
 

IOSUD - Universitatea Politehnica Timişoara 

Şcoala Doctorală de Studii Inginereşti 

 

 

SCHEDULING METHODS FOR MIXED CRITICALITY  

REAL-TIME DISTRIBUTED SYSTEMS 

PhD Thesis - Abstract 

For obtaining the Scientific Title of PhD in Engineering from 

Politehnica University of Timișoara 

in the field of Computer and Information Technology 

author ing. Eugenia Ana CAPOTA 

thesis supervisor Prof.univ.dr.habil.ing. Mihai V. MICEA 

November 2021 

 

 

Contents: 

1. Introduction ......................................................................................................................... 1 

2. State-of-the-art: Mixed Criticality Systems ........................................................................ 3 

3. Distributed systems ............................................................................................................. 4 

4. Proposed mapping technique .............................................................................................. 6 

5. Simulation environment ...................................................................................................... 7 

6. Performance evaluation ...................................................................................................... 8 

7. FENP_MC: Fixed Execution Non-Preemptive Mixed Criticality ...................................... 9 

8. P_FENP_MC: Partitioned Fixed Execution Non-Preemptive Mixed Criticality ............. 11 

9. Performance evaluation .................................................................................................... 12 

10. Conclusions and future work......................................................................................... 13 

 

1. Introduction 

1.1 Main research domains 

 Real-time systems (RT) are present in our day-to-day life throughout numerous 

domains. These systems involve a real-time response due to the direct interaction with the 

environment but also efficient resource management. 

 A concept which presents high interest in classical real-time systems is to combine 

several critical functionalities onto the same platform. This has led to the development of a new 

class of systems: mixed criticality systems (MCSs). The MCS concept basically refers to “an 

embedded computing platform in which application functions of different criticality share 

computation and/or communication resources” [1]. 

 Many real-time critical applications have already been implemented using distributed 

architectures [2]. These architectures contain a collection of independent components, that run 

on multiple processing units and communicate with each other through a network [3]. 

 A vast domain which uses distributed architectures is represented by cyber physical 

systems (CPSs). These systems include „a logic function in their design such that either the 



 

state of the logic function could be altered by a change in the state of the real world, or the 

state of the real world could be modified by a change in the state of the logic function, or both” 

[4]. 

 Another domain that extends the applicability of distributed heterogenous systems is 

Internet of Things (IoT). In an era of telecommunication and interconnectivity, IoT is a 

promising new technologies which can connect the intelligent objects that surround us, creating 

a network, often distributed over large geographical regions [5]. 

 This thesis focuses on scheduling methods for mixed criticality systems. 

1.2 Thesis objectives 

The main goal of this thesis is to develop a standardized task set execution model for 

distributed real-time mixed criticality systems which can take into account the hardware 

features of the platform on which it runs, but also to introduce a perfectly periodical algorithm 

for mixed criticality systems with multiple processing units. 

 Thus, the research carried out can be summarized into four objectives, each divided into 

several stages: 

[O1]. An overview of the state-of-the-art mixed criticality systems, with emphasis on 

distributed platforms by: 

[T1.1]. Comparing different task execution models from the literature. 

[T1.2]. Classifying the main scheduling algorithms by the platform on which they 

run. 

[O2]. The implementation of a task execution model by: 

[T2.1]. Defining a task set execution model for distributed real-time mixed criticality 

systems. 

[T2.2]. Implementing the task model onto a simulation environment. 

[T2.3]. Testing the previously proposed task model, on the simulator, using 

scheduling algorithms. 

[O3].  The development of a scheduling mechanism by: 

[T3.1]. Implementing a scheduling algorithm for real-time mixed criticality systems. 

[T3.2]. Designing a schedulability test for the algorithm. 

[O4]. The testing and validation of the algorithm by: 

[T4.1]. Testing and comparing different versions of the algorithm developed 

previously with the help of a simulation environment. 

1.3 Thesis structure 

Chapter 1 contains an introduction to real-time MCSs, the main objectives and the thesis 

structure. 

 Chapter 2 presents the evolution of task execution models and a classification of the 

scheduling algorithms for MCSs from the literature. 

 Chapter 3 is divided into two sections: the first one discusses CPSs, and the second one 

IoT platforms. The previously classified algorithms are compared based on a set of common 

CPSs attributes. The challenges and advantages of integrating MCSs into CPSs are also 

highlighted. The next section addresses IoT by proposing a MC-IoT architecture for real-time 

distributed MCSs. 

 Chapter 4 defines a new task execution model for distributed MCSs which allows for 

an efficient administration of the platform resources. Next, a task mapping methodology is 

introduced which takes both temporal and hardware requirements into account. The 

methodology uses different techniques to determine the affinity score of a task for each 

processing element. 

 Chapter 5 describes the simulation environment adapted for heterogeneous distributed 



 

MCSs. 

 Chapter 6 evaluates the two affinity assignment strategies and the task mapping 

algorithm by implementing and testing them on the simulation environment. 

 Chapter 7 presents the proposed algorithm for MCSs with a single processing unit. The 

scheduling method is called FENP_MC (Fixed Execution Non-Preemptive Mixed Criticality) 

and is a real-time, table-driven, non-preemptive algorithm adapted for MCSs, based on the 

FENP (Fixed Execution Non-Preemptive) technique for classical real-time systems, which 

guarantees a perfectly periodical (jitterless) execution of tasks in a time-triggered environment. 

 Chapter 8 proposes a scheduling method by implementing a task partitioning heuristic 

for homogenous systems with multiple processing units, namely P_FENP_MC (Partitioned 

Fixed Execution Non-Preemptive Mixed Criticality). 

