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Both for ―classical‖, regulated, electric power systems (PS) and current, ―deregulated‖ 

systems, characterized by the wider integration of renewable energy sources, having the 

knowledge in regards to how electricity consumption will evolve is an important element in 

decision-making. 

Regardless of the temporal horizon for which the forecast is performed, the problem 

can be approached both through "classical" methods, based on mathematical modeling and 

known linear or nonlinear optimization techniques [Kilyeni2015], as well as through methods 

that use modern artificial intelligence techniques, in particular Artificial Neuronal Networks 

[Kumar 2016], [Singh 2017], [Hsu2018], [Jarndal2020]. In all situations, it is extremely 

important to know the history of the evolution of consumption and other elements that influence 

consumption for a period of time significantly longer than the forecast. 

In recent years, the use of Bayesian theory, Bayesian networks and Bayesian neural 

networks [Nabney2002], [Mackay2003], [Bolstad2004], [Koch2007], [Russel2010] for solving 

applications in the field of electrical power engineering is quite notable. Most applications focus 

on the reliability of power plants and systems [Sykora2016], [Lorencin2017] and consumption 

forecast [Sun2019], [Bessani2020], [Sarajcev2020]. Other areas of interest: PS state estimation 

[Pegoraro2017], PS stability [Chevalier2019], fault diagnosis and location [XuB2019], etc. 

In this context, the topic of the PhD thesis is part of the current concerns in the field of 

transmission management, distribution and consumption of electricity. Generally speaking, 

two key objectives were considered: forecasting activity (electric energy consumption and 

load curves) and the use of artificial intelligence techniques (mainly Bayesian artificial neural 

networks) to obtain forecasts. 

Theoretical analyses are completed through original techniques for solving elaborated 

mathematical models, implemented in their own software tools, which efficiently use the 

possibilities offered by the various programming environments and current computer systems. 

We started from relatively simple cases, in order to validate the proposed methods and 

"calibrate" the software tools. For the same purpose, comparative studies were performed 

with the results obtained in other PhD theses [Deacu2015], [Chiş2015]. Next, real situations 

were analyzed, targeting distribution operators in Romania: Enel, Electrica, Delgaz Grid, etc. 

For space related reasons, for the actual applicative part of the thesis, only part of the 

case studies regarding Enel Distribution Banat were selected. They refer both to the entire 

distribution company and to the main territorial unit network (TUN) components: Arad, Deva, 

Reșița and Timișoara. A series of results regarding the 110 kV/m.t transformer stations are also 

presented from TUN Timișoara. 5 significant 110/20 kV substations were selected (3 from 

Timișoara, one from an important city of Timiş County and one that supplies an oil exploitation 

facility): Bucovina, IMT, Musicescu, Deta and Satchinez. 

The obtained results and the formulated conclusions are of a special utility both for the 

distribution operators, in general, and for Enel Distribution Banat, in particular. 

The PhD thesis extends on 234 pages, being structured in 8 chapters, a preface, 3 appendices 

(CD, 82 pages) and an ample bibliography. The thesis also contains 213 figures, schemes and 

histograms, and 264 tables respectively. The bibliography contains 208 titles, among which 

some are noted to be significant works in the field, both old and new, of local and foreign 

origin in the literature. 

Chapter 1 has an introductory character. The first part entails the framing and the 

justification for the PhD thesis’ topic within the context of the current evolution of the field of 

electric power system engineering, both in the local and wider scale. The second part represents 

a succinct presentation for each of the following chapters of the thesis. The last part of the  

chapter highlights both the way of capitalizing the research carried out in the PhD thesis (papers 

published in specialized journals or in the volumes of international conferences, scientific  
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research or technical assistance contracts, calculation programs) but also the usefulness of the 

results obtained for electrical energy distribution operators (from Romania, but not only) and 

for other economic agents (especially those dealing with the implementation of renewable 

energy sources). Finally, the perspectives opened by this PhD thesis on the possible directions 

for the continuation and extension of investigations are underlined.  

Chapter 2 presents a series of basic theoretical notions related to the Bayesian approach, 

Bayesian networks (BNs), Bayesian neural networks (BNNs) and related elements. These 

notions are necessary both for understanding the aspects presented in the following chapters, 

related to the use of Bayesian concepts and models in the field of electric power engineering, 

and the mathematical model of energy consumption forecasting, and the related software 

(Chapter 6). The first part of the chapter reviews a series of elements of probabilities and 

statistics: conditional probabilities, frequentist vs. subjectivist interpretations of probabilities, 

Bayes’ theory, the laws of probability, etc. The second part refers to machine learning (ML) in the 

context of probabilistic modelling: Bayesian machine learning (BML), posterior and marginal 

probability approximation methods, Bayesian inference, etc. The last part is dedicated exclusively 

to Bayesian ANNs: comparing ―classic‖ ANNs with the Bayesian ones, the principles behind 

Bayesian ANN training, Bayesian optimization of the control parameters (the notion of evidence 

framework, including its numerical approach) 

Chapter 3 provides an overview of BN applications in the field of PS engineering. 

A wide range of examples are reviewed, starting with the reliability of electricity transmission 

and distribution networks, of the PS as a whole, continuing with the estimation of the PS state, 

with the PS stability analysis, with the diagnosis and location of faults in electrical networks, 

fault diagnosis related to transformers and generators, with the estimation of the value of 

the parameters of the network elements (power lines, transformers) etc. The most numerous 

applications are found in the field of electric energy and power load forecasting. They will be 

treated separately, in chapter 4, given that the forecasting using BNN is the subject of this 

PhD thesis. 

The increase in the frequency of cybernetic attacks upon SCADA systems has resulted 

in a decrease of reliability associated to PS, thus [Zhang2014] has taken into consideration six 

hypothetical cyber-attacks, using a Bayesian model to evaluate the probability of success of 

such attacks on a SCADA system, which would have the ultimate result the tripping of the 

system’s breakers. A model for the rate of forced interruptions is proposed, taking into consideration 

the successful attacks on generators and electrical energy transmission lines. Results from the 

IEEE test system in reliability studies have proven that PSs do become less reliable as the 

frequency of successful cyber-attacks increase. [Borges2016] uses a specific representation 

model for statistically dependent time-varying quantities that can be used within the context 

of mixed methods of reliability evaluation, through non-sequential Monte Carlo simulations. 

