
CĂLIN-ADRIAN POPA

Complex- and hypercomplex-valued
neural networks

Habilitation thesis

Timis, oara, 2021



To my family



Contents

Abstract 9

Rezumat 11

1 An overview of scientific, professional, and academic results 13
1.1 Scientific and professional results . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Academic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Learning algorithms for quaternion-valued neural networks 21
2.1 The HR calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Enhanced gradient descent algorithms . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Quickprop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.2 Resilient backpropagation . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.3 Delta-bar-delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.4 SuperSAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Conjugate gradient algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Scaled conjugate gradient method . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Quasi-Newton learning methods . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 Levenberg-Marquardt learning algorithm . . . . . . . . . . . . . . . . . . . . . 33
2.7 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7.1 Linear autoregressive process with circular noise . . . . . . . . . . . . 36
2.7.2 3D Lorenz system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.7.3 4D Saito chaotic circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Complex-valued deep learning 41
3.1 Complex-valued convolutional neural networks . . . . . . . . . . . . . . . . . 41

3.1.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.2.1 MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.2.2 CIFAR-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Fourier transform-based complex-valued convolutional neural networks . . . . 46
3.2.1 The Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2.1 MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2.2 SVHN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2.3 CIFAR-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Deep hybrid real–complex-valued convolutional neural networks . . . . . . . . 50
3.3.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5



6 Contents

3.3.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.2.1 SVHN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.2.2 CIFAR-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.2.3 CIFAR-100 . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Complex-valued stacked denoising autoencoders . . . . . . . . . . . . . . . . 54
3.4.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.2.1 MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.2.2 FashionMNIST . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Complex-valued deep belief networks . . . . . . . . . . . . . . . . . . . . . . 57
3.5.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Complex-valued deep Boltzmann machines . . . . . . . . . . . . . . . . . . . 62
3.6.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.6.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6.2.1 MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.6.2.2 FashionMNIST . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Dynamics of complex-valued neural networks (CVNNs) 73
4.1 µ-Stability of neutral-type impulsive BAM CVNNs with leakage delay and un-

bounded time-varying delays . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.1.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.1.2 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Dynamics of quaternion-valued neural networks (QVNNs) 93
5.1 Multistability and multiperiodicity in impulsive hybrid QVNNs with mixed delays 93

5.1.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.1.1.1 Multistability analysis . . . . . . . . . . . . . . . . . . . . . 98
5.1.1.2 Multiperiodicity analysis . . . . . . . . . . . . . . . . . . . 106

5.1.2 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Dynamics of octonion-valued neural networks (OVNNs) 119
6.1 Octonion-valued feedforward neural networks . . . . . . . . . . . . . . . . . . 120

6.1.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.1.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.1.2.1 Synthetic function approximation problem I . . . . . . . . . 124
6.1.2.2 Synthetic function approximation problem II . . . . . . . . . 124
6.1.2.3 Linear time series prediction . . . . . . . . . . . . . . . . . 124

6.2 Octonion-valued bidirectional associative memories . . . . . . . . . . . . . . . 125
6.2.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 Asymptotic stability for OVNNs with delay . . . . . . . . . . . . . . . . . . . 129
6.3.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.2 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.4 Exponential stability for OVNNs with delay . . . . . . . . . . . . . . . . . . . 135
6.4.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.4.2 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5 Asymptotic stability of delayed OVNNs with leakage delay . . . . . . . . . . . 138
6.5.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.5.2 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141



Contents 7

6.6 Exponential stability of neutral-type OVNNs with time-varying delays . . . . . 141
6.6.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.6.2 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.7 Exponential stability of OVNNs with leakage delay and mixed delays . . . . . 156
6.7.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.7.2 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7 Dynamics of matrix-valued neural networks (MVNNs) 169
7.1 Matrix-valued Hopfield neural networks . . . . . . . . . . . . . . . . . . . . . 170

7.1.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.2 Matrix-valued bidirectional associative memories . . . . . . . . . . . . . . . . 173

7.2.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.3 Asymptotic stability for MVNNs with delay . . . . . . . . . . . . . . . . . . . 176

7.3.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.3.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.3.3 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.4 Exponential stability for MVNNs with delay . . . . . . . . . . . . . . . . . . . 184
7.4.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.4.2 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.5 Exponential stability of BAM MVNNs with time-varying delays . . . . . . . . 187
7.5.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.5.2 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.6 Dissipativity of impulsive MVNNs with leakage delay and mixed delays . . . . 192
7.6.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.6.2 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.7 Lie algebra-valued neural networks . . . . . . . . . . . . . . . . . . . . . . . . 204
7.7.1 Lie algebra-valued Hopfield neural networks . . . . . . . . . . . . . . 204
7.7.2 Lie algebra-valued bidirectional associative memories . . . . . . . . . 208

8 Scientific, professional, and academic development plan 211
8.1 Scientific and professional development plan . . . . . . . . . . . . . . . . . . 211
8.2 Academic development plan . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
8.3 Research infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Bibliography 217





Abstract

This habilitation thesis presents the most important scientific, professional, and academic achieve-
ments of its author, starting from May 29th, 2015, when the author defended his PhD thesis
entitled “Learning algorithms for Clifford neural networks”, at the Politehnica University of
Timis, oara.

In this period, the author elaborated 29 papers, all as first author, out of which 6 were journal
papers, published in high impact academic journals, and 23 were conference papers, published
at premiere conferences in the field of artificial intelligence, more precisely of neural networks.
The author was also the director of two research grants won by competition.

The author began his academic career in October 2015 as a Teaching Assistant, then pro-
moted to Assistant Professor in October 2016, and from October 2019, he is an Associate
Professor at the Department of Computers and Information Technology, at the Politehnica Uni-
versity of Timis, oara. He updated the course and/or the laboratory for 4 courses, and introduced
4 new courses at the Master of Machine Learning, for which he is the program coordinator. He
was also the coordinator for over 70 Bachelor’s theses, over 20 Master’s theses, and is a member
of the guidance commission for 7 doctoral students.

All these achievements are presented in detail in Chapter 1 of the thesis.
The scientific research of the author continued in the domain of complex- and hypercomplex-

valued neural networks, extending from the feedforward neural networks discussed in the PhD
thesis, to more general neural networks models belonging to the deep learning paradigm, like
convolutional neural networks, stacked denoising autoencoders, deep belief networks, deep
Boltzmann machines, and especially recurrent neural networks, more specifically Hopfield
networks and bidirectional associative memories, for which different dynamic properties were
studied.

Chapter 2 presents a somewhat direct continuation of the work done in the PhD thesis. It
presents learning algorithms for quaternion-valued neural networks, but deduced in a different
way than that in the PhD thesis of the author, using the recently introduced HR calculus. The
algorithms discussed are: enhanced gradient descent algorithms, conjugate gradient algorithms,
scaled conjugate gradient method, quasi-Newton learning methods, and Levenberg-Marquardt
learning algorithm. The chapter summarizes 5 conference papers and 1 journal paper of the
author.

Then, Chapter 3 is dedicated to summarizing 6 conference papers of the author, and aims
to extend deep learning-specific algorithms to the complex domain. As such, complex-valued
convolutional neural networks are introduced, a variant based on the Fourier transform, and
a hybrid real–complex-valued variant of these networks. The classical deep learning models
stacked denoising autoencoders, deep belief networks, and deep Boltzmann machines were
extended to the complex-valued domain next.

Chapters 4 and 5 are each based on 1 journal paper of the author, and mark the transition to
the study of dynamic properties for complex- and hypercomplex-valued neural networks (more
precisely, quaternion-valued neural networks in this case). The analysis of the dynamic prop-

9



10 Contents

erties of neural networks is a research field in its own right, with hundreds of papers appearing
each year in this domain. The extension to multidimensional neural networks of this field is
rather recent, and has gained increasing interest in the last few years.

Dynamic properties of octonion-valued neural networks are discussed in Chapter 6, which
is based on 5 conference papers and 2 journal papers of the author. The domain of octonion-
valued neural networks were introduced by the author in a paper summarized in the first sec-
tion of Chapter 6. Then, the author introduced Hopfield networks and bidirectional associative
memories with octonion values, which are the subject of the next two sections. The asymptotic
and exponential stability properties of octonion-valued Hopfield neural networks with different
types of delays are discussed in the rest of the chapter.

Matrix-valued neural networks were also introduced by the author in his PhD thesis. Chapter
7 presents the Hopfield and bidirectional associative memory variants of these networks, for
which the asymptotic and exponential stability and dissipativity properties were analyzed. The
contents of the chapter is based on 7 conference papers and 1 journal paper of the author.
A special type of matrix-valued neural networks, Lie algebra-valued neural networks, were
also first formulated by the author. As such, the last section of Chapter 7 introduces Hopfield
networks and bidirectional associative memories with Lie algebraic values.

Lastly, the thesis ends with Chapter 8, which sketches the scientific, professional, and aca-
demic future work plans of the author.



Rezumat

Această teză de abilitare prezintă cele mai importante realizări s, tiint,ifice, profesionale s, i aca-
demice ale autorului ei, începând cu 29 mai 2015, când autorul s, i-a sust,inut teza de doctorat
intitulată „Algoritmi de învăt,are pentru ret,ele neuronale Clifford”, la Universitatea Politehnica
Timis, oara.

În această perioadă, autorul a elaborat 29 de articole, toate în calitate de prim autor, dintre
care 6 au fost articole de jurnal, publicate în jurnale academice cu un factor de impact mare s, i
23 au fost articole de conferint, ă, publicate la conferint,e de prim rang în domeniul inteligent,ei
artificiale, mai precis al ret,elelor neuronale. Autorul a fost, de asemenea, directorul a două
proiecte de cercetare câs, tigate prin competit,ie.

Autorul s, i-a început cariera academică în octombrie 2015 ca asistent, apoi a promovat ca
s, ef de lucrări în octombrie 2016, iar din octombrie 2019 este conferent,iar la Departamentul de
Calculatoare s, i Tehnologia Informat,iei, la Universitatea Politehnica Timis, oara. El a actualizat
cursul s, i/sau laboratorul pentru 4 cursuri s, i a introdus 4 noi cursuri la Master of Machine Lear-
ning, pentru care este coordonatorul programului. De asemenea, a fost coordonatorul a peste 70
de teze de licent, ă, peste 20 de teze de masterat s, i este membru al comisiei de îndrumare pentru
7 doctoranzi.

Toate aceste realizări sunt prezentate în detaliu în Capitolul 1 al tezei.
Cercetarea s, tiint,ifică a autorului a continuat în domeniul ret,elelor neuronale cu valori com-

plexe s, i hipercomplexe, extinzându-se de la ret,elele neuronale feedforward discutate în teza de
doctorat, la modele mai generale de ret,ele neuronale apart,inând paradigmei de învăt,are pro-
fundă, cum ar fi ret,elele neuronale convolut,ionale, stacked denoising autoencoders, deep belief
networks, deep Boltzmann machines, s, i în special ret,ele neuronale recurente, mai precis ret,ele
Hopfield s, i bidirectional associative memories, pentru care au fost studiate diferite proprietăt,i
dinamice.

Capitolul 2 prezintă o continuare oarecum directă a muncii efectuate în teza de doctorat.
Prezintă algoritmi de învăt,are pentru ret,ele neuronale cu valori cuaternionice, dar deduse într-
un mod diferit de cel din teza de doctorat a autorului, utilizând calculul HR, recent introdus.
Algoritmii discutat,i sunt: algoritmi gradient descent îmbunătăt,it,i, algoritmi bazat,i pe gradient,i
conjugat,i, metoda gradientului conjugat scalat, metode de învăt,are cvasi-Newton s, i algoritmul
de învăt,are Levenberg-Marquardt. Capitolul rezumă 5 articole de conferint, ă s, i 1 articol de
jurnal ale autorului.

Apoi, capitolul 3 este dedicat rezumării a 6 articole de conferint, ă ale autorului s, i îs, i propune
să extindă algoritmii specifici învăt, ării profunde la domeniul complex. Ca atare, sunt introduse
ret,ele neuronale convolut,ionale cu valori complexe, o variantă bazată pe transformata Fourier
s, i o variantă hibridă cu valori complexe s, i valori reale ale acestor ret,ele. Modelele clasice
de învăt,are profundă stacked denoising autoencoders, deep belief networks s, i deep Boltzmann
machines au fost extinse la domeniul complex.

Capitolele 4 s, i 5 se bazează fiecare pe câte 1 articol de jurnal al autorului s, i marchează
tranzit,ia către studiul proprietăt,ilor dinamice pentru ret,ele neuronale cu valori complexe s, i

11



12 Contents

hipercomplexe (mai exact, ret,ele neuronale cu valori cuaternionice în acest caz). Analiza
proprietăt,ilor dinamice ale ret,elelor neuronale este un domeniu de cercetare în sine, cu sute
de articole care apar în fiecare an în acest domeniu. Extinderea la ret,elele neuronale multidi-
mensionale în acest domeniu este destul de recentă s, i a câs, tigat un interes crescând în ultimii
ani.

Proprietăt,ile dinamice ale ret,elelor neuronale cu valori octonionice sunt discutate în capito-
lul 6, care se bazează pe 5 articole de conferint, ă s, i 2 articole de jurnal ale autorului. Domeniul
ret,elelor neuronale cu valori octonionice a fost introdus de autor într-o lucrare rezumată în
prima sect,iune a capitolului 6. Apoi, autorul a introdus ret,ele Hopfield s, i bidirectional associa-
tive memories cu valori octonionice, care fac obiectul următoarelor două sect,iuni. Proprietăt,ile
de stabilitate asimptotică s, i exponent,ială ale ret,elelor neuronale Hopfield cu valori octonionice
cu diferite tipuri de întârzieri sunt discutate în restul capitolului.

Ret,elele neuronale cu valori matriciale au fost, de asemenea, introduse de autor în teza
sa de doctorat. Capitolul 7 prezintă variantele Hopfield s, i bidirectional associative memory ale
acestor ret,ele, pentru care au fost analizate proprietăt,ile de stabilitate asimptotică s, i exponent,ială
s, i de disipativitate. Cont,inutul capitolului se bazează pe 7 articole de conferint, ă s, i 1 articol de
jurnal ale autorului. Un tip special de ret,ele neuronale cu valori matriciale, ret,elele neuronale cu
valori în algebre Lie, au fost, de asemenea, formulate pentru prima dată de către autor. Astfel,
ultima sect,iune a capitolului introduce ret,ele Hopfield s, i bidirectional associative memories cu
valori în algebre Lie.

În cele din urmă, teza se încheie cu capitolul 8, care schit,ează planurile de lucru s, tiint,ifice,
profesionale s, i academice viitoare ale autorului.



Chapter 1

An overview of scientific, professional, and
academic results

1.1 Scientific and professional results
This thesis presents the scientific achievements of its author, starting from the spring of 2015,
when the author presented his PhD thesis entitled “Learning algorithms for Clifford neural
networks”, which was defended in May 29th, 2015, at the Politehnica University of Timis, oara.

The scientific research of the author continued in the domain of complex- and hypercomplex-
valued neural networks, extending from the feedforward neural networks discussed in the PhD
thesis, to more general neural networks models belonging to the deep learning paradigm, like
convolutional neural networks, stacked denoising autoencoders, deep belief networks, deep
Boltzmann machines, and especially recurrent neural networks, more specifically Hopfield
networks and bidirectional associative memories, for which different dynamic properties were
studied.

The journal papers on which this thesis is based are, in order of appearance:

1. C.-A. Popa. Learning Algorithms for Quaternion-Valued Neural Networks. Neural Pro-
cessing Letters. September 2017. (Impact factor 2.891, Q2) [164]

2. C.-A. Popa and E. Kaslik. Multistability and multiperiodicity in impulsive hybrid quaternion-
valued neural networks with mixed delays. Neural Networks. December 2017. (Impact
factor 5.535, Q1) [176]

3. C.-A. Popa. Global Exponential Stability of Neutral-Type Octonion-Valued Neural Net-
works with Time-Varying Delays. Neurocomputing. May 2018. (Impact factor 4.438,
Q1) [166]

4. C.-A. Popa. Global Exponential Stability of Octonion-Valued Neural Networks with
Leakage Delay and Mixed Delays. Neural Networks. June 2018. (Impact factor 5.535,
Q1) [167]

5. C.-A. Popa. Global µ-Stability of Neutral-Type Impulsive Complex-Valued BAM Neural
Networks with Leakage Delay and Unbounded Time-Varying Delays. Neurocomputing.
September 2019. (Impact factor 4.438, Q1) [173]

6. C.-A. Popa. Dissipativity of impulsive matrix-valued neural networks with leakage delay
and mixed delays. Neurocomputing. March 2020. (Impact factor 4.438, Q1) [174]

13



14 1. An overview of scientific, professional, and academic results

The impact factor of each journal is given according to Journal Citation Reports, published
by Clarivate Analytics (former ISI) in 2020. Also given is the quartile of each journal in the
domain of Computer Science, Artificial Intelligence. As can be seen, the contributions of the
author were published at premiere neural networks journals, having high impact factors:

• 2 papers in Neural Networks (Impact factor 5.535, Q1), which is the official journal of
the International Neural Network Society (INNS),

• 3 papers in Neurocomputing (Impact factor 4.438, Q1),

• 1 paper in Neural Processing Letters (Impact factor 2.891, Q2).

The conference papers on which the thesis is based are, with two exceptions, all indexed in
Clarivate Analytics Web of Science (former ISI Web of Science). In order of appearance, the
conference papers are:

1. C.-A. Popa. Lie Algebra-Valued Hopfield Neural Networks. International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). September 2015,
Timis, oara, Romania. (Rank C, ISI) [148]

2. C.-A. Popa. Conjugate Gradient Algorithms for Quaternion-Valued Neural Networks.
International Conference on Soft Computing (MENDEL). June 2016, Brno, Czech Re-
public. (Unranked, pending ISI indexing, previous editions were indexed) [154]

3. C.-A. Popa. Lie Algebra-Valued Bidirectional Associative Memories. International Con-
ference on Soft Computing (MENDEL). June 2016, Brno, Czech Republic. (Unranked,
pending ISI indexing, previous editions were indexed) [163]

4. C.-A. Popa. Matrix-Valued Hopfield Neural Networks. International Symposium on Neu-
ral Networks (ISNN). July 2016, Saint Petersburg, Russia. (Rank C, ISI) [152]

5. C.-A. Popa. Enhanced Gradient Descent Algorithms for Quaternion-Valued Neural Net-
works. International Workshop on Soft Computing Applications (SOFA). August 2016,
Arad, Romania. (Rank C, ISI) [165]

6. C.-A. Popa. Matrix-Valued Bidirectional Associative Memories. International Workshop
on Soft Computing Applications (SOFA). August 2016, Arad, Romania. (Rank C, ISI)
[172]

7. C.-A. Popa. Octonion-Valued Neural Networks. International Conference on Artificial
Neural Networks (ICANN). September 2016, Barcelona, Spain. (Rank B, ISI) [149]

8. C.-A. Popa. Levenberg-Marquardt Learning Algorithm for Quaternion-Valued Neural
Networks. International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC). September 2016, Timis, oara, Romania. (Rank C, ISI) [150]

9. C.-A. Popa. Scaled Conjugate Gradient Learning for Quaternion-Valued Neural Net-
works. International Conference on Neural Information Processing (ICONIP). October
2016, Kyoto, Japan. (Rank A, ISI) [151]

10. C.-A. Popa. Global Asymptotic Stability for Matrix-Valued Recurrent Neural Networks
with Time Delays. International Joint Conference on Neural Networks (IJCNN). May
2017, Anchorage, Alaska, USA. (Rank A, ISI) [160]



1. An overview of scientific, professional, and academic results 15

11. C.-A. Popa. Complex-Valued Convolutional Neural Networks for Real-Valued Image
Classification. International Joint Conference on Neural Networks (IJCNN). May 2017,
Anchorage, Alaska, USA. (Rank A, ISI) [153]

12. C.-A. Popa. Octonion-Valued Bidirectional Associative Memories. International Joint
Conference on Neural Networks (IJCNN). May 2017, Anchorage, Alaska, USA. (Rank
A, ISI) [156]

13. C.-A. Popa. Exponential Stability for Delayed Octonion-Valued Recurrent Neural Net-
works. International Work-Conference on Artificial Neural Networks (IWANN). June
2017, Cadiz, Spain. (Rank B, ISI) [158]

14. C.-A. Popa. Quasi-Newton Learning Methods for Quaternion-Valued Neural Networks.
International Work-Conference on Artificial Neural Networks (IWANN). June 2017, Cadiz,
Spain. (Rank B, ISI) [155]

15. C.-A. Popa. Global Asymptotic Stability for Octonion-Valued Neural Networks with De-
lay. International Symposium on Neural Networks (ISNN). June 2017, Sapporo, Hokkaido,
Japan. (Rank C, ISI) [157]

16. C.-A. Popa. Global Exponential Stability for Matrix-Valued Neural Networks with Time
Delay. International Symposium on Neural Networks (ISNN). June 2017, Sapporo, Hokkaido,
Japan. (Rank C, ISI) [161]

17. C.-A. Popa. Asymptotic Stability of Delayed Octonion-Valued Neural Networks with
Leakage Delay. International Conference on Neural Information Processing (ICONIP).
November 2017, Guangzhou, China. (Rank A, ISI) [159]

18. C.-A. Popa. Exponential Stability of Matrix-Valued BAM Neural Networks with Time-
Varying Delays. International Conference on Neural Information Processing (ICONIP).
November 2017, Guangzhou, China. (Rank A, ISI) [162]

19. C.-A. Popa and C. Cernăzanu-Glăvan. Fourier Transform-Based Image Classification
Using Complex-Valued Convolutional Neural Networks. International Symposium on
Neural Networks (ISNN). June 2018, Minsk, Belarus. (Rank A, ISI) [175]

20. C.-A. Popa. Complex-Valued Deep Belief Networks. International Symposium on Neural
Networks (ISNN). June 2018, Minsk, Belarus. (Rank C, ISI) [170]

21. C.-A. Popa. Complex-Valued Stacked Denoising Autoencoders. International Sympo-
sium on Neural Networks (ISNN). June 2018, Minsk, Belarus. (Rank C, ISI) [169]

22. C.-A. Popa. Complex-Valued Deep Boltzmann Machines. International Joint Conference
on Neural Networks (IJCNN). July 2018, Rio de Janeiro, Brazil, Brazil. (Rank A, ISI)
[171]

23. C.-A. Popa. Deep Hybrid Real-Complex-Valued Convolutional Neural Networks for Im-
age Classification. International Joint Conference on Neural Networks (IJCNN). July
2018, Rio de Janeiro, Brazil, Brazil. (Rank A, ISI) [168]

The rank of each conference is given according to the Australian Research Council Conference
Rankings. As can be seen, the contributions of the author were published at premiere neural
networks conferences:



16 1. An overview of scientific, professional, and academic results

• 5 papers at International Joint Conference on Neural Networks – IJCNN (Rank A, ISI),
which is the official conference of the International Neural Network Society (INNS),

• 3 papers at International Conference on Neural Information Processing – ICONIP (Rank
A, ISI), which is the official conference of the Asia Pacific Neural Network Society
(APNNS),

• 1 paper at International Conference on Artificial Neural Networks – ICANN (Rank B,
ISI), which is the official conference of the European Neural Network Society (ENNS),

• 2 papers at International Work-Conference on Artificial Neural Networks – IWANN
(Rank B, ISI),

• 6 papers at International Symposium on Neural Networks – ISNN (Rank C, ISI),

• 2 papers at International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing – SYNASC (Rank C, ISI),

• 2 papers at International Workshop on Soft Computing Applications – SOFA (Rank C,
ISI),

• 2 papers at International Conference on Soft Computing (MENDEL).

Out of the 29 journal and conference papers, the author was single author for 27 of them,
and the first author of all of them.

The author, due to the participation at the above-mentioned conferences, is a member of
International Neural Network Society (INNS), Asia Pacific Neural Network Society (APNNS),
and European Neural Network Society (ENNS).

The venues which accepted the papers of the author show that the ideas proposed in the
respective papers were well regarded by the academic community in the domain of neural net-
works.

