data sets. Using state-of-the-art technologies such as Gephi, Cytospace, R studio,
Excel, Plotly, Matplotlib, Folium, Jupyter Notebook, the basic concepts of data visualization
will be examined and different tools will be applied to large data, with a strong emphasis
on examples. from Network Science and Network Medicine. A graduate of this course will
be able to prepare, import, process, view and analyze data, as well as explain the depen-

1SCMUPT 2021 - https://sites.google.com/site/alexandrutopirceanu/projects/scmupt2021
2Success story of the BDV course: https://anis.ro/povesti_succes/alexandru-topirceanu/

https://sites.google.com/site/alexandrutopirceanu/projects/scmupt2021
https://anis.ro/povesti_succes/alexandru-topirceanu/
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dence between data analysis and data visualization. This course provides the opportunity to
learn skills and get involved in methods for discovering patterns on Big Data, and modeling
them in the form of complex network models. The competencies acquired in the BDV course
can be listed as follows: (i) assimilation of the necessary principles for translating Big Data
into meaningful visualizations; (ii) practical experience in using several state-of-the-art tools
for data modeling; (iii) ability to prepare, import, process and analyze large data sets; (iv)
pattern discovery skills and modeling based on visual analysis.

While the BDV course will get feedback from its first generations of students, it is planned
to integrate several elements such as Open Educational Resources (OER) and MOOC courses,
such as some offered by Coursera or edX. In addition, if the Big Data specialization from the
MLAI master becomes very appreciated, it can be considered the creation of a MOOC type
course together with the other two holders of the Big Data series courses. Also, over time,
the candidate can integrate his innovative learning motivation platform using gamification,
suggestively titled - Gamified. The “experienced (XP) approach gained by students, instead
of grades” has yielded notable results in undergraduate subjects [49]. At the same time,
the candidate can apply, from his scientific activity, an original methodology of classification
(archetyping) [48] of the students enrolled in the course in order to offer them a personalized
way of learning.

Other courses in the ACSA group from which doctoral students can benefit while under-
going a PhD in network science, are: Big Data in Health and Bioinformatics, Big Data in
Cloud and IoT.

Two additional courses are planned in the upcoming 2–3 years, namely Complex Networks
and Applications and Design and Analysis (RCA) of Mobile Applications (PAAM), both
during the 4th year, at the CTI Romanian section. With RCA, Bachelor students will have
hands-on contact with the field of network science, thus leading to increased popularity of
our master’s program on MLAI and, possibly, an increased desire to follow a PhD program
within the ACSA group.

In conclusion, the development of the academic process through blended-learning creates
challenges for teachers, such as increasing the complexity of teaching and motivation, the
difficulty of selecting appropriate MOOCs for the discipline in question, and the evaluation
of student activity. In the long run, however, these efforts bring several benefits and satisfac-
tions, which can be demonstrated by increasing students’ interest in the discipline and their
appreciation of education.

8.2 Gamification for Student Motivation

A modern and successful tackle on education is represented by new teaching techniques which
imply online courses, collaborative assignments, dynamic grading systems, real-time feedback
and motivational inserts into the process of learning. E-learning together with massive open
online courses (MOOCs) have seen a recent rise in popularity and integrate many of the
aspects that enable distant students to take part in higher levels of education. While the
perspective of migrating towards a pure online environment is in line with the trend of the
younger generations, most professional and intellectual skills can only be effectively learned
through physical attendance and practical guided work.
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The past 5 years, alongside the current pandemic situation, have underlined the weak
point of most classic educational systems: the constant decreasing motivation it gives stu-
dents - individuals who have grown and are embedded in many virtual realities form where
they draw the needed intrinsic motivation and energy. To overcome this limitation, we intro-
duced an educational platform named Gamified, which simplifies the educational and grading
systems in modern schools and universities [49]. It relies on the fundamental aspects of the
theory of Gamification, namely bringing motivational elements from (video) games into non-
game contexts. It does this through the abandonment of grades (seen by us as negative
feedback, a demotivator), and integration of heroes, accumulated experience, levels, level-
ups, achievements, quests, guilds, and other representative elements taken from role-playing
games (positive feedback at different levels of motivation). Not only do these elements sound
familiar to a majority of today’s students, but they also trigger interest in the new approach
to learning. We validated this technique (over a period of 3 years) on different generations
of college students [49], compared the results with control groups, and obtained consistent
feedback - both in terms of grades and participation, as well as in student attitude towards
learning.