The model has been developed by combining a non-parametric estimation method for the 

probability-density functions with continuous variables measuring the non-linear statistical 

dependency and graphically representing the conditioned probability given by the Bayesian 

Network. The software itself refers to the IEEE test system for reliability studies, applied to 

27 fictional wind farms, with varying wind parameters. Simulations have shown that the model 

can accurately reproduce the historical data and underline the importance of types of correlated 

factors on the reliability index. In other words, this model is at the same level of precision as 

the sequential Monte Carlo simulation is. The model can thus be used to represent the correlation 

between the electrical energy outputted by wind farms and the water flow in a hydroelectric 

system. [Sykora2016] presents the use of BNs to assess the risks related to the reliability of  

a generator set within a thermal power plant. In order to implement the statistical approach, 

more attention is paid to the data related to the failure rates, obtained from the previous history 

and based on the opinion of the specialists. The information discussed concerns the  entire 
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thermo-mechanical and electrical chain: boiler, turbine, generator. The conclusion is that BNs 

are an effective tool for risk and (in)availability analysis, providing important information on 

the maintenance process, the necessary repairs and the situations in which it is necessary 

to replace some equipment. BNs also facilitate the evaluation of the tendency to modify the 

technical parameters describing the operation of the component installations and equipment.  

A similar approach is described in [Lorencin2017]. 

In [Massignan2019] the estimation of the static state of the electric power systems is 

done by an approach using Bayesian inference. Given the widespread use of the PMU (Phasor 

Measurement Unit), there is the problem of combining the measurements obtained in this way 

with those offered by conventional SCADA systems, given the significant differences in sampling 

rates and accuracy. A two-step approach is proposed. As a first stage, an initial "classical" WLS 

estimate is made based on the measurements provided by the SCADA systems. In the second 

stage, the information provided by the PMU is used to achieve a probabilistic interpretation 

of the solution in the first stage. There is an improvement in the quality of the estimate even 

in the conditions of a lower number of PMUs, including for nodes that are not monitored by 

the PMU. [Mestav2019] aims to estimate the state of electricity distribution systems that  

have observability problems. The proposed method involves in the first phase the distributed 

learning of stochastic power injections in the nodes of the system. A Monte Carlo method is then 

used to train an ANN with several hidden layers. Finally, a Bayesian algorithm for detecting 

and filtering erroneous data is developed. The obtained results highlight the advantages of such 

an approach compared to the use of pseudo-measurements. 

[Augutis2012] presents a method for assessing the high disturbance stability of a PS 

for various operating regimes using BNs. It is essentially a hybrid analysis technique, which 

combines the classical method of analysis by modeling in detail the power system with an 

BN-based approach. The latter uses an estimation model to determine the stability characteristics 

for certain synchronous generators. In this way all generators can be analyzed by estimation 

based on the Bayesian approach instead of an analysis using detailed modeling of the system. 

The major advantage is the substantial reduction of the computational effort, without significantly 

altering the accuracy of the results. The quality of the results can be improved by grouping the 

generators based on coherence, assessed on the basis of a correlation coefficient of the swing 

curves (time variation of the internal angle). Unlike previous works, in [Seppanen2016] and 

[Ma2013] the analyses refer to the steady state stability of the electric power system (PS), 

including in the analysis model a BN. In [Chevalier2019] the aim is to locate the source of the 

oscillations, in the conditions of some uncertainty regarding the parameters of the synchronous 

generators and the accuracy of the measurements obtained from PMU, elements that justify 

the use of BN. [Vakili2015] aims to analyze the stability of voltage using a direct Lyapunov 

method, combined with the Bayesian quickest change-point detection. 

In [Li2014] the Bayesian method of fault diagnosis is based on the fault isolation 

analysis. The model is built from two points of view – breaker isolation and protection isolation, 

which directly reflects the mode of action of the breaker and the protection at the appearance 

time of the fault. At the same time, dividing the breakers into three levels, depending on the 

type of protection and the operating time, reduces the number of suspected switching equipment 

in the affected area, improving the efficiency of the fault diagnosis. 

To deal with a lot of uncertain information existing in the grid when faulted, [WangT 

2015] uses a special Bayesian network—Noisy-or, Noisy-and nodes model to build object-

oriented Bayesian networks. The connected graph connected without circuits associated to the 

BN comprises both Noisy-OR and Noisy-AND peaks. If a given peak has a value of "false" 

when all previous peaks have a value of "false", then it is a Noisy-OR type (similar to the 

logical OR definition, except that it cannot be state that the peak has the value "true" if one of 

the previous peaks has the value "true"). If a given peak has a value of "true" when all previous 

peaks have a value of "true", then it is a Noisy-AND peak (similar to the logical definition of 
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AND, except that it cannot be stated that the peak has the value "false" if one of the preceding 

peaks has the value "false"). An error back propagation algorithm is used to train the Bayesian 

network so as to update the network’s parameters. Finally, a case simulation is presented to 

prove the accuracy and validity of this method for power system fault diagnosis. To minimize 

the mean square deviation between the calculated and the measured level, the conjugate gradient 

method is used [Kilyeni2015]. Overall, it is a simple and fast fault location model, using the 

element (sometimes uncertain) about the action of the protections and the state of the breakers. 

In [XuT2010] a method of locating faults in rural distribution networks using Bayesian 

inference is presented. Based on the information provided by the disturbance calls (mostly 

unsafe and incomplete) and the experience of the operating personnel (with a relatively low 

degree of confidence), a probabilistic model of learning, reasoning, based on the Bayesian method 

was developed. The fault location algorithm was implemented in GIS systems related to rural 

distribution networks. The fault diagnosis in the case of hydrogenators is addressed in [XuB2019], 

taking into account both electrical and mechanical or hydraulic causes. The methodology used 

is based on an expert system and the use of BN. A complete Bayesian model of fault diagnosis 

has been developed, which is based on in-depth knowledge of the vibrations that occur in various 

types of faults and the associated fault characteristics. [Zhao2010] presents a fault monitoring 

and diagnosis system for high power transformers and autotransformers, based on a multi-agent 

type system, combined with a Bayesian classification algorithm. From a phenomenological 

point of view, the diagnosis is based on the analysis of the resulting gases in the oil tank in the 

case of some internal short circuits, which effect is the vaporization of the oil determined by the 

electric arc. As in the previous case, the [Zheng2010] approach to fault diagnosis in transformers 

is based on the analysis of the resulting gases in the oil tank in the case of internal short circuits, 

which have the effect of vaporizing the oil due to the electric arc. This paper compares several 

types of Bayesian classifiers (NB - Naïve Bayesian classifier, TBA Tree Augmented Naïve 

Bayesian classifier, GBN - General Bayesian Network classifier), highlighting the advantages 

and disadvantages. [Zhou2012] presents a model for simulating the lifetime of transformers in 

electricity distribution networks. Their failure is a fairly rare event, which means a small amount 

of known initial data. To overcome this aspect, the lifetime of the transformer is treated as a 

random variable, with a certain probability distribution. Applying this probabilistic model for 

a group of transformers one can estimate the number of transformers that need to be replaced. 

The paper proposes that the initial model be made on the basis of information related to the 

operational safety of a large number of similar transformers. A Bayesian upgrade procedure is 

then used to incorporate prior (previous) knowledge of actual failures into the original model, 

resulting in an advanced transformer lifetime model. Finally, a sequential updating of the model 

is proposed, which leads to a dynamic way of improving the model of the transformer lifetime. 