 Chapter 9 analyzes the performance of the proposed algorithm by comparing it with 

other scheduling methods, in a non-preemptive context, in terms of success ratio and jitter 

value. 

 Chapter 10 summarizes the main contributions of this thesis and presents some future 

perspectives. 

2. State-of-the-art: Mixed Criticality Systems 

 In MCSs, as in real-time systems, the basic level of an application is represented by the 

task. A system criticality mode switch will result in the dropping of low criticality tasks, while 

high criticality tasks will continue to execute according to their high criticality parameters. The 

first task execution model for MCSs was proposed by Vestal [6]: 

 

𝜏𝑖 = {𝑇𝑖, 𝐷𝑖 , 𝐿𝑖, {𝐶𝑖,𝐿𝑗
 | 𝑗 ∈ 1 … 𝑙}} (2-1) 

 

where: 

­ 𝑙 is the number of criticality levels; 

­ 𝑇𝑖 represents the (minimum) arrival interval between two consecutive jobs of the same 

task 𝑖; 
­ 𝐷𝑖 indicates the time by which any job execution needs to complete, relatively to its 

release time; 

­ 𝐿𝑖 is the criticality level; 

­ 𝐶𝑖,𝐿𝑗
 represents the worst-case execution time, WCET (vector of values – one per 

criticality level, for levels less than or equal to the criticality level 𝐿𝑖, expressing the 

worst-case execution time for each criticality level). 

 Numerous scheduling algorithms have been developed, based on the classical task 

model introduced by Vestal, for single and multiple processing units in MCSs. Regarding the 

algorithms running on a single processing unit or at the unit level in a system with multiple 

processing units, they can be classified according to the way the priority is assigned to the task 

instances (jobs) [7]: 

• Fixed Task-Priority (FTP) class – All the jobs generated by a given task are assigned 

the same priority. 

• Fixed Job-Priority (FJP) class – Different jobs of the same task may have different 

priorities. However, the priority of each job may not change between its arrival time 

and its completion time. 

• Dynamic Priority (DP) class – Priorities of jobs may change between their release 

times and their completion times. 



 

• Hybrid Priority (HP) class – The scheduling policies incorporate features of multiple 

scheduling algorithm classes. 

 For systems with multiple processing units, scheduling algorithms can be classified into 

four categories [3, 7-9]: 

• Class P: Partitioned schedulers – each task is assigned to a single processing unit. 

• Class G: Global schedulers – tasks can migrate from one processing unit to another. 

• Class C: Clustered/semi-partitioned schedulers – hybrid approach between the 

partitioned and global schedulers which refers to a group of processing units where 

each cluster is divided into sub-clusters. 

• Class D: Distributed schedulers – they use distributed middleware in order to 

interconnect partitions. A partition can have one or multiple processing units. 

3. Distributed systems 

3.1 Cyber physical systems 

 CPSs applicability extends to fields such as: automotive, avionics, medical devices, 

industrial platforms, etc. Even though CPSs include a wide range of systems, very different 

from an architectural and functional perspective, one can identify a set of common attributes 

[10]: 

➢ Heterogeneity – it refers to different hardware specifications, various application and 

power consumption requirements. 

➢ Power management – must be considered, especially for hardware components 

powered using batteries. 

➢ Dynamism and self-adaptability – due to the interaction with the physical 

environment, which is often dynamic and unpredictable, the system must be able to face 

changes in a real-time manner. 

➢ Robustness – since the environment in which CPSs operate is usually subject to several 

uncertainties in terms of run-time behavior, it is also desirable that critical applications 

are not affected by the failures or computation overload caused by any other application. 

➢ Distribution – refers to scheduling algorithms developed for systems with multiple 

processing units, which consider the location of components and the communication 

between them. 

➢ Scalability – when considering systems with multiple processing units, their scalability 

in terms of hardware components, application design, analysis, coding and testing is of 

relatively great concern. Therefore, scalability of the task models, scheduling 

mechanisms and of the scheduling analysis must also be provided. 

➢ Security and isolation – security is difficult to ensure in a platform with different 

criticality levels. In a complex system, containing different functionalities, critical 

components must be isolated from the non-critical ones in terms of temporal behavior 

and resource usage. 

 According to the previously mentioned attributes, a series of compliance levels are 

presented in this thesis (Table 1) which can be used to evaluate scheduling algorithms for mixed 

criticality systems. 

 

Table 1. Levels of compliance. 

Attribute Levels Level description 

Heterogeneity 
At task level Handles different task set types 

At device level Handles different architectures 

Power management - Does not consider power management 



 

Low Considers static power consumption 

Moderate Considers dynamic power consumption 

High Considers static and dynamic power consumption 

Dynamism and self-

adaptability 

Low Does not accept dynamic task loading 

Moderate Accepts limited dynamic task loading 

High Task sets can be loaded dynamically during run time 

Robustness 

Low Does not handle overload 

Moderate Handles overload only for high criticality levels 

High Handles overload for both low and high criticality levels 

Distribution Yes/No Algorithms for distributed systems/Other algorithms 

Scalability Yes/No 
Scalable with respect to the number of criticality levels/Not 

scalable 

Security and 

isolation 

Low Only temporal isolation between criticality levels 

Moderate Temporal and spatial isolation only for high criticality levels 

High Temporal and spatial isolation between different criticality levels 

3.2 Internet of Things 

 The IoT concept has been applied on a large scale in different domains, such as medical 

[11] or industrial systems [12, 13]. Therefore, different types of physical IoT architectures have 

been proposed and described in the literature. The Fog based architecture is currently the most 

suitable for complex distributed real-time applications. Fog based architectures are comprised 

of three levels [14]: Cloud (here data is stored in data centers and delivered as service to users 

over the Internet), Fog (where data is stored and processed locally, close to the end users, in 

order to eliminate network delays) and Edge (a network of heterogenous and distributed 

devices). 