This project was started back in 2013 with the belief that gamification can foster the
appearance of a new avant-garde teaching system which could rise the intrinsic drive to learn,
so that students and educators may benefit from it. In [49] we provide a detailed snapshot
of the Gamified project, and the obtained results prove the impact of our proposal, which is
further backed up by feedback offered at the end of each semester by participants. Never-
theless, technology, in this context, is presented not as the indispensable drive of education,
but merely as facilitator for the necessary visual cues and automated computation; the edu-
cator remains in our view the true drive of meaningful education. He only has to enrich his
techniques with the use of custom motivators with whom young people emphasize, namely
game elements in an educational context, without sacrificing any of the academic context. A
comparison to the student control groups, which relied on classic grading schemes, shows that,
in the gamified groups, all metrics are in favor of the more modern approach. For instance,
we obtain an overall attendance boost from 50-72% to 77-93%, the percentage of students
with full attendance rises from 6-12% to > 50%, and the amount of high marks is increased
by a factor of roughly 4-8 times [49].

With the introduction of our original gamified platform, we hope to foster both research in
the areas of educational science, and data mining from student social networks [48], as well as
motivate other readers to adopt game elements in their educational practice. By adopting our
platform, we believe that the goal of educators will shift from making the young just realize
they have to learn, or accept they must learn, and transcend to making the young incapable
of quenching their thirst for knowledge, and so, making them teach others in their turn.



Chapter 9

General Conclusions

This thesis discusses the potential of Computer Science and Engineering interleaved with Net-
work Science to solve relevant open research questions of the 21st century. Network Science is
interdisciplinary by definition, as it stems from Computer Science and Engineering, Mathe-
matics and Physics, with vast applicability in Technological, Biological, Social, Political, and
Economic sciences altogether.

One of the most important aspect underlined by this thesis is that thethe methodologies
presented here, involving large amounts of data, modeled as complex systems, are supported
by Computer Engineering & Information Technology. To this end, we presented approaches
where computer algorithms, genetic algorithms, simulation tools and databases are developed
for the processing and understanding of social network, medical, epidemiological, pharmaco-
logical, political, and educational data. Advancements in Communication technologies sup-
port today’s large online social networks, and further motivate research in social physics and
computational epidemics with global impact. Computer-based technologies, such as Machine
Learning, Big Data Analytics, and Complex Network Analysis are used in recent developments
of personalized decision making systems, e.g., in education and medicine.

This present thesis shows how Network Science improves our understanding of: (i) network
growth using the novel concept of Betweenness Preferential Attachment, (ii) the antifragile
response of large network-based complex systems under structural attacks, (iii) benchmarking
centrality measures in a competitive context, (iv) micro- an macro-scale opinion dynamics
and improvement of opinion distribution forecasting, (v) diagnosis of obstructive sleep apnea,
(vi) drug-drug interactions and repurposing, (vii) dynamics of epidemics using heterogeneous
population and mobility models, and (viii) student archetyping in online education. Overall,
the thesis is divided in two parts: contributions and career development. The first part
addresses the most important research challenges tackled over the 2011-2021 period. These
include contributions in social networks analysis, computational network analysis and network
medicine. The second part enumerates the career evolution and future research plans, the
capability of attracting and leading new research projects, and underlines the infrastructure,
financial, research and professional opportunities of prospective PhD students.

Given our experience in coordinating PhD students over a broad range of scientific topics,
we consider our ACSA (Advanced Computing Systems and Architectures) research group as
an attractive opportunity for PhD programs. With the newest inclusion of Network Science in
our research portfolio (since 2011), we are able to offer a completely developed PhD program
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focusing on Network Science in the field of Computers and Information Technology.
The current computing infrastructure, as published on the ERRIS platform, supports

research on modeling and simulations, network science, big data, graph algorithms, and data
mining, all of which are directly contributing research fields to our group. Furthermore, the
infrastructures offered by the ACSA laboratory, the Department’s Vision NextCloud platform,
the University Virtual Campus, and the future available CloudPUTIng high performance
computing platform will offer PhD students more than enough support for a diverse teaching
and research career.