Chapter 4 presents the problems related to the electricity load forecast (peak power, 

hourly power, energy consumption, load curves, etc.) and the methods used to obtain the forecast. 

The first part of the chapter includes general aspects related to forecasting, classification of  

methods used according to various criteria, insisting on the time horizon to which the forecast 

refers. The actual presentation of the methods follows, depending on the time horizon to 

which it refers, based on a consistent bibliographic study. Both "classical" methods, based on 

mathematical modeling, and "modern" ones, more recently, are followed, using techniques of 

artificial intelligence, fuzzy logic, expert systems, "support vector machine" (SVM), etc. 

A separate, consistent subchapter is dedicated to the methods that use BNN, which is the 

subject of this PhD thesis. The vast majority of examples refer to the electrical load forecast 

consumed, but there are also situations in which the object of the forecast is the price of electricity, 

the power generated by wind or photovoltaic power plants, wind speed, solar irradiance, etc. 

The first mention of the use of the Bayesian approach to power consumption forecasting appears 

in [Bakirtzis1997], where a mixed Bayesian predictor is proposed, made by combining a 
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predictor based on the use of an ANN with two other predictors specific to linear regression. 

The application referred to the short-term load forecast in Greece. 

Examples of applications for short-term load forecast (STLF): 

 In [Ning2010] STLF is performed using a backpropagation ANN with Bayesian training. 

This type of learning facilitates the obtaining of the most probable values of the hyper-

parameters, which lead to an optimal architecture for a backpropagation ANN. The per-

formance testing of the model was performed using real consumption data from Guizhou 

Province (China), both for network training and for testing the forecasts, the results proving 

its superiority compared to conventional backpropagation ANN. It was noticed an increase 

in learning speed, convergence and forecast accuracy. 

 A more complex method is presented in [Ghayekhloo2015], which uses an algorithm for 

preprocessing input data in order to improve the quality of the forecast. A discrete "wavelet" 

transformation is used to decompose the load components into appropriate resolution 

levels, based on an entropy criterion, followed by a regression analysis, resulting the best 

input data set. A correlation analysis with an ANN provides a first estimate of the predicted 

values associated with the input quantities, followed by a standardization procedure that 

takes into account the degree of correlation of the output quantities with the set of associated 

input quantities. In the end, the most appropriate input data for Bayesian ANN are found. 

A genetic algorithm is used to optimize the weighting coefficients of the various components 

of the forecast and to minimize the errors of the predicted values. The assessment of the 

performance and accuracy of the proposed method for STLF is made with the help of a 

well-known consumption database ("New England load data"), the conclusions being 

positive. A similarly complex approach appears in [He2019], which presents a hybrid 

STLF method using recurrent LSTM (Long Short-Term Memory) BNNs. 

 [Dagdougui2019] aims to provide a short- and very short-term load forecast in areas of 

"smart" buildings, comprising several heterogeneous blocks in terms of functionality, using 

ANN-based models. The paper pursues three objectives: the evaluation of ANN perfor-

mance considering two backpropagation training techniques – the Bayesian regularization 

and the Levenberg-Marquardt method; comparative analysis of the model performances 

for the "hour-ahead" and "day-ahead" forecasts related to the various types of buildings; 

analysis of the influence of ANN structure (number of hidden layers and neurons in these 

layers, number of inputs and training data sets) on the accuracy of predicted values. The 

effectiveness of the proposed method is demonstrated for the case of a neighborhood in 

downtown Montreal (Canada). 

 In [Sarajcev2020] STLF is associated with a technique of clustering consumer data 

(along with climate data), using an approach based on Bayesian inference. The concrete 

application refers to the power consumption forecast for the city of Newcastle (Australia). 

 [Sun2019a] presents an interesting comparative study of probabilistic STLF methods. The 

following methods were considered: Bayesian estimation, low-order Bayesian estimation, 

Ridge type regression (a technique for estimating the coefficients of multiple regression 

models for situations where independent variables have a high degree of correlation), 

type estimation LASSO (Least Absolute Shrinkage and Selection Operator – a regression 

analysis method that performs both variable selection and regularization, in order to improve 

the quality of the forecast and the degree of interpretation of the statistical model) and 

ANN with supervised learning. The conclusion of the study highlights that the low-order 

Bayesian estimation leads to the best results. 

 The approach in [Bessani2020] starts from the finding that for residential consumption the 

uncertainty of the data is much more pronounced than in the case of aggregate consumption 

at medium or high voltage. In this context, the paper proposes a multivariable model for 

the very short-term load forecast, based on the use of BN. It takes into account the previous 

evolution of consumption, climatic factors, socio-economic ones and consumption patterns. 
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Concrete analysis refers to a total of over 1000 residential consumers in Dublin (Ireland). 

Comparison with the results obtained by other methods highlights the fact that the model 

based on the use of BN has superior performance. A similar concern is presented in [Gilanifar 

2020], where BNNs are associated with a multitasking learning (training) model. Each 

task refers to training the STLF model for a specific residential consumer, and "multitasking" 

means using a combination of individual models for the BNN training process. A more 

complex "multitasking" model, associated with a Bayesian optimization process, is described 

in [Yang2020]. 

Examples of applications for medium and long-term load forecast: 

 In [Rivero2015] a long-term load forecast is made. An ANN with Bayesian inference is 

used, the only input quantity being the previous evolution in time consumption. The ANN 

output provides the consumption forecast for the coming months. The concrete application 

refers to the forecast of power consumption for the PS of Argentina. Similarly, [Silva2019] 

presents a long-term load forecast application for the PS in Brazil, the Bayesian inference 

being used to estimate the model parameters, which allows the inclusion of the degree of 

uncertainty of the forecast made with the proposed model. 

 The long-term load forecast of electricity is the subject of the study in [Yuan2017], [He2018], 

[Tang2019] and [Ahmadi2020]. In order to take into account the degree of consumption 

uncertainty a fuzzy Bayesian approach is proposed. The deterministic results are replaced 

with the probabilistic ones, being also indicated the confidence interval (the most probable 

value, accompanied by the minimum and the maximum value). 

Examples of power forecast produced by wind and photovoltaic power plants: 

 [Yang2013] presents a practical approach to the short-term forecast, in a probabilistic 

way, of the power generated by a wind farm. The proposed method is based on a sparse 

Bayesian learning algorithm, which leads to a probabilistic expression of the forecasts 

results, obtained based on the estimation of the probabilistic density of the weights of the 

gaussian functions. Due to the "non-stationary" character of the evolution over time of 

the data, of the information about the generated power, a strategy is proposed based on 

the decomposition of the time series into components with an increased predictability,  

using a discrete wavelet transformation. The effective forecast with the Bayesian lacunar 

algorithm is performed separately for each component, the final result being obtained by 

summing the partial ones. The concrete application refers to a wind farm in Oklahoma 

(USA), demonstrating the effectiveness of the proposed method. In [WangY2019] the 

Bayesian lacunar learning algorithm is used for wind speed forecasting. 