 

 

Figure 1. Proposed Fog MC-IoT architecture. 

 

 Figure 1 considers one or more centralized heterogenous Fog networks connected to the 

Cloud. Each network contains a Fog node which stores and processes data from local Edge 

devices. The Edge nodes are able to communicate with each other and with the Fog node and 

can be any type of processing capable devices. 

 The methods used for scheduling tasks vary according to the architecture level. While 



 

there is no time-sensitive communication protocol between Cloud and Edge, the Fog level 

offers some functionalities which allow real-time scheduling of tasks. 

 The Edge nodes can run real-time applications divided into mixed criticality tasks, 

which results in a mixed criticality Edge network. Tasks will be scheduled on each processing 

element (PE). In this architecture a processing element is represented by a system with one 

processing unit. 

 Based on the proposed architecture, a task execution model is introduced and a 

mathematical formalization of the scheduling problem is done.  

 Adapting the concept of MCSs to IoT architectures gives birth to a new scheduling 

paradigm called MC-IoT, for which this thesis proposes the following definition: 

 

 Definition 1. Mixed Criticality-Internet of Things (MC-IoT) are systems running real-

time tasks of different criticalities at the Edge level of IoT architectures. 

 

 The scheduling problem at the Edge level can be divided in two sub problems: 

1) Task mapping (at the Fog level) – each task must be allocated/mapped on a 

processing element. 

2) Local task scheduling (at the Edge device level) – all the tasks mapped on a 

processing element must be schedulable. 

4. Proposed mapping technique 

 This thesis starts from the classical MCSs task model introduced by Vestal in [6] and 

proposes an extension consisting of a new parameter: the affinity score. 𝐴𝑖 is defined as a vector 

of values, one per processing element, representing the affinity of task 𝑖 for each processing 

element of the system. The affinity score is an integer between 0 and 𝑝, where 𝑝 is the number 

of processing elements (PE). A higher value means a higher affinity, while 0 means no affinity. 

 Therefore, the computation time will not only be expressed as a function of the 

criticality level (𝐿𝑖), but also as a function of the processing element on which the task executes 

(𝑃𝐸𝑞). The task model (2-1) becomes: 

 

𝜏𝑖 = {𝑇𝑖, 𝐷𝑖 , 𝐿𝑖 , {𝐶𝑖,𝐿𝑗 𝑃𝐸𝑞
 | 𝑗 ∈ 1 … 𝑙, 𝑞 ∈ 1 … 𝑝} , {𝐴𝑖,𝑃𝐸𝑞

 | 𝑞 ∈ 1 … 𝑝}} (4-1) 

 

where: 

­ 𝐶𝑖 is a 𝑝 × 𝑙 matrix (𝑝 represents the number of PEs and 𝑙, the number of criticality 

levels). 

 The affinity score can be set statically by the task creator, or computed using an 

algorithm based on the resources needed by the task and on the task computation time on each 

processing element. 

 Using the task model previously defined and the scheduling problem formalized in 

Section 3.2, this thesis proposes a methodology for mapping tasks on distributed mixed 

criticality systems. The methodology comprises of different methods for setting the newly 

introduced task parameter, namely the affinity score and for defining a suitable mapping 

function in order to respect both application and resource constraints. A dual-criticality system 

is considered (Lo – low criticality and Hi – high criticality), but the algorithm can be 

implemented on platforms with more than two criticality levels. 

4.2 Set affinity score based on computation time: 

 Step 1: Extract the task computation time for the highest criticality level on each PE 



 

(the second column in the generated computation time matrix 𝐶𝑖,𝐿𝑗𝑃𝐸𝑞
), by copying it into an 

array of structures 𝑋𝑖,𝐿2𝑃𝐸𝑞
. Each structure has a computation time value 𝑋𝑖,𝐿2𝑃𝐸𝑞

 and a PE index 

(𝑞), where 𝑖 represent the task number and it is fixed and 𝐿2 represents the highest criticality 

level. Index 𝑞 varies from 1 to 𝑝. 

 Step 2: Extract the matrix line index of the maximum value for 𝑋𝑖,𝐿2𝑃𝐸𝑞
 from the array, 

where 𝑞 varies from 1 to 𝑝. 

 Step 3: In the affinity array, set the affinity score 𝐴𝑖,𝑃𝐸𝑞  to 1 for the PE corresponding 

to the highest 𝑋𝑖,𝐿2𝑃𝐸𝑞
 value, and then 2 for the PE corresponding to the highest 𝑋𝑖,𝐿2𝑃𝐸𝑞

 from 

the array after setting the element with the highest value from the first iteration 𝑋𝑖,𝐿2𝑃𝐸𝑖𝑛𝑑𝑒𝑥
 to 

0, 3 for the remaining highest value and so on, while 𝑞 ≤ 𝑝. 

4.3 Set affinity score based on criticality level: 

 If the number of processing elements exceeds the number of criticality levels: 

 Step 1: Build an array of structures 𝑃𝐸𝑞,𝐿𝑗
. Each structure has a criticality level 𝐿𝑗, which 

represents the expected criticality level of the tasks to be partitioned on 𝑃𝐸𝑞 and a PE index (𝑞). 

Index 𝑞 varies from 1 to 𝑝, while 𝐿𝑗 is given by computing the following 𝐿𝑗 = 𝑃𝐸𝑞 𝑚𝑜𝑑 𝑙, 

where 𝑙 is the number of criticality levels and 𝑚𝑜𝑑 represents the modulo operation. If 𝐿𝑗  is 0, 

then the algorithm considers 𝐿𝑗 = 𝑙. 