Also as a recognition of the scientific activity of the author, he was invited to review for the
following journals:

1. IEEE Transactions on Cybernetics (IEEE, ISI Impact factor 11.079, Q1)

2. IEEE Transactions on Systems, Man, and Cybernetics: Systems (IEEE, ISI Impact factor
9.309, Q1)

3. IEEE Transactions on Neural Networks and Learning Systems (IEEE, ISI Impact factor
8.793, Q1)

4. Automation in Construction (ScienceDirect, ISI Impact factor 5.669, Q1)

5. Neural Newtorks (ScienceDirect, ISI Impact factor 5.535, Q1)

6. Expert Systems with Applications (ScienceDirect, ISI Impact factor 5.452, Q1)

7. IEEE Transactions on Network Science and Engineering (ScienceDirect, ISI Impact fac-
tor 5.213, Q1)

8. Nonlinear Dynamics (SpringerLink, ISI Impact factor 4.867, Q1)

9. Neurocomputing (ScienceDirect, ISI Impact factor 4.438, Q1)



1. An overview of scientific, professional, and academic results 17

10. IEEE Transactions on Biomedical Engineering (IEEE, ISI Impact factor 4.424, Q1)

11. Engineering Applications of Artificial Intelligence (ScienceDirect, ISI Impact factor 4.201,
Q1)

12. Journal of The Franklin Institute (ScienceDirect, ISI Impact factor 4.036, Q1)

13. International Journal of Machine Learning and Cybernetics (SpringerLink, ISI Impact
factor 3.753, Q1)

14. IEEE Access (IEEE, ISI Impact factor 3.745 , Q1)

15. Applied Mathematical Modelling (ScienceDirect, ISI Impact factor 3.633, Q1)

16. Computer Methods and Programs in Biomedicine (ScienceDirect, ISI Impact factor 3.632,
Q1)

17. International Journal of Electrical Power and Energy Systems (ScienceDirect, ISI Impact
factor 3.588, Q1)

18. Applied Mathematics and Computation (ScienceDirect, ISI Impact factor 3.472, Q1)

19. Fuzzy Sets and Systems (ScienceDirect, ISI Impact factor 3.305, Q1)

20. Sensors (MDPI, ISI Impact factor 3.275, Q1)

21. Neural Processing Letters (SpringerLink, ISI Impact factor 2.891, Q2)

22. Asian Journal of Control (Wiley Online Library, ISI Impact factor 2.779, Q2)

23. International Journal of Control, Automation and Systems (SpringerLink, ISI Impact fac-
tor 2.733, Q2)

24. Symmetry (MDPI, ISI Impact factor 2.645, Q2)

25. Neural Computation (MIT Press Journals, ISI Impact factor 2.505, Q2)

26. Complexity (Hindawi, ISI Impact factor 2.462, Q2)

27. Metals (MDPI, ISI Impact factor 2.117, Q1)

28. Mathematics (MDPI, ISI Impact factor 1.747, Q1)

29. Arabian Journal for Science and Engineering (SpringerLink, ISI Impact factor 1.711, Q3)

30. Mathematical Methods in the Applied Sciences (Wiley Online Library, ISI Impact factor
1.626, Q2)

31. Mathematics and Computers in Simulation (ScienceDirect, ISI Impact factor 1.620, Q2)

32. Journal of Difference Equations and Applications (Taylor & Francis Online, ISI Impact
factor 1.162, Q3)

33. Acta Applicandae Mathematicae (SpringerLink, ISI Impact factor 0.974, Q3)



18 1. An overview of scientific, professional, and academic results

34. Numerical Functional Analysis and Optimization (Taylor & Francis Online, ISI Impact
factor 0.896, Q3)

35. AIMS Mathematics (AIMS Press, ISI Impact factor 0.882, Q3)

and for the conference

1. International Joint Conference on Neural Networks (IJCNN) (IEEE, ISI).

The impact factor of each journal is given according to Journal Citation Reports, published by
Clarivate Analytics (former ISI) in 2020. Also, the publisher of the journal is indicated, and the
most favorable quartile placement according to Journal Citation Reports. As can be seen, the
author is reviewer to very high impact factor journals, out of which 22 are in the Q1 quartile, 8
are in the Q2 quartile and 5 are in the Q3 quartile.

Although the domain of the research is rather new, and the majority of the papers appeared
starting late 2015, they have 111 citations in Clarivate Analytics Web of Science (former ISI)
journals and conferences, and 17 citations in other international databases, not counting the ci-
tations by the author or coauthors. The Hirsch Index of the author according to Web of Science
is 6, according to Scopus is 8, and according to Google Scholar is 9. Based on his research re-
sults and publication record, the author has recently been promoted to the position of Associate
Professor at the Politehnica University of Timis, oara (October 2019), after being a Teaching As-
sistant for just one year (between October 2015 and October 2016), and an Assistant Professor
(Lecturer) for three years (between October 2016 and October 2019).

The author received the „Excellence in Research” Prize for outstanding results obtained
in the academic year 2017–2018, awarded by the Politehnica University of Timis, oara in 2018.
He also received the „Eminent Researcher” Prize, awarded by the „Orizonturi Universitare”
Association in 2019.

The author was also director for two research projects won by competition:

1. Project PCD-TC-2017-41, „Complex-valued deep neural networks”, Director C.-A. Popa,
awarded by the Politehnica University of Timis, oara, Budget 46500 RON (10000 EUR).
Members: Cosmin Cernăzanu-Glăvan. The results of the project are:

• 5 ISI conference papers — 2 Rank A, 3 Rank C conferences

• 1 ISI journal paper — Q1 quartile

• buying 2 high-performance computers with 2 GPUs for training neural networks.

2. Project „Bayesian Deep Learning for Depth Estimation with Application to 3D Object
Detection”, Director C.-A. Popa, awarded by Continental Automotive România S.R.L.,
Budget 48089.49 RON (10010.88 EUR). Members: Daniela-Ana Rusu, Petra Csereoka.
The results of the project are to be included in one paper which is under development.

Both projects involved one or more team members besides the author, which proves the
capacity of the author to coordinate research teams.

1.2 Academic results
The author introduced the following courses and laboratories at the Computers and Informa-
tion Technology Department from the Politehnica University of Timis, oara:



1. An overview of scientific, professional, and academic results 19

1. Computer Assisted Mathematics, 1st Year Bachelor’s Computers – in Romanian

• C.-A. Popa. Computer Assisted Mathematics Course Notes (in Romanian), 259
pages, 2017

• C.-A. Popa. Computer Assisted Mathematics Laboratory in MATLAB (in Roma-
nian), 65 pages, 2017

2. Modeling and Simulation, 4th Year Bachelor’s Computers – in English

• C.-A. Popa. Modeling and Simulation Course Notes (in English), 219 pages, 2015

• C.-A. Popa. Modeling and Simulation Laboratory in AnyLogic (in English), 305
pages, 2015

3. Image Processing and Recognition, 1st Year Master’s Computer Engineering (discontin-
ued from the Master’s and moved to 4th Year Bachelor’s Computers – in English)

• C.-A. Popa. Image Processing and Recognition Course Notes (in English), 184
pages, 2016

• C.-A. Popa. Image Processing and Recognition Laboratory in MATLAB (in En-
glish), 151 pages, 2016

4. Graphics and Human-Computer Interfaces, 3rd Year Bachelor’s Computers – in English

• C.-A. Popa. Computer Graphics Laboratory in OpenGL ES 1.x (in English), 135
pages, 2016

5. Deep Learning, 1st Year Master’s Machine Learning

• C.-A. Popa. Deep Learning Course Notes (in English), 2020

6. Research Topics in Machine Learning, 1st Year Master’s Machine Learning

• C.-A. Popa. Research Topics in Machine Learning Course Notes (in English), 2020

7. Reinforcement Learning, 1st Year Master’s Machine Learning

• C.-A. Popa. Reinforcement Learning Course Notes (in English), 2021

8. Autonomous Driving, 2nd Year Master’s Machine Learning

• C.-A. Popa. Autonomous Driving Course Notes (in English), pending fall 2021

The recognition of the fact that the author is an expert in the domain of machine learning
by his colleagues is manifested in that he was named program coordinator for the Master’s
of Machine Learning, which was introduced for the first time at the Politehnica University of
Timis, oara starting from the fall of 2020. The main attributions were deciding upon a curriculum
for the new master’s program, and developing the file needed for the accreditation of the new
master’s program.

The author was the coordinator of an increasing number of students for the development
of their Bachelor’s and Master’s theses, as follows:

• 5 students for Bachelor’s thesis in 2016,



20 1. An overview of scientific, professional, and academic results

• 5 students for Bachelor’s thesis in 2017,

• 1 student for Bachelor’s thesis, 8 students for Master’s thesis in 2018,

• 15 students for Bachelor’s thesis, 6 students for Master’s thesis in 2019,

• 21 students for Bachelor’s thesis, 3 students for Master’s thesis in 2020,

• 26 students for Bachelor’s thesis, 8 students for Master’s thesis in 2021 (pending).

Also, the author is in the Guidance Commission for 7 Doctorate students.
These facts are proof of the capacity of the author to coordinate Bachelor’s, Master’s, and

Doctoral students into doing research in the domain of machine learning, and highlight again
the author’s capacity to coordinate research teams.

As a recognition of his good relation with the students and as a token of their appreciation,
the author received the „Profesor Bologna” Distinction in 2017, awarded by the National
Association of Student Organizations in Romania (ANOSR), at the recommendation of the
Liga AC Student Association from the Faculty of Automation and Computers at the Politehnica
University of Timis, oara.



Chapter 2

Learning algorithms for
quaternion-valued neural networks

The domain of quaternion-valued neural networks has received an increasing interest over the
last few years. Some popular applications of these networks include chaotic time-series predic-
tion [7], color image compression [89], color night vision [104], polarized signal classification
[22], and 3D wind forecasting [92, 213, 214].

Some signals in the 3D and 4D domains can be more naturally expressed in quaternion-
valued form. Thus, these networks appear as a natural choice for solving problems such as time
series prediction. Several methods have been proposed to increase the efficiency of learning in
quaternion-valued neural networks. These methods include different network architectures and
different learning algorithms, some of which are specially designed for this type of networks,
while others are extended from the real-valued case.

One of the simplest classes of algorithms that perform better than the classical gradient
descent in the real and complex [142] domains is the so-called enhanced gradient descent al-
gorithms. By doing a series of ad hoc modifications to the gradient descent algorithm, these
methods have managed to increase its performance. Out of the vast literature presenting such
methods, we chose some of the most known, robust, and theoretically well-founded optimiza-
tion methods to extend to the quaternion domain.

The quickprop algorithm approximates the error function by a quadratic polynomial and
finds its minimum. The resilient backpropagation algorithm replaces the partial derivatives that
appear in the expression of the update rule of the gradient descent with other weight update
quantities, which are computed taking into account only the signs of the partial derivatives.
Lastly, delta-bar-delta and SuperSAB, which differ only slightly, make the learning rate hyper-
parameter specific to each weight of the network and to each training epoch, which means that
they also provide a method to update these specific learning rates.

First proposed, among others, by [94, 29], the conjugate gradient learning algorithm has
also been proven to be very efficient in the real-valued and complex-valued [147] domains.
The scaled conjugate gradient learning method, proposed by [122], has also become a popular
algorithm for training the real-valued and complex-valued [143] feedforward neural networks.
They belong to the class of first order methods, more specifically line search methods, which
replace the gradient in the gradient descent method with a number of conjugate directions.

One of the most effective from the class of second order methods used to minimize a cost
function, is, in theory, the Newton method, see [135]. But because it needs the explicit calcula-
tion of the Hessian matrix of the cost function, more precisely its inverse, which is a computa-
tionally expensive task, quasi-Newton methods have been developed. They replace the explicit

21



22 2. Learning algorithms for quaternion-valued neural networks

calculation of the Hessian with an approximation of it, which is positive definite by construc-
tion, to avoid the convergence problems in the Newton method when the Hessian is not positive
definite. First applied, among others, by [226, 11] to the training of neural networks, the quasi-
Newton learning method has proved to be very efficient in the real-valued and complex-valued
[145] cases.

On the other hand, to solve the same problem, the Levenberg-Marquardt algorithm uses an
approximation of the Hessian matrix which only requires first order derivatives to be computed,
more precisely the Jacobian matrix. This approximation, together with the trust region method,
avoid the convergence problems in the Newton method when the Hessian is not positive definite
or is ill-conditioned (i.e., almost singular). Introduced by [121] and first applied to training
neural networks by [70], the Levenberg-Marquardt algorithm represents one of the most popular
algorithms to train real-valued and complex-valued [2] feedforward neural networks.

Taking all the above facts into consideration, a natural idea was to extend these learning
algorithms to training quaternion-valued feedforward neural networks, also. The presentation
of the enhanced gradient descent algorithms follows that of [180], and of the classical book
[18], with the obvious adaptation to the quaternion domain. Using the framework of the HR
calculus, we deduce the quaternion-valued conjugate gradient, scaled conjugate gradient, quasi-
Newton, and Levenberg-Marquardt algorithms starting from the real-valued case, also following
the classical book [18]. We test all the proposed algorithms on linear and chaotic time series
prediction problems.

The presentation in this chapter follows the one in the author’s paper [164], which in turn
summarizes the author’s papers [165], [154], [151], [155], and [150].

2.1 The HR calculus

First, we will present the basic ideas of the HR calculus [231], which will be later used to
deduce the different algorithms for optimizing a quaternion domain error function.

Let H = {qa + ıqb + qc + κqd|qa, qb, qc, qd ∈ R} be the algebra of quaternions, where ı,
, κ are the imaginary units which satisfy ı2 = 2 = κ2 = ıκ = −1. We define the operation
qµ := µqµ−1, for any µ ∈ H. Using this operation, for any q = qa + ıqb + qc + κqd ∈ H, we
have qı = ıqı−1 = qa + ıqb − qc − κqd, q = q−1 = qa − ıqb + qc − κqd, qκ = κqκ−1 =
qa − ıqb − qc + κqd. For a function f : H→ R, we can define the HR derivatives of f by

∂f
∂q
∂f
∂qı
∂f
∂q
∂f
∂qκ

 :=
1

4


1 −ı − −κ
1 −ı  κ
1 ı − κ
1 ı  −κ




∂f
∂qa
∂f
∂qb
∂f
∂qc
∂f
∂qd

 .

Consider now a quaternion vector q = (q1, q2, . . . , qN)T ∈ HN , which can be written as
q = qa+ ıqb+ qc+κqd ∈ HN , where qa, qb, qc, qd ∈ RN . We have qı = ıqı−1 = qa+ ıqb−
qc − κqd, q = q−1 = qa − ıqb + qc − κqd, qκ = κqκ−1 = qa − ıqb − qc + κqd ∈ HN ,
or, equivalently, 

q
qı

q

qκ

 =


IN ıIN IN κIN
IN ıIN −IN −κIN
IN −ıIN IN −κIN
IN −ıIN −IN κIN



qa
qb
qc
qd

 ,



2. Learning algorithms for quaternion-valued neural networks 23

where IN is the N ×N identity matrix. By denoting

H
q :=


q
qı

q

qκ

 ∈ H4N ,
R
q :=


qa
qb
qc
qd

 ∈ R4N , JN :=


IN ıIN IN κIN
IN ıIN −IN −κIN
IN −ıIN IN −κIN
IN −ıIN −IN κIN

 ,

the above relation becomes
H
q = JN

R
q.

It can be checked that JHNJN = JNJHN = 4I4N , and so we deduce that

R
q =

1

4
JHN
H
q. (2.1.1)

A function f : HN → R can now be seen in three equivalent forms

f(q)⇔ f(
H
q) := f(q,qı,q,qκ)⇔ f(

R
q) := f(qa,qb,qc,qd).

If we define
∂f

∂q
:=

(
∂f

∂q1

, . . . ,
∂f

∂qN

)
,

∂f

∂
H
q

:=

(
∂f

∂q
,
∂f

∂qı
,
∂f

∂q
,
∂f

∂qκ

)
,

∂f

∂
R
q

:=

(
∂f

∂qa
,
∂f

∂qb
,
∂f

∂qc
,
∂f

∂qd

)
,

we have, from the chain rule, that

∂f

∂
H
q

=
1

4

∂f

∂
R
q
JHN ⇔

∂f

∂
R
q

=
∂f

∂
H
q
JN .

If we now define ∇qf :=
(
∂f
∂q

)H
, ∇H

q
f :=

(
∂f

∂
H
q

)H
, ∇R

q
f :=

(
∂f

∂
R
q

)T
, where (·)T and (·)H

represent the transpose and the Hermitian transpose, respectively, the above relations can be
written as

∇H
q
f =

1

4
JN∇R

q
f ⇔ ∇R

q
f = JHN∇Hqf. (2.1.2)

Similarly, by defining ∇2
qf := ∂

∂q

(
∂f
∂q

)H
, ∇2

H
q
f := ∂

∂
H
q

(
∂f

∂
H
q

)H
, ∇R

q
f := ∂

∂
R
q

(
∂f

∂
R
q

)T
, we

obtain that
∇2
H
q
f =

1

16
JN(∇2

R
q
f)JHN ⇔ ∇2

R
q
f = JHN(∇2

H
q
f)JN . (2.1.3)

2.2 Enhanced gradient descent algorithms
In this and the following sections, assume that we have a quaternion-valued feedforward neural
network with an error function E : HN → R, and an N -dimensional weight vector denoted by
w ∈ HN , whose elements are wi ∈ H, 1 ≤ i ≤ N . We can define the weight step at epoch k by

∆wi(k) = wi(k + 1)− wi(k).



24 2. Learning algorithms for quaternion-valued neural networks

Then, for the gradient descent algorithm, the update rule for the weight wi is given by

∆wi(k) = −ε
(

∂E

∂[wi]a
(k) + ı

∂E

∂[wi]b
(k) + 

∂E

∂[wi]c
(k) + κ

∂E

∂[wi]d
(k)

)
,

where ε ∈ R is the learning rate.
The update rules for the enhanced gradient descent algorithms do not depend on the quater-

nion numbers as a whole, but rather are formulated separately for each of the four real compo-
nents of quaternions. The main reason for this is that these algorithms make assumptions on
the value of the partial derivative of the error function with respect to the weight that is being
updated, assumptions which involve comparisons. It is well known that, unlike real numbers,
quaternion numbers do not have a natural ordering, so there are no quaternion-valued inequal-
ities. As a consequence, we had to give separate update rules for the four components of each
weight, which depend on assumptions made about the partial derivatives of the error function
with respect to each of the four quaternion components. Because of this, unlike for the following
algorithms, the HR calculus will not be used for the deduction of these learning methods.

2.2.1 Quickprop

The quickprop algorithm was first proposed by Fahlman in [53]. Its update expression for the
quaternion-valued domain is: [165]

[∆wi(k)]x =

∂E
∂[wi]x

(k)

∂E
∂[wi]x

(k − 1)− ∂E
∂[wi]x

(k)
[∆wi(k − 1)]x, ∀x ∈ {a, b, c, d}.

The heuristic behind the algorithm is that it approximates the error function with respect to
each weight by a quadratic polynomial. This assumes that each weight is independent of all the
others and that the quadratic polynomial has a minimum, and not a maximum.

2.2.2 Resilient backpropagation

Riedmiller and Braun [181] devised the resilient backpropagation algorithm, or RPROP for
short, in order to eliminate the potential harmful influence of the size of the partial derivative on
the weight step. The algorithm replaces the partial derivative from the weight update formula
with another quantity denoted by ∆i, which will then be used for updating the weight wi. The
update formulas for computing the quantities ∆i are: [165]

[∆i(k)]x =


η+[∆i(k − 1)]x, if ∂E

∂[wi]x
(k − 1)× ∂E

∂[wi]x
(k) > 0

η−[∆i(k − 1)]x, if ∂E
∂[wi]x

(k − 1)× ∂E
∂[wi]x

(k) < 0

[∆i(k − 1)]x, else

, ∀x ∈ {a, b, c, d},

which are calculated taking into account only the signs of the partial derivatives: each time
the partial derivatives ∂E

∂[wi]x
change their sign, which indicates that the last update was too big

and the algorithm has jumped over a local minimum, the quantities [∆i]x are decreased by a
factor of η−, and each time those partial derivatives have the same sign, the quantities [∆i]x are
increased by a factor of η+, in order to accelerate the convergence. The real hyperparameters
η+ and η− must satisfy 0 < η− < 1 < η+, and are usually taken to be η− = 0.5 and η+ = 1.2.



2. Learning algorithms for quaternion-valued neural networks 25

We can now write the formulas for updating the weight wi based on the quantities ∆i:

[∆wi(k)]x =


−[∆i(k)]x, if ∂E

∂[wi]x
(k) > 0

[∆i(k)]x, if ∂E
∂[wi]x

(k) < 0

0, else

, ∀x ∈ {a, b, c, d}.

This update rule is simple: if the derivative is positive, which means an increasing error, the
weight is decreased, and if the derivative is negative, the weight is increased.

2.2.3 Delta-bar-delta
The delta-bar-delta algorithm was proposed by Jacobs in [91], who had the idea to introduce
a different learning rate for each weight in the network, and to devise a procedure for updating
these learning rates while learning. The gradient descent rule becomes in this case

∆wi(k) = −
(

[εi(k)]a
∂E

∂[wi]a
(k) + ı[εi(k)]b

∂E

∂[wi]b
(k)

+[εi(k)]c
∂E

∂[wi]c
(k) + κ[εi(k)]d

∂E

∂[wi]d
(k)

)
.

We can see that each learning rate εi(k) depends on the weight wi and on the epoch k, and is a
quaternion, unlike in the quaternion gradient descent, where the learning rate ε is a real number.
The update rules for the learning rates εi are: [165]

[εi(k)]x =


κ+ [εi(k − 1)]x, if ∂Ē

∂[wi]x
(k − 1)× ∂E

∂[wi]x
(k) > 0

η−[εi(k − 1)]x, if ∂Ē
∂[wi]x

(k − 1)× ∂E
∂[wi]x

(k) < 0

[εi(k − 1)]x, else

, ∀x ∈ {a, b, c, d},

where we denoted

∂Ē

∂[wi]x
(k) := (1− θ) ∂E

∂[wi]x
(k) + θ

∂Ē

∂[wi]x
(k − 1), ∀x ∈ {a, b, c, d}.

The hyperparameter η− must satisfy 0 < η− < 1, and is usually taken to be, like in the
RPROP algorithm, equal to 0.5. We also took κ = 10−6 and θ = 0.7 in our experiments, but
these values are usually determined empirically.

In this learning algorithm, if two consecutive partial derivatives ∂E
∂[wi]x

have the same sign,
then the learning rate is increased by a small constant κ to accelerate learning. If the two partial
derivatives have different signs, this indicates that the local minimum was missed, which means
that the weight step was too big. Thus, the learning rate is decreased by multiplying it with
a positive factor η−. To ensure convergence, the previous partial derivative ∂E

∂[wi]x
(k − 1) was

replaced by an exponentially weighted average of the current and past partial derivatives with
θ as the base and the epoch as the exponent. This weighted average was denoted by ∂Ē

∂[wi]x
(k),

and was defined above.

2.2.4 SuperSAB
The last algorithm in this category that we present is called SuperSAB and was proposed by
Tollenaere in [208]. It is very similar to the delta-bar-delta algorithm, in that a different learning



26 2. Learning algorithms for quaternion-valued neural networks

rate is used for each weight in the network. The update rule is the same as in the previous case:

∆wi(k) = −
(

[εi(k)]a
∂E

∂[wi]a
(k) + ı[εi(k)]b

∂E

∂[wi]b
(k)

+[εi(k)]c
∂E

∂[wi]c
(k) + κ[εi(k)]d

∂E

∂[wi]d
(k)

)
,

with the exception that here the learning rate εi(k) corresponding to weight wi and epoch k has
a different update formula: [165]

[εi(k)]x =


η+[εi(k − 1)]x, if ∂E

∂[wi]x
(k − 1)× ∂E

∂[wi]x
(k) > 0

η−[εi(k − 1)]x, if ∂E
∂[wi]x

(k − 1)× ∂E
∂[wi]x

(k) < 0

[εi(k − 1)]x, else

, ∀x ∈ {a, b, c, d}.

Thus, SuperSAB can be seen as a combination of the RPROP and delta-bar-delta algorithms.
Exactly like in the resilient backpropagation algorithm, the hyperparameters also have to satisfy
0 < η− < 1 < η+. Because of this resemblance, we took in our experiments the same values
for these hyperparameters as above, namely η− = 0.5 and η+ = 1.2.

Instead of adding a term to the learning rate if the partial derivatives have the same sign, like
in the delta-bar-delta algorithm, we multiply it by the factor η+, like in the RPROP algorithm.
Also, the last two partial derivatives were taken into account with their original values, unlike
the exponentially weighted average from the delta-bar-delta algorithm.

2.3 Conjugate gradient algorithms
Conjugate gradient methods belong to the larger class of line search algorithms, which replace
the negative gradient of the gradient descent method with some particular search direction,
and then determine the minimum of the error function in that direction, thus yielding a real
number that tells us how far we should move in the search direction, which replaces the learning
rate. These methods generally perform better than the classical gradient descent. For the full
deduction of the conjugate gradient algorithms in the real-valued case, see [18, 94].

We start with the conjugate gradient algorithm for the real-valued case, in which the error

function E(w) can be viewed as E(
R
w). The iteration for calculating the value

R
w
∗
, for which

the minimum of the function E(
R
w) is attained, is

R
wk+1 =

R
wk + αk

R
pk, (2.3.1)

where
R
pk ∈ R4N represents the search direction. The value of αk ∈ R can be determined

exactly using the formula

αk = −
R
p
T

k

R
gk

R
p
T

k

R
Hk
R
pk

, (2.3.2)

where
R
gk := ∇R

wk

E and
R
Hk := ∇2

R
wk

E, but, because of the computational burden, we can

replace the explicit calculation of αk with an inexact line search that minimizes E(
R
wk+1) =

E(
R
wk + αk

R
pk), i.e., a line minimization along the search direction

R
pk, starting at the point



2. Learning algorithms for quaternion-valued neural networks 27

R
wk. In our experiments, we used the golden section search, which is guaranteed to have linear
convergence, see [118].