 They are on the same line concerns in [Lin2019], noting that a multi-model method is 

used. In parallel with the Gaussian probability distribution function, the beta (β) type is 

also used. The testing of the proposed model was performed using the data set GEFC 

(Global Energy Forecasting Competition) 2014, which includes both the evolution over 

time of the power generated and the wind speed (at a height of 10 m and 100 m above the 

ground) for 10 different areas. The data set, from hour to hour, refers to a period of 10 

years, being divided into two sub-sets of training and a set of validation of the forecast. 

The first learning sub-set is used to train the components of the model, while the second 

is to optimize the weights of the component models. 

 Another 20-year period for known data (for IESO - Independent Ontario Electricity System 

Operator) was also used in [Sahu2019] for the short-term forecast of power generated by 

wind and photovoltaic sources. Some of those data were used to train ANN, the rest to assess 

the quality of the forecast. The training was performed by Bayesian regularization, for 

the time series being taken into account the nonlinear automatic regression, the nonlinear 

automatic regression with exogenous input data and the input-output model (the second 

being considered the best). 
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 In order to assess the risks in the operation of distribution networks in the conditions of 

large-scale penetration of distributed photovoltaic sources, in [Tao2016] it is proposed to 

use a dynamic BNN for the probabilistic forecast of power generated by photovoltaic 

plants. The application refers to the IEEE test system with 53 nodes. A similar approach 

is presented in [Silva2017], with applications targeting concrete situations in Brazil's PS. 

 In [Panamtash2020] a multi-variable Bayesian probabilistic model is proposed for the 

forecast of the power generated in photovoltaic power plants. In addition to the time 

series related to the power generated, the dependence on weather conditions (temperature) 

is also highlighted. For the training of the network, the known data from 2015 are used 

for a photovoltaic power plant from the USA, the quality of the forecast being verified 

with the help of the data from 2016 (also known). 

Chapter 5 aims to present artificial neural networks (ANN) by providing a theoretical 

basis for the method chosen to solve the problem for electrical energy consumption and power 

load forecast (as is presented in chapter 6). The first part of the chapter is a review of all the 

general aspects regarding ANNs: basic terminology, the structure of an ANN, classification 

of ANNs. The second part aims to present the structural model of an ANN, starting from the 

artificial neuron, explaining in more detail the architecture of the ANN. A specific paragraph 

is dedicated to learning (training) techniques used by ANN – supervised and unsupervised 

respectively. The last part is dedicated to presenting the perceptron type ANN, with both one 

and more layers, a special attention being diverted to backpropagation. 

The algorithm specific to backpropagation networks has two main steps that have to 

be followed: 

 A direct pass through the network, from the inputs to the outputs, in which the ANN is 

activated and the values of the outputs are determined; 

 A backwards pass through the network, from the outputs towards the inputs, the determined 

outputs being compared to the outputs from the examples and a certain error is being 

estimated; this estimation is then propagated backwards and used to update the weights. 

Synthetically, the algorithm of this type of ANN is presented as follows: 

 Initialization 

The weights and the biases are randomly initialized with values that are not zero, 

distributed in a confined interval (for example [–0,1; 0,1] or 
2,4 2,4

;
NI NI

 
  

, where NI represents 

the number of inputs in the ANN).

  Construction of an anterior epoch 

An epoch represents the processing of all examples from the training set. The training of 

the network entails the passing of multiple training epochs, one single epoch being insufficient. 

The weights will be adjusted only after the examples which constitute the training set 

have been crossed. The weight’s gradients and the current error being initialized with 0. 

 0 ; 0ijw E  

 

(5.3.6) 

 Forward propagation 

 On the network input an example from the training set is being applied. 

 The outputs for the hidden layer neurons are calculated: 

1

( ) ( ) ( ) , 1,2, ,
n

j i ij j

i

y p f x p w p T j b


 
      

 


 

(5.3.7) 

where: n – the number of inputs of neuron j from the hidden layer; f – represents the 

sigmoid activation function; p – represents the current learning set.  
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 The real values of this network are being processed: 

 
1

( ) ( ) ( ) , 1,2, ,
b

k jk jk k

j

y p f x p w p T k m


 
      

 
  (5.3.8) 

where m represents the number of inputs of neuron k from the output layer. 

 The epoch error is updated: 

 
 

2
( )

2

ke p
E E   (5.3.9) 

 Backwards error propagation and adjustment of the weights 

 The error gradients are solved for the neurons from the output layer: 

 ( ) ( )k kp f e p    (5.3.10) 

where f ’ is the derivate of the activation function, and the error is: 

 ,( ) ( ) ( )k d k ke p y p y p   (5.3.11) 

where: , ( )d ky p  – the real value of the output k; ( )ky p  – the calculated value of the 

output k. 

In the case of the sigmoid function its derivate is the following: 

 
2

2
( ) [1 ( )] [1 ( )]

(1 ) 2
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a x

a e a
f p f x f x

e

 

 

 
      


 (5.3.12) 

and the error gradients for the neurons from the output layer thus become: 

 ( ) ( ) [1 ( )] ( )k k k kp y p y p e p      (5.3.13) 

 The weight gradients from the hidden and output layer are updated: 

 ( ) ( ) ( ) ( )jk jk i kw p w p y p p      (5.3.14) 

 The error gradients for the neurons from the hidden layer are calculated: 

 
1

( ) ( ) [1 ( )] ( ) ( )
m

i i i k jk

k

p y p y p p w p 


        (5.3.15) 

where m is the number of outputs that the network has. 

 The weight gradients between the input and the hidden layer are updated: 

 ( ) ( ) ( ) ( ) , 1,2, , , 1,2, ,jk jk i iw p w p x p p i n j b        (5.3.16) 

 Transition to a new iteration 

If test vectors still exist in this current training epoch, Forward propagation and 

Backwards error propagation and adjustment of the weights is executed until all cases are 

exhausted. 

 Verifying the termination condition 

If a training epoch is over, the weights of all connections are updated based on the 

gradients (  – the learning rate): 

 ( ) ( ) ( ) , 1,2, , , 1,2, ,ij ij ijw p w p w p i n j b      (5.3.17) 

It is tested whether the completion criterion (E < Emax) has been met or if a maximum 

number of training epochs has been reached (the maximum number of iterations has been 

exceeded). If none of the conditions has been met, the next step becomes the creation of a new 

training epoch. 
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If one of the termination criteria is met however, the algorithm is considered successful 

(the network was trained), if the termination criteria is not met, the network is still not trained. 

In order to find a solution, either the speed of the training is modified, or different initial values 

for the weights are chosen (or both measures are applied at the same time). 