 Step 2: Assign each task 𝜏𝑖 according to the criticality level 𝐿𝑖. There will be two 

subsets: PEs with expected criticality 𝑃𝐸𝑞,𝐿𝑗
 equal to 𝐿𝑖 and PEs with expected criticality 𝑃𝐸𝑞,𝐿𝑗

 

not equal to 𝐿𝑖. The affinity score 𝐴𝑖,𝑃𝐸𝑞  will have the highest values for the first subset of PEs. 

For each subset of PEs, the affinity score is set according to the computation time. 

 If the number of criticality levels exceeds the number of processing elements: 

 Step 1: For each task 𝜏𝑖, get the PE on which it is expected to run by computing the 

following 𝑃𝐸𝑞 = 𝐿𝑖 𝑚𝑜𝑑 𝑝, where 𝑝 is the number of PEs and 𝑚𝑜𝑑 represents the modulo 

operation. If 𝑃𝐸𝑞 is 0, then the algorithm considers 𝑃𝐸𝑞 = 𝑝. Next, set the affinity score 𝐴𝑖,𝑃𝐸𝑞
 

for 𝑃𝐸𝑞 to 𝑝. 

 Step 2: For each task 𝜏𝑖, set the remaining affinity scores 𝐴𝑖,𝑃𝐸𝑞  according to the 

computation time, where 𝑞 ranges from 1 to 𝑝 − 1. 

4.4 Task mapping 

 This thesis introduces a new mapping algorithm, namely Best Affinity Fit (BAF), which 

partitions tasks to processing elements according to the affinity score. 

 For each task 𝜏𝑖: 

 Step 1: Firstly, it is assumed that task 𝑖 can be assigned to a PE, therefore a variable 

called 𝑎𝑠𝑠𝑖𝑔𝑛 is set to 1. Next, the PE with the highest affinity score value for task 𝑖 is 

identified, which has a processor utilization less than or equal to 1 for all criticality modes of 

the system. 

 Step 2: If a certain 𝑃𝐸𝑖𝑛𝑑𝑒𝑥 does not have enough space for task 𝑖, set the affinity score 

𝐴𝑖,𝑃𝐸𝑖𝑛𝑑𝑒𝑥
 to 0. If there is no PE that can host task 𝑖, set 𝑎𝑠𝑠𝑖𝑔𝑛 to 0. 

 Step 3: If a 𝑃𝐸𝑖𝑛𝑑𝑒𝑥 is found for task 𝑖, then add the task to subset 𝛹𝑖𝑛𝑑𝑒𝑥 and update 

the PE utilization. 

5. Simulation environment 

 The mapping algorithm Best Affinity Fit (BAF) was initially implemented in MATLAB 

and tested by comparing it with two methods: Best Fit Decreasing Utilization (BFDU) and Best 



 

Fit Decreasing Criticality (BFDC). 

 Additionally, the task model and mapping algorithm was successfully integrated into a 

simulation environment [15] developed in C++ for homogeneous mixed criticality systems. 

Therefore, the simulation environment can also be used for heterogeneous distributed mixed 

criticality systems (Figure 2). All the task sets were generated randomly in MATLAB using the 

task set generation algorithm introduced in [16], which is a slight modification of the workload 

generation algorithm presented by Guan [17]. The graphical interface for viewing task 

scheduling was also developed in MATLAB. 

 

 

Figure 2. Simulation environment for heterogeneous distributed mixed criticality systems. 

6. Performance evaluation 

 A series of simulation experiments were conducted to evaluate the effectiveness of the 

new mapping heuristic, Best Affinity Fit (BAF). It has been compared against two other 

relevant mapping techniques, Best Fit Decreasing Utilization (BFDU) and Best Fit Decreasing 

Criticality (BFDC), which are some of the most frequently used algorithms in literature [18-

20]. BAF dispatches tasks to processors according to the affinity value, while for BFDU and 

BFDC tasks are first ordered by decreasing utilization, respectively, by decreasing criticality, 

and then assigned to each processor; the processors are also ordered by their decreasing 

utilization. Additionally, two affinity assignment strategies were evaluated: one allocates the 

values according to the WCET, while the other according to the criticality level. A system with 

two criticality levels was considered {𝐿𝑜, 𝐻𝑖}. Each data-point was determined by randomly 

generating 1000 task sets. 

 BAF vs. BFDU: Affinity values were assigned according to the WCET in Hi mode for 

Hi-criticality tasks and the WCET in Lo mode for Lo-criticality tasks.  

 BAF vs. BFDC: In this case, affinity values were assigned according to the criticality 

level of each task (Figure 3). 

 

 

Figure 3. Average total processor utilization by varying the utilization bound. 

𝑼𝑳 = 𝟎. 𝟎𝟓, 𝑼𝑼 = 𝟎. 𝟕𝟓, 𝒁𝑳 = 𝟏, 𝒁𝑼 = 𝟖. 

0

0.5

1

1.5

2

2.5

3

3.5

1.6 2 2.4 2.8 3.2 3.6 4A
ve

ra
ge

 t
o

ta
l u

ti
liz

at
io

n

Utilization bound
4-processor system, PHi = 0.5 

Average total utilization

BFDC

BAF



 

 For both sets of experiments, Best Affinity Fit performed better than BFDU and BFDC 

with respect to the average total utilization value. 

 Table 2 depicts the average affinity deviation value for the task sets generated in Figure 

3. 

 

Table 2. Average affinity deviation values. 