Our scientific and academic results are summarized by the management of 2 national re-
search projects (financed by UEFISCDI), membership in an additional 2 international projects
(financed by Linde and Horizon 2020), and 5 national projects (financed by UEFISCDI and
ARUT), publication of 2 books, over 50 Web of Science indexed papers, out of which 16
journals (12 indexed in Q1/Q2), a cumulative impact factor over 45, a WoS h-index of 9 and
171 citations (330 citation in Google Scholar), review in diverse multidisciplinary and IEEE
journals, organization of the 9 editions (2013–2021) of the SCMUPT student competition for
mobile development, coordination as member in one PhD committee, and member of multiple
PhD report committees, and coordination of over 90 Bachelor and Masters theses.

In conclusion, this thesis serves as a strong proof for the high impact research that can
be achieved by employing Computer Science and Engineering in cross-disciplinary fields. As
such, we intend to further narrow the gap between Computers and Network Science by further
tackling challenging research topics from diverse fields of science, by participating at major
conference venues in our field, by establishing long-lasting international collaboration, by
creating project partnerships, by initiating new specialized undergraduate courses in our
department, and by integrating new doctoral students in our ACSA research group.
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M. Udrescu, “Uncovering new drug properties in target-based drug–drug similarity net-
works,” Pharmaceutics, vol. 12, no. 9, p. 879, 2020.

[48] A. Top̂ırceanu and G. Grosseck, “Decision tree learning used for the classification of
student archetypes in online courses,” Procedia Computer Science, vol. 112, pp. 51–60,
2017.

[49] A. Top̂ırceanu, “Gamified learning: A role-playing approach to increase student in-class
motivation,” Procedia computer science, vol. 112, pp. 41–50, 2017.

[50] A. Top̂ırceanu, “Breaking up friendships in exams: A case study for minimizing student
cheating in higher education using social network analysis,” Computers & Education,
vol. 115, pp. 171–187, 2017.

[51] A. Topirceanu, M. Udrescu, and R. Marculescu, “Centralized and decentralized isola-
tion strategies and their impact on the covid-19 pandemic dynamics,” arXiv preprint
arXiv:2004.04222, 2020.

[52] A. Top̂ırceanu, “Analyzing the impact of geo-spatial organization of real-world com-
munities on epidemic spreading dynamics,” in International Conference on Complex
Networks and Their Applications, pp. 345–356, Springer, 2020.

[53] A. Top̂ırceanu and R.-E. Precup, “A novel methodology for improving election poll pre-
diction using time-aware polling,” in Proceedings of the 2019 IEEE/ACM international
conference on advances in social networks analysis and mining, pp. 282–285, 2019.

[54] A. Topirceanu, “Electoral forecasting using a novel temporal attenuation model: Pre-
dicting the us presidential elections,” arXiv preprint arXiv:2005.01799, 2020.

[55] A. Topirceanu, M. Udrescu, and M. Vladutiu, “Network fidelity: A metric to quantify
the similarity and realism of complex networks,” in Cloud and Green Computing (CGC),
2013 Third International Conference on, pp. 289–296, IEEE, 2013.



BIBLIOGRAPHY 109

[56] A. Topirceanu, A. Duma, and M. Udrescu, “Uncovering the fingerprint of online social
networks using a network motif based approach,” Computer Communications, vol. 73,
pp. 167–175, 2016.

[57] A. Topirceanu, G. Barina, and M. Udrescu, “Musenet: Collaboration in the music
artists industry,” in Network Intelligence Conference (ENIC), 2014 European, pp. 89–
94, IEEE, 2014.

[58] A. Topirceanu and M. Udrescu, “Fmnet: Physical trait patterns in the fashion world,”
in 2015 Second European Network Intelligence Conference, pp. 25–32, IEEE, 2015.

[59] M. Udrescu and A. Topirceanu, “Probabilistic modeling of tolerance-based social net-
work interaction,” in Network Intelligence Conference (ENIC), 2016 Third European,
pp. 48–54, IEEE, 2016.

[60] A. Top̂ırceanu and R.-E. Precup, “A framework for improving electoral forecasting based
on time-aware polling,” Social Network Analysis and Mining, vol. 10, no. 1, pp. 1–14,
2020.

[61] E. Estrada, The structure of complex networks: theory and applications. Oxford Uni-
versity Press, 2012.

[62] M. E. Newman, A.-L. E. Barabási, and D. J. Watts, The structure and dynamics of
networks. Princeton university press, 2006.