Chapter 6 refers to the mathematical model for electrical energy consumption and 

power load forecast, as well as to the software tool that was built on that said model. The first 

part of the chapter goes into details of the Bayesian technique in the context of the forecast 

application, explaining the principles behind Bayesian inference, ANN priors, how to calculate 

error functions and the gradient, evidence procedure, the forecast and the error bars. The second 

part presents the optimization technique used within the application – the scaled conjugated 

gradient method (SCG). The last part entails details about the software instrument that encom-

passes all mathematical models presented in this chapter. The software tool was developed in 

the Matlab environment by effectively utilizing all facilities (interface and portability) specific 

to modern machines and operating systems. The software application made use of various 

functions from the Netlab toolbox within Matlab [Nabney2002] which proved to be useful in 

the simulation of specific ANN algorithms: mlpprior.m, mlp.m, mlpinit.m, netopt.m, scg.m, 

mlperr.m, errbayes.m, mlpgrad.m, gbayes.m, mlpfwd.m, evidence.m, mlpevfwd.m. 

The Scaled Conjugate Gradient Method (SCG) is part of the larger group of conjugate 

gradient methods, with the classical version being based on the fact that the vector g shows the 

direction of the largest increase of f(x). Geometrically, the gradient represents the orthogonal 

vector to the outline of f(x), which is passes through a point x. The most accentuated decrease 

(searching for the minimum) of f(x)’s value is given by –g. 

Under these conditions, the method’s algorithm is the following [Kilyeni2015]: 

a) The value of x is initialized with x0, chosen based on experience; 

b) For any iteration j, j=1, 2, … the value of f is solved at the current point 

 ( )j jf f x  (6.2.1) 

while the movement direction dj becomes:  

 j jd g   (6.2.2) 

where jg  represents the current value of the gradient 

c) For the same iteration j, the new point xj+1 is solved: 

 1j j j jx x d     (6.2.3) 

where the scalar j , which is generally determined through the use of parabolic interpolation, 

shows the size of the movement in the direction of jd : 

 
0 1 2

0 1 2

3 4

2 2
j

h f f f

f f f


   
 

  
 (6.2.4) 

where the scalar h represents the pace of the search, 0 1 2, ,f f f  being the values of f in the 

points 
0 1 2, , 2j j j j jx x x x h d x x h d         ; 

d) The calculation is considered solved when the absolute value of the gradient becomes 0 

(the error threshold being ): 

 jg   (6.2.5) 

The main disadvantage of the classical gradient method is related to the orthogonality of 

the movement directions for two successive iterations, the effect being a crisscross movement 

towards the minimum value. The convergence towards the minimum that results from this is 

slow. 



 

 

 

 

11 
 

 

 

 

The conjugate gradient method eliminates the disadvantage mentioned above [Kilyeni 

2015]. The algorithm of the method is similar to that of the simple gradient, the only difference 

being related to the determination of the direction of movement, which is now of the form: 

 1j j j jd g d      (6.2.6) 

where the j  coefficient takes into consideration the prior ―history‖ ("mixes" in the direction 

of the current step a weighted correction based on the direction of travel from the previous step), 

being defined as: 

 
1 1

T

j j

j T

j j

g g

g g


 





 (6.2.7) 

In both versions of the gradient method priorly presented, for each step taken, the value 

of the scalar j  needs to be determined, scalar which indicates to the size of the movement in the 

direction jd . The Scaled Conjugate Gradient Method [Moller1993] eliminates this disadvantage. 

It offers a way to choose conjugated search directions without performing the search in the 

direction jd  and without solving the hessian matrix H (matrix of 2
nd

 order derivatives of the 

function f). 

Under the hypothesis of using a hessian matrix (in Newton type methods, which make 

use of the second order derivates), j  can be calculated as following: 

 

T

j j

j T

j j

g d

d H d





 
 (6.2.8) 

In order to cut down on the computational time and avoiding a search in the direction jd , 

the approximation of jH d  is proposed, based on a finite differential formula. In this regard 

we can consider 0  a small positive quantity, that can be expressed as following: 

 0

jd


   (6.2.9) 

Developed as a Taylor series, withholding terms until the first order derivate (inclusively), 

the following is obtained: 

 ( ) ( )j j j jf x d x H d        (6.2.10) 

Thus: 

 
( ) ( )j j j

j

f x d f x
H d





  
   (6.2.11) 

Defining: 

 
( ) ( )j j jT T

j j j j

f x d f x
d d H d






   
     

 
 (6.2.12) 

If the function f does not have a quadratic form, then H  is possible not to be positively 

defined and thus the value of f is bound to increase (instead of decreasing). This thing can be 

prevented by adding to the hessian matrix H  a multiplicative term j  and the unit matrix: 

jH I  . Thus, the actualized form is obtained: 

 
2

T

j j

j
T

j j j j

g d

d H d d







   
 (6.2.13) 
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If 
j  has a large value, then the step 

j  is small. This represents approaching the issue 

via a trust region model, because the model (for the function) is to be trusted in a small region 
around the search point. 

In order to obtain a minimum for the function f, the hessian matrix must be positively 

defined (at least 0T

j jd H d   ). 

The following notation is introduced: 

 
2

T

j j j j jd H d d       (6.2.14) 

If 0j   then it is a certainty that 0T

j jd H d    is true, thus j  must be increased. 

Moller’s [Moller1993] original algorithm uses: 

 
2

2
j

j j

jd


 

 
   
 
 

 (6.2.15) 

Next, the following are set 

 
2 2

( ) 0T
J jj j j j j j j jd d d H d                   (6.2.16) 

If the condition is also considered a quadratic function, it is solved as such: 

 
( ) ( )

( ) ( )

j j j j

j

j Q j j j

f x f x d

f x f x d





 
 

 
 (6.2.17) 

where Qf  represents the local quadratic approximation of f
 
on direction jd : 

 

2

( ) ( )
2

jT T

Q j j j j j j j j jf x d f x d g d H d


           (6.2.18) 

If 1j  , this approximation is appropriate and j  can decrease. If j  has a small 

value, then j  must increase. Simplifying relation (6.2.17) yields: 

 
2 ( ) ( )j j j j

j T

j j j

f x f x d

d d





      
 

 (6.2.19) 

Equation (6.2.19) can be applied only through the use of a gradient, without calling for 
a higher order derivate. 