Utilization bound 
Average affinity 

deviation for BAF 

Average affinity 

deviation for BFDC 

1.6 0.039 9.727 

2 0.144 12.518 

2.4 0.473 14.484 

2.8 1.011 16.613 

3.2 1.926 19.064 

3.6 2.992 22.261 

4 4.130 25.698 

7. FENP_MC: Fixed Execution Non-Preemptive Mixed Criticality 

 This section introduces a non-preemptive algorithm for MCSs, which executes in a 

time-triggered environment. 

 The task model used in this thesis is based on the periodical model for real-time tasks 

introduced in [21]. Here, tasks are called FModXs (Fixed Execution Executable Modules). 

Following the approach, a perfectly periodical task model is proposed for real-time systems: 

 

𝑀𝑖 = {𝑇𝑖, 𝐷𝑖, 𝐿𝑖, {𝐶𝑖,𝐿𝑗
| 𝑗 ∈ 1 … 𝑙} , {𝑆𝑖,𝐿𝑗

| 𝑗 ∈ 1 … 𝑙}} (7-1) 

 

where: 

­ 𝑀𝑖 is a mixed criticality fixed execution task MC-FModX (Mixed Criticality Fixed 

Execution Executable Module); 

­ 𝑙 represents the number of criticality levels; 

­ 𝑇𝑖 is the period of periodical task 𝑖; 
­ 𝐷𝑖 indicates the time by which any job execution needs to complete, relatively to its 

release time; 

­ 𝐿𝑖 represents the criticality level; 

­ 𝐶𝑖,𝐿𝑗
 is the worst-case execution time, WCET (vector of values – one per criticality level, 

for levels less than or equal to the criticality level 𝐿𝑖, expressing the worst-case 

execution time for each criticality level); 

­ 𝑆𝑖,𝐿𝑗
 indicates the start time (vector of values one per criticality level, for levels less than 

or equal to the criticality level 𝐿𝑖, giving the execution start time, relative to its release 

time). 

 A task consists of a series of jobs, with each job inheriting the set of parameters of the 

task, (𝑇𝑖, 𝐿𝑖, 𝐷𝑖), to which it adds its own parameters [22]. Thus, the 𝑘-th job of task 𝑀𝑖 is 

characterized as: 

 

𝐽𝑖,𝑘 = {𝑎𝑖,𝑘, 𝑑𝑖,𝑘, 𝑐𝑖,𝑘, 𝑠𝑖,𝑘, 𝑇𝑖, 𝐷𝑖 , 𝐿𝑖} (7-2) 

 

where: 

­ 𝑎𝑖,𝑘 is the arrival time (𝑎𝑖,𝑘+1 − 𝑎𝑖,𝑘 ≥ 𝑇𝑖); 

­ 𝑑𝑖,𝑘 indicates the absolute deadline (𝑑𝑖,𝑘 = 𝑎𝑖,𝑘 + 𝐷𝑖); 



 

­ 𝑐𝑖,𝑘 represents the execution time allocated by the system, which is dependent on the 

criticality mode of the system (for 𝐿𝑗, 𝑐𝑖,𝑘 = 𝐶𝑖,𝐿𝑗
); 

­ 𝑠𝑖,𝑘 gives the absolute execution start time for job 𝑘 of task 𝑖, which is also dependent 

on the criticality mode of the system; 

­ 𝑇𝑖, 𝐷𝑖 , 𝐿𝑖 have the same meaning as in (7-1). 

 

 Definition 2. The execution of task 𝑖 is perfectly periodical if for each job 𝑘 of task 𝑖, 
𝐽𝑖,𝑘, the difference between the absolute start times of jobs 𝑘 and 𝑘 − 1 is constant: 

 

𝑠𝑖,1 − 𝑠𝑖,0 = 𝑠𝑖,2 − 𝑠𝑖,1 = ⋯ = 𝑠𝑖,𝑛 − 𝑠𝑖,𝑛−1 = 𝑇𝑖 (7-3) 

 

 Next, an exact feasibility test for the perfectly periodical execution of tasks in a non-

preemptive context is presented. This type of execution is called Fixed Execution Non-

Preemptive (FENP). The test is analogous with that provided in [21]. 

 Let 𝑀 = {𝑀1, 𝑀2, … , 𝑀𝑛} be a set of 𝑛 independent MC fixed execution tasks (MC-

FModXs), sorted in nondecreasing order of their periods. The tasks are characterized by the 

same parameters as those in (7-1), thus: 

 

𝑀𝑖 ≡ {𝑇𝑖, 𝐷𝑖, 𝐿𝑖, {𝐶𝑖,𝐿𝑗
| 𝑗 ∈ 1 … 𝑙}, {𝑆𝑖,𝐿𝑗

| 𝑗 ∈ 1 … 𝑙}}, 

where for any task 𝑘, 𝑇𝑘 ≤ 𝑇𝑖 for 𝑘 < 𝑖 
(7-4) 

 

 Definition 3. The task set 𝑀 is FENP schedulable in a mixed criticality system if, and 

only if, the task set 𝑀 is FENP schedulable for each criticality level 𝐿𝑗, where 𝑗 ∈ 1 … 𝑙. 

 Definition 4. The task set 𝑀 is FENP schedulable in a mixed criticality system for 

criticality level 𝐿𝑗 if all the tasks in the set 𝑀 with criticality greater than or equal to 𝐿𝑗 are 

FENP schedulable using the next feasibility test. Only the parameters for level 𝐿𝑗 (𝐶𝑖,𝐿𝑗  and 

𝑆𝑖,𝐿𝑗
) are considered in this case. 