Using (2.1.1), equation (2.3.1) becomes: [154]

1

4
JHN
H
wk+1 =

1

4
JHN
H
wk + αk

1

4
JHN
H
pk,

or, equivalently,
H
wk+1 =

H
wk + αk

H
pk. (2.3.3)

Now, the iteration for the next search direction is given by

R
pk+1 = −Rgk+1 + βk

R
pk, (2.3.4)

where βk ∈ R has different expressions, depending on the type of the conjugate gradient algo-
rithm. For example, the Hestenes-Stiefel update expression (see [74]) for βk is:

βk =

R
g
T

k+1(
R
gk+1 −

R
gk)

R
p
T

k (
R
gk+1 −

R
gk)

. (2.3.5)

From (2.1.1) and (2.1.2), we observe that (2.3.4) can be written as

1

4
JHN
H
pk+1 = −JHN

H
gk+1 + βk

1

4
JHN
H
pk,

or, equivalently, as
H
pk+1 = −Hgk + βk

H
pk, (2.3.6)

because the 1
4

factor can be absorbed into
H
pk.

Taking into account the fact that

R
q
T

1

R
q2 =

R
q
H

1

R
q2 =

(
1

4
JHN
H
q1

)H
1

4
JHN
H
q2 =

1

16

H
q
H

1 JNJHN
H
q2 =

1

4

H
q
H

1

H
q2,

the update expression (2.3.5) can be written as

βk =

H
g
H

k+1(
H
gk+1 −

H
gk)

H
p
H

k (
H
gk+1 −

H
gk)

. (2.3.7)

Up until now we have worked with vectors from H4N . Ideally, we would like to work with
vectors directly in HN . Considering the definition of

H
q for q ∈ HN , this is done by taking the

first N elements of the vector
H
q. Thus, equations (2.3.3) and (2.3.6) become, respectively,

wk+1 = wk + αkpk, (2.3.8)

pk+1 = −gk+1 + βkpk, (2.3.9)

where wk, pk, gk := ∇wkE ∈ HN . A simple calculation shows that

1

4

H
q
H

1

H
q2 = Re

(
qH1 q2

)
,



28 2. Learning algorithms for quaternion-valued neural networks

where Re(q) represents the real part of the quaternion q, i.e., Re(q) = qa, if q = qa + ıqb + qc +
κqd ∈ H, and so (2.3.7) becomes: [154]

βk =
Re
(
gHk+1(gk+1 − gk)

)
Re (pHk (gk+1 − gk))

. (2.3.10)

Relations (2.3.8), (2.3.9), and (2.3.10) now define the quaternion-valued Hestenes-Stiefel algo-
rithm.

Similar calculations give the quaternion-valued Polak-Ribiere update expression (see [141]):
[154]

βk =
Re
(
gHk+1(gk+1 − gk)

)
gHk gk

,

and the quaternion-valued Fletcher-Reeves update formula (see [178]): [154]

βk =
gHk+1gk+1

gHk gk
.

If the error function E is quadratic, then the conjugate gradient algorithm is guaranteed
to find its minimum in at most N steps. But, in general, the error function may be far from
quadratic, and so the algorithm will need more than N steps to approach the minimum. Over
these steps, the conjugacy of the search directions tends to deteriorate, so it is a common practice
to restart the algorithm with the negative gradient pk = −gk, after N steps.

A more sophisticated restart algorithm, proposed by Powell in [177], following an idea by
Beale in [14], is to restart if there is little orthogonality left between the current gradient and the
previous gradient. To test this, we verify that the following inequality holds:

|Re
(
gHk gk+1

)
| ≥ 0.2gHk+1gk+1.

The update rule (2.3.9) for the search direction pk is also changed to [154]

pk+1 = −gk+1 + βkpk + γkpt,

where

βk =
Re
(
gHk+1(gk+1 − gk)

)
Re (pHk (gk+1 − gk))

, γk =
Re
(
gHk+1(gt+1 − gt)

)
Re (pHt (gt+1 − gt))

,

and pt is an arbitrary downhill restarting direction. The conjugate gradient algorithm with these
characteristics is called the Powell-Beale algorithm.

In order to apply the conjugate gradient algorithms to quaternion-valued feedforward neural
networks, we only need to calculate the gradient gk of the error function E at different steps,
which we do by using the backpropagation algorithm.

2.4 Scaled conjugate gradient method
The scaled conjugate algorithm was proposed by Møller in [122], and brings two improvements
to the conjugate gradient algorithm. The first one uses the model trust region method known
from the Levenberg-Marquardt algorithm to ensure the positive definiteness of the Hessian ma-
trix by adding to it a sufficiently large positive constant λk multiplied by the identity matrix.
Thus, the formula for the step length given in (2.3.2), becomes in this case

αk = −
R
p
T

k

R
gk
δk

, (2.4.1)



2. Learning algorithms for quaternion-valued neural networks 29

where we denoted by δk :=
R
p
T

k

R
Hk
R
pk + λk

R
p
T

k

R
pk. If the Hessian matrix is positive definite, we

have that δk > 0. But, if δk ≤ 0, then we should increase the value of δk in order to make it
positive. If we denote by δk the new value of δk, and by λk the new value of λk, then δk is given
by

δk = δk + (λk − λk)
R
p
T

k

R
pk, (2.4.2)

where we take λk = 2

(
λk − δk

R
p
T

k
R
pk

)
, which ensures that δk > 0, and will be used in (2.4.1) to

calculate the value of αk.
The second improvement uses a comparison parameter to evaluate how good the quadratic

approximation for the error function E really is, in the conjugate gradient algorithm. This
parameter is defined by

∆k =
2(E(

R
wk)− E(

R
wk + αk

R
pk))

αk
R
p
T

k

R
gk

. (2.4.3)

Based on the value of ∆k, the parameter λk is then updated in the following way:

λk+1 =


λk/2, if ∆k > 0.75

4λk, if ∆k < 0.25

λk, else
,

in order to ensure a better quadratic approximation.
Thus, there are two stages for updating λk: one to ensure that δk > 0 and one according to

the validity of the local quadratic approximation. The two stages are applied successively after
each weight update.

Using the same ideas as in the above section, relations (2.4.1), (2.4.2), and (2.4.3), become,
respectively: [151]

αk = −Re(pHk gk)

δk
,

δk = Re(pHk Hkpk) + λkp
H
k pk,

δk = δk + (λk − λk)pHk pk,

λk = 2

(
λk −

δk
pHk pk

)
,

∆k =
2(E(wk)− E(wk + αkpk))

αkRe(pHk gk)
,

which, together, give the quaternion-valued scaled conjugate gradient algorithm.

2.5 Quasi-Newton learning methods
Again, we start with the quasi-Newton algorithm for the real-valued case, in which the func-

tion E(w) can be viewed as E(
R
w). The iteration for calculating the value

R
w
∗
, for which the

minimum of the function E(
R
w) is attained, is

R
wk+1 =

R
wk − αk

R
Hk
R
gk, (2.5.1)



30 2. Learning algorithms for quaternion-valued neural networks

where
R
gk := ∇R

wk

E ∈ R4N and
R
Hk ∈ R4N×4N is an approximation of the inverse of the Hessian

matrix ∇2
R
wk

E. The value of αk ∈ R is determined using an inexact line search that minimizes

E(
R
wk+1) = E(

R
wk − αk

R
Hk
R
gk). In our experiments, we used the golden section search, which

is guaranteed to have linear convergence, see [118].
Using (2.1.2) and (2.1.3), we have that [155]

R
gk = JHN

H
gk

and
R
Hk =

1

16
JHN
H
HkJN ,

where
H
gk := ∇H

wk

E ∈ H4N , and we took into account the fact that
R
Hk approximates (∇2

R
wk

E)−1

and
H
Hk approximates (∇2

H
wk

E)−1. Thus, relation (2.5.1) can be written as

1

4
JHN
H
wk+1 =

1

4
JHN
H
wk − αk

1

16
JHN
H
HkJNJHN

H
gk,

where we also used relation (2.1.1), or, equivalently,

H
wk+1 =

H
wk − αk

H
Hk
H
gk. (2.5.2)

Now, the update expression of the inverse Hessian approximation for the symmetric rank-
one (SR1) method is

R
Hk+1 =

R
Hk +

(
R
pk −

R
Hk
R
qk)(

R
pk −

R
Hk
R
qk)

T

(
R
pk −

R
Hk
R
qk)

T
R
qk

, (2.5.3)

where
R
pk :=

R
wk+1 −

R
wk,

R
qk :=

R
gk+1 −

R
gk.

Again from (2.1.1) and (2.1.2), we obtain

H
pk :=

H
wk+1 −

H
wk,

H
qk :=

H
gk+1 −

H
gk.

Taking the above relations into account, equation (2.5.3) becomes

1

16
JHN
H
Hk+1JN =

1

16
JHN
H
HkJN +

(1
4
JHN
H
pk − 1

16
JHN
H
HkJNJHN

H
qk)(

1
4
JHN
H
pk − 1

16
JHN
H
HkJNJHN

H
qk)

H

(1
4
JHN
H
pk − 1

16
JHN
H
HkJNJHN

H
qk)

HJHN
H
qk

,

which is equivalent to

H
Hk+1 =

H
Hk +

(
H
pk −

H
Hk
H
qk)(

H
pk −

H
Hk
H
qk)

H

(
H
pk −

H
Hk
H
qk)

H
H
qk

.



2. Learning algorithms for quaternion-valued neural networks 31

Up until now we have worked with vectors from H4N . Ideally, we would like to work with
vectors directly in HN . Considering the definition of

H
q for q ∈ HN , this is done by taking the

first N elements of the vector
H
q. For this, we denote

H
rk :=

H
pk −

H
Hk
H
qk,

and so
rk = pk − (H1

kqk + H2
k(qk)

ı + H3
k(qk)

 + H4
k(qk)

κ),

where H1
k := (

H
Hk)11, H2

k := (
H
Hk)12, H3

k := (
H
Hk)13, H4

k := (
H
Hk)14 ∈ HN×N are block

components of the matrix
H
Hk ∈ H4N×4N . We can compute

(
H
pk −

H
Hk
H
qk)

HHqk =
H
r
H

k

H
qk = 4Re(rHk qk),

where, as before, Re(q) represents the real part of the quaternion q, i.e., Re(q) = qa, if q =
qa + ıqb + qc + κqd ∈ H. The iteration (2.5.2) becomes [155]

wk+1 = wk − αk
(
H1
kgk + H2

k(gk)
ı + H3

k(gk)
 + H4

k(gk)
κ
)
, (2.5.4)

where the iterations for calculating the matrices H1
k, . . . ,H

4
k are:

H1
k+1 = H1

k +
rkr

H
k

4Re(rHk qk)
,

...

H4
k+1 = H4

k +
rk((rk)

κ)H

4Re(rHk qk)
. (2.5.5)

Relations (2.5.4) and (2.5.5) now give the quaternion-valued symmetric rank-one (SR1) method.
Proceeding in the same manner, we can deduce the update rule of the inverse Hessian ap-

proximation for the Davidon-Fletcher-Powell (DFP) method (see [54]) in the form

H
Hk+1 =

H
Hk +

H
pk
H
p
H

k

H
p
H

k

H
qk

−
H
Hk
H
qk
H
q
H

k

H
Hk

H
q
H

k

H
Hk
H
qk

.

Now, by denoting
H
rk :=

H
Hk
H
qk, we have that [155]

rk = H1
kgk + H2

k(gk)
ı + H3

k(gk)
 + H4

k(gk)
κ,

and the matrices H1
k, . . . ,H

4
k are computed using the iterations:

H1
k+1 = H1

k + ρkpkp
H
k − σkrkrHk

...
H4
k+1 = H4

k + ρkpk((pk)
κ)H − σkrk((rk)κ)H , (2.5.6)

where
ρk :=

1

4Re(pHk qk)
and σk :=

1

4Re(qHk rk)
.



32 2. Learning algorithms for quaternion-valued neural networks

Thus, the quaternion-valued Davidon-Fletcher-Powell (DFP) method is given by equations
(2.5.4) and (2.5.6).

The most popular quasi-Newton algorithm is the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method (see [195]), for which the following inverse Hessian approximation iteration can be sim-
ilarly obtained:

H
Hk+1 =

H
Hk −

H
pk
H
q
H

k

H
Hk

H
q
H

k

H
pk

−
H
Hk
H
qk
H
p
H

k

H
q
H

k

H
pk

+

H
pk
H
q
H

k

H
qk
H
p
H

k(
H
q
H

k

H
pk

)2 +

H
pk
H
p
H

k

H
q
H

k

H
pk

.

In this case, if we denote
H
rk :=

H
Hk
H
qk and

H
sk :=

H
pk
H
q
H

k , then

rk = H1
kgk + H2

k(gk)
ı + H3

k(gk)
 + H4

k(gk)
κ

and
sk = pkq

H
k + (pk)

ı ((qk)
ı)H + (pk)

 ((qk)
)H + (pk)

κ ((qk)
κ)H .

Now, the quaternion-valued Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is given by
relation (2.5.4) and the following updates for the matrices H1

k, . . . ,H
4
k: [155]

H1
k+1 = H1

k − ρkpkrHk − ρkrkpHk + ρ2
ksks

H
k + ρkpkp

H
k ,

...
H4
k+1 = H4

k − ρkpk((rk)κ)H − ρkrk((pk)κ)H + ρ2
ksk((sk)

κ)H + ρkpk((pk)
κ)H ,

where
ρk :=

1

4Re(qHk pk)
.

Lastly, of practical importance is the one step secant (OSS) method (see [12]), which per-
tains to the class of quasi-Newton algorithms, although it does not require storing the inverse
Hessian approximation, like the BFGS method from which it was derived. The update rule
(2.5.2) in this case has the form

H
wk+2 −

H
wk+1 = αk+1

(
−Hgk+1 + Ak

H
pk +Bk

H
qk

)
,

where

Ak = −

1

4
+

H
q
H

k

H
qk

H
q
H

k

H
pk

 H
p
H

k

H
gk+1

H
q
H

k

H
pk

+

H
q
H

k

H
gk+1

H
q
H

k

H
pk

, Bk =

H
p
H

k

H
gk+1

H
q
H

k

H
pk

.

We can process this to yield the relations that give the quaternion-valued one step secant (OSS)
method: [155]

wk+2 −wk+1 = αk+1 (−gk+1 + Akpk +Bkqk) ,

where

Ak = −
(

1

4
+

qHk qk
Re(qHk pk)

)
Re(pHk gk+1)

Re(qHk pk)
+

Re(qHk gk+1)

Re(qHk pk)
, Bk =

Re(pHk gk+1)

Re(qHk pk)
.

Like in the conjugate gradient case, we calculate the gradient gk of the error function E by
using the quaternion-valued backpropagation algorithm.



2. Learning algorithms for quaternion-valued neural networks 33

2.6 Levenberg-Marquardt learning algorithm
We will first present the Levenberg-Marquardt algorithm for the real-valued case, and then we
will extend it to the quaternion domain.

We start with the error function of the quaternion-valued neural network written in the form

E(w) =
1

2

M∑
m=1

(em)Hem,

where em =

e
m
1
...
emc

 ∈ Hc represents the error (the difference between the actual output vector

and the desired output vector) for training pattern m, 1 ≤ m ≤M , and c represents the number
of output neurons of the network. Now, following the above discussion, the function E(w) can

be viewed as E(
R
w):

E(
R
w) =

1

2

M∑
m=1

R
em

T R
em.

We can form the Jacobian matrix of dimension 4cM × 4N , whose elements are the partial
derivatives of each error of the form (emj )x with respect to the weights (wi)y, 1 ≤ m ≤ M ,
1 ≤ j ≤ c, 1 ≤ i ≤ N , x, y ∈ {a, b, c, d}:

R

J =


∂
R
e1

∂
R
w...

∂
R
eM

∂
R
w

 .

The gradient of the error function E(
R
w) can be written as

R
g := ∇R

w
E =

(
∂E

∂
R
w

)T

=
1

2

M∑
m=1

∂ Rem
T

∂
R
w

R
em +

R
em

T
∂
R
em

∂
R
w


T

=
1

2

M∑
m=1

 R
em

T
∂
R
em

∂
R
w
T

+
∂
R
em

T

∂
R
w
T

R
em


=

M∑
m=1

∂
R
em

T

∂
R
w
T

R
em

=
R

J
T
R
e, (2.6.1)

where
R
e =


R
e1

...
R
eM

 .



34 2. Learning algorithms for quaternion-valued neural networks

The Hessian matrix of the error function E(
R
w) is

R

H :=
∂

∂
R
w

(
∂E

∂
R
w

)T

=
M∑
m=1

∂

∂
R
w

∂ Rem
T

∂
R
w
T

R
em


=

M∑
m=1

 ∂2
R
em

T

∂
R
w∂

R
w
T

R
em +

∂
R
em

T

∂
R
w
T

∂
R
em

∂
R
w


≈

M∑
m=1

∂
R
em

T

∂
R
w
T

∂
R
em

∂
R
w

=
R

J
T R

J, (2.6.2)

where we approximated the second derivatives of the errors with respect to each training pattern
with 0.

One of the most effective from the class of second order methods used to minimize the error
function, is, in theory, the Newton method, see [135]. Unfortunately, it can be computationally
intensive because it needs the explicit calculation of the Hessian matrix of the error function,
more precisely its inverse. It can also became unstable, if the Hessian matrix is not positive
definite. To address this last problem, the trust region Newton method was developed, which
has the update formula

R
wk+1 =

R
wk − (

R

Hk + λkI4N)−1Rgk,

where λk ∈ R is chosen so that
R

Hk + λkI4N is positive definite.
To address the first problem, using (2.6.1) and (2.6.2), the update formula for the trust region

Newton method becomes

R
wk+1 =

R
wk − (

R

J
T

k

R

Jk + λkI4N)−1
R

J
T

k

R
ek,

which is the update rule for the Levenberg-Marquardt method (see [121]). This method re-

places the explicit calculation of the Hessian with a calculation of the Jacobian
R

Jk, which is less
computationally intensive, because it only contains first order partial derivatives.

Next, we will deduce the quaternion-valued Levenberg-Marquardt algorithm, starting from
the above formula. The expression for the Jacobian of the function E(

H
w) is: [150]

H

J =


∂
H
e1

∂
H
w...

∂
H
eM

∂
H
w

 .

Taking into account relations (2.1.1) and (2.1.2), we have that

∂
R
em

∂
R
w

=
∂
R
em

∂
H
w

JN =

∂

(
1
4
JHc

H
em
)

∂
H
w

JN =
1

4
JHc

∂
H
em

∂
H
w

JN ,



2. Learning algorithms for quaternion-valued neural networks 35

∀1 ≤ m ≤M, hence
R

J =
1

4
JHcM

H

JJN .

From (2.1.1) we have
R
e = 1

4
JHcM

H
e, and then

R

J
T
R
e =

R

J
H
R
e =

(
1

4
JHcM

H

JJN
)H

1

4
JHcM

H
e

=
1

4
JHN
H

J
H

JcM
1

4
JHcM

H
e

=
1

4
JHN
H

J
H
H
e,

and

R

J
T R

J =
R

J
HR

J =

(
1

4
JHcM

H

JJN
)H

1

4
JHcM

H

JJN

=
1

4
JHN
H

J
H

JcM
1

4
JHcM

H

JJN

=
1

4
JHN
H

J
HH

JJN .

With these relations, the update formula for the Levenberg-Marquardt algorithm becomes:

1
4
JHN

H
wk+1 = 1

4
JHN

H
wk −

(
1
4
JHN
H

J
H

k

H

JkJN + λkI4N

)−1

1
4
JHN
H

J
H

k

H
ek ⇔ 1

4
JHN

H
wk+1 = 1

4
JHN

H
wk −

1
4
JHN
(
H

J
H

k

H

Jk + λkI4N

)−1
H

J
H

k

H
ek, or, finally,

H
wk+1 =

H
wk −

(
H

J
H

k

H

Jk + λkI4N

)−1
H

J
H

k

H
ek.

If we denote
H

Hk :=
H

J
H

k

H

Jk + λkI4N and
H
gk :=

H

J
H

k

H
ek, the above update formula becomes:

H
wk+1 =

H
wk −

H

H
−1

k

H
gk. (2.6.3)

Now, we will try to find an expression for computing
H

Jk. By denoting J1
k := ∂ek

∂wk
, J2

k :=
∂ek

∂(wk)ı
, J3

k := ∂ek
∂(wk)

, J4
k := ∂ek

∂(wk)κ
, we can deduce that [150]

H

Jk =


J1
k J2

k J3
k J4

k

ıJ2
kı
−1 ıJ1

kı
−1 ıJ4

kı
−1 ıJ3

kı
−1

J3
k
−1 J4

k
−1 J1

k
−1 J2

k
−1

κJ4
kκ
−1 κJ3

kκ
−1 κJ2

kκ
−1 κJ1

kκ
−1

 ,

and, consequently, that

H

J
H

k =


(J1

k)
H ı(J2

k)
Hı−1 (J3

k)
H−1 κ(J4

k)
Hκ−1

(J2
k)
H ı(J1

k)
Hı−1 (J4

k)
H−1 κ(J3

k)
Hκ−1

(J3
k)
H ı(J4

k)
Hı−1 (J1

k)
H−1 κ(J2

k)
Hκ−1

(J4
k)
H ı(J3

k)
Hı−1 (J2

k)
H−1 κ(J1

k)
Hκ−1

 .



36 2. Learning algorithms for quaternion-valued neural networks

This means that the matrix
H

Hk has the form

H

Hk =


H1
k H2

k H3
k H4

k

ıH2
kı
−1 ıH1

kı
−1 ıH4

kı
−1 ıH3

kı
−1

H3
k
−1 H4

k
−1 H1

k
−1 H2

k
−1

κH4
kκ
−1 κH3

kκ
−1 κH2

kκ
−1 κH1

kκ
−1

 ,

where H1
k = (J1

k)
HJ1

k+ ı(J2
k)
HJ2

kı
−1 + (J3

k)
HJ3

k
−1 +κ(J4

k)
HJ4

kκ
−1 +λkIN , H2

k = (J1
k)
HJ2

k+
ı(J2

k)
HJ1

kı
−1 + (J3

k)
HJ4

k
−1 + κ(J4

k)
HJ3

kκ
−1, H3

k = (J1
k)
HJ3

k + ı(J2
k)
HJ4

kı
−1 + (J3

k)
HJ1

k
−1 +

κ(J4
k)
HJ2

kκ
−1, H4

k = (J1
k)
HJ4

k+ ı(J2
k)
HJ3

kı
−1 +(J3

k)
HJ2

k
−1 +κ(J4

k)
HJ1

kκ
−1. Furthermore, we

have that
H
gk =


gk

ıgkı
−1

gk
−1

κgkκ
−1

, where gk = (J1
k)
Hek+ı(J2

k)
Hekı

−1+(J3
k)
Hek

−1+κ(J4
k)
Hekκ

−1.

Now we have all the necessary ingredients to compute the update rule given in (2.6.3).
Up until now we have worked with vectors from H4N . Ideally, we would like to work with

vectors directly in HN . Considering the definition of
H
q for q ∈ HN , this is done by taking the

first N elements of the vector
H
q. By using the Banachiewicz inversion formula [237], relation

(2.6.3) thus becomes: [150]

wk+1 = wk − (H1
k)
−1gk + (H1

k)
−1
(
H2
k H3

k H4
k

)
T−1

 −ıH2
kı
−1(H1

k)
−1gk + ıgkı

−1

−H3
k
−1(H1

k)
−1gk + gk

−1

−κH4
kκ
−1(H1

k)
−1gk + κgkκ

−1

 ,

where T =

 ıH1
kı
−1 ıH4

kı
−1 ıH3

kı
−1

H4
k
−1 H1

k
−1 H2

k
−1

κH3
kκ
−1 κH2

kκ
−1 κH1

kκ
−1

 −
 ıH2

kı
−1

H3
k
−1

κH4
kκ
−1

 (H1
k)
−1
(
H2
k H3

k H4
k

)
, which

represents the quaternion-valued Levenberg-Marquardt (LM) algorithm.
In this case too, the gradient of the error function at different steps is computed using the

well-known backpropagation scheme.

2.7 Experimental results

2.7.1 Linear autoregressive process with circular noise
An important benchmark first proposed in [120], and used in [58, 59, 60, 61, 228] for the
complex-valued case, and in [210, 223, 32, 229] for the quaternion-valued case, is the prediction
of the quaternion-valued circular white noise n(k) = na(k) + ınb(k) + nc(k) + κnd(k), where
na, nb, nc, nd ∼ N (0, 1), passed through the stable autoregressive filter given by

y(k) = 1.79y(k − 1)− 1.85y(k − 2) + 1.27y(k − 3)− 0.41y(k − 4) + n(k).