Chapter 7 is entirely original, being the main application part of the PhD thesis. The 
results obtained on the load forecast of power and load curves using artificial intelligence 
techniques – Bayesian ANN are presented. We started from simple cases and from the test 
database, in order to validate the proposed methods and "calibrate" the software tools. For the 
same purpose, a series of comparative studies were performed with the results obtained in 
[Deacu2015] and [Chiș2015]. Next, real situations were analyzed, referring to distribution 
operators in Romania: Enel, Electrica, Delgaz Grid, etc. Due to space reasons, only a series of 
case studies targeting Enel Distribution Banat were selected for the PhD thesis. Some of the 
results are presented in extenso, the rest in summary, the details being provided in the Appendices 
(in electronic form). The results obtained for other electricity distribution systems in Romania 
have been and are used in the contracts developed in recent years by the Research Center for 
Analysis and Optimization of Electric Power System (EPS) within Politehnica University of 
Timisoara, the beneficiaries being Enel Distribution Banat, Electrica Muntenia Nord, Delgaz 
Grid (important operators of electricity distribution in Romania) and economic entities with 
concerns in the field of implementation of renewable energy resources [UPT 2017], [UPT2018], 
[UPT2019], [UPT2020a], [UPT 2020b]. 
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The first subchapter has the role of validating the calculation models and software tools 

developed in the PhD thesis, by making comparisons with the results of [Deacu2015] and 

[Chiş2015], in order to demonstrate the superior qualities of methods using Bayesian ANN. The 

first set of comparisons concerns the operator Enel Distribuție Banat and TUN (Territorial Unit 

Network) components: forecast of load curves for the most significant summer day – June 21, 

using the values measured from hour to hour (1 o'clock, ..., 24 o’clock) of the active power 

consumed. The data for 10 years (2001-2010) were used for ANN training, and those for the 

next 3 years (2011-2013) for verifying the predictions obtained. 

Two of the 5 analyzes performed were selected (TUN Resita and the Enel Banat ensemble), 

resulting in the following conclusions: 

 in all situations, Bayesian ANNs lead, in total, to better results than those in [Deacu2015] 

(with 12-14% for TUN Reșița and 6-10% for Enel Banat) and [Chiş2015] (with 46% for 

TUN Reșița and 36% for Enel Banat); 

 in terms of the breakdown over the 3 years (2011, 2012, 2013), compared to [Deacu 

2015] for TUN Reșița, the most pronounced improvement appears for 2011, decreasing 

constantly in 2012 and 2013, (both for the hourly forecast and for load curve assembly); 

 in the same context, for Enel Banat the situation is similar for the hourly forecast, and for 

the whole load curve it is practically constant every year; 

 there are two exceptions to the annual components, when the results obtained with Bayesian 

ANN are slightly lower, without affecting the overall conclusion from the first point. 

The second set of comparisons concerns power substations of 110/20 kV. from TUN 

Timisoara: forecast of load curves defined by the consumed powers at a certain time of a certain 

day for each of the 12 months of the year. The first 6 years of the 8 for which consumption 

data are known (2006-2011) were used for ANN training, and the last 2 years (2012 and 2013) 

for verifying the obtained forecasts. One of the 5 stations analyzed in [Deacu2015] was chosen: 

110/20 kV Victoria, with forecasts made for 9 and 21 o'clock on the last Thursday of each 

month, the first day of Tuesday and the second day of Wednesday, resulting in the following 

conclusions: 

 in all situations, the methods using Bayesian ANN lead, in total, to better results than in 

[Deacu2015], the improvement being 13-28% for the overall load curve forecast, respectively 

9-39% for the monthly forecast; 

 there are 2 cases (for Tuesday) when the improvement is very high (monthly forecast for 

9 o'clock (77%) and that of the whole load curve, 9 pm (44%), explainable by the extremely 

weak correlation of the known load curves); 

 also, for Tuesday (9 o'clock) the only situation appears when the result obtained with 

Bayesian ANN for one of the years for which the forecast was made (2013) is lower (by 

3.2%) than in [Deacu2015], without affecting the conclusion from the global comparison. 

The second subchapter presents a series of forecast studies carried out both for the 

entire distribution network within Enel Distribuție Banat and for TUN components: Arad, 

Deva, Reșița and Timișoara. The load curves are forecast for the most significant summer day – 

June 21, using the known values of the hourly average power from hour to hour (1 o'clock, 

2 o'clock, ..., 23 o'clock, 24 o'clock). The first 10 years (out of the 13 for which consumption 

data are known), 2006-2015, were used for ANN training, and the last 3 years, 2016-2018, for 

verifying the forecasts obtained. Approaches based on the use of Bayesian ANNs were applied 

for the prediction of load curves: 

 forecast for the whole load curve - 24 hours (ANN load curve); 

 individual forecast for each hour (hourly ANN). 

The last part of the subchapter presents a study to predict the quality of forecasts based 

on known data, using the method from [Deacu2015], based on finite differences. Finally, some 
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comments and conclusions are highlighted, with a more general or particular character, aiming at 

both the concrete results of the forecasts and the ANN used. Special attention is given to the 

comparison of the obtained results with the two methods, to highlight their quality, to appreciate 

the influence of the degree of correlation of the load curves on the quality of the predictions made. 

For example, the results for TUN Arad are presented. Figure 7.2.1 shows the data on 

the load curves for a period of 10 years (2006-2015), related to the most significant summer 

day. They were used to train ANN. Figure 7.2.2 shows the data on the load curves for the 

years 2016, 2017 and 2018, used to verify the results of the forecasts for those years. 

    

Figure 7.2.1. Load curves for the period 2006-2015 (powers in MW) 
 

   

Figure 7.2.2. Load curves for the period 2016-2018 (powers in MW) 

The data analysis highlights the following conclusions: 

 for the 2006-2015 period the evolution is ambiguous, in other words there is no explicit 

tendency to increase or decrease the power as a whole; 

 the load curves "intersect", which means that their shape differs (especially in certain  

time zones), signaling "horizontal" correlation problems; 

 for the 2016-2018 period, there is a general increasing trend of the average hourly power 

as a whole (with small "syncopes" for 2017, time zones 9-13 and 18-21), which, correlated 

with the first observation, can lead to problems regarding the quality of the forecasts that 

will be obtained; 

 the degree of correlation of the load curves is relatively low (evolution over time and 

shape during a day), which strengthens the prediction from the previous point. 

The results obtained - the predicted values, the differences from the real values (in %) 

and the relative square deviation - are presented in tables 7.2.3 (Bayesian ANN, load curve) and 

7.2.4 (Bayesian ANN, hourly). In the last line of the table is given the value of the performance 

index (stotal), defined as the sum of the partial indices (s2016, s2017, s2018) – the sum of the squares 

of the deviations of the 24-hourly values for the corresponding year. Graphically, these results 

are presented comparatively (for the two methods used) in figures 7.2.3 (year 2016), 7.2.4  

(year 2017) and 7.2.5 (year 2018). 