[63] M. Vidal, M. E. Cusick, and A.-L. Barabasi, “Interactome networks and human disease,”
Cell, vol. 144, no. 6, pp. 986–998, 2011.

[64] M. E. Newman, “The structure and function of complex networks,” SIAM review,
vol. 45, no. 2, pp. 167–256, 2003.

[65] M. E. Newman, “Modularity and community structure in networks,” Proceedings of the
National Academy of Sciences, vol. 103, no. 23, pp. 8577–8582, 2006.

[66] S. H. Strogatz, “Exploring complex networks,” Nature, vol. 410, no. 6825, pp. 268–276,
2001.

[67] M. E. Newman, “A measure of betweenness centrality based on random walks,” Social
networks, vol. 27, no. 1, pp. 39–54, 2005.

[68] M. E. Newman, “The mathematics of networks,” The new palgrave encyclopedia of
economics, vol. 2, no. 2008, pp. 1–12, 2008.

[69] A. Noack, “Modularity clustering is force-directed layout,” Physical Review E, vol. 79,
no. 2, p. 026102, 2009.

[70] M. E. Newman, “The structure of scientific collaboration networks,” Proceedings of the
national academy of sciences, vol. 98, no. 2, pp. 404–409, 2001.



110 BIBLIOGRAPHY

[71] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of com-
munities in large networks,” Journal of statistical mechanics: theory and experiment,
vol. 2008, no. 10, p. P10008, 2008.

[72] M. Girvan and M. E. Newman, “Community structure in social and biological net-
works,” Proceedings of the National Academy of Sciences, vol. 99, no. 12, pp. 7821–7826,
2002.

[73] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and D. Wagner,
“On modularity clustering,” IEEE transactions on knowledge and data engineering,
vol. 20, no. 2, pp. 172–188, 2007.

[74] M. Jacomy, T. Venturini, S. Heymann, and M. Bastian, “Forceatlas2, a continuous graph
layout algorithm for handy network visualization designed for the gephi software,” PloS
one, vol. 9, no. 6, p. e98679, 2014.

[75] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: an open source software for exploring
and manipulating networks.,” in ICWSM, 2009.

[76] A. D’Andrea, F. Ferri, and P. Grifoni, “An overview of methods for virtual social
networks analysis,” Computational social network analysis, pp. 3–25, 2010.

[77] S. Wasserman, Social network analysis: Methods and applications, vol. 8. Cambridge
university press, 1994.

[78] A. Top̂ırceanu and M. Udrescu, “Strength of nations: A case study on estimating
the influence of leading countries using social media analysis,” in European Network
Intelligence Conference, pp. 219–229, Springer, 2017.

[79] S. Boccaletti, G. Bianconi, R. Criado, C. I. Del Genio, J. Gómez-Gardeñes, M. Romance,
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[161] R. Nadeau, M. S. Lewis-Beck, and É. Bélanger, “Electoral forecasting in france: A
multi-equation solution,” International Journal of Forecasting, vol. 26, no. 1, pp. 11–
18, 2010.

[162] P. Whiteley, “Electoral forecasting from poll data: the british case,” British Journal of
Political Science, vol. 9, no. 2, pp. 219–236, 1979.

[163] G. Weimann, “The obsession to forecast: Pre-election polls in the israeli press,” Public
Opinion Quarterly, vol. 54, no. 3, pp. 396–408, 1990.

[164] J. Wallinga and P. Teunis, “Different epidemic curves for severe acute respiratory syn-
drome reveal similar impacts of control measures,” American Journal of epidemiology,
vol. 160, no. 6, pp. 509–516, 2004.

[165] S. Myers and J. Leskovec, “On the convexity of latent social network inference,” in
Advances in neural information processing systems, pp. 1741–1749, 2010.

[166] W. F. Christensen and L. W. Florence, “Predicting presidential and other multi-
stage election outcomes using state-level pre-election polls,” The American Statistician,
vol. 62, no. 1, pp. 1–10, 2008.

[167] C. P. Kiewiet de Jonge, G. Langer, and S. Sinozich, “Predicting state presidential elec-
tion results using national tracking polls and multilevel regression with poststratification
(mrp),” Public Opinion Quarterly, vol. 82, no. 3, pp. 419–446, 2018.

[168] W. Wang, D. Rothschild, S. Goel, and A. Gelman, “Forecasting elections with non-
representative polls,” International Journal of Forecasting, vol. 31, no. 3, pp. 980–991,
2015.