In our experiments, we trained quaternion-valued feedforward neural networks using the
classical gradient descent algorithm (abbreviated GD), the quickprop algorithm (QCP), the re-
silient backpropagation algorithm (RPR), the delta-bar-delta algorithm (DBD), the SuperSAB
algorithm (SAB), the conjugate gradient algorithm with Hestenes-Stiefel updates (CGHS), the
conjugate gradient algorithm with Polak-Ribiere updates (CGPR), the conjugate gradient al-
gorithm with Fletcher-Reeves updates (CGFR), the conjugate gradient algorithm with Powell-
Beale restarts (CGPB), the scaled conjugate gradient algorithm (SCG), the quasi-Newton al-



2. Learning algorithms for quaternion-valued neural networks 37

gorithm with symmetric rank-one updates (SR1), the quasi-Newton algorithm with Davidon-
Fletcher-Powell updates (DFP), the quasi-Newton algorithm with Broyden-Fletcher-Goldfarb-
Shanno updates (BFGS), the one step secant method (OSS), and the Levenberg-Marquardt al-
gorithm (LM).

The tap input of the filter was 4, so the networks had 4 inputs, 4 hidden neurons on a
single hidden layer, and one output. The activation function for the hidden layer was the fully
quaternion hyperbolic tangent function, given by G2(q) = tanh q = eq−e−q

eq+e−q
, and the activation

function for the output layer was the identity G3(q) = q. Training was done for 5000 epochs
with 5000 randomly generated training samples.

To evaluate the effectiveness of the algorithms, we used a measure of performance called
prediction gain, defined by Rp = 10 log10

σ2
x

σ2
e
, where σ2

x represents the variance of the input
signal and σ2

e represents the variance of the prediction error. The prediction gain is given in dB
and it is obvious that, because of the way it is defined, a bigger prediction gain means better
performance. After running each algorithm 50 times, the prediction gains are given in Table
2.1.

We can see that QCP, SAB, and RPR performed approximately the same, followed by DBD,
but all of them performed better than the gradient descent algorithm. Then, CGHS and CGPR
gave approximately the same results, with CGFR performing better and CGPB worse. The SCG
algorithm was better than the conjugate gradient algorithms. From the quasi-Newton methods,
DFP and SR1 gave approximately the same results, with BFGS performing better and OSS
worse. The absolute best was the LM algorithm.

Table 2.1: Experimental results for linear autoregressive process with circular noise
Algorithm Prediction gain

GD 4.51±6.64e-2
QCP 6.37±1.08e-1
RPR 6.41±1.47e-1
DBD 5.46±1.48e-1
SAB 6.40±1.31e-1

CGHS 5.17±1.30e-1
CGPR 5.19±8.14e-2
CGFR 6.91±2.51e-1
CGPB 5.00±9.57e-2
SCG 7.36±9.25e-2
SR1 6.73±2.34e-1
DFP 6.61±2.15e-1

BFGS 7.23±3.80e-1
OSS 5.11±2.04e-1
LM 8.94±3.33e-1

QESN [229] 3.57
AQESN [229] 3.51



38 2. Learning algorithms for quaternion-valued neural networks

2.7.2 3D Lorenz system
The 3D Lorenz system is given by the ordinary differential equations

dx
dt

= α(y − x)

dy
dt

= −xz + ρx− y
dz
dt

= xy − βz,

where α = 10, ρ = 28, and β = 2/3. This represents a chaotic time series prediction problem,
and was used to test quaternion-valued neural networks in [7, 23, 209, 212, 33, 229].

The tap input of the filter was 4, and so the networks had 4 inputs, 4 hidden neurons, and one
output neuron. The networks were trained for 5000 epochs with 1337 training samples, which
result from solving the 3D Lorenz system on the interval [0, 25], with the initial conditions
(x, y, z) = (1, 2, 3).

The results after 50 runs of each algorithm are given in Table 2.2. The measure of perfor-
mance was the prediction gain, like in the above experiment.

In this case, QCP and RPR performed best, SAB followed, and DBD was again last of the
four, but still better than GD. Next, CGHS and CGPB performed approximately in the same
way, CGFR slightly better, and the best was CGPR. In this experiment also, SCG had better
results than the conjugate gradient algorithms. From the quasi-Newton methods, DFP and SR1
performed approximately in the same way, OSS slightly better, and the best was BFGS. The
best overall performance was attained by the LM algorithm.

Table 2.2: Experimental results for the 3D Lorenz system
Algorithm Prediction gain

GD 7.56±7.42e-1
QCP 10.59±5.29e-1
RPR 11.07±7.08e-1
DBD 9.35±6.17e-1
SAB 10.33±7.09e-1

CGHS 10.04±6.65e-1
CGPR 11.31±8.34e-1
CGFR 10.69±5.81e-1
CGPB 10.12±7.35e-1
SCG 12.58±6.44e-1
SR1 11.74±6.82e-1
DFP 11.27±7.76e-1

BFGS 13.74±6.30e-1
OSS 12.09±7.806e-1
LM 31.45±1.21e0

QESN [229] 17.73
AQESN [229] 18.92



2. Learning algorithms for quaternion-valued neural networks 39

2.7.3 4D Saito chaotic circuit
Lastly, we experimented on the 4D Saito chaotic circuit given by[dx1

dt
dy1
dt

]
=

[
−1 1
−α1 α1β1

] [
x1 − ηρ1h(z)
y1 − η ρ1β1h(z)

]
[dx2

dt
dy2
dt

]
=

[
−1 1
−α2 α2β2

] [
x2 − ηρ2h(z)
y2 − η ρ2β2h(z)

]
,

where h(z) =

{
1, z ≥ −1

−1, z ≤ 1
is the normalized hysteresis value, and z = x1 + x2, ρ1 = β1

1−β1 ,

ρ2 = β2
1−β2 . The parameters are given by (α1, β1, α2, β2, η) = (7.5, 0.16, 15, 0.097, 1.3). This

is also a chaotic time series prediction problem, and was used as a benchmark for quaternion-
valued neural networks in [5, 6, 7, 31, 210, 211, 32].

The networks had the same architectures as the ones described earlier, and were trained for
5000 epochs with 5249 training samples, which result from solving the 4D Saito chaotic circuit
on the interval [0, 10], with the initial conditions (x1, y1, x2, y2) = (1, 0, 1, 0).

The prediction gains after 50 runs of each algorithm are given in Table 2.3.
In this last experiment, the performances were similar to those in the previous experiments:

QCP, SAB, and RPR had approximately the same performance, followed by DBD, and finally
by GD. Also, CGPR had the best performance, followed closely by CGPB, and lastly by CGFR
and CGHS. The performance of the SCG algorithm was similar to the ones in the previous
experiments. Between the quasi-Newton algorithms, OSS had the best performance, followed
closely by BFGS, and lastly by SR1 and DFP. The conclusion is the same: the LM algorithm
had the best performance among all the tested algorithms.

Table 2.3: Experimental results for the 4D Saito chaotic circuit
Algorithm Prediction gain

GD 5.76±1.70e-1
QCP 11.49±6.47e-1
RPR 11.58±7.91e-1
DBD 6.28±3.36e-1
SAB 11.55±4.96e-1

CGHS 11.59±4.09e-1
CGPR 13.64±3.67e-1
CGFR 12.08±5.30e-1
CGPB 13.02±4.93e-1
SCG 15.32±9.35-1
SR1 11.71±6.73e-1
DFP 11.10±6.32e-1

BFGS 16.24±5.06e-1
OSS 16.94±7.70e-1
LM 25.36±9.63e-1

2.7.4 Discussion
The problem of linear autoregressive process with circular noise deals with time series predic-
tion directly in the quaternion domain, because of the quaternion-valued circular white noise



40 2. Learning algorithms for quaternion-valued neural networks

n(k), whereas the 3D Lorenz system and the 4D Saito chaotic circuit are real-valued problems
cast into the domain of quaternions. The 3D Lorenz system uses only the three quaternion
imaginary units for the three variables, and the 4D Saito chaotic circuit uses a full quaternion
for its four variables. It was showed, for example in [7], that quaternion-valued feedforward
neural networks perform better on these problems than the real-valued ones. This gives rise
to the possibility that, in the future, more high-dimensional problems from the real domain be
treated using quaternion-valued neural networks.

Although we only used time series prediction problems to illustrate the effectiveness of
the deduced algorithms, pattern recognition problems like color image compression [89] and
color night vision [104] could also benefit from using these learning methods. The domain of
quaternion-valued neural networks is just starting to gain interest, which means that the future
might bring more applications in the pattern recognition domain, also.

The performances of the algorithms were similar to the ones from the real-valued case,
mainly because these learning methods were derived starting from their real-valued counter-
parts. The main difference is the quaternion multiplication, which gives rise to the specific
formulations of these algorithms in the quaternion domain. However, the performances of the
algorithms in each class differ from the ones in the real-valued case, mainly due to the quater-
nion dynamics, giving one more reason to extend these algorithms to the quaternions.

The computational costs for these algorithms are on the order of the computational cost of
the same algorithms in the real-valued domain. In all cases, the learning methods scale well,
meaning that the computational cost is four times that of the real version of the same method,
which is the best that can be obtained, taking into account the fact that every quaternion is
formed of four real numbers.

The HR calculus was used to deduce the algorithms starting from the real-valued case. Two
other methods could have been used for the deduction. One is by splitting the quaternions into
their four real components, and giving the formulation of the algorithms separately for each of
the four components. However, this would have meant that the specific relations between com-
ponents in the quaternion domain would have been lost, and also the formulations would have
been much more cumbersome, because of the need to split the fully quaternion activation func-
tion into components. In principle, these algorithms would have also been deducible directly
in the quaternion domain, but this type of deduction would have needed quaternion-domain
derivatives and would have been much more error prone. Nonetheless, all the three methods
give equivalent formulations, thus the easiest and most natural method is preferred.



Chapter 3

Complex-valued deep learning

3.1 Complex-valued convolutional neural networks

Convolutional neural networks have become one of the most successful models in solving vir-
tually any image recognition task. Proposed for the first time in [107], where they were used for
handwritten digit recognition, they were later applied to handwriting recognition in [108]. By
1995, applications of this type of networks appeared in image recognition, speech recognition,
and time series prediction [106]. Convolutional neural networks represent a particularization
of feedforward neural networks, in which matrix multiplication is replaced by convolution and
the weight matrix is replaced by many convolution kernels with much smaller dimension than
that of the weight matrices. Although they had many applications in computer vision [109],
convolutional networks started gaining more popularity only with the increase in the available
computational resources and their implementation using parallel computing on graphics pro-
cessors (GPU).

The use of these computational resources allowed a reducing of training times by a factor of
100, giving way to models with an increasing number of layers and parameters, thus inaugurat-
ing the domain of deep learning [15, 17, 193, 64]. The basis of this domain is represented by the
convolutional networks, for which the increase in the number of layers gives better performance,
as opposed to feedforward networks, whose performance degrades for a big number of layers.
The same field includes other network models, for which it has been proved mathematically
that performance is directly proportional to the size of the model.

The domain of complex-valued deep learning has appeared in the last few years. Although
feedforward complex-valued neural networks have been applied to image recognition [137],
and a single layer complex-valued convolutional neural network was used in [72] for object
detection in Polarimetric Synthetic Aperture Radar (PolSAR) images, only in the last few years
deep learning algorithms using complex numbers were derived and used. For example, in [10]
complex-valued autoencoders are proposed, which are a type of model belonging to the deep
learning paradigm. In [20] a wavelet scattering network is proposed, which uses complex num-
bers. Neuron synchrony in a complex-valued Deep Boltzmann Machine (DBM) was discussed
in [179], showing superior performances to the real-valued case.

Very recent works discuss complex-valued recurrent neural network models [8], as well as
learning time series representations using complex-valued recurrent networks [188], both with
similar if not superior results than the real-valued ones, and the existence of certain properties
of these networks that do not appear in the real-valued case, which makes them suitable for
certain types of applications. One of the most important papers in this domain is [215], which
gives a mathematical motivation for complex-valued convolutional neural networks, showing

41



42 3. Complex-valued deep learning

that they can be seen as nonlinear multiwavelet packets, thus making the mathematical analysis
from the signal processing domain available for a rigorous formulation of the properties of
complex-valued convolutional networks. Following the footsteps of this paper, it is expected
that research in the complex-valued deep learning domain will increase in the coming years.

Taking the above discussion into consideration, a natural idea is to use complex-valued
convolutional neural networks for image recognition, also taking into account the fact that some
images are given by the imaging devices in complex form [105].

Synthetic Aperture Radars (SAR) are imaging systems that produce complex-valued images
of the ground [51, 187, 30]. They can be Interferometric Synthetic Aperture Radars (InSAR)
[204] or Polarimetric Synthetic Aperture Radars (PolSAR) [3, 71, 72]. Complex-valued neural
networks were used for noise reduction, compression, and recognition of this type of complex-
valued images. To date, to the best of our knowledge, there are only two attempts of recognition
of this type of images directly in the complex domain, one using complex-valued feedforward
neural networks, and one using a complex-valued convolutional neural network with a single
layer, both models being more suitable to this problem than real-valued neural networks, which
ignore the dependencies present in the data in the complex plane [71, 72]. This fact lead to the
idea that deep convolutional neural networks could bring even better performance in this area.

On the other hand, functional Magnetic Resonance Imaging (fMRI) collects the data in
complex form also, but the majority of studies on this type of imaging only use the amplitude
of the data in their analysis, ignoring the frequency information [86]. Complex-valued neural
networks have proven their superior performances in the reconstruction and analysis of such im-
ages [86, 73]. Complex-valued independent component analysis was also successfully applied
for this type of images [182, 111, 234]. Previous observations open up the possibility of apply-
ing complex-valued convolutional neural networks for the recognition of different patterns that
may appear in these images, taking into account all the information provided by the imaging
devices, and not ignoring the frequency information as was done until now.

In this section, we start by applying complex-valued convolutional neural networks to real-
valued image recognition, leaving the complex-valued image recognition using these networks
as future work. The presentation in this section follows that in the author’s papers [153] and
[168].

3.1.1 Model formulation
Complex-valued convolutional neural networks (CVCNNs) have been introduced to handle
complex-valued data organized as a (2D) grid, for example a complex-valued image. CVC-
NNs are particularizations of feedforward neural networks, in which the matrix multiplication
of the inputs and weights is replaced by convolution:

h(x, y) = (fFg)(x, y) =
M−1∑
m=0

N−1∑
n=0

f(m,n)g(x−m, y − n),

for x = 0, 1, 2, . . . ,M − 1 and y = 0, 1, 2, . . . , N − 1, where M, N are the dimensions of the
2D grid on which the convolution operation is applied.

A convolutional neural network is, generally, composed of three types of layers: convolu-
tional, pooling, and fully connected layers.

For convolutional layers of CVCNNs, the inputs of a layer are complex-valued images or-
ganized into channels. The weights of the convolutional layers are represented by relatively
small convolution kernels. In order to perform complex-valued convolution using computa-
tional frameworks that can mainly handle real-valued operations, we can write the complex



3. Complex-valued deep learning 43

convolution in terms of two real-valued convolutions, as follows:

kFx = (kR + ıkI)F(xR + ıxI) = kRFxR − kIFxI + ı(kRFxI + kIFxR),

from which we have that

(kFx)R = kRFxR − kIFxI

(kFx)I = kRFxI + kIFxR,

where x represents an input, k represents a convolution kernel, xR is the real part, and xI is the
imaginary part of complex matrix x.

In order to reduce the covariate shift of the output of a convolution layer, batch normal-
ization was introduced [88]. In many models it has been shown to accelerate learning, and its
use is standard in state-of-the-art deep neural networks. In CVCNNs, batch normalization is
formulated as follows: given a complex-valued minibatch B = {x1...m}, we have that

µRB =
1

m

m∑
i=1

xRi , µIB =
1

m

m∑
i=1

xIi ,

(σRB )2 =
1

m

m∑
i=1

(
xRi − µRB

)2
, (σIB)2 =

1

m

m∑
i=1

(
xIi − µIB

)2
,

x̂Ri =
xRi − µRB√
(σRB )2 + ε

, x̂Ii =
xIi − µIB√
(σIB)2 + ε

,

yRi = γRx̂Ri + βR, yIi = γI x̂Ii + βI ,

where γR, βR, γI , βI are learnable parameters, and yi = yRi + ıyIi is the output after batch
normalization.

After the convolution operation, a nonlinearity is applied. Different choices are possible for
the nonlinearity in the complex domain, but preliminary experiments done with CVCNNs have
shown that the best results are obtained using the split-complex ReLUC nonlinearity, which ap-
plies the ReLU function separately on the real and imaginary components of a complex number:

ReLUC(xR + ıxI) = ReLU(xR) + ıReLU(xI) = max(0, xR) + ımax(0, xI).

Different variants of the ReLU nonlinearity were proposed for the complex domain, such as
modReLU [8]:

modReLU(x) =

{
(|x|+ b) x

|x| if |x|+ b ≥ 0

0 otherwise
,

where b ∈ R is a learnable parameter, and zReLU [67]:

zReLU(x) =

{
x if xR, xI ≥ 0

0 otherwise
,

but, unfortunately, the performance in the context of CVCNNs of these nonlinearities is worse
than that of the split-complex ReLUC defined above.

The second type of layer in convolutional networks is the pooling or subsampling layer,
which is used to reduce the dimensionality of the input and obtain a more abstract representation
of it. The most known types of pooling layers are max pooling and average pooling. In the max



44 3. Complex-valued deep learning

pooling layer, any neighborhood of small dimension in an image is replaced by the pixel with the
maximum value from that neighborhood. The average pooling layer replaces the neighborhood
with the average of the pixels in that neighborhood. In the context of CVCNNs, these pooling
operations can only be done separately on the real and imaginary components of the complex-
valued inputs.

For the max pooling operation, this could mean that the real part of the output of the max
pooling operation can come from one complex-valued pixel, and the imaginary part of the
output from a different complex-valued pixel, thus introducing unwanted distortions in the final
subsampled image. Preliminary experiments done using max pooling have shown that this can
be an issue which degrades the performance of CVCNNs. For this reason, a better choice is the
average pooling, because the average of a set of complex numbers is just the complex number
whose real part is the average of the real parts and whose imaginary part is the average of the
imaginary parts of the numbers in the set.

Lastly, the fully connected layers are the same as the hidden layers in a feedforward neural
network. In order to use real-valued operations, the complex-valued matrix multiplication can
be expressed similarly as the convolution:

(Wx)R = WRxR −W IxI

(Wx)I = WRxI +W IxR,

where x is the input to the fully connected layer, and W is the weight matrix of the fully
connected layer. The nonlinearity used for the fully connected layers is the same split-complex
ReLUC nonlinearity, defined above.

Usually, the output of a convolutional network is represented by class scores assigned to
each class using the softmax function, in conjunction with the negative log likelihood loss func-
tion. In the complex domain, a separate softmax function is applied to the real and imaginary
parts of the last fully connected layer, and the final class scores are considered to be the av-
erage of the two softmax scores given by the real and imaginary parts. Also, the negative log
likelihood loss is applied to the real and imaginary parts separately. This novel formulation of
CVCNNs has shown slightly better results in preliminary experiments than the one using only
the real part of the last fully connected layer for defining the class scores and as input to the
negative log likelihood loss.

3.1.2 Experimental results
3.1.2.1 MNIST

The MNIST dataset contains handwritten digits, and was created by [108]. It has 60, 000 train-
ing samples and 10, 000 test samples, each being a grayscale image of size 28× 28 pixels.

In our experiments, we trained real-valued and complex-valued convolutional neural net-
works. Both types of networks contained convolutional layers immediately followed by max
pooling layers. Training was done using gradient descent, with a fixed learning rate of 0.1.

All the 60, 000 images were used for training, with no training set augmentation. The num-
ber of epochs was 50 for both types of networks. The first two convolutional and max pooling
layers had 16 and 64 channels, respectively, the third, when it was present, had 256 channels,
and the fully connected layer had 512 neurons, all for the complex-valued networks. The real-
valued networks had approximately 1.41 times more channels and neurons, to give the same
number of real parameters for both types of networks and thus assure a fair comparison. The
max pooling layers all had kernel size 2.



3. Complex-valued deep learning 45

The experimental results are given in Table 3.1. In the first column of the table, the sizes
of the convolution kernels are given. The results show that the complex-valued networks had
better performance than the real-valued networks in all the experiments. It can be observed that
the bigger the kernel sizes, the bigger the improvement. Training times differed only slightly,
mainly because the real- and complex-valued networks had the same number of real parameters.

Thus, it can be said that complex-valued convolutional networks perform better than their
real-valued counterparts, and their performance increases with the increase in the size of the
network.

Table 3.1: Experimental results for MNIST
Convolution kernel sizes Real-valued error Complex-valued error

3, 2 0.70% 0.65%
3, 4 0.59% 0.56%
5, 3 0.52% 0.50%
5, 5 0.52% 0.48%

5, 3, 2 0.46% 0.44%

3.1.2.2 CIFAR-10

The CIFAR-10 dataset contains images in 10 classes, like airplane, bird, or truck, for example,
and was created by [101]. There are 50, 000 training and 10, 000 test RGB color images, each
of size 32 × 32 pixels. The experimental setting was the same as the one in the above set
of experiments: training was done using gradient descent with a fixed learning rate of 0.1,
convolutional layers were followed by max pooling layers, and the activation functions were
real- and complex-valued ReLUs, respectively, for the convolutional and fully connected layers,
and real- and complex-valued softmax, respectively, for the output layer.

The 50, 000 training set images were randomly cropped to size 24× 24 pixels, which were
then input to the networks. Training set augmentation was used, and included randomly flipping
the images horizontally, and randomly adjusting the brightness and contrast of the images. Each
network was trained for 50, 000 iterations, each iteration using a batch of 128 dynamically
generated images. All the convolutional layers had 64 channels, and the two fully connected
layers had 384 and 192 neurons, respectively, for the complex-valued case. In the real-valued
case, the number of channels and neurons was increased approximately 1.41 times to ensure
that both types of networks had the same number of real parameters, thus allowing for a fair
comparison between them. Like before, the max pooling layers all had kernel size 2.

The obtained results are summarized in Table 3.2, in the same manner as in the above set
of experiments, with the kernel sizes of the convolution layers in the first column, and the real-
and complex-valued errors following. The conclusion is the same: in all the experiments, the
complex-valued networks performed better, with the best increase in performance for the bigger
kernel sizes.



46 3. Complex-valued deep learning

Table 3.2: Experimental results for CIFAR-10
Convolution kernel sizes Real-valued error Complex-valued error

3, 2 16.95% 16.71%
3, 4 15.44% 14.90%
5, 3 15.02% 14.47%
5, 5 14.41% 13.83%

5, 3, 3 15.85% 15.36%
5, 5, 2 15.41% 14.73%

3.2 Fourier transform-based complex-valued convolutional
neural networks

Although the applications described in Section 3.1 are interesting, they are limited to complex-
valued images, whereas the majority of images of interest are real-valued. Beside these uses
in complex-valued imaging, CVCNNs were rarely used for real-valued image recognition. As
shown in Section 3.1, CVCNNs have better performance than their real-valued counterparts
(RVCNNs) on real-valued image classification.

It is possible, however, to obtain a unique complex-valued representation of any real-valued
image. This representation is given by the Discrete Fourier Transform (DFT) of an image.
Based on this bijective correspondence between real-valued images and their complex-valued
DFTs, it can be deduced that the problem of classifying real-valued images is equivalent with
the problem of classifying their complex-valued DFTs.

Taking all the above observations into account, this section introduces complex-valued
Fourier transform-based image classification using CVCNNs. The presentation follows the
author’s paper [175].

3.2.1 The Fourier transform

The French mathematician Jean-Baptiste Joseph Fourier proved that any periodic function can
be expressed as a sum of sines and cosines of different frequencies, each multiplied by different
coefficients, which is called the Fourier series. Based on it, the Fourier transform decomposes
any function into its different frequencies. In the domain of image processing, the function
represents a digital image, and thus we are concerned only with the Discrete Fourier Transform
(DFT). The DFT has a wide range of applications in image processing, such as image analysis,
image filtering, image denoising and reconstruction, and image compression. Our presentation
of the main properties of the DFT mainly follows that of [63].

For an M × N image denoted by f(x, y), with spatial coordinates x = 0, 1, 2, . . . ,M − 1
and y = 0, 1, 2, . . . , N − 1, the Discrete Fourier Transform (DFT) is defined as

F (u, v) =
M−1∑
x=0

N−1∑
y=0

f(x, y)e−ı2π(ux/M+vy/N),

where ı2 = −1 is the complex imaginary unit, u = 0, 1, 2, . . . ,M−1 and v = 0, 1, 2, . . . , N−1.
One of the most important properties of the Fourier transform is that it is a bijective function
on the space of images, which means that we can define the Inverse Discrete Fourier Transform



3. Complex-valued deep learning 47

(IDFT) of F (u, v) by:

f(x, y) =
1

MN

M−1∑
u=0

N−1∑
v=0

F (u, v)eı2π(ux/M+vy/N),

for x = 0, 1, 2, . . . ,M − 1 and y = 0, 1, 2, . . . , N − 1. This means that each image has one and
only one Fourier transform, and the Fourier transform of an image can be used to retrieve the
original image. The two form a discrete Fourier transform pair, and we will write

f(x, y)↔ F (u, v).