 

 

 

 

15 
 

 

 

 

Table 7.2.3. Forecasted load curves (powers in MW) for the period 2016-2018 

(Bayesian ANN, load curve) 
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1 69.3 71.1 2.61 6.83  1 72.1 72.3 0.24 0.06  1 76.5 73.4 -3.99 15.91 

2 64.4 64.0 -0.68 0.46  2 65.7 65.5 -0.25 0.06  2 69.9 67.1 -3.94 15.56 

3 63.5 63.7 0.34 0.11  3 66.2 64.6 -2.41 5.82  3 71.3 67.9 -4.77 22.74 

4 62.3 61.6 -1.18 1.40  4 64.8 62.9 -2.96 8.77  4 69.1 65.6 -5.07 25.66 

5 62.2 61.0 -1.99 3.94  5 65.3 62.5 -4.26 18.15  5 69.6 65.3 -6.18 38.17 

6 65.0 63.6 -2.11 4.45  6 66.1 65.1 -1.49 2.23  6 71.0 66.6 -6.17 38.02 

7 67.7 71.2 5.18 26.83  7 68.9 72.1 4.60 21.19  7 73.0 72.7 -0.41 0.17 

8 85.7 87.5 2.05 4.22  8 85.7 88.7 3.51 12.32  8 89.3 90.0 0.74 0.55 

9 91.6 93.6 2.21 4.89  9 90.8 94.4 4.01 16.11  9 94.5 95.3 0.81 0.66 

10 92.6 92.6 0.00 0.00  10 91.3 93.8 2.71 7.35  10 94.4 95.0 0.59 0.35 

11 89.1 90.1 1.12 1.26  11 87.8 89.8 2.28 5.19  11 91.8 94.1 2.51 6.28 

12 90.8 93.3 2.75 7.58  12 88.8 92.5 4.17 17.36  12 93.3 96.9 3.86 14.89 

13 91.6 93.6 2.20 4.86  13 89.9 94.1 4.67 21.83  13 94.2 96.7 2.63 6.91 

14 93.8 91.2 -2.75 7.59  14 91.5 92.4 0.95 0.90  14 94.1 93.5 -0.61 0.37 

15 90.9 93.0 2.26 5.09  15 91.0 94.4 3.74 13.97  15 93.4 95.9 2.64 6.96 

16 85.6 87.4 2.10 4.42  16 86.9 90.3 3.91 15.31  16 87.0 92.4 6.21 38.53 

17 82.7 82.5 -0.23 0.05  17 85.9 83.6 -2.71 7.33  17 85.9 84.6 -1.46 2.13 

18 81.9 83.7 2.21 4.89  18 81.5 84.7 3.93 15.43  18 84.5 85.7 1.41 2.00 

19 78.6 75.7 -3.69 13.64  19 78.7 77.5 -1.50 2.26  19 83.4 79.4 -4.83 23.36 

20 78.2 79.7 1.92 3.68  20 78.0 80.8 3.59 12.89  20 81.2 82.9 2.09 4.38 

21 81.0 78.6 -2.98 8.88  21 79.3 79.8 0.66 0.44  21 81.3 81.1 -0.28 0.08 

22 93.9 93.1 -0.83 0.69  22 95.1 94.2 -0.95 0.91  22 96.5 95.3 -1.28 1.64 

23 88.4 90.7 2.60 6.77  23 90.6 92.6 2.21 4.87  23 91.4 93.9 2.74 7.48 

24 76.6 79.0 3.11 9.65  24 82.5 80.8 -2.11 4.47  24 83.0 82.6 -0.53 0.28 

s2016 132.19  s2017 215.21  s2018 273.05 

stotal = 620.45 

Table 7.2.4. Forecasted load curves (powers in MW) for the period 2016-2018 

 (Bayesian ANN, hourly) 
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1 69.3 71.1 2.54 6.44  1 72.1 73.1 1.45 2.09  1 76.5 75.3 -1.60 2.55 

2 64.4 65.9 2.33 5.45  2 65.7 66.8 1.61 2.60  2 69.9 67.6 -3.26 10.63 

3 63.5 64.3 1.30 1.68  3 66.2 66.7 0.70 0.49  3 71.3 69.1 -3.12 9.74 

4 62.3 63.3 1.55 2.41  4 64.8 65.6 1.22 1.50  4 69.1 68.0 -1.60 2.57 

5 62.2 63.7 2.40 5.78  5 65.3 65.7 0.64 0.42  5 69.6 67.8 -2.58 6.66 

6 65.0 65.4 0.67 0.45  6 66.1 67.3 1.87 3.48  6 71.0 69.3 -2.43 5.89 
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7 67.7 68.2 0.71 0.51  7 68.9 70.1 1.71 2.94  7 73.0 72.0 -1.34 1.78 

8 85.7 85.2 -0.64 0.41  8 85.7 86.9 1.35 1.81  8 89.3 88.6 -0.81 0.66 

9 91.6 90.6 -1.10 1.22  9 90.8 92.1 1.45 2.10  9 94.5 93.7 -0.89 0.79 

10 92.6 91.7 -0.98 0.96  10 91.3 92.7 1.55 2.40  10 94.4 93.7 -0.69 0.48 

11 89.1 88.3 -0.88 0.77  11 87.8 89.7 2.16 4.64  11 91.8 91.1 -0.78 0.60 

12 90.8 89.4 -1.56 2.44  12 88.8 90.7 2.15 4.63  12 93.3 92.1 -1.33 1.77 

13 91.6 90.3 -1.43 2.06  13 89.9 91.7 1.98 3.92  13 94.2 93.1 -1.18 1.39 

14 93.8 92.8 -1.09 1.18  14 91.5 92.9 1.53 2.33  14 94.1 93.0 -1.16 1.34 

15 90.9 90.6 -0.35 0.12  15 91.0 91.8 0.90 0.81  15 93.4 93.1 -0.36 0.13 

16 85.6 85.7 0.16 0.03  16 86.9 86.5 -0.48 0.23  16 87.0 87.2 0.27 0.07 

17 82.7 83.4 0.88 0.77  17 85.9 84.9 -1.22 1.48  17 85.9 86.3 0.47 0.22 

18 81.9 81.4 -0.64 0.41  18 81.5 82.6 1.38 1.91  18 84.5 83.9 -0.72 0.52 

19 78.6 78.0 -0.76 0.57  19 78.7 80.4 2.10 4.42  19 83.4 82.8 -0.77 0.59 

20 78.2 77.8 -0.45 0.20  20 78.0 79.3 1.61 2.59  20 81.2 80.7 -0.64 0.41 

21 81.0 80.4 -0.71 0.51  21 79.3 80.6 1.66 2.74  21 81.3 80.8 -0.61 0.37 

22 93.9 94.2 0.32 0.10  22 95.1 95.3 0.21 0.04  22 96.5 96.3 -0.17 0.03 

23 88.4 88.2 -0.23 0.05  23 90.6 89.9 -0.78 0.60  23 91.4 91.6 0.22 0.05 

24 76.6 78.3 2.28 5.19  24 82.5 80.9 -1.97 3.88  24 83.0 83.5 0.57 0.32 

s2016 39.72  s2017 54.04  s2018 49.57 

stotal = 143.33 
 

  

Figure 7.2.3. Comparative analysis of results for year 2016 

  

Figure 7.2.4. Comparative analysis of results for year 2017 
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Figure 7.2.5. Comparative analysis of results for year 2018 

Table 7.2.5 presents the summarized performance indices for the two forecasting 

methods. 