[169] P. Hummel and D. Rothschild, “Fundamental models for forecasting elections at the
state level,” Electoral Studies, vol. 35, pp. 123–139, 2014.

[170] J. Mellon and C. Prosser, “Twitter and facebook are not representative of the general
population: Political attitudes and demographics of british social media users,” Research
& Politics, vol. 4, no. 3, p. 2053168017720008, 2017.

[171] D. A. Graber and J. Dunaway, Mass media and American politics. Cq Press, 2017.

[172] M. Coppedge, J. Gerring, C. H. Knutsen, S. I. Lindberg, J. Teorell, D. Altman, M. Bern-
hard, M. S. Fish, A. Glynn, A. Hicken, et al., “V-dem codebook v9,” 2019.



BIBLIOGRAPHY 117

[173] S. Y. Chan and J. Loscalzo, “The emerging paradigm of network medicine in the study
of human disease,” Circulation research, vol. 111, no. 3, pp. 359–374, 2012.

[174] K.-I. Goh, M. E. Cusick, D. Valle, B. Childs, M. Vidal, and A.-L. Barabási, “The
human disease network,” Proceedings of the National Academy of Sciences, vol. 104,
no. 21, pp. 8685–8690, 2007.

[175] A. R. Sonawane, S. T. Weiss, K. Glass, and A. Sharma, “Network medicine in the age
of biomedical big data,” Frontiers in Genetics, vol. 10, p. 294, 2019.

[176] J. Menche, A. Sharma, M. Kitsak, S. D. Ghiassian, M. Vidal, J. Loscalzo, and A.-
L. Barabási, “Uncovering disease-disease relationships through the incomplete interac-
tome,” Science, vol. 347, no. 6224, 2015.

[177] A. Sharma, N. Gulbahce, S. J. Pevzner, J. Menche, C. Ladenvall, L. Folkersen, P. Eriks-
son, M. Orho-Melander, and A.-L. Barabási, “Network-based analysis of genome wide
association data provides novel candidate genes for lipid and lipoprotein traits,” Molec-
ular & Cellular Proteomics, vol. 12, no. 11, pp. 3398–3408, 2013.

[178] O. Rozenblatt-Rosen, R. C. Deo, M. Padi, G. Adelmant, M. A. Calderwood, T. Rol-
land, M. Grace, A. Dricot, M. Askenazi, M. Tavares, S. J. Pevzner, F. Abderazzaq,
D. Byrdsong, A. R. Carvunis, A. A. Chen, J. Cheng, M. Correll, M. Duarte, C. Fan,
M. C. Feltkamp, S. B. Ficarro, R. Franchi, B. K. Garg, N. Gulbahce, T. Hao, A. M.
Holthaus, R. James, A. Korkhin, L. Litovchick, J. C. Mar, T. R. Pak, S. Rabello,
R. Rubio, Y. Shen, S. Singh, J. M. Spangle, M. Tasan, S. Wanamaker, J. T. Webber,
J. Roecklein-Canfield, E. Johannsen, A. L. Barabási, R. Beroukhim, E. Kieff, M. E.
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and cardiovascular disease,” The Lancet Respiratory Medicine, vol. 1, no. 1, pp. 61–72,
2013.

[204] R. B. Berry, R. Budhiraja, D. J. Gottlieb, D. Gozal, C. Iber, V. K. Kapur, C. L.
Marcus, R. Mehra, S. Parthasarathy, S. F. Quan, et al., “Rules for scoring respiratory
events in sleep: update of the 2007 aasm manual for the scoring of sleep and associated
events: deliberations of the sleep apnea definitions task force of the american academy
of sleep medicine,” Journal of clinical sleep medicine: JCSM: official publication of the
American Academy of Sleep Medicine, vol. 8, no. 5, p. 597, 2012.



120 BIBLIOGRAPHY

[205] H. Marti-Soler, C. Hirotsu, P. Marques-Vidal, P. Vollenweider, G. Waeber, M. Preisig,
M. Tafti, S. B. Tufik, L. Bittencourt, S. Tufik, et al., “The nosas score for screening of
sleep-disordered breathing: a derivation and validation study,” The Lancet Respiratory
Medicine, vol. 4, no. 9, pp. 742–748, 2016.

[206] W. T. McNicholas, M. R. Bonsignore, P. Lévy, and S. Ryan, “Mild obstructive sleep
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