As it can be easily seen, in general, the Fourier transform of a real-valued image is complex-
valued because of the Euler formula: eıx = cosx+ ı sinx. Thus, we can write

F (u, v) = R(u, v) + ıI(u, v) = |F (u, v)|eıφ(u,v),

where
|F (u, v)| =

√
R2(u, v) + ıI2(u, v),

is the Fourier (or frequency) spectrum and

φ(u, v) = arctan

[
I(u, v)

R(u, v)

]
,

represents the phase angle, for u = 0, 1, 2, . . . ,M − 1 and v = 0, 1, 2, . . . , N − 1.
The DFT of an image satisfies the following properties:

f(x, y)eı2π(u0x/M+v0y/N) ↔ F (u− u0, v − v0),

and
f(x− x0, y − y0)↔ F (u, v)e−ı2π(ux0/M+vy0/N).

Based on these properties, the Fourier transform of an image can be shifted so that F (0, 0) is at
the point (u0, v0) = (M/2, N/2), using the transformation

f(x, y)(−1)x+y ↔ F (u−M/2, v −N/2).

Because of the periodicity of the DFT, which states that

F (u, v) = F (u+ k1M, v + k2N),

for any integers k1, k2, the transform F (u−M/2, v−N/2) contains the exact information that
the original F (u, v) contains, but organized in a different way.

Taking all of the above properties of the Fourier transform into account, the problem of clas-
sifying real-valued images is equivalent with the problem of classifying their complex-valued
Fourier transforms. Because the Fourier transform offers a richer representation of an image,
it can constitute the basis for classification algorithms that could potentially work better than
their real-valued counterparts on the original images. This means that CVCNNs can be used to
perform Fourier transform-based image classification of real-valued images.



48 3. Complex-valued deep learning

3.2.2 Experimental results

All the experiments were done using the same network architectures for the real-valued convolu-
tional neural networks (RVCNNs), complex-valued convolutional neural networks (CVCNNs)
trained on the real-valued images (for which the imaginary part of the input was set to zero),
and complex-valued convolutional networks trained on the complex-valued Discrete Fourier
Transform (DFT) of the real-valued images.

The architecture consists of two (or three) convolutional layers, each followed by an aver-
age pooling layer. The number of input channels of the first convolutional layer was 1 or 3,
depending on whether the input images were grayscale or RGB images. The number of input
and output channels of the rest of the convolutional layers was 64 for the RVCNNs. For the
CVCNNs trained on the real-valued images, this number was 45, which is approximately 1.41
times smaller than 64, thus assuring the same number of real parameters for the two networks.
Because the CVCNNs trained on Fourier-transformed images have to deal with fully complex-
valued inputs, the number of input and output channels for the convolutional layers was also
64, to ensure a fair comparison with the other networks. Thus, they have twice the number of
real parameters, but also twice the number of real inputs. The average pooling was done over
neighborhoods of 2× 2 pixels.

The last average pooling layer was followed by two fully connected layers, which had 6
times, and 3 times, respectively, more units than the output channels of the convolutional layers
(384, and 192, respectively, for RVCNNs and CVCNNs trained on Fourier-transformed images,
and 270, and 135, respectively, for CVCNNs trained on real-valued images). The rest of the
details of the CVCNNs are the ones mentioned in Section 3.1, which were similarly applied to
the RVCNNs.

Training was done using stochastic gradient descent for 200 epochs, with the learning rate
starting from 0.01, which was then divided by 10 two times, first after 100 epochs, and then
after 150 epochs. One important aspect is that the DFTs of the input images were also shifted
so that F (0, 0) is at the center of the image, as mentioned in Section 3.2.1. This is usually a
standard procedure in the image processing domain, and preliminary experiments have shown
that training on the unshifted images has worse results than training on shifted ones.

3.2.2.1 MNIST

The full training set of 60, 000 was used for training the three types of networks described
above, with no augmentations.

The experimental results are given in Table 3.3. The first column represents the dimensions
of the convolution kernels for the first two (or three) convolutional layers. The second column
represents the errors measured on the full 10, 000 image test set for the CVCNNs trained on the
Discrete Fourier Transform (DFT) of the original images. Next, the errors on the test set for
the CVCNNs trained on the original images are reported, for which the imaginary parts of the
network inputs are considered to be zero. Lastly, the errors of the RVCNNs are given.

It can be seen that, although these last two types of networks have approximately the same
number of parameters, CVCNNs perform better than RVCNNs. But even better performance
than the CVCNNs trained on real-valued images was attained by the CVCNNs trained on the
Fourier-transformed images. This shows that, in order to fully harness the power of complex-
valued neural networks, they must be used with complex-valued inputs.



3. Complex-valued deep learning 49

Table 3.3: Experimental results for MNIST
Kernel sizes Complex DFT Complex Real

3, 2 0.69% 0.89% 0.98%
3, 4 0.63% 0.73% 0.79%
5, 3 0.56% 0.78% 0.96%
5, 5 0.55% 0.82% 0.88%

5, 3, 2 0.54% 0.65% 0.87%

3.2.2.2 SVHN

The Street View House Numbers (SVHN) dataset was created by [124], and consists of RGB
images of digits cropped from house numbers in Google Street View images. The dataset con-
tains 73, 257 images for training, 26, 032 images for testing, and 531, 131 additional, somewhat
less difficult samples, for use as extra training data. We only use the standard training and test-
ing images, with no data augmentation. The size of each sample in the dataset is 32×32 pixels.
It is a more difficult task than MNIST, because the images are RGB, and may also contain
distracting digits to the sides of the digit of interest.

The three types of networks described above were trained on this dataset, and the errors on
the test set are reported in Table 3.4. The structure of the table is the same as the one in the
previous experiment: first the kernel sizes of the convolutional layers are given, then the errors
attained by the CVCNNs trained on the Fourier-transformed images, by the CVCNNs trained
on the original images, and by the RVCNNs, respectively, are shown. The Fourier transform
of an RGB image is computed separately for the three RGB channels, thus providing three
complex-valued inputs for the CVCNNs.

The errors show that CVCNNs trained on the original images obtain better results than the
RVCNNs trained on the same inputs. But the best performance was attained by the CVCNNs
trained on the Fourier-transformed images.

Table 3.4: Experimental results for SVHN
Kernel sizes Complex DFT Complex Real

3, 2 8.66% 10.97% 12.17%
3, 4 8.42% 10.61% 11.21%
5, 3 7.94% 9.40% 10.45%
5, 5 8.16% 9.10% 9.91%

5, 3, 3 8.69% 8.81% 9.27%

3.2.2.3 CIFAR-10

Training was done on the full 50, 000 image training set, which were only randomly flipped
before being given to the networks. No other types of data augmentation were used.

The results of training the three types of networks are given in the same format as above,
in Table 3.5. The errors are reported for the full 10, 000 image test set. The conclusion of the
experiment is consistent with the ones of the above experiments: the CVCNNs perform better
than their real-valued counterparts, but the CVCNNs trained on the Fourier-transformed images
perform best.



50 3. Complex-valued deep learning

Table 3.5: Experimental results for CIFAR-10
Kernel sizes Complex DFT Complex Real

3, 2 22.26% 24.81% 27.13%
3, 4 21.51% 24.86% 24.97%
5, 3 21.77% 25.64% 25.99%
5, 5 21.25% 25.24% 25.68%

5, 3, 3 21.61% 21.88% 22.32%

3.3 Deep hybrid real–complex-valued convolutional neural
networks

In Section 3.1, we showed that shallow CVCNN models have better performance on real-valued
image recognition than their real-valued counterparts (RVCNNs). This gave rise to the idea of
formulating deeper CVCNN models for use in image classification tasks. Thus, a first contri-
bution of this section is the proposal of CVCNN architectures which are inspired by the well
known VGG architecture [196], with the necessary adaptations to the complex domain.

On the other hand, because of their different parameter spaces, the structure of learning
is different in CVCNNs than in RVCNNs. This means that the two types of networks learn
different convolution kernels, and, as a consequence, will make systematically different errors.
This fact led to the idea of a hybrid real–complex-valued ensemble, which combines the two
types of networks, harnessing the advantages of both. The hybrid ensemble is expected to have
significantly better performance than the individual CVCNN and RVCNN models, which we
confirm by testing the proposed models on well known image classification datasets.

The presentation in this section follows that in the author’s paper [168].

3.3.1 Model formulation
The architecture of the networks considered in this section is inspired by the one proposed by
[196], which is a very popular deep convolutional network architecture. Taking into account
the observations made in Section 3.1, we formulate real-valued and complex-valued variants of
this architecture, given in Table 3.6.

In the table, the architectures are given with their established names, though there is only one
fully connected layer which is used as input to the softmax function. The convolution kernels
are all of dimension 3× 3 pixels, which is the smallest dimension that can capture the notion of
left/right, up/down, and center. The convolution is followed by batch normalization, which is
not used in the original architecture of [196]. The number of channels is also given in the table,
thus “Conv3BN-64” means a convolutional layer with 3 × 3 convolution kernels, followed by
batch normalization (and the ReLUC nonlinearity which is omitted in this notation), with 64
channels.

Because of the discussion in Section 3.1, to ensure a fair comparison between the real and
complex networks, average pooling is used, with the size of the neighborhood being 2×2 pixels
for the first four average pooling layers, and 1×1 for the last average pooling layer, because we
only work with 32× 32 pixel images, and a neighborhood of 2× 2 pixels would not be possible
in this case. Thus, “AvgPool2” means an average pooling layer with 2× 2 pixels neighborhood.

Lastly, “FC10” (or “FC100”) signifies the fully connected layer with 10 channels for net-
works which classify images belonging to 10 classes and 100 channels for networks which
classify images belonging to 100 classes.



3. Complex-valued deep learning 51

Table 3.6: Real and complex convolutional neural network architectures
Real VGG11 Real VGG13 Real VGG16 Real VGG19
Conv3BN-64 Conv3BN-64

Conv3BN-64
Conv3BN-64
Conv3BN-64

Conv3BN-64
Conv3BN-64

AvgPool2
Conv3BN-128 Conv3BN-128

Conv3BN-128
Conv3BN-128
Conv3BN-128

Conv3BN-128
Conv3BN-128

AvgPool2
Conv3BN-256
Conv3BN-256

Conv3BN-256
Conv3BN-256

Conv3BN-256
Conv3BN-256
Conv3BN-256

Conv3BN-256
Conv3BN-256
Conv3BN-256
Conv3BN-256

AvgPool2
Conv3BN-512
Conv3BN-512

Conv3BN-512
Conv3BN-512

Conv3BN-512
Conv3BN-512
Conv3BN-512

Conv3BN-512
Conv3BN-512
Conv3BN-512
Conv3BN-512

AvgPool2
Conv3BN-512
Conv3BN-512

Conv3BN-512
Conv3BN-512

Conv3BN-512
Conv3BN-512
Conv3BN-512

Conv3BN-512
Conv3BN-512
Conv3BN-512
Conv3BN-512

AvgPool1
FC10 (FC100)

Complex VGG11 Complex VGG13 Complex VGG16 Complex VGG19
Conv3BN-45 Conv3BN-45

Conv3BN-45
Conv3BN-45
Conv3BN-45

Conv3BN-45
Conv3BN-45

AvgPool2
Conv3BN-90 Conv3BN-90

Conv3BN-90
Conv3BN-90
Conv3BN-90

Conv3BN-90
Conv3BN-90

AvgPool2
Conv3BN-180
Conv3BN-180

Conv3BN-180
Conv3BN-180

Conv3BN-180
Conv3BN-180
Conv3BN-180

Conv3BN-180
Conv3BN-180
Conv3BN-180
Conv3BN-180

AvgPool2
Conv3BN-360
Conv3BN-360

Conv3BN-360
Conv3BN-360

Conv3BN-360
Conv3BN-360
Conv3BN-360

Conv3BN-360
Conv3BN-360
Conv3BN-360
Conv3BN-360

AvgPool2
Conv3BN-360
Conv3BN-360

Conv3BN-360
Conv3BN-360

Conv3BN-360
Conv3BN-360
Conv3BN-360

Conv3BN-360
Conv3BN-360
Conv3BN-360
Conv3BN-360

AvgPool1
FC10 (FC100)



52 3. Complex-valued deep learning

An important point that must be made is that the complex-valued architectures contain ap-
proximately 1.41 less channels for the convolutional layers than their real-valued counterparts.
This is to ensure a fair comparison between the two types of architectures, which have, in this
way, approximately the same number of real parameters. For example, where RVCNNs have a
“Conv3BN-64” layer, the CVCNNs have a “Conv3BN-45” layer, because 45 is approximately
1.41 times smaller than 64.

However, because of the different structure of learning in the real and complex network
architectures, although they are as similar as possible and have the same number of real pa-
rameters, it is expected that CVCNNs learn different convolution kernels than RVCNNs. This
difference in learning means that the errors made by the CVCNNs are of different nature than
those made by RVCNNs. Real-valued network ensembles give rather modest improvements
in classification error. Because the structure of learning is very similar in these networks, the
learned convolution kernels are also similar, which means that the networks forming the ensem-
ble will make the same errors.

For this reason, we consider a promising idea to formulate a RVCNN–CVCNN ensemble in
the form of a hybrid real–complex-valued convolutional network (RCVCNN). The output of the
hybrid network is given by the average of the class scores given by the RVCNN and CVCNN
components of the hybrid ensemble. This type of hybrid real–complex-valued ensemble is the
simplest that can be formulated, and constitutes a first step done towards hybrid real–complex-
valued networks.

3.3.2 Experimental results

The experiments were done using the RVCNN, CVCNN, and hybrid RCVCNN architectures
described above. The RVCNNs and CVCNNs were trained separately, and their outputs were
then averaged to give the output of the hybrid network. All inputs were real-valued RGB images
of dimension 32× 32 pixels, and so the networks had 3 input channels. The imaginary parts of
the inputs for the CVCNNs were considered to be zero.

The networks were trained with stochastic gradient descent with minibatches of 128 images
and momentum equal to 0.9. Weight decay was used with an L2 penalty multiplier equal to
5 · 10−4, like in [196]. The learning rate was set initially to 0.05, and then divided by 10 twice,
after every 35 epochs. Thus the total number of epochs was 105, which is enough due to the use
of batch normalization, which speeds up learning.

3.3.2.1 SVHN

The first dataset we test our networks on is the Street View House Numbers (SVHN) dataset.
We only use the standard training and testing images, with no data augmentation.

The experimental results for training RVCNNs, CVCNNs, and for their hybrid ensemble
are given in Table 3.7. In the first column, the name of the architecture is given, following the
discussion in Section 3.3 and Table 3.6. Next, the error rate for the CVCNNs is given, followed
by the error rate of the RVCNNs. It can be seen that, for the proposed type of architectures, the
CVCNNs obtain better results than their real-valued counterparts. But, most importantly, the
hybrid RCVCNN ensemble, formed with only two networks, has a much better performance
than the best network of the ensemble, which is the CVCNN, in some cases as much as 10% in
relative error improvement.



3. Complex-valued deep learning 53

Table 3.7: Experimental results for SVHN
Architecture Complex Real Real–Complex

VGG11 4.19% 4.68% 4 .06%
VGG13 3.93% 4.10% 3 .66%
VGG16 3.96% 3.98% 3 .59%
VGG19 3.63% 3.75% 3 .24%

3.3.2.2 CIFAR-10

Before being fed to the networks, the images in the dataset were padded with 4 pixels to a
dimension of 40 × 40 pixels, which were then randomly cropped to 32 × 32 pixels, and then
were randomly flipped. No other data augmentation was used.

The results of training the above-described convolutional architectures on this dataset are
given in Table 3.8, in the same form as with the previous experiment. It can be seen from the
table that CVCNNs performed better than RVCNNs, but the performance increase of the hybrid
ensemble was significant compared to the CVCNNs.

Table 3.8: Experimental results for CIFAR-10
Architecture Complex Real Real–Complex

VGG11 8.49% 10.13% 8 .17%
VGG13 7.10% 7.12% 6 .27%
VGG16 6.50% 6.95% 5 .96%
VGG19 6.51% 8.08% 6 .40%

3.3.2.3 CIFAR-100

The CIFAR-100 dataset contains the same images as CIFAR-10, but organized in 100 different
classes, being much more specialized than the CIFAR-10 dataset [101]. Each of the 100 classes
has 500 samples in the 50, 000 training set and 100 samples in the 10, 000 testing set. Because
of the relatively big number of classes and the relatively small number of training samples per
class, the classification errors are much bigger than the ones for the CIFAR-10 dataset.

The images were distorted in the same way as the ones in the previous experiment: random
crop from the original image padded with 4 pixels, and random flip. The experimental results
of RVCNNs and CVCNNs are given in Table 3.9 for the four different architectures. It can be
seen that, in some cases, the performance improvements between CVCNNs and RVCNNs are
important, but the biggest improvements were attained by the hybrid ensemble.

Table 3.9: Experimental results for CIFAR-100
Architecture Complex Real Real–Complex

VGG11 31.07% 31.53% 28 .87%
VGG13 26.84% 27.93% 25 .18%
VGG16 26.34% 29.09% 25 .10%
VGG19 28.42% 30.04% 26 .32%



54 3. Complex-valued deep learning

3.4 Complex-valued stacked denoising autoencoders

One of the first papers in the deep learning domain was [76], which has shown that Restricted
Boltzmann Machines (RBMs) can be stacked to form a deep belief network, which could then
in turn be used as an unsupervised pretraining procedure for deep neural networks. The idea
was that greedy layer-wise pretraining [16] can be used to initialize deep architectures [52],
which can then be fine-tuned via supervised learning to produce better results than the ones
using random weight initialization. The random weight initialization prevented deep models
from obtaining better performance than shallow ones.

Autoencoders are networks that learn to generate a representation of the input called a code,
which can be then used to reconstruct the original input. Denoising autoencoders [220] are
a special type of autoencoders which learn to reconstruct the original input from a corrupted
version of it. Stacking denoising autoencoders is a similar idea to stacking RBMs to form deep
belief networks, and was introduced by [221]. It has been shown in [221] that stacked denoising
autoencoders match and even surpass the performance attained by deep belief networks.

In the complex domain, complex-valued linear autoencoders were proposed by [10], which
also gave a training algorithm for them. But the most interesting types of autoencoders are
nonlinear. Following the success of complex-valued convolutional neural networks for real-
valued image classification presented in Section 3.1, and the above observations, we considered
a promising idea to introduce complex-valued stacked denoising autoencoders.

The presentation in this section follows that in the author’s paper [169].

3.4.1 Model formulation

A complex-valued autoencoder is composed of two parts: the encoder, which transforms the
input into a representation called a code, and the decoder, which transforms this code into a
reconstruction of the input. The goal of the autoencoder is thus to obtain a representation of its
input, which, upon reconstruction, is as close as possible to the original. The following deduc-
tion of the complex-valued stacked denoising autoencoders follows its real-valued counterpart
given in [221].

For a complex-valued encoder, we denote by f(x) the mapping that transforms the input
vector x of dimension d into its representation y of dimension d′. Let W denote the d′ × d
complex-valued weight matrix of the encoder and b its d′-dimensional bias. Then, the represen-
tation y is given by:

y = yR + ıyI

= f(x)

= ReLUC(Wx+ b)

= ReLU(WRxR −W IxI + bR) + ıReLU(WRxI +W IxR + bI),

where z = zR+ızI , which means that zR and zI respectively denote the real and imaginary parts
of complex matrix z, and ı, with ı2 = −1, represents the complex imaginary unit. The above
writing of the complex-valued representation y is necessary because the common computational
frameworks that are used in the deep learning field mainly deal with real-valued operations, and
thus we need to express all complex-valued relations using only real-valued operations.

The nonlinearity used is the split complex ReLUC nonlinearity, which applies the ReLU



3. Complex-valued deep learning 55

function to the real and imaginary parts of a complex number separately:

ReLUC(xR + ıxI) = ReLU(xR) + ıReLU(xI)

= max(0, xR) + ımax(0, xI).

Because of its popularity in real-valued deep learning, we also use it in the complex domain.
For the complex-valued decoder, we denote by z the d-dimensional reconstruction of the

representation y, and by g(y) the mapping that does this reconstruction. We have that:

z = zR + ızI

= g(y)

= σC(W ′y + b′)

= σ(W ′RyR −W ′IyI + b′R) + ıσ(W ′RyI +W ′IyR + b′I),

whereW ′ represents the d×d′ complex-valued weight matrix of the decoder, b′ its d-dimensional
weight, and σC represents the split complex sigmoid function:

σC(xR + ıxI) = σ(xR) + ıσ(xI)

=
1

1 + e−xR
+ ı

1

1 + e−xI
.

We will consider that x ∈ [0, 1]d + ı[0, 1]d. We can also easily see that, because of the
sigmoid nonlinearity, we also have z ∈ [0, 1]d + ı[0, 1]d. The loss function which measures the
reconstruction error is given by the cross-entropy loss:

L(x, z) = −
∑
j

[
xRj log zRj + (1− xRj ) log(1− zRj )

]
−
∑
j

[
xIj log zIj + (1− xIj ) log(1− zIj )

]
.

If a good reconstruction of the input is given by the representation, then it has retained much
of the information presented as input. But it is possible that the autoencoder simply learns the
identity mapping, without discovering a more useful representation than the input, especially in
the case when d′ > d. Usually, autoencoders produce an under-complete representation in the
case d′ < d, and so we say that they produce a lossy compressed representation of the input. On
the other hand, it is possible to avoid the learning of the identity mapping by an over-complete
but sparse representation (d′ > d).

A different approach to avoid the simple copying of the input by the autoencoder is to change
the reconstruction criterion in order for it to perform a different task: to reconstruct the input
from a corrupted version of it. This approach is called denoising, and was proposed by [221]
for the real-valued case. The idea behind the approach is that, while learning to reconstruct the
input, the autoencoder will also extract features that capture useful structure in the input.

Thus, a denoising autoencoder is trained to reconstruct the input x from a corrupted version
x̃ of x. As a consequence, the encoder becomes y = f(x̃), and the decoder remains the same:
z = g(y). The observation is that, in this case, we are interested that the reconstruction z be
as close as possible to the original input x, and not to the corrupted input x̃. For this reason,
the loss function is the same cross-entropy loss L(x, z), defined above. Each time an input x
is presented, the autoencoder will use a different corrupted version x̃ of it, generated by the
corruption process.

We consider two types of corruption processes:



56 3. Complex-valued deep learning

• Additive Gaussian Noise (GN), in which x̃ is given as x̃ = x̃R + ıx̃I ∼ N (xR, σ2/2) +
ıN (xI , σ2/2);

• Masking Noise (MN), in which x̃ is obtained by setting a fraction ν of the elements of x
to 0 + 0ı = 0, randomly chosen for each example.

It has been shown that stacking Restricted Boltzmann Machines (RBMs) to form deep belief
networks and autoencoders to form stacked autoencoders can be used as unsupervised pretrain-
ing procedures for deep neural networks [76, 75]. Likewise, denoising autoencoders can be
stacked to form stacked denoising autoencoders. In such networks, each layer is trained sepa-
rately, using greedy layer-wise training [16]. We must mention that the corrupted input to each
individual layer is only used in the training phase, and after the mapping f has been learned, it
is used on the uncorrupted layer input.

After all the mappings f have been learned for each of the layers of the stacked denoising
autoencoder, a logistic regression layer can be added on top of the encoders, giving rise to a
complex-valued deep neural network, which can be used for classification. The weights learned
through unsupervised pretraining can then be fine-tuned using supervised training via gradient
descent.

3.4.2 Experimental results
In our experiments, we train real-valued and complex-valued stacked denoising autoencoders,
like the ones described above. The 28 × 28 pixel images are linearized as 784-dimensional
vectors to be given to the networks. Each encoder is then pretrained using the greedy layer-wise
procedure described above. The number of neurons for each complex-valued encoder is 1.41
times smaller then for its real-valued counterpart, to ensure approximately the same number of
parameters in the two networks, and, as such, a fair comparison between them.

After the greedy layer-wise pretraining has learned the weights of each layer, a logistic
regression layer which consists of the softmax function and the negative log likelihood loss
function is added on top of the last encoder in the network. Learning then continues in a
supervised manner, like in a deep neural network.

The Adam [98] algorithm with minibatches of 128 images was used for training. The learn-
ing rate was 0.001 and the number of epochs was 50 both for pretraining and for fine-tuning.
The two types of noise used for corrupting the layer inputs were: Gaussian noise (GN) with
standard deviation of 1/

√
2 for the complex case, and of 1 for the real case; and masking noise

(MN), for which a fraction of ν = 0.25 (25%) of the inputs to the layers were set to 0.