 The feasibility test for a task set executes as follows: tasks are sorted in nondecreasing 

order of their periods. Next, two tasks are extracted in order to compute the greatest common 

divisor. If the sum of the WCETs for the two tasks is greater than the greatest common divisor 

for a system execution mode, then the feasibility test is negative. If all the tasks in the set are 

successfully verified, then the feasibility test is positive. 

 Next, an adaptation to MCSs of the real-time table-driven scheduling algorithm FENP 

[21] for single processors and its partitioned P_FENP [23] variation for multicore systems is 

presented. 

 The FENP_MC scheduler creates, in an offline phase, a dispatch table for each 

criticality level of the system based on the feasibility test proposed in [21] for real-time systems, 

which was further developed and presented in this thesis for MCSs. 

 The dispatch table is represented by an array of structures: 

 

𝛤𝑞 = {𝑇𝑎𝑠𝑘𝐼𝐷;  𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒} (7-5) 

 

where Γ𝑞 is sorted in nondecreasing order of start time for each job in the system for a 

scheduling period. 



 

8. P_FENP_MC: Partitioned Fixed Execution Non-Preemptive Mixed 

Criticality 

 P_FENP_MC consists of two phases, namely, an offline (Figure 4) phase and an online 

phase (Figure 5). The task partitioning to processors is carried out offline. A feasibility test is 

then conducted on each processor, followed by creating the scheduling table for that processor. 

 

 

Figure 4. Offline phase execution. 

 

 The partitioning algorithm proceeds as follows: 

 Each processor has a scheduling table associated to it. Tasks from the ready queue are 

selected one by one and added in each scheduling table. If the scheduling table was initially not 

empty, two conditions are verified: 

I. The current processor utilization, which is the sum of utilizations of all the tasks 

from the scheduling table associated with the corresponding processor, must not 

exceed 1 [24]: 

 

𝑈𝛤𝑞
≤ 1, where 𝑞 = 1, … , 𝑚 (8-1) 

 

II. The schedulability test performed for the task subset on the processor must be 

positive. 

 If the two conditions are met, the task will remain in the scheduling table, the processor 

utilization is updated, and the next task is removed from the ready queue and tested. If the 

scheduling table was initially empty, the task is added without verifying the two conditions and 

the processor utilization is updated. 

 If one of the two conditions returns FAILURE, the task is removed from the scheduling 

table and added in the next processor scheduling list, where the same test is performed. 

 



 

 

Figure 5. Online phase execution. 

 

 In the online phase tasks will be scheduled according to the dispatch tables. Initially, 

the system runs in Lo-criticality mode, therefore, tasks will be scheduled according to the Lo-

criticality dispatch table. If a job exceeds its Lo-criticality WCET, the system will switch to Hi-

criticality mode and tasks will be scheduled according to the Hi-criticality dispatch table. For 

each dispatch table tasks are ordered in a nondecreasing manner according to their start times. 

Next, the task with the lowest start time value 𝑀𝑖 is extracted from the dispatch table, and its 

first job 𝐽𝑖,0 is executed. After job 𝐽𝑖,0 finishes executing, the start time of task 𝑀𝑖 is recomputed. 

𝑀𝑖 will be added again in the corresponding dispatch table and the process is repeated (the task 

with the lowest start time value is extracted from the sorted task list and executed, and so on). 

9. Performance evaluation 

 This chapter presents the experimental results obtained by evaluating the scheduling 

algorithm introduced in this thesis, namely Partitioned Fixed Execution Non-Preemptive Mixed 

Criticality (P_FENP_MC). The scheduling algorithm was compared in terms of success ratio 

with a known scheduling method for MCSs from the literature, P-EDF-VD (Partitioned Earliest 

Deadline First with Virtual Deadlines) [25], and with an adaptation for periodical tasks based 

on the table-driven algorithm introduced in [26], P-TT-OCBP (Partitioned Time-Triggered 

Own Criticality Based Priority). The task mapping to processors was done using FFD (First Fit 

Decreasing) [27], with sorting by period for both scheduling methods. Additionally, 

P_FENP_MC was compared in terms of jitter value with two time-triggered methods, TT-

Merge (Time-triggered Merge) and Energy-efficient TT-Merge (Energy-efficient Time-

triggered Merge) [28], and with the event-driven and table driven techniques described 

previously. The simulations were conducted on a homogenous system with two criticality 

levels, in a non-preemptive setting, using the simulation environment presented in Chapter 5. 

9.2 Success ratio 

 As the number of processors increases, tasks are better scheduled in terms of success 

ratio when using the proposed algorithm, P_FENP_MC. With more available resources there is 



 

a higher chance each task is partitioned on a suitable processor with regard to conditions I and 

II (see Chapter 8). The FFD does not run a schedulability test when mapping each task; 

therefore, if a high number of tasks are partitioned on a single processor, the local scheduling 

algorithm may return a negative schedulability test. 

 The tradeoff for jitterless scheduling on a uniprocessor is a lower success ratio value 

compared to using an event-driven method. An algorithm such as EDF-VD can reach up to 

75% success ratio for a total utilization factor of 1 for the lowest criticality mode [29]. 

However, comparative results are harder to obtain with a time-triggered algorithm without 

using any resource enhancements, such as frequency scaling, for instance [26, 28]. 

 For a multiprocessor platform, the success ratio is not only influenced by the scheduling 

algorithm but also by the function used to map tasks to processors. If a proper partitioned 

mapping function is used, comparative results can be obtained between time-triggered and 

event-driven schedulers in terms of success ratio. 