Table 7.2.5. Comparative value of performance indices 

Method / Performance indices s2016 s2017 s2018 stotal 

Bayesian ANN, load curve 132.19 215.21 273.05 620.45 

Bayesian ANN, hourly 39.72 54.04 49.57 143.33 
 

The comparative analysis of the results obtained with the two forecasting methods 

leads to the following conclusions:  

 the results confirm the observations made in the analysis of the load curves for the 2006-

2015 period, and 2016-2018 respectively; 

 the hourly forecast offers much better results than those obtained with the forecast of the 

overall load curve (global performance index 143 compared to 621), a situation that can 

be explained by the poor correlation of the shape of the load curves; 

 however, comparatively, it can be stated that the hourly forecast manages to "catch" better 

the shape of the load curves for the 2016-2018 period; 

 the analysis of the value of the annual performance indices (s2016, s2017, s2018) highlights 

values of practically the same order of magnitude, however increasing, which means a 

slight alteration of the quality of the forecasts as we move away from the known area. 

 in accordance with the previous conclusions, for the red curves in fig. 7.2.3-7.2.5 (load 

curve overall forecast) there are areas where the difference is relatively larger than the 

blue and green ones (real consumption, respectively the one forecasted with ANN hourly), 

due to the weak correlation of the shape of the load curves. 

The third subchapter is dedicated to 110 kV / m.t. substations from TUN Timisoara. 

For the presentation of the results in detail, 5 significant 110/20 kV substations were selected 

(3 from Timisoara, one from an important city of Timis County and one that supplies an oil 

exploitation): Bucovina, IMT, Musicescu, Deta and Satchinez. At the end of the subchapter, some 

comments and conclusions are highlighted, with a more general or particular character, aiming 

at both the concrete results of the forecasts and the ANN used. Special attention is given to the 

comparison of the results, highlighting the quality of the methods used, assessing the influence 

of the degree of correlation of the load curves on the quality of the predictions made. 

For example, the results of the Bucovina substation are presented, at 9 o'clock on the 

first Wednesday of each month. Figure 7.3.1 shows the data referring the load curves for a 

period of 8 years (2009-2016), used for ANNs training. Figure 7.3.2 shows the data on the 

load curves for the years 2017 and 2018, used to verify the results of the forecasts for the 

respective years. 
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Figure 7.3.1. Load curves for the period 2009-2016 (powers in MW) 

   
Figure 7.3.2. Load curves for the period 2017-2018 (powers in MW) 

The analysis of the results highlights the following conclusions: 

 the 2009-2016 period shows a general downward trend in consumption in the first 4 years, 

followed by an increase in the next 4 years; 

 for 2017-2018 the general trend is upward (except March and August);  

 the shape of the curves is quite different, with many "intersections"; 

 consequently, the degree of correlation of the load curves is relatively low, both in terms 

of evolution over time ("vertical") and shape over a year ("horizontal"); 

 if we consider all the analyses in this subchapter, the present case is, from this point of 

view, in the middle area. 

The results are presented in graphic form (as a comparison for the two methods used) 

in figure 7.3.3 (year 2017) and figure 7.3.4 (year 2018). 

Table 7.3.5 summarized the performance indices for the two forecasting methods. 

  

Figure 7.3.3. Comparative analysis of results  

for year 2017 

Figure 7.3.4. Comparative analysis of results  

for year 2018 
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Table 7.3.5. Comparative value of performance indices 

Method / Performance indices s2017 s2018 stotal 

Bayesian ANN, load curve 34,04 43,58 77,62 

Bayesian ANN, monthly 12,73 18,14 30,87 
 

The comparative analysis of the obtained results highlights the following conclusions: 

 the results confirm the observations from the analysis of the load curves; 

 the monthly forecast leads to significantly better results than that of the overall load curve 

(overall performance index 30, compared to 77), which can be explained by the relatively 

poor correlation of the shape of the load curves; 

 however, in comparison, it can be stated that the monthly forecast (green curve) manages 

to better "catch" the shape of the real load curves (blue curve); 

 the annual performance indices (s2017, s2018) have values of the same order of magnitude, 

slightly higher than those for 2018 (compared to 2017). 

Chapter 8 includes the general conclusions of the thesis and the presentation of the 

original contributions, as well as highlighting the directions and perspectives offered by the PhD 

thesis for the continuation and extension of research and application of results and experience. 

The elaborated methodologies and calculation programs are of general applicability, constituting 

an efficient working tool for the distribution and transmission operators, for the economic 

agents with preoccupations in the field of electricity consumption and production. 

The Electronic Appendices comprise a series of elements and detailed results related 

to the case studies presented in the PhD thesis. 

The obtained results were and will be capitalized through scientific research and technical 

assistance contracts carried out by the Research Center for Analysis and Optimization of 

Electric Power System within Politehnica University of Timișoara, the beneficiaries being 

Enel Distribution Banat and Dobrogea, Electrica Muntenia Nord , Delgaz Grid Iasi (important 

electricity distribution operators in Romania) and economic entities with concerns in the field 

of implementation of renewable energy resources [UPT 2017], [UPT2018], [UPT2019], [UPT 

2020a], [UPT 2020b]. 

The activity of preliminary training of the PhD student and the results obtained during the 

elaboration of the paper were capitalized by 5 ISI indexed papers (2 in journals, 3 in conference 

volumes) [Bucerzan2010], [Crăciun2013], [Bărbulescu2018], [Crăciun2018a], [Csorba2018], 

2 papers indexed in other international databases (BDI) (1 in the journal, 1 in a conference 

volume, being indexed by ISI) [Crăciun2017], [Bărbulescu2021] and 2 scientific reports. 

The theoretical analyses performed in this PhD thesis, as well as the practical results 

obtained, open a series of clear perspectives for further and in-depth research both in the field 

of forecasting electrical energy consumption and load curves and in terms of use BN to solve 

other problems in the field of electric power systems engineering: 

 refining solution methods based on the use of BNNs, in order to increase efficiency and 

improve their performance; 

 correlating the history of consumption evolution with a series of other factors (climatic, 

economic, the degree of implementation of renewable sources), as far as it is possible; 

 the use of BNNs in forecasting studies related to renewable sources (power or energy 

generated, wind speed for wind farms, irradiance for photovoltaics, etc.); 

 elaboration of methods to eliminate or correct some obviously erroneous data in the  

consumption history; 

 the use of BNs in studies related to the reliability of electricity transmission and distribution 

networks, of the PS as a whole, PS state estimation, PS stability, diagnosing and locating 

faults in electrical networks, transformers, generators, etc. 
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