3.4.2.1 MNIST

The experimental results for the MNIST dataset are given in Table 3.10. The first column in the
table shows the architecture of the complex-valued network which has 1.41 times less neurons
than the real-valued one. In the second and third columns, the value of the cross-entropy loss
for the pretraining part computed on the test set is given for the complex-valued and real-valued
autoencoders, respectively. Then, in the last two columns, the error (computed on the test set)
after fine-tuning is given for the two types of networks. It can be seen from the table that the
complex-valued networks have better performance than their real-valued counterparts both in
terms of reconstruction loss and in terms of classification error.

Also, the reconstructed images by the real-valued and complex-valued stacked denoising
autoencoders are given in Figure 3.1, along with the original images. It can be seen that the



3. Complex-valued deep learning 57

quality of the images reconstructed by the complex-valued network is better than that of the
images reconstructed by the real-valued network.

Figure 3.1: MNIST images reconstructed by the real-valued (left) and complex-valued (right)
stacked denoising autoencoders, along with the original images [169]

Table 3.10: Experimental results for MNIST
Architecture Complex

Loss
Real
Loss

Complex
Error

Real
Error

784-128-64-32 (GN) 10.88e− 4 11.33e− 4 1.44% 1.49%
784-128-64-32 (MN) 9.24e− 4 9.67e− 4 1.71% 1.91%
784-256-128-64 (GN) 10.70e− 4 10.88e− 4 1.18% 1.26%
784-256-128-64 (MN) 8.96e− 4 9.19e− 4 1.35% 1.63%

784-1024-512-256-128 (GN) 10.64e− 4 10.83e− 4 1.19% 1.21%
784-1024-512-256-128 (MN) 8.69e− 4 9.15e− 4 1.18% 1.24%

3.4.2.2 FashionMNIST

A dataset that appeared recently is the FashionMNIST dataset [230]. Its characteristics are very
similar to the MNIST dataset, from which it was inspired, but it is more complicated. The
grayscale 28× 28 pixel images pertain to the following 10 classes: t-shirt/top, trouser, pullover,
dress, coat, sandal, shirt, sneaker, bag, ankle boot. There are 60, 000 training samples and
10, 000 test samples.

The experimental results are given in the same way as with the above experiment in Table
3.11. It can be seen that the task is more complicated, both in terms of reconstruction error as
well as in terms of classification error. Nonetheless, the conclusion of the set of experiments
is the same: complex-valued networks have better reconstruction error and better classification
error then the real-valued networks.

The reconstructed images for the two types of networks are given in Figure 3.2, along with
the original images. In this case too, the complex-valued reconstructed images have a better
quality.

3.5 Complex-valued deep belief networks
Among the first models in the paradigm of deep learning were deep belief networks. It was
shown in [76] that Restricted Boltzmann Machines (RBMs) can be stacked to form a deep
belief network, which, after training, can be used to initialize learning in a feedforward neural
network [52]. Because deep belief networks are trained in an unsupervised manner, using the
greedy layer-wise technique [16], the resulted networks can then be fine-tuned using supervised



58 3. Complex-valued deep learning

Figure 3.2: FashionMNIST images reconstructed by the real-valued (left) and complex-valued
(right) stacked denoising autoencoders, along with the original images [169]

Table 3.11: Experimental results for FashionMNIST
Architecture Complex

Loss
Real Loss Complex

Error
Real

Error
784-128-64-32 (GN) 24.32e− 4 24.54e− 4 10.37% 10.72%
784-128-64-32 (MN) 23.07e− 4 23.47e− 4 10.15% 10.82%
784-256-128-64 (GN) 24.21e− 4 24.30e− 4 10.30% 10.37%
784-256-128-64 (MN) 22.82e− 4 23.07e− 4 10.21% 10.45%

784-1024-512-256-128 (GN) 24.23e− 4 24.29e− 4 10.01% 10.09%
784-1024-512-256-128 (MN) 22.84e− 4 22.89e− 4 9.97% 10.05%

learning. As it turns out, this unsupervised pretraining of deep neural networks allows them to
have better results than with random weight initialization.

On the footsteps of these papers, also taking into account the success of complex-valued
convolutional neural networks for real-valued image classification demonstrated in Section 3.1,
we introduce complex-valued deep belief networks. The presentation in this section follows
that in the author’s paper [170].

3.5.1 Model formulation
Restricted Boltzmann Machines (RBMs) are part of the larger family of energy-based models,
which associate a scalar energy to each configuration of the variables of interest. Learning
corresponds to modifying the energy function so that it has some desired properties. Usually,
we would want the energy to be as low as possible. The following deduction of the properties
of complex-valued RBMs follows that of [15] for the real-valued case.

For Boltzmann Machines (BMs), the energy function is linear in its free parameters. To
increase the representational power of the Boltzmann Machines in order for them to be able
to represent more complicated input distributions, some variables are considered to never be
observed, and that is why they are called hidden variables. Restricted Boltzmann Machines
(RBMs) restrict the BM model by not allowing visible-visible and hidden-hidden connections.
If we denote the visible variables by v and the hidden variables by h, in the case of complex-
valued RBMs, the energy function is defined by

E(v, h) = −(bHv)R − (cHh)R − (hHWv)R

= −(bR)TvR − (bI)TvI − (cR)ThR − (cI)ThI

−(hR)T (Wv)R − (hI)T (Wv)I

= −(bR)TvR − (bI)TvI − (cR)ThR − (cI)ThI

−(vR)T (WHh)R − (vI)T (WHh)I , (3.5.1)



3. Complex-valued deep learning 59

where zR and zI are the real and imaginary parts, respectively, of the complex-valued matrix
z, zH is the Hermitian (complex-conjugate) transpose of matrix z, aT is the transpose of real-
valued matrix a, and we used the property that (xHy)R = (yHx)R. Also, W represents the
weights connecting the visible and hidden layers, b represents the bias of the visible layer, and
c represents the bias of the hidden layer.

With the above notations, the probability distribution of complex-valued RBMs can be de-
fined as

P (v) =
∑
h

P (v, h) =
∑
h

e−E(v,h)

Z
,

where Z is called the partition function by analogy with physical systems.
If we denote by

F(v) = − log
∑
h

e−E(v,h),

which is called free energy (a notion also inspired from physics), we have that

P (v) =
e−F(v)

Z
,

and Z is given by

Z =
∑
v

e−F(v).

Now, from (3.5.1), we have that

F(v) = −(bR)TvR − (bI)TvI

−
∑
i

log
∑
hRi

eh
R
i (cRi +(Wiv)R) −

∑
i

log
∑
hIi

eh
I
i (cIi+(Wiv)I)

= −(bR)TvR − (bI)TvI

−
∑
i

log
∑
hRi

eh
R
i (cRi +WR

i v
R−W I

i v
I) −

∑
i

log
∑
hIi

eh
I
i (cIi+WR

i v
I+W I

i v
R), (3.5.2)

where hi is the ith element of vector h and Wi is the ith column of matrix W .
We can also obtain an expression for the conditional probabilities P (hR|v) and P (hI |v):

P (hR|v) =
e(bR)T vR+(bI)T vI+(cR)T hR+(cI)T hI+(hR)T (Wv)R+(hI)T (Wv)I∑
h̃R e

(bR)T vR+(bI)T vI+(cR)T h̃R+(cI)T hI+(h̃R)T (Wv)R+(hI)T (Wv)I

=

∏
i e
cRi h

R
i +hRi (Wiv)R∏

i

∑
h̃i
R ec

R
i h̃

R
i +h̃Ri (Wiv)R

=
∏
i

eh
R
i (cRi +(Wiv)R)∑

h̃i
R eh̃

R
i (cRi +(Wiv)R)

=
∏
i

P (hRi |v),



60 3. Complex-valued deep learning

P (hI |v) =
e(bR)T vR+(bI)T vI+(cR)T hR+(cI)T hI+(hR)T (Wv)R+(hI)T (Wv)I∑
h̃I e

(bR)T vR+(bI)T vI+(cR)T hR+(cI)T h̃I+(hR)T (Wv)R+(h̃I)T (Wv)I

=

∏
i e
cIi h

I
i+hIi (Wiv)I∏

i

∑
h̃i
I ec

I
i h̃
I
i+h̃Ii (Wiv)I

=
∏
i

eh
I
i (cIi+(Wiv)I)∑

h̃i
I eh̃

I
i (cIi+(Wiv)I)

=
∏
i

P (hIi |v).

This means that the visible and hidden neurons are conditionally independent given one another.
If we assume that hRi , hIi ∈ {0, 1}, we obtain

P (hRi = 1|v) =
ec
R
i +(Wiv)R

1 + ec
R
i +(Wiv)R

= σ(cRi + (Wiv)R) = σ(cRi +WR
i v

R −W I
i v

I),

P (hIi = 1|v) =
ec
I
i+(Wiv)I

1 + ec
I
i+(Wiv)I

= σ(cIi + (Wiv)I) = σ(cIi +WR
i v

I +W I
i v

R),

where σ is the real-valued sigmoid function: σ(x) = 1
1+e−x

. The above expressions, together
with (3.5.2), prove that a complex-valued RBM can be implemented only using real-valued
operations. This is important, because the computational frameworks used in the deep learning
domain mainly deal with real-valued operations.

Because of the symmetry in the expression of the energy function between the visible and
hidden neurons, assuming that vRj , vIj ∈ {0, 1}, the following relations can also be deduced:

P (vR|h) =
∏
j

P (vRj |h),

P (vI |h) =
∏
j

P (vIj |h),

P (vRj = 1|h) = σ(bRj + (WH
j h)R) = σ(bRj + (WR

j )ThR + (W I
j )ThI),

P (vIj = 1|h) = σ(bIj + (WH
j h)I) = σ(bIj + (WR

j )ThI − (W I
j )ThR).

The free energy for an RBM with binary neurons can be further simplified to

F(v) = −(bR)TvR − (bI)TvI

−
∑
i

log(1 + ec
R
i +WR

i v
R−W I

i v
I

)−
∑
i

log(1 + ec
I
i+WR

i v
I+W I

i v
R

).

Samples from the distribution P (x) can be obtained by running a Markov chain to conver-
gence, using as transition operator the Gibbs sampling procedure. Gibbs sampling for N joint
random variables S = (S1, . . . , SN) is done in a sequence of N sampling steps of the form
Si ∼ P (Si|S−i), where S−i denotes the other N − 1 variables that are not Si. In the case of an
RBM, this means that first we sample hR, hI from P (hR|v), P (hI |v), and then we sample vR,
vI from P (vR|h), P (vI |h). By doing this procedure a sufficient amount of time, it is guaran-
teed that (v, h) is an accurate sample of P (v, h). This would however be very computationally



3. Complex-valued deep learning 61

expensive, and so different algorithms have been devised to sample from P (v, h) efficiently
during learning.

One such algorithm is contrastive divergence, which we use in our experiments. It is based
on two ideas to speed up the sampling process. First, because we want to have P (v) ≈ Ptrain(v),
i.e., the true distribution of the training data, we initialize the Markov chain described above
with a training sample, which will speed up convergence. The second idea is that contrastive
divergence doesn’t wait for the Markov chain to converge, but only does k steps of Gibbs
sampling. Surprisingly, k = 1 gives good results in practice.

Now that we have all the ingredients for constructing and training a complex-valued RBM,
we can stack several complex-valued RBMs to form a complex-valued deep belief network.
This type of network is trained one layer at a time, using the greedy layer-wise procedure [16].
After training the first layer to model the input, the following layers are trained as complex-
valued RBMs to model the outputs of the previous layers. After learning the weights for all the
RBMs in the deep belief network, a logistic regression layer is added on top of the last RBM
in the deep belief network, thus forming a complex-valued deep neural network. This network
can then be fine-tuned in a supervised manner, using gradient-based methods. Thus, the deep
belief network is used to initialize the parameters of the deep neural network.

3.5.2 Experimental results

In the experiments, we use real-valued and complex-valued deep belief networks for the unsu-
pervised pretraining of deep neural networks. The 28 × 28 images of the MNIST dataset were
linearized into 784-dimensional vectors, which constitute the inputs of the networks. The num-
ber of neurons in every hidden layer of the complex-valued networks is given in the first column
of Table 3.12. The real-valued networks had 1.41 times more neurons in the hidden layers, to
ensure the same number of real parameters between the two types of networks, and thus a fair
comparison. Each layer was trained in an unsupervised manner, and then the learned weights
were used to initialize the weights of the deep networks. These networks were then fine-tuned
using stochastic gradient descent.

The number of pretraining epochs was 100, and the number of fine-tuning epochs was 50.
The learning rate was 0.01 for the unsupervised learning, and 0.1 for the supervised learning.

The experimental results on the MNIST dataset are given in Table 3.12. It can be seen
from the table that we tested different architectures, and the results were consistent: complex-
valued neural networks pretrained using complex-valued deep belief networks attained better
classification results than real-valued networks using their real-valued counterparts.

Table 3.12: Experimental results for MNIST
Hidden layer sizes Real-valued error Complex-valued error

1000 1.42% 1.40%
1000, 500 1.36% 1.32%
1000, 1000 1.38% 1.23%

1000, 1000, 1000 1.31% 1.20%
1000, 1000, 1000, 1000 1.38% 1.37%
2000, 1500, 1000, 500 1.64% 1.34%

2500, 2000, 1500, 1000, 500 1.45% 1.31%



62 3. Complex-valued deep learning

3.6 Complex-valued deep Boltzmann machines

Deep Boltzmann machines (DBMs) were among the first models pertaining to the deep neu-
ral networks paradigm. Unlike deep belief networks (DBNs), which were introduced earlier
[76], DBMs are fully undirected deep generative models, and were proposed in [183]. DBMs
have been applied to many tasks which require learning of features from very few examples,
including document modeling [201].

The DBM model was later improved. A new approximate inference algorithm for DBMs
was proposed in [184]. To improve the conditioning of the underlying optimization problem, in
[123], the centering trick was introduced, which consists of rewriting the energy of the DBMs
as a function of centered states. Multimodal learning with DBMs is discussed in [200]. Hierar-
chical deep models based on DBMs were developed in [186]. In order to improve classification
done using DBM pretraining, multi-prediction DBMs are analyzed in [65], and are shown to
outperform standard DBMs in this task.

Following the path laid by these papers, and also taking into account the success of complex-
valued convolutional neural networks for real-valued image classification (Section 3.1), we
consider a promising idea to introduce complex-valued deep Boltzmann machines. The pre-
sentation in this section follows the author’s paper [171].

3.6.1 Model formulation

We begin by presenting a complex-valued variant of the Boltzmann Machines (BMs), following
their real-valued presentation in [183, 186]. Boltzmann Machines are part of the energy-based
models family, which associate a scalar energy to any configuration of the variables of interest.
In these models, learning consists of modifying the energy function so that it has some desired
properties, usually the property to be as low as possible.

To increase the representational power of BMs, some of its variables are considered not to
be observed, which is the reason why they are called hidden variables. In this paper, we assume
that all the variables are binary, and we denote the visible units by v ∈ {0, 1}D + ı{0, 1}D, and
the hidden units by h ∈ {0, 1}P + ı{0, 1}P . The energy function for the state {v,h} is given
by

E(v,h;θ) = −1

2
(vHLv)R − 1

2
(hHJh)R − (vHWh)R

= −1

2
(vR)T (Lv)R − 1

2
(vI)T (Lv)I − 1

2
(hR)T (Jh)R − 1

2
(hI)T (Jh)I

−(vR)T (Wh)R − (vI)T (Wh)I

= −1

2
(vR)T (Lv)R − 1

2
(vI)T (Lv)I − 1

2
(hR)T (Jh)R − 1

2
(hI)T (Jh)I

−(hR)T (WHv)R − (hI)T (WHv)I , (3.6.1)

where θ = {W ,L,J} represent the parameters of the model: W is the visible-hidden weight
matrix, L is the visible-visible weight matrix, and J is the hidden-hidden weight matrix. The
diagonal elements of L and J are 0. For the clarity of the presentation, we have omitted the
bias terms in the energy function, because biases can be considered as weights of a connection
to a unit whose state is always 1 + 1ı. We also denoted by zR and zI the real and imaginary
parts, respectively, of the complex-valued matrix or vector z, by ı, with ı2 = −1, the complex
imaginary unit, by zT the transpose of real-valued matrix or vector z, and by zH the Hermitian



3. Complex-valued deep learning 63

(complex-conjugate) transpose of complex-valued matrix or vector z. In the deduction of the
last equality in (3.6.1), we used the property (xHy)R = (yHx)R.

The probability the above-defined complex-valued BM assigns to the visible vector v is

p(v;θ) =
p∗(v;θ)

Z(θ)
=

1

Z(θ)

∑
h

exp(−E(v,h;θ)), (3.6.2)

where p∗(v;θ) is the unnormalized probability, and

Z(θ) =
∑
v

∑
h

exp(−E(v,h;θ)),

represents the partition function.
The expressions for the conditional probabilities p(hRj |v,h−j) and p(hIj |v,h−j) in a BM

with arbitrary units can be obtained as

p(hRj |v,h−j) =
exp(hRj (JH−jh−j)

R + hRj (WH
j v)R)∑

h̃j
R exp(h̃Rj (JH−jh−j)

R + h̃Rj (WH
j v)R)

,

p(hIj |v,h−j) =
exp(hIj (J

H
−jh−j)

I + hIj (W
H
j v)I)∑

h̃j
I exp(h̃Ij (J

H
−jh−j)

I + h̃Ij (W
H
j v)I)

,

where z−j represents the vector z without element zj , and Z−j represents matrix Z without
column j, which is denoted by Zj . But, because we assumed that all the units are binary, we
have that

p(hRj = 1|v,h−j) =
exp((JH−jh−j)

R + (WH
j v)R)

1 + exp((JH−jh−j)
R + (WH

j v)R)
,

= σ((JH−jh−j)
R + (WH

j v)R)

= σ
(
(JR−j)

ThR−j + (J I−j)
ThI−j + (WR

j )TvR + (W I
j )
TvI
)
,

p(hIj = 1|v,h−j) =
exp((JH−jh−j)

I + (WH
j v)I)

1 + exp((JH−jh−j)
I + (WH

j v)I)
,

= σ((JH−jh−j)
I + (WH

j v)I)

= σ
(
(JR−j)

ThI−j − (J I−j)
ThR−j + (WR

j )TvI − (W I
j )
TvR

)
,

where σ is the real-valued sigmoid function: σ(x) = 1
1+exp(−x)

. The expression of the energy
function (3.6.1) can be written as

E(v,h;θ) = −1

2
(vR)TLRvR − 1

2
(vR)TLIvI − 1

2
(vI)TLRvI +

1

2
(vI)TLIvR

−1

2
(hR)TJRhR − 1

2
(hR)TJ IhI − 1

2
(hI)TJRhI +

1

2
(hI)TJ IhR

−(vR)TWRhR − (vR)TW IhI − (vI)TWRhI + (vI)TW IhR.

This, along with the expressions for p(hRj = 1|v,h−j) and p(hIj = 1|v,h−j), deduced above,
show that a complex-valued BM can be implemented only using real-valued operations, which
is a desirable property since the computational frameworks that are popular in the deep learning
domain mainly deal with this type of operations.



64 3. Complex-valued deep learning

Due to the symmetry in the expression of the energy function between the visible and hidden
units, the following relations can also be deduced:

p(vRi = 1|h,v−i) = σ
(
(LR−i)

TvR−i + (LI−i)
TvI−i +WR

i h
R −W I

ih
I
)
,

p(vIi = 1|h,v−i) = σ
(
(LR−i)

TvI−i − (LI−i)
TvR−i +WR

i h
I +W I

ih
R
)
.

The derivatives of the log-likelihood with respect to the model parameters θ = {W ,L,J}
can be obtained as:

∂ log p(v;θ)

∂WR
= EPdata [v

R(hR)T + vI(hI)T ]− EPmodel [v
R(hR)T + vI(hI)T ],

∂ log p(v;θ)

∂W I
= EPdata [v

R(hI)T − vI(hR)T ]− EPmodel [v
R(hI)T − vI(hR)T ],

∂ log p(v;θ)

∂LR
= EPdata [v

R(vR)T + vI(vI)T ]− EPmodel [v
R(vR)T + vI(vI)T ],

∂ log p(v;θ)

∂LI
= EPdata [v

R(vI)T − vI(vR)T ]− EPmodel [v
R(vI)T − vI(vR)T ],

∂ log p(v;θ)

∂JR
= EPdata [h

R(hR)T + hI(hI)T ]− EPmodel [h
R(hR)T + hI(hI)T ],

∂ log p(v;θ)

∂J I
= EPdata [h

R(hI)T − hI(hR)T ]− EPmodel [h
R(hI)T − hI(hR)T ],

where EPdata [·] represents the expectation of the completed data distribution

Pdata(h,v;θ) = p(h|v;θ)Pdata(v),

with Pdata(v) = 1
N

∑
n δ(v − vn) being the empirical distribution, and EPmodel [·] represents the

expectation of the distribution defined by the model in (3.6.2). We can see that EPdata [·] is a
data-dependent expectation, and EPmodel [·] is the model expectation.

Exact maximum likelihood learning in this model is intractable, because exact computation
of the data-dependent expectations is exponential in the number of hidden units, and the exact
computation of the model expectations is exponential in the number of visible and hidden units.

Therefore, approximate learning procedures are needed. Mean-field inference will be used
to estimate data-dependent expectations and stochastic approximation procedure based on Markov
Chain Monte Carlo (MCMC) will be used to estimate the model expectations.

In variational learning, the true posterior distribution p(h|v;θ) is replaced by an approxi-
mation q(h|v;µ) of it, and the parameter updates follow the gradient of the lower bound on the
log-likelihood:

log p(v;θ) ≥
∑
h

q(h|v;µ) log p(v,h;θ) +H(q)

≥ log p(v;θ)−KL[q(h|v;µ)||p(h|v;θ)],

where H(q) represents the entropy functional and KL[q||p] the Kullback-Leibler divergence
of the two distributions. In addition to maximizing the log-likelihood of the data, variational
learning has the property to also minimize the Kullback-Leibler divergence between the true
posterior distribution and its approximation.

Following the mean-field approach, we assume that q(h|v;µ) is a fully factorized distribu-
tion:

q(h|v;µ) =
∏
j

q(hRj |v)
∏
j

q(hIj |v),



3. Complex-valued deep learning 65

where q(hRj = 1) = µRj , q(hIj = 1) = µIj are the mean-field parameters. The lower bound of
the log-probability of the data becomes:

log p(v;θ) ≥ −1

2
(vR)TLRvR − 1

2
(vR)TLIvI − 1

2
(vI)TLRvI +

1

2
(vI)TLIvR

−1

2
(µR)TJRµR − 1

2
(µR)TJ IµI − 1

2
(µI)TJRµI +

1

2
(µI)TJ IµR

−(vR)TWRµR − (vR)TW IµI − (vI)TWRµI + (vI)TW IµR

− logZ(θ)

+
∑
j

[
µRj log µRj + (1− µRj ) log(1− µRj )

]
+
∑
j

[
µIj log µIj + (1− µIj ) log(1− µIj )

]
.

During learning, this lower bound is maximized with respect to the parameters µ for fixed θ,
which results in the mean-field fixed-point equations:

µRj ← σ
(
(JR−j)

TµR−j + (J I−j)
TµI−j + (WR

j )TvR + (W I
j )
TvI
)
,

µIj ← σ
(
(JR−j)

TµI−j − (J I−j)
TµR−j + (WR

j )TvI − (W I
j )
TvR

)
.

Now, having the variational parameters µ, the model parameters θ are updated to maximize
the variational bound using stochastic approximation based on MCMC [207], which proceeds
as follows. Let θt be the current parameters and xt = {vt,ht} the current state. Then θt and
xt are updated as follows:

• Given xt, a new state xt+1 is sampled from the transition operator Tθt(xt+1;xt) so that
pθt remains invariant.

• The new parameters θt+1 are obtained by replacing the model expectation, which is in-
tractable, by the expectation with respect to xt+1, in the gradient step.

An average over a set of M persistent sample particles {xt,1, . . . ,xt,M} is typically used
in practice. Precise sufficient conditions for the almost sure convergence to an asymptotically
stable point can be derived. One such condition is that the learning rate should decrease with
time, such that

∑∞
t=0 αt = ∞ and

∑∞
t=0 α

2
t < ∞. One way to achieve this is to put αt = 1/t.

On the other hand, in practice, the sequence |θt| is usually bounded, and the Markov chain
having the transition operator Tθt(xt+1;xt) is ergodic. These two conditions are sufficient to
guarantee almost sure convergence.