9.3 Jitterless execution – Test Case 

 The jitter of a task is calculated as the difference between the maximum and minimum 

separation between two consecutive jobs of the same task 𝜏𝑖 [30]: 

 

𝐽𝑖𝑡𝑡𝑒𝑟(𝜏𝑖) = 𝑚𝑎𝑥
𝑘≥1

{| 𝑠𝑖,𝑘 − 𝑠𝑖,𝑘+1|} − 𝑚𝑖𝑛
𝑘≥1

{| 𝑠𝑖,𝑘 − 𝑠𝑖,𝑘+1|} (9-1) 

 

where: 

­  𝑠𝑖,𝑘 is the start time of job 𝑘 of task 𝜏𝑖. 

 Table 3 contains the jitter values obtained by applying expression (9-1) on a task set 

example with three tasks, scheduled using: P_FENP_MC, P-EDF-VD (a non-preemptive 

variant), TT-Merge, Energy-efficient TT-Merge and P-TT-OCBP. 

 

Table 3. Jitter values of a task set example with three tasks, scheduled using five algorithms: P_FENP_MC, P-

EDF-VD, TT-Merge, Energy-efficient TT-Merge and P-TT-OCBP. 

Criticality 

mode 
Task 

Jitter value 

P_FENP_MC P-EDF-VD TT-Merge 

Energy-

efficient 

TT-Merge 

P-TT-OCBP 

Lo 

𝑀1 0 0 5 0 0 

𝑀2 0 1 1 1 1 

𝑀3 0 4 0 2 4 

Hi 𝑀1 0 0 5 0 0 

 

 From the table above, it can be seen that four of the algorithms (P_FENP_MC, P-EDF-

VD, Energy-efficient TT-Merge and P-TT-OCBP) provide jitterless execution of the first task, 

but only P_FENP_MC can deliver a jitterless execution of all the tasks in the system. 

10. Conclusions and future work 

 The main contributions of this thesis are: 

• A set of shared attributes of CPSs were identified and used for evaluating the 

scheduling algorithms for MCSs from the literature. 

• A mixed criticality architecture was proposed for IoT (MC-IoT). 

• A task execution model was defined for distributed real-time mixed criticality 

systems and a mapping methodology was introduced. 



 

• A perfectly periodical scheduling algorithm for real-time mixed criticality systems 

was implemented. 

• The simulation environment introduced in [15] for homogenous mixed criticality 

systems was modified in order to be used for heterogenous distributed mixed 

criticality systems. 

As future perspectives: 

• The scheduling algorithm can be implemented on a physical platform using 

LITMUS-RT, based on the task execution model introduced in this thesis. 

• The algorithm can also be extended to systems with more than two criticality levels. 

• Low criticality tasks can execute even after switching to a higher criticality level. 

• A method can be implemented which enables the system to switch back to its initial 

execution mode, if some conditions are met. 

Additionally, a series of improvements can extend the applicability of the task model 

and the scheduling algorithm to domains such as: 

• Cyber physical systems – they use, for the most part, distributed mixed criticality 

platforms. Thus, the scheduling algorithm introduced in this thesis can be improved 

to allow adaptability and efficient resource management between different criticality 

levels. Furthermore, the proposed task model offers an efficient partitioning of 

applications at the device level in distributed platforms. 

• Multi-agent systems – due to the hierarchical implementation, multiple classes of 

algorithms can be used, according to the requirements of each component. For the 

scheduling method introduced in this thesis, requirements can include: a perfectly 

periodical execution of certain tasks, efficient power management, synchronization 

between tasks, etc. 

• IoT – the algorithm can be implemented in industrial control systems where certain 

critical applications have to be completely deterministic. 

Bibliography 

[1] R. Ernst and M. Di Natale, "Mixed criticality systems—A history of misconceptions?," IEEE Design & 

Test, vol. 33, no. 5, pp. 65-74, 2016. 

[2] D. Tămaş–Selicean, P. Pop, and W. Steiner, "Design optimization of TTEthernet-based distributed real-

time systems," Real-time systems, vol. 51, no. 1, pp. 1-35, 2015. 

[3] J. Zhan, X. Zhang, W. Jiang, Y. Ma, and K. Jiang, "Energy optimization of security-sensitive mixed-

criticality applications for distributed real-time systems," Journal of Parallel and Distributed Computing, 

vol. 117, no. pp. 115-126, 2018. 

[4] P. A. Laplante, Real-time systems design and analysis vol. 3: Wiley New York, 2004,  ISBN:  

[5] K. Velasquez, D. P. Abreu, M. R. Assis, C. Senna, D. F. Aranha, L. F. Bittencourt, N. Laranjeiro, M. 

Curado, M. Vieira, and E. Monteiro, "Fog orchestration for the internet of everything: state-of-the-art and 

research challenges," Journal of Internet Services and Applications, vol. 9, no. 1, p. 14, 2018. 

[6] S. Vestal, "Preemptive scheduling of multi-criticality systems with varying degrees of execution time 

assurance," in 28th IEEE International Real-Time Systems Symposium (RTSS 2007), 2007, pp. 239-243. 

[7] A. Crespo, A. Alonso, M. Marcos, A. Juan, and P. Balbastre, "Mixed criticality in control systems," IFAC 

Proceedings Volumes, vol. 47, no. 3, pp. 12261-12271, 2014. 

[8] M. A. Awan, K. Bletsas, P. F. Souto, and E. Tovar, "Semi-partitioned mixed-criticality scheduling," in 

International Conference on Architecture of Computing Systems, 2017, pp. 205-218. 

[9] A. Ali and K. H. Kim, "Cluster-based multicore real-time mixed-criticality scheduling," Journal of 

Systems Architecture, vol. 79, no. pp. 45-58, 2017. 

[10] P. Rodriguez, L. George, Y. Abdeddaïm, and J. Goossens, "Multicriteria evaluation of partitioned edf-vd 

for mixed-criticality systems upon identical processors," in Workshop on Mixed Criticality Systems, 2013. 