A complex-valued Deep Boltzmann Machine (DBM) is similar to a complex-valued Boltz-
mann Machine, with the exception that the model contains a sequence of layers of hidden
units denoted by h(1) ∈ {0, 1}P (1)

+ ı{0, 1}P (1) , h(2) ∈ {0, 1}P (2)
+ ı{0, 1}P (2) , . . ., h(L) ∈

{0, 1}P (L)
+ ı{0, 1}P (L) , and connections exist only between hidden units in adjacent layers

and between the visible units and the hidden units in the first hidden layer, i.e., there are no
visible-visible or intralayer hidden-hidden connections. For clarity of presentation, we consider
a DBM with three hidden layers (L = 3) and no biases, which can be considered as weights of
a connection to a unit whose state is always 1 + 1ı. The deduction of the learning procedure for
complex-valued DBMs is very similar to the one for complex-valued BMs, and to the one for
their real-valued counterparts, given in [183, 186].

The energy function for such a network is given by:



66 3. Complex-valued deep learning

E(v,h;θ) = −(vHW (1)h(1))R − (h(1)HW (2)h(2))R − (h(2)HW (3)h(3))R

= −(vR)T (W (1)h(1))R − (vI)T (W (1)h(1))I − (h(1)R)T (W (2)h(2))R

−(h(1)I)T (W (2)h(2))I − (h(2)R)T (W (3)h(3))R − (h(2)I)T (W (3)h(3))I

= −(vR)TW (1)Rh(1)R − (vR)TW (1)Ih(1)I − (vI)TW (1)Rh(1)I

+(vI)TW (1)Ih(1)R − (h(1)R)TW (2)Rh(2)R − (h(1)R)TW (2)Ih(2)I

−(h(1)I)TW (2)Rh(2)I + (h(1)I)TW (2)Ih(2)R − (h(2)R)TW (3)Rh(3)R

−(h(2)R)TW (3)Ih(3)I − (h(2)I)TW (3)Rh(3)I + (h(2)I)TW (3)Ih(3)R, (3.6.3)

where h = {h(1),h(2),h(3)} is the set of hidden units and θ = {W (1),W (2),W (3)} are the
parameters of the model.

The probability the above-defined complex-valued DBM assigns to the visible vector v is

p(v;θ) =
p∗(v;θ)

Z(θ)
=

1

Z(θ)

∑
h

exp(−E(v,h;θ)), (3.6.4)

where p∗(v;θ) is the unnormalized probability, and

Z(θ) =
∑
v

∑
h

exp(−E(v,h;θ)),

represents the partition function.
The expressions for the conditional probabilities in a complex-valued DBM are:

p(h
(1)R
j = 1|v,h(2)) = σ

(
(W

(1)R
j )TvR + (W

(1)I
j )TvI +W

(2)R
j h(2)R +W

(2)I
j h(2)I

)
,

p(h
(1)I
j = 1|v,h(2)) = σ

(
(W

(1)R
j )TvI − (W

(1)I
j )TvR +W

(2)R
j h(2)I −W (2)I

j h(2)R
)
,

p(h
(2)R
l = 1|h(1),h(3)) = σ

(
(W

(2)R
l )Th(1)R + (W

(2)I
l )Th(1)I +W

(3)R
l h(3)R +W

(3)I
l h(3)I

)
,

p(h
(2)I
l = 1|h(1),h(3)) = σ

(
(W

(2)R
l )Th(1)I − (W

(2)I
l )Th(1)R +W

(3)R
l h(3)I −W (3)I

l h(3)R
)
,

p(h
(3)R
k = 1|h(2)) = σ

(
(W

(3)R
k )Th(2)R + (W

(3)I
k )Th(2)I

)
,

p(h
(3)I
k = 1|h(2)) = σ

(
(W

(3)R
k )Th(2)I − (W

(3)I
k )Th(2)R

)
,

p(vRi = 1|h(1)) = σ
(
W

(1)R
i h(1)R +W

(1)I
i h(1)I

)
,

p(vIi = 1|h(1)) = σ
(
W

(1)R
i h(1)I − (W

(1)I
i )Th(1)R

)
.

The derivatives of the log-likelihood with respect to the model parameters θ = {W (1),W (2),W (3)}
can be obtained as:



3. Complex-valued deep learning 67

∂ log p(v;θ)

∂W (1)R
= EPdata [v

R(h(1)R)T + vI(h(1)I)T ]− EPmodel [v
R(h(1)R)T + vI(h(1)I)T ],

∂ log p(v;θ)

∂W (1)I
= EPdata [v

R(h(1)I)T − vI(h(1)R)T ]− EPmodel [v
R(h(1)I)T − vI(h(1)R)T ],

∂ log p(v;θ)

∂W (2)R
= EPdata [h

(1)R(h(2)R)T + h(1)I(h(2)I)T ]− EPmodel [h
(1)R(h(2)R)T + h(1)I(h(2)I)T ],

∂ log p(v;θ)

∂W (2)I
= EPdata [h

(1)R(h(2)I)T − h(1)I(h(2)R)T ]− EPmodel [h
(1)R(h(2)I)T − h(1)I(h(2)R)T ],

∂ log p(v;θ)

∂W (3)R
= EPdata [h

(2)R(h(3)R)T + h(2)I(h(3)I)T ]− EPmodel [h
(2)R(h(3)R)T + h(2)I(h(3)I)T ],

∂ log p(v;θ)

∂W (3)I
= EPdata [h

(2)R(h(3)I)T − h(2)I(h(3)R)T ]− EPmodel [h
(2)R(h(3)I)T − h(2)I(h(3)R)T ],

where EPdata [·] represents the expectation of the completed data distribution Pdata(h,v;θ) =
p(h|v;θ)Pdata(v), with Pdata(v) = 1

N

∑
n δ(v − vn) being the empirical distribution, and

EPmodel [·] represents the expectation of the distribution defined by the model in (3.6.4). We
can see that EPdata [·] is a data-dependent expectation, and EPmodel [·] is the model expectation.

Like in the case of complex-valued BMs, exact maximum likelihood learning in this model
is intractable. Thus, mean-field inference will be used to estimate data-dependent expectations
and stochastic approximation procedure based on Markov Chain Monte Carlo (MCMC) will be
used to estimate the model expectations.

If q(h|v;µ) represents the approximation of the true posterior distribution p(h|v;θ), the
parameter updates follow the gradient of the lower bound on the log-likelihood:

log p(v;θ) ≥
∑
h

q(h|v;µ) log p(v,h;θ) +H(q) (3.6.5)

≥ log p(v;θ)−KL[q(h|v;µ)||p(h|v;θ)],

where the notations are the same as for complex-valued BMs.
Following the mean-field approach, we assume that q(h|v;µ) is a fully factorized distribu-

tion:

q(h|v;µ) =
∏
j

q(h
(1)R
j |v)

∏
j

q(h
(1)I
j |v)

∏
l

q(h
(2)R
l |v)

∏
l

q(h
(2)I
l |v)

∏
k

q(h
(3)R
k |v)

∏
k

q(h
(3)I
k |v),

where µ = {µ(1),µ(2),µ(3)} are the mean-field parameters, with q(h
(l)R
i = 1) = µ

(l)R
i ,

q(h
(l)I
i = 1) = µ

(l)I
i , l = 1, 2, 3. The lower bound of the log-probability of the data becomes:

log p(v;θ) ≥ −(vR)TW (1)Rµ(1)R − (vR)TW (1)Iµ(1)I − (vI)TW (1)Rµ(1)I

+(vI)TW (1)Iµ(1)R − (µ(1)R)TW (2)Rµ(2)R − (µ(1)R)TW (2)Iµ(2)I

−(µ(1)I)TW (2)Rµ(2)I + (µ(1)I)TW (2)Iµ(2)R − (µ(2)R)TW (3)Rµ(3)R

−(µ(2)R)TW (3)Iµ(3)I − (µ(2)I)TW (3)Rµ(3)I + (µ(2)I)TW (3)Iµ(3)R

− logZ(θ) +H(q).

During learning, this lower bound is maximized with respect to the parameters µ for fixed θ,



68 3. Complex-valued deep learning

which results in the mean-field fixed-point equations:

µ
(1)R
j ← σ

(
(W

(1)R
j )TvR + (W

(1)I
j )TvI +W

(2)R
j µ(2)R +W

(2)I
j µ(2)I

)
,

µ
(1)I
j ← σ

(
(W

(1)R
j )TvI − (W

(1)I
j )TvR +W

(2)R
j µ(2)I −W (2)I

j µ(2)R
)
,

µ
(2)R
l ← σ

(
(W

(2)R
l )Tµ(1)R + (W

(2)I
l )Tµ(1)I +W

(3)R
l µ(3)R +W

(3)I
l µ(3)I

)
,

µ
(2)I
l ← σ

(
(W

(2)R
l )Tµ(1)I − (W

(2)I
l )Tµ(1)R +W

(3)R
l µ(3)I −W (3)I

l µ(3)R
)
,

µ
(3)R
k ← σ

(
(W

(3)R
k )Tµ(2)R + (W

(3)I
k )Tµ(2)I

)
,

µ
(3)I
k ← σ

(
(W

(3)R
k )Tµ(2)I − (W

(3)I
k )Tµ(2)R

)
.

Now, having the variational parameters µ, the model parameters θ are updated to maximize
the variational bound using stochastic approximation based on MCMC [207], which proceeds
as follows. Let θt be the current parameters and xt = {vt,h(1)

t ,h
(2)
t ,h

(3)
t } the current state.

Then θt and xt are updated as follows:

• Given xt, a new state xt+1 is sampled from the transition operator Tθt(xt+1;xt) so that
pθt remains invariant.

• The new parameters θt+1 are obtained by replacing the model expectation, which is in-
tractable, by the expectation with respect to xt+1, in the gradient step.

An average over a set of M persistent sample particles {xt,1, . . . ,xt,M} is typically used in
practice. The sufficient conditions for the almost sure convergence to an asymptotically stable
point are the same as for the complex-valued BMs, discussed above.

The learning procedure for complex-valued DBMs described above can be used with ran-
dom weight initializations, but better performance is attained using greedy layer-wise pretrain-
ing [183]. Each layer in a DBM can be seen as a Restricted Boltzmann Machine (RBM), which
is a special case of a complex-valued Boltzmann Machine, described above. This means that
each layer can be trained in isolation. The first layer is trained to model the input data, and all
the other layers to model the outputs of the previous layer. After the RBMs have been trained
using this procedure, they can be combined to form a complex-valued DBM.

However, the RBM parameters must be modified before inclusion in the DBM [183]. Specif-
ically, the weights of all but the top and bottom layers must be divided by two, the bottom RBM
must be trained with two copies of each visible unit, and the weights should be made equal for
the two copies. Also, the top layer must be trained with two copies of the output. This is to
account for the fact that an inner layer is trained only with bottom-up input, but in the DBM it
will have bottom-up as well as top-down inputs.

In order to evaluate complex-valued DBMs, we must be able to efficiently estimate their
partition function. This can be done using a Monte Carlo based method, namely Annealed
Importance Sampling (AIS). This procedure for complex-valued DBMs is the same as the one
for real-valued DBMs, which is detailed in [185, 183]. Once we have an estimation Ẑ of the
global partition function Z(θ), we can estimate, for a test case v∗, the variational lower bound
in (3.6.5):

log p(v∗;θ) ≥ −
∑
h

q(h|v∗;µ)E(v∗,h;θ) +H(q)− logZ(θ)

≈ −
∑
h

q(h|v∗;µ)E(v∗,h;θ) +H(q)− log Ẑ. (3.6.6)



3. Complex-valued deep learning 69

For each test vector, the lower bound is maximized with respect to the parameters µ using the
mean-field equations above.

3.6.2 Experimental results
In our experiments, we train real-valued and complex-valued Deep Boltzmann Machines (DBMs),
first using greedy layer-wise pretraining for 50 epochs, and then the learning algorithm de-
scribed above, also for 50 epochs. The 28× 28 pixel images are linearized as 784-dimensional
vectors to be given to the networks. The number of units in each complex-valued network is
1.41 times smaller than for its real-valued counterpart, to ensure approximately the same num-
ber of real parameters in the two networks, and, as such, a fair comparison between them.

The number of persistent Markov chains is M = 100 and the maximum number of mean-
field updates for each parameter update is N = 50. For computing the estimate of the partition
function, we use AIS with 200, 000 intermediate distributions.

After training the DBMs, a logistic regression layer which consists of the softmax function
and the negative log likelihood loss function is added on top of the last layer in the networks.
Learning then continues in a supervised manner, like in a deep neural network.

The Adam [98] algorithm with minibatches of 128 images is used for supervised training.
The learning rate is 0.001 and the number of epochs is 50 for fine-tuning.

3.6.2.1 MNIST

The results for training real-valued and complex-valued DBMs on the MNIST dataset are given
in Table 3.13. The average log-probability calculated using (3.6.6) is presented for the real and
complex network architectures with two and three layers of different sizes. The layer sizes are
given for the real-valued networks. Then, for the same networks, the classification error on
the test set is given. It can be seen from the table that complex-valued DBMs outperform real-
valued DBMs in terms of average log-probability, and the complex-valued networks initialized
using DBMs have better classification performance than their real-valued counterparts. The
samples generated by the real-valued and complex-valued DBMs after 3, 000 Gibbs steps are
given in Figure 3.3.

3.6.2.2 FashionMNIST

The experimental results are given in the same way as with the above experiment in Table 3.14.
It can be seen that the task is more complicated, both in terms of average log-probability as well
as in terms of classification error. Nonetheless, the conclusion of the set of experiments is the
same: complex-valued networks have better average log-probabilities and better classification
errors than real-valued networks. Samples generated after 3, 000 Gibbs steps by the real-valued
and complex-valued DBMs are given in Figure 3.4.



70 3. Complex-valued deep learning

Figure 3.3: MNIST images generated by the real-valued (left) and complex-valued (right)
DBMs, along with training images (center) [171]

Table 3.13: Experimental results for MNIST
Hidden layer sizes Real Avg.

Log-Prob.
Complex

Avg.
Log-Prob.

500, 1000 −86.59 −86.37
1000, 1000 −86.31 −86.16

500, 1000, 1000 −85.48 −85.23
1000, 1000, 1000 −85.16 −84.95

Hidden layer sizes Real Error Complex Error
500, 1000 1.36% 1.23%
1000, 1000 1.38% 1.32%

500, 1000, 1000 1.35% 1.21%
1000, 1000, 1000 1.31% 1.20%

Figure 3.4: FashionMNIST images generated by the real-valued (left) and complex-valued
(right) DBMs, along with training images (center) [171]



3. Complex-valued deep learning 71

Table 3.14: Experimental results for FashionMNIST
Hidden layer sizes Real Avg.

Log-Prob.
Complex

Avg.
Log-Prob.

500, 1000 −236.95 −231.34
1000, 1000 −228.43 −225.76

500, 1000, 1000 −221.76 −216.85
1000, 1000, 1000 −216.52 −213.63

Hidden layer sizes Real Error Complex Error
500, 1000 10.01% 9.93%
1000, 1000 9.86% 9.65%

500, 1000, 1000 10.13% 9.96%
1000, 1000, 1000 10.04% 9.87%





Chapter 4

Dynamics of complex-valued neural
networks (CVNNs)

Over the last few years, there has been an increasing interest in the domain of recurrent neu-
ral networks, especially the following types of models: Hopfield [80, 81], Cohen-Grossberg
[44], cellular [42, 43], and bidirectional associative memory neural networks [100], mainly be-
cause of their applications in many areas such as classification, optimization, signal and image
processing, solving nonlinear algebraic equations, pattern recognition, system identification,
associative memories, cryptography, and so on. These applications are highly dependent on
the dynamical properties of the networks. Thus, the analysis of the dynamical behavior is an
important part in the design of the recurrent neural networks used in applications.

The study of the dynamics of recurrent neural networks has become a field of study in
its own right, attracting many researchers. The review paper [238] lists more than 300 refer-
ences only for the stability analysis of continuous-time recurrent neural networks, not taking
into account the discrete-time ones, or other dynamical properties that can be studied such as
bifurcation, attractivity, dissipativity, passivity, synchronization, and so on.

On the other hand, complex-valued neural networks have been proposed by Aizenberg [1],
but have caught the attention of researchers in the past years, especially due to their applica-
tions in physical systems dealing with electromagnetic, ultrasonic, quantum, and light waves,
and also in filtering, imaging, optoelectronics, speech synthesis, computer vision, and so on
(see, for example, [119, 77]). In these applications, the stability of the complex-valued neural
networks plays a very important role. Moreover, they have more complicated properties than
the real-valued neural networks because of their complex-valued states, connection weights,
and activation functions. The activation functions cannot be a simple generalization of the real-
valued ones, because, by Liouville’s theorem, it can be deduced that a bounded entire function
is a constant, which makes the choice of such functions more difficult. As a consequence, the
study of the dynamic behavior of the complex-valued recurrent neural networks has received
increasing interest, especially in the last few years.

4.1 µ-Stability of neutral-type impulsive BAM CVNNs with
leakage delay and unbounded time-varying delays

Since they were first introduced by Kosko in [100], bidirectional associative memories, an ex-
tension of the unidirectional auto-associative Hopfield neural networks, were intensely studied,
and have many applications in pattern recognition, signal and image processing, and automatic

73



74 4. Dynamics of complex-valued neural networks (CVNNs)

control.
Time delays are known to appear in practical implementations of neural networks due to the

finite switching speed of amplifiers, and can cause instability or chaotic behavior. Past deriva-
tive information is also considered to influence the present state in neutral-type systems. These
systems more accurately describe the properties of neural reaction processes that occur in the
real world. The existence of neutral-type delays makes the study of these systems more compli-
cated than that of the usual time-delayed models. This type of delays are relevant in automatic
control, population dynamics, and vibrating masses attached to an elastic bar. Also, neutral
delays may appear when implementing neural networks in VLSI circuits. On the other hand,
impulsive effects express instantaneous changes that naturally occur in electronic networks,
caused by switching phenomena, frequency changes, or noise. Taking the above analysis into
account, the neutral-type impulsive complex-valued BAM neural networks with leakage de-
lay and unbounded time-varying delays will be studied by giving sufficient conditions for the
existence and uniqueness of the equilibrium point and for its global µ-stability.

The following notations will be used in this section: R denotes the set of real numbers, C the
set of complex numbers, Z+ the set of positive integer numbers, Rn denotes the n-dimensional
Euclidean space, and Cn the n-dimensional unitary space. Real matrices of dimension n×m are
denoted as Rn×m, and similarly complex matrices of dimension n ×m as Cn×m. AT denotes
the transpose of matrix A, A∗ denotes the Hermitian transpose of matrix A, and ? denotes
the symmetric or conjugate symmetric terms in a matrix. In denotes the identity matrix of
dimension n. λmin(P ) is defined as the smallest eigenvalue of positive definite matrix P . |z|
stands for the norm of the complex number z. ||z|| stands for the Euclidean norm of the complex
vector z. A > 0 (A < 0) means that A is a positive definite (negative definite) matrix. AR and
AI , denote, respectively, the real and imaginary parts of complex matrix A.

The presentation in this section follows that in the author’s paper [173].

4.1.1 Main results

Consider the complex-valued bidirectional associative memories given by the following system
of differential equations
ż(t) = −D1z(t− δ) + A1f1(w(t)) +B1g1(w(t− τ(t))) + E1ż(t− η(t)) + u1, t 6= tk, t > 0,

ẇ(t) = −D2w(t− δ) + A2f2(z(t)) +B2g2(z(t− τ(t))) + E2ẇ(t− η(t)) + u2, t 6= tk, t > 0,

∆z(tk) = z(tk)− z(t−k ) = J1
k (z(t−k ), zt−k

), k ∈ Z+,

∆w(tk) = w(tk)− w(t−k ) = J2
k (w(t−k ), wt−k

), k ∈ Z+,

(4.1.1)
where the impulse moments tk satisfy 0 = t0 < t1 < · · · < tk < · · · and limk→∞ tk = +∞,
z(t) = [z1(t), . . . , zn(t)]T ∈ Cn and w(t) = [w1(t), . . . , wm(t)]T ∈ Cm are the state vectors
at time t, f1(w(t)) = [f 1

1 (w1(t)), . . . , f 1
m(wm(t))]T ∈ Cm, g1(w(t − τ(t))) = [g1

1(w1(t −
τ(t))), . . . , g1

m(wm(t − τ(t)))]T ∈ Cm, f2(z(t)) = [f 2
1 (z1(t)), . . . , f 2

n(zn(t))]T ∈ Cn, and
g2(z(t − τ(t))) = [g2

1(z1(t − τ(t))), . . . , g2
n(zn(t − τ(t)))]T ∈ Cn, are the vector activa-

tion functions without and with delays, respectively, D1 = diag(d1
1, d

1
2, . . . , d

1
n) ∈ Rn×n,

d1
i > 0, ∀i = 1, 2, . . . , n, D2 = diag(d2

1, d
2
2, . . . , d

2
m) ∈ Rm×m, d2

j > 0, ∀j = 1, 2, . . . ,m,
are the self-feedback connection weight matrices, A1 ∈ Cn×m, A2 ∈ Cm×n are the connec-
tion weight matrices, B1 ∈ Cn×m, B2 ∈ Cm×n are the delayed connection weight matrices,
E1 = diag(e1

1, . . . , e
1
n) ∈ Cn×n, E2 = diag(e2

1, . . . , e
2
n) ∈ Cm×m are the neutral-type delay

connection weight matrices, u1 ∈ Cn, u2 ∈ Cm are the external input vectors, and J1
k , J2

k are



4. Dynamics of complex-valued neural networks (CVNNs) 75

the impulsive functions. δ > 0 represents the leakage delay, τ(t) represents the unbounded
time-varying delay, and η(t) represents the neutral-type delay.

In order to study the stability of the above-defined network, we need to make a series of
assumptions about the activation functions and about the delays.

Assumption 4.1. The activation functions f 1
i , f 2

j , g1
i , and g2

j satisfy the Lipschitz conditions

|f 1
i (z)− f 1

i (z′)| ≤ lf1i |z − z′|,

|f 2
j (z)− f 2

j (z′)| ≤ lf2j |z − z′|,

|g1
i (z)− g1

i (z
′)| ≤ lg1i |z − z′|,

|g2
j (z)− g2

j (z
′)| ≤ lg2j |z − z′|,

∀z, z′ ∈ C, where lf1i , l
f2
j , l

g1
i , l

g2
j > 0 are the respective Lipschitz constants, ∀i = 1, 2, . . . ,m,

∀j = 1, 2, . . . , n. Furthermore, we make the notations Lf1 = diag(lf11 , l
f1
2 , . . . , l

f1
m ), Lf2 =

diag(lf21 , l
f2
2 , . . . , l

f2
n ), Lg1 = diag(lg11 , l

g1
2 , . . . , l

g1
m ), Lg2 = diag(lg21 , l

g2
2 , . . . , l

g2
n ).

Assumption 4.2. The time-varying delays τ : R → R and the neutral-type delays η : R → R
are differentiable, and satisfy the conditions τ̇(t) ≤ τd < 1, η(t) ≤ η, η̇(t) ≤ ηd < 1, ∀t > 0,
where τd, η, and ηd are positive real constants.

Assumption 4.3. For the impulsive functions J1
k and J2

k , there exist F 1
k ∈ Cn×n, F 2

k ∈ Cm×m,
such that

J1
k (z(t−k ), zt−k

) = F 1
k

(
z(t−k )−D1

∫ tk

tk−δ
z(s)ds

)
,

J2
k (w(t−k ), wt−k

) = F 2
k

(
w(t−k )−D2

∫ tk

tk−δ
w(s)ds

)
,

for ∀k ∈ Z+.

Also, we will need the following definitions and lemmas:

Definition 4.1. ([34]). If
[
ẑ
ŵ

]
is an equilibrium point of system (4.1.1), µ(t) is a positive

continuous function that satisfies µ(t) → ∞ as t → ∞, and there exists a positive constant M
such that ∥∥∥∥[z(t)

w(t)

]
−
[
ẑ
ŵ

]∥∥∥∥ ≤ M

µ(t)
, ∀t ≥ 0,

then the equilibrium point
[
ẑ
ŵ

]
is said to be µ-stable.

Definition 4.2. If
[
ẑ
ŵ

]
is an equilibrium point of system (4.1.1), and there exist positive con-

stants M and ε such that ∥∥∥∥[z(t)
w(t)

]
−
[
ẑ
ŵ

]∥∥∥∥ ≤ M

eεt
, ∀t ≥ 0,

then the equilibrium point
[
ẑ
ŵ

]
is said to be exponentially stable.



76 4. Dynamics of complex-valued neural networks (CVNNs)

Definition 4.3. If
[
ẑ
ŵ

]
is an equilibrium point of system (4.1.1), and there exist positive con-

stants M and ε such that ∥∥∥∥[z(t)
w(t)

]
−
[
ẑ
ŵ

]∥∥∥∥ ≤ M

tε
, ∀t ≥ 0,

then the equilibrium point
[
ẑ
ŵ

]
is said to be power stable.

Definition 4.4. If
[
ẑ
ŵ

]
is an equilibrium point of system (4.1.1), and there exist positive con-

stants M and ε such that ∥∥∥∥[z(t)
w(t)

]
−
[
ẑ
ŵ

]∥∥∥∥ ≤ M

ln(εt+ 1)
, ∀t ≥ 0,

then the equilibrium point
[
ẑ
ŵ

]
is said to be log-stable.

Lemma 4.1. ([40]). If H(z, w) : Cn+m → Cn+m is a continuous map that satisfies the follow-
ing conditions:

(i) H(z, w) is injective on Cn+m,

(ii) ||H(z, w)|| → ∞ as ||(z, w)|| → ∞, where || · || represents the Euclidean norm on Cn+m,

then H(z, w) is a homeomorphism of Cn+m onto itself.

Lemma 4.2. ([40]). For any vectors x, y ∈ Cn, positive definite Hermitian matrix P ∈ Cn×n,
and real constant ε > 0, the following linear matrix inequality (LMI) holds:

x∗y + y∗x ≤ εx∗Px+
1

ε
y∗P−1y.

Lemma 4.3. ([36]) For any vector function z : [a, b] → Cn and positive definite Hermitian
matrix P ∈ Cn×n, the following linear matrix inequality (LMI) holds:(∫ b

a

z(s)ds

)∗
P

(∫ b

a

z(s)ds

)
≤ (b− a)

∫ b

a

z∗(s)Pz(s)ds,

where the integrals are assumed to be well defined.

Lemma 4.4. ([218]) For any vector function z : [a, b] → Cn and positive definite Hermitian
matrix P ∈ Cn×n, the following linear matrix inequality (LMI) holds:(∫ b

a

∫ b

θ

z(s)dsdθ

)∗
P

(∫ b

a

∫ b

θ

z(s)dsdθ

)
≤ (b− a)2

2

∫ b

a

∫ b

θ

z∗(s)Pz(s)dsdθ,

where the integrals are assumed to be well defined.

Lemma 4.5. ([37]). A Hermitian matrix P is negative definite, P < 0, if and only if[
PR −P I

P I PR

]
< 0.



4. Dynamics of complex-valued neural networks (CVNNs) 77

Lemma 4.6. For any vectors z1, z2 ∈ Cn, any positive definite Hermitian matrix P ∈ Cn×n,

any matrix Q ∈ Cn×n, and any α ∈ (0, 1), such that
[
P Q
Q∗ P

]
≥ 0, the following linear matrix

inequality (LMI) holds:

1

α
z∗1Pz1 +

1

1− α
z∗2Pz2 ≥

[
z1

z2

]∗ [
P Q
Q∗ P

] [
z1

z2

]
.

Proof. Let z1 = zR1 + ızI1 , z2 = zR2 + ızI2 , P = PR + ıP I , where P ∗ = P ⇔ (PR)T = PR,
−(P I)T = P I , Q = QR + ıQI . Then, by the reciprocally convex combination lemma [138],
we have that

1

α
z∗1Pz1 +

1

1− α
z∗2Pz2 =

1

α

[
zR1
zI1

]T [
PR −P I

P I PR

] [
zR1
zI1

]
+

1

1− α

[
zR2
zI2

]T [
PR −P I

P I PR

] [
zR2
zI2

]

≥


zR1
zI1
zR2
zI2


T 

PR −P I QR −QI

P I PR QI QR

(QR)T (QI)T PR −P I

−(QI)T (QR)T P I PR



zR1
zI1
zR2
zI2


=

[
z1

z2

]∗ [
P Q
Q∗ P

] [
z1

z2

]
.

Lemma 4.7. For any differentiable function z : [a, b] → Cn and positive definite Hermitian
matrix P ∈ Cn×n, the following linear matrix inequality (LMI) holds:∫ b

a

ż∗(s)P ż(s)ds ≥ 1

b− a

[
ξ1

ξ2

]∗ [
P 0
0 3P

] [
ξ1

ξ2

]
,

where ξ1 = z(b)− z(a), ξ2 = z(b) + z(a)− 2
b−a

∫ b
a
z(s)ds.

Proof. Let z(s) = zR(s) + ızI(s), ∀s, P = PR + ıP I , where P ∗ = P ⇔ (PR)T = PR,
−(P I)T = P I . Then, by the Wirtiger-based integral inequality [194], we have that∫ b

a

ż∗(s)P ż(s)ds =

∫ b

a

[
żR(s)
żI(s)

]T [
PR −P I

P I PR

] [
żR(s)
żI(s)

]
ds

≥ 1

b− a


ξR1
ξI1
ξR2
ξI2


T 

PR −P I 0 0
P I PR 0 0
0 0 3PR −3P I

0 0 3P I 3PR



ξR1
ξI1
ξR2
ξI2


=

1

b− a

[
ξ1

ξ2

]∗ [
P 0
0 3P

] [
ξ1

ξ2

]
,

where ξ1 = z(b)− z(a), ξ2 = z(b) + z(a)− 2
b−a

∫ b
a
z(s)ds.

We now give an LMI-based sufficient condition for the existence and uniqueness of the
equilibrium point for system (4.1.1).



78 4. Dynamics of complex-valued neural networks (CVNNs)

Theorem 4.1. Under Assumptions 4.1 and 4.2, the system (4.1.1) has a unique equilibrium
point if there exist positive definite Hermitian matrices P1, P2, and positive diagonal matrices
G1, G2, G3, G4, such that the following LMIs hold:

Ω1 =

Ω1
1,1 P1A1 P1B1

? −G1 0
? ? −G3

 < 0, (4.1.2)

Ω2 =

Ω2
1,1 P2A2 P2B2

? −G2 0
? ? −G4

 < 0, (4.1.3)

where Ω1
1,1 = −P1D1−D1P1 +L∗f2G2Lf2 +L∗g2G4Lg2 , Ω2

1,1 = −P2D2−D2P2 +L∗f1G1Lf1 +
L∗g1G3Lg1 .

Proof. Define the function H(z, w) : Cn+m → Cn+m by

H(z, w) = −
[
D1 0
0 D2

] [
z
w

]
+

[
A1 0
0 A2

] [
f1(w)
f2(z)

]
+

[
B1 0
0 B2

] [
g1(w)
g2(z)

]
+

[
u1

u2

]
. (4.1.4)

We begin by proving that H is injective. For this, assume by contradiction that there exist[
z
w

]
,

[
z′

w′

]
∈ Cn+m,

[
z
w

]
6=
[
z′

w′

]
, such that H(z, w) = H(z′, w′), or, equivalently

H(z, w)−H(z′, w′) = −
[
D1 0
0 D2

] [
z − z′
w − w′

]
+

[
A1 0
0 A2

] [
f1(w)− f1(w′)
f2(z)− f2(z′)

]
+

[
B1 0
0 B2

] [
g1(w)− g1(w′)
g2(z)− g2(z′)

]
= 0.

Multiplying to the left by
[
z − z′
w − w′

]∗ [
P1 0
0 P2

]
, we get

[
z − z′
w − w′

]∗ [
P1 0
0 P2

](
−
[
D1 0
0 D2

] [
z − z′
w − w′

]
+

[
A1 0
0 A2

] [
f1(w)− f1(w′)
f2(z)− f2(z′)

]

+

[
B1 0
0 B2

] [
g1(w)− g1(w′)
g2(z)− g2(z′)

])
= 0,

that is

−(z − z′)∗P1D1(z − z′)− (w − w′)∗P2D2(w − w′) + (z − z′)∗P1A1(f1(w)− f1(w′))

+(w−w′)∗P2A2(f2(z)−f2(z′))+(z−z′)∗P1B1(g1(w)−g1(w′))+(w−w′)∗P2B2(g2(z)−g2(z′)) = 0.
(4.1.5)

Taking the complex conjugate of this relation, yields

−(z − z′)∗D1P1(z − z′)− (w − w′)∗D2P2(w − w′) + (f1(w)− f1(w′))∗A∗1P1(z − z′)

+(f2(z)−f2(z′))∗A∗2P2(w−w′)+(g1(w)−g1(w′))∗B∗1P1(z−z′)+(g2(z)−g2(z′))∗B∗2P2(w−w′) = 0.
(4.1.6)

Now, adding up (4.1.5) and (4.1.6), we have

(z−z′)∗(−P1D1−D1P1)(z−z′)+(w−w′)∗(−P2D2−D2P2)(w−w′)+(z−z′)∗P1A1(f1(w)−f1(w′))



4. Dynamics of complex-valued neural networks (CVNNs) 79

+(f1(w)− f1(w′))∗A∗1P1(z− z′) + (w−w′)∗P2A2(f2(z)− f2(z′)) + (f2(z)− f2(z′))∗A∗2P2(w−w′)

+(z1−z2)∗P1B1(g1(w)−g1(w′))+(g1(w)−g1(w′))∗B∗1P1(z−z′)+(w−w′)∗P2B2(g2(z)−g2(z′))

+(g2(z)− g2(z′))∗B∗2P2(w − w′) = 0.

From Assumption 4.1 on the activation functions, we deduce that there exist positive diag-
onal matrices G1, G2, G3, G4, such that

(f1(w)− f1(w′))∗G1(f1(w)− f1(w′)) ≤ (w − w′)∗L∗f1G1Lf1(w − w′), (4.1.7)

(f2(z)− f2(z′))∗G2(f2(z)− f2(z′)) ≤ (z − z′)∗L∗f2G2Lf2(z − z′), (4.1.8)

(g1(w)− g1(w′))∗G3(g1(w)− g1(w′)) ≤ (w − w′)∗L∗g1G3Lg1(w − w′), (4.1.9)

(g2(z)− g2(z′))∗G4(g2(z)− g2(z′)) ≤ (z − z′)∗L∗g2G4Lg2(z − z′). (4.1.10)

Lemma 4.2 and relations (4.1.7)–(4.1.10) allow us to write the following inequalities

(z−z′)∗(−P1D1−D1P1)(z−z′)+(w−w′)∗(−P2D2−D2P2)(w−w′)+(z−z′)∗P1A1(f1(w)−f1(w′))

+(f1(w)− f1(w′))∗A∗1P1(z− z′) + (w−w′)∗P2A2(f2(z)− f2(z′)) + (f2(z)− f2(z′))∗A∗2P2(w−w′)

+(z1−z2)∗P1B1(g1(w)−g1(w′))+(g1(w)−g1(w′))∗B∗1P1(z−z′)+(w−w′)∗P2B2(g2(z)−g2(z′))

+(g2(z)− g2(z′))∗B∗2P2(w − w′) ≤

(z−z′)∗(−P1D1−D1P1)(z−z′)+(w−w′)∗(−P2D2−D2P2)(w−w′)+(z−z′)∗P1A1G
−1
1 A∗1P1(z−z′)

+(f1(w)−f1(w′))∗G1(f1(w)−f1(w′))+(w−w′)∗P2A2G
−1
2 A∗2P2(w−w′)+(f2(z)−f2(z′))∗G2(f2(z)−f2(z′))

+(z−z′)∗P1B1G
−1
3 B∗1P1(z−z′)+(g1(w)−g1(w′))∗G3(g1(w)−g1(w′))+(w−w′)∗P2B2G

−1
4 B∗2P2(w−w′)

+(g2(z)− g2(z′))∗G4(g2(z)− g2(z′)) ≤

(z − z′)∗(−P1D1 −D1P1 + P1A1G
−1
1 A∗1P1 + P1B1G

−1
3 B∗1P1 + L∗f2G2Lf2 + L∗g2G4Lg2)(z − z′)

+(w−w′)∗(−P2D2−D2P2+P2A2G
−1
2 A∗2P2+P2B2G

−1
4 B∗2P2+L∗f1G1Lf1+L∗g1G3Lg1)(w−w′) < 0,

(4.1.11)
where the last inequality is based on the following relations:

− P1D1 −D1P1 + P1A1G
−1
1 A∗1P1 + P1B1G

−1
3 B∗1P1 + L∗f2G2Lf2 + L∗g2G4Lg2 < 0, (4.1.12)

− P2D2 −D2P2 + P2A2G
−1
2 A∗2P2 + P2B2G

−1
4 B∗2P2 + L∗f1G1Lf1 + L∗g1G3Lg1 < 0, (4.1.13)

which can be immediately deduced from conditions (4.1.2) and (4.1.3), using Schur’s comple-
ment. We have thus obtained that

H(z, w)−H(z′, w′) < 0,

in contradiction with our initial assumption. This means that function H(z, w) is injective.
Next, we will prove that ||H(z, w)|| → ∞ as ||(z, w)|| → ∞. From (4.1.12) and (4.1.13),

we deduce that there exists a sufficiently small constant ε > 0, such that

−P1D1 −D1P1 + P1A1G
−1
1 A∗1P1 + P1B1G

−1
3 B∗1P1 + L∗f2G2Lf2 + L∗g2G4Lg2 < −εIn,

−P2D2 −D2P2 + P2A2G
−1
2 A∗2P2 + P2B2G

−1
4 B∗2P2 + L∗f1G1Lf1 + L∗g1G3Lg1 < −εIm.

Taking (z′, w′) = (0, 0), and using (4.1.11) and the above relations, we have[
z
w

]∗
(H(z, w)−H(0, 0)) =

[
z
w

]∗(
−
[
D1 0
0 D2

] [
z
w

]
+

[
A1 0
0 A2

] [
f1(w)
f2(z)

]
+

[
B1 0
0 B2

] [
g1(w)
g2(z)

])
≤



80 4. Dynamics of complex-valued neural networks (CVNNs)

z∗(−P1D1 −D1P1 + P1A1G
−1
1 A∗1P1 + P1B1G

−1
3 B∗1P1 + L∗f2G2Lf2 + L∗g2G4Lg2)z

+w∗(−P2D2−D2P2+P2A2G
−1
2 A∗2P2+P2B2G

−1
4 B∗2P2+L∗f1G1Lf1+L∗g1G3Lg1)w < −ε(||z||2+||w||2).

(4.1.14)
By applying the Cauchy-Schwarz inequality, relation (4.1.14) becomes:

ε(||z||2 + ||w||2) ≤
∥∥∥∥[zw

]∗
(H(z, w)−H(0, 0))

∥∥∥∥
≤

√
||z||2 + ||w||2 (||H(z, w)||+ ||H(0, 0)||) ,

which immediately yields that ||H(z, w)|| → ∞ when ||(z, w)|| → ∞.
Now, function H(z, w) satisfies both conditions in Lemma 4.1, which means that it is a

homeomorphism of Cn+m onto itself. Thus, the equation H(z, w) = 0 has a unique solution,

and so system (4.1.1) has a unique equilibrium point, which will be denoted by
[
ẑ
ŵ

]
.

We can now shift the equilibrium point of system (4.1.1) to the origin, yielding
˙̃z(t) = −D1z̃(t− δ) + A1f̃1(w̃(t)) +B1g̃1(w̃(t− τ(t))) + E1

˙̃z(t− η(t)), t 6= tk, t > 0,
˙̃w(t) = −D2w̃(t− δ) + A2f̃2(z̃(t)) +B2g̃2(z̃(t− τ(t))) + E2

˙̃w(t− η(t)), t 6= tk, t > 0,

∆z̃(tk) = z̃(tk)− z̃(t−k ) = J1
k (z̃(t−k ), z̃t−k

), k ∈ Z+,

∆w̃(tk) = w̃(tk)− w̃(t−k ) = J2
k (w̃(t−k ), w̃t−k

), k ∈ Z+,

(4.1.15)
where z̃(t) = z(t)− ẑ, w̃(t) = w(t)− ŵ, f̃1(w̃(t)) = f1(w̃(t) + ŵ)− f1(ŵ), g̃1(w̃(t− τ(t))) =
g1(w̃(t − τ(t)) + ŵ) − g1(ŵ), f̃2(z̃(t)) = f2(z̃(t) + ẑ) − f2(ẑ), g̃2(z̃(t − τ(t))) = g2(z̃(t −
τ(t)) + ẑ) − g2(ẑ). From this point on, we will study the stability properties of the origin of
system (4.1.15), which will be equivalent with the stability of the unique equilibrium point of
system (4.1.1).

Theorem 4.2. If Assumptions 4.1 and 4.2–4.3 hold, the origin of the system (4.1.15) is globally
µ-stable if there exist positive constants γ1, γ2, γ3, γ4, such that

µ̇(t)

µ(t)
≤ γ1,

infs∈[t−δ,t] µ(s)

µ(t)
≥ γ2,

µ(t− τ(t))

µ(t)
≥ γ3,

min{infs∈[t−η,t] µ(s), µ(t− η(t))}
µ(t)

≥ γ4,

(4.1.16)
∀t ≥ 0, and there exist positive definite Hermitian matrices P1, P2, Q1, Q2, R1, R2, S1, S2, T1,
T2, . . ., T6, U1, U2, X1, X2, Y1, Y2, Z1, Z2, positive diagonal matrices G1, G2, . . ., G8, and any
matrices M1, M2, N1, N2, . . ., N10, such that the following LMIs hold

Π− γ2
4ζ
∗
1Φ1ζ1 − γ2

4ζ
∗
2Φ2ζ2 < 0, Φ1 > 0, Φ2 > 0, (4.1.17)

Ψ∗1Θ1Ψ1 < Θ1, Ψ∗2Θ2Ψ2 < Θ2, (4.1.18)

where Π1,1 = 2γ1P1+2γ1Q1−D1Q1−Q1D1+R1+δ2S1+T1−4γ2
4η

2Z1+L∗f2G1Lf2+L
∗
g2
G3Lg2 ,

Π1,2 = Q1, Π1,4 = P1E1, Π1,7 = −P1D1 + Q1D1, Π1,13 = D1Q1D1 − 2γ1Q1D1, Π1,14 =
4γ2

4ηZ1, Π1,25 = P1A1, Π1,28 = P1B1, Π2,2 = U1+X1+η2Y1+η4Z1−N1−N∗1 , Π2,4 = N1E1+
N∗5 , Π2,7 = −N1D1 −N∗2 , Π2,13 = −Q1D1, Π2,25 = N1A1 +N∗3 , Π2,28 = N1B1 +N∗4 , Π3,3 =
−γ2

4X1, Π4,4 = −(1−ηd)γ2
4U1−N5E1−E∗1N∗5 , Π4,7 = E∗1N

∗
2 +N5D1, Π4,25 = −N5A1−E∗1N∗3 ,

Π4,28 = −N5B1 − E∗1N
∗
4 , Π7,7 = −γ2

2R1 − N2D1 − D1N
∗
2 , Π7,13 = −D1Q1D1, Π7,25 =

N2A1 +D1N
∗
3 , Π7,28 = N2B1 +D1N

∗
4 , Π8,8 = −(1− τd)T1 + L∗f2G2Lf2 + L∗g2G4Lg2 , Π9,9 =

T2−G1−N8A2−A∗2N∗8 , Π9,12 = −N8B2−A∗2N∗9 , Π9,17 = A∗2P2, Π9,18 = A∗2N
∗
6 +N8, Π9,20 =



4. Dynamics of complex-valued neural networks (CVNNs) 81

−A∗2N∗10 − N8E2, Π9,23 = A∗2N
∗
7 + N8D2, Π10,10 = −(1 − τd)γ2

3T2 − G2, Π11,11 = T3 − G3,
Π12,12 = −(1− τd)γ2

3T3−G4−N9B2−B∗2N∗9 , Π12,17 = B∗2P2, Π12,18 = B∗2N
∗
6 +N9, Π12,20 =

−B∗2N∗10 − N9E2, Π12,23 = B∗2N
∗
7 + N9D2, Π13,13 = 2γ1D1Q1D1 − γ2

2S1, Π14,14 = −4γ2
4Z1,

Π17,17 = 2γ1P2 +2γ1Q2−D2Q2−Q2D2 +R2 +δ2S2 +T2−4γ2
4η

2Z2 +L∗f1G5Lf1 +L∗g1G7Lg1 ,
Π17,18 = Q2, Π17,20 = P2E2, Π17,23 = −P2D2 + Q2D2, Π17,29 = D2Q2D2 − 2γ1Q2D2,
Π17,30 = 4γ2

4ηZ2, Π18,18 = U2 + X2 + η2Y2 + η4Z2 − N6 − N∗6 , Π18,20 = N6E2 + N∗10,
Π18,23 = −N6D2 − N∗7 , Π18,29 = −Q2D2, Π19,19 = −γ2

4X2, Π20,20 = −(1 − ηd)γ
2
4U2 −

N10E2 − E∗2N
∗
10, Π20,23 = E∗2N

∗
7 + N10D2, Π23,23 = −γ2

2R2 − N7D2 − D2N
∗
7 , Π23,29 =

−D2Q2D2, Π24,24 = −(1− τd)T2 +L∗f1G6Lf1 +L∗g1G8Lg1 , Π25,25 = T5−G5−N3A1−A∗1N∗3 ,
Π25,28 = −N3B1 − A∗1N

∗
4 , Π26,26 = −(1 − τd)γ

2
3T5 − G6, Π27,27 = T6 − G7, Π28,28 =

−(1− τd)γ2
3T6 −G8 −N4B1 −B∗1N∗4 , Π29,29 = 2γ1D2Q2D2 − γ2

2S2, Π30,30 = −4γ2
4Z2,

ζ1 =


en1 − en6

en1 + en6 − 2en15

en6 − en5
en6 + en5 − 2en16

 , ζ2 =


em17 − em22

em17 + em22 − 2em31

em22 − em21

em22 + em21 − 2em32

 , epi =
[
0p×(i−1)p Ip 0p×(32−i)p

]
, i =

1, . . . , 32,

Φ1 =

[
Y 1 M1

M∗
1 Y 1

]
, Φ2 =

[
Y 2 M2

M∗
2 Y 2

]
,

Y 1 =

[
Y1 0
0 3Y1

]
, Y 2 =

[
Y2 0
0 3Y2

]
,

Ψ1 =

[
In + F 1

k −F 1
kD1

0 In

]
, Θ1 =

[
P1 +Q1 −Q1D1

−D1Q1 D1Q1D1

]
,

Ψ2 =

[
Im + F 2

k −F 2
kD2

0 Im

]
, Θ2 =

[
P2 +Q2 −Q2D2

−D2Q2 D2Q2D2

]
.

Proof. Consider the following Lyapunov-Krasovskii functional

V (t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t) + V6(t) + V7(t) + V8(t) + V9(t), (4.1.19)

where

V1(t) = µ2(t)

[
z̃(t)
w̃(t)

]∗ [
P1 0
0 P2

] [
z̃(t)
w̃(t)

]
,

V2(t) = µ2(t)

([
z̃(t)
w̃(t)

]∗
−
[
D1 0
0 D2

] ∫ t

t−δ

[
z̃(s)
w̃(s)

]
ds

)∗ [
Q1 0
0 Q2

]
×
([

z̃(t)
w̃(t)

]∗
−
[
D1 0
0 D2

] ∫ t

t−δ

[
z̃(s)
w̃(s)

]
ds

)
,

V3(t) =

∫ t

t−δ
µ2(s)

[
z̃(s)
w̃(s)

]∗ [
R1 0
0 R2

] [
z̃(s)
w̃(s)

]
ds,

V4(t) = δ

∫ 0

−δ

∫ t

t+θ

µ2(s)

[
z̃(s)
w̃(s)

]∗ [
S1 0
0 S2

] [
z̃(s)
w̃(s)

]
dsdθ,

V5(t) =

∫ t

t−τ(t)

µ2(s)σ∗(s)Tσ(s)ds,

T = diag(T1, T2, T3, T4, T5, T6),

σ(s) =
[
z̃∗(s) f̃ ∗2 (z̃(s)) g̃∗2(z̃(s)) w̃∗(s) f̃ ∗1 (w̃(s)) g̃∗1(w̃(s))

]∗
,



82 4. Dynamics of complex-valued neural networks (CVNNs)

V6(t) =

∫ t

t−η(t)

µ2(s)

[
˙̃z(s)
˙̃w(s)

]∗ [
U1 0
0 U2

] [
˙̃z(s)
˙̃w(s)

]
ds,

V7(t) =

∫ t

t−η
µ2(s)

[
˙̃z(s)
˙̃w(s)

]∗ [
X1 0
0 X2

] [
˙̃z(s)
˙̃w(s)

]
ds,

V8(t) = η

∫ 0

−η

∫ t

t+θ

µ2(s)

[
˙̃z(s)
˙̃w(s)

]∗ [
Y1 0
0 Y2

] [
˙̃z(s)
˙̃w(s)

]
dsdθ,

V9(t) = 2η2

∫ 0

−η

∫ 0

θ

∫ t

t+λ

µ2(s)

[
˙̃z(s)
˙̃w(s)

]∗ [
Z1 0
0 Z2

] [
˙̃z(s)
˙̃w(s)

]
dsdλdθ.

The derivative of V (t) along the trajectories of system (4.1.15) at the points t 6= tk, k ∈ Z+,
is

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t) + V̇5(t) + V̇6(t) + V̇7(t) + V̇8(t),

where

V̇1(t) = 2µ(t)µ̇(t) [z̃∗(t)P1z̃(t) + w̃∗(t)P2w̃(t)] + µ2(t)
[

˙̃z∗(t)P1z̃(t) + z̃∗(