[11] L. Gu, D. Zeng, S. Guo, A. Barnawi, and Y. Xiang, "Cost efficient resource management in fog computing 

supported medical cyber-physical system," IEEE Transactions on Emerging Topics in Computing, vol. 

5, no. 1, pp. 108-119, 2015. 

[12] D. B. Rawat, C. Brecher, H. Song, and S. Jeschke, Industrial Internet of Things: Cybermanufacturing 



 

Systems: Springer, 2017,  ISBN: 3319425587. 

[13] R. Squire and H. Song, "Cyber‐physical systems opportunities in the chemical industry: A security and 

emergency management example," Process Safety Progress, vol. 33, no. 4, pp. 329-332, 2014. 

[14] N. Mohan and J. Kangasharju, "Edge-Fog cloud: A distributed cloud for Internet of Things 

computations," in 2016 Cloudification of the Internet of Things (CIoT), 2016, pp. 1-6. 

[15] A. Sabu, B. Raveendran, and R. Ghosh, "SMILEY: a mixed-criticality real-time task scheduler for 

multicore systems," in 2018 IEEE/ACM 22nd International Symposium on Distributed Simulation and 

Real Time Applications (DS-RT), 2018, pp. 1-5. 

[16] H. Li and S. Baruah, "Outstanding paper award: Global mixed-criticality scheduling on multiprocessors," 

in 2012 24th Euromicro Conference on Real-Time Systems, 2012, pp. 166-175. 

[17] N. Guan, P. Ekberg, M. Stigge, and W. Yi, "Improving the scheduling of certifiable mixed-criticality 

sporadic task systems," Technical Report 2013–008, no. 2013. 

[18] I. Lupu, P. Courbin, L. George, and J. Goossens, "Multi-criteria evaluation of partitioning schemes for 

real-time systems," in 2010 IEEE 15th Conference on Emerging Technologies & Factory Automation 

(ETFA 2010), 2010, pp. 1-8. 

[19] A. Alahmadi, A. Alnowiser, M. M. Zhu, D. Che, and P. Ghodous, "Enhanced first-fit decreasing 

algorithm for energy-aware job scheduling in cloud," in 2014 International Conference on Computational 

Science and Computational Intelligence, 2014, pp. 69-74. 

[20] Z. Ren, T. Lu, X. Wang, W. Guo, G. Liu, and S. Chang, "Resource scheduling for delay-sensitive 

application in three-layer fog-to-cloud architecture," no. 

[21] M. V. Micea, V.-I. Cretu, and V. Groza, "Maximum predictability in signal interactions with HARETICK 

kernel," IEEE transactions on instrumentation and measurement, vol. 55, no. 4, pp. 1317-1330, 2006. 

[22] L. Zeng, C. Xu, and R. Li, "Partition and Scheduling of the Mixed-Criticality Tasks based on Probability," 

IEEE Access, vol. 7, no. pp. 87837-87848, 2019. 

[23] E. A. Capota, C. S. Stangaciu, M. V. Micea, and V. I. Cretu, "P_FENP: A Multiprocessor Real-Time 

Scheduling Algorithm," in 2018 IEEE 12th International Symposium on Applied Computational 

Intelligence and Informatics (SACI), 2018, pp. 000509-000514. 

[24] D. Socci, "Scheduling of certifiable mixed-criticality systems," Grenoble Alpes, 2016. 

[25] J.-J. Han, X. Tao, D. Zhu, H. Aydin, Z. Shao, and L. T. Yang, "Multicore mixed-criticality systems: 

Partitioned scheduling and utilization bound," IEEE Transactions on Computer-Aided Design of 

Integrated Circuits and Systems, vol. 37, no. 1, pp. 21-34, 2017. 

[26] S. Baruah and G. Fohler, "Certification-cognizant time-triggered scheduling of mixed-criticality 

systems," in 2011 IEEE 32nd Real-Time Systems Symposium, 2011, pp. 3-12. 

[27] B. Rieck, "Basic analysis of bin-packing heuristics," Publicado por Interdisciplinary Center for Scientific 

Computing. Heildelberg University, no. 2010. 

[28] L. Behera and P. Bhaduri, "An energy-efficient time-triggered scheduling algorithm for mixed-criticality 

systems," Design Automation for Embedded Systems, no. pp. 1-31, 2019. 

[29] S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-Spaccamela, S. Van Der Ster, and L. Stougie, 

"The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline sporadic task systems," 

in 2012 24th Euromicro Conference on Real-Time Systems, 2012, pp. 145-154. 

[30] S. Baruah, G. Buttazzo, S. Gorinsky, and G. Lipari, "Scheduling periodic task systems to minimize output 

jitter," in Proceedings Sixth International Conference on Real-Time Computing Systems and 

Applications. RTCSA'99 (Cat. No. PR00306), 1999, pp. 62-69. 

 


	1. Introduction
	1.1 Main research domains
	1.2 Thesis objectives
	1.3 Thesis structure

	2. State-of-the-art: Mixed Criticality Systems
	3. Distributed systems
	3.1 Cyber physical systems
	3.2 Internet of Things

	4. Proposed mapping technique
	4.2 Set affinity score based on computation time:
	4.3 Set affinity score based on criticality level:
	4.4 Task mapping

	5. Simulation environment
	6. Performance evaluation
	7. FENP_MC: Fixed Execution Non-Preemptive Mixed Criticality
	8. P_FENP_MC: Partitioned Fixed Execution Non-Preemptive Mixed Criticality
	9. Performance evaluation
	9.2 Success ratio
	9.3 Jitterless execution – Test Case

	10. Conclusions and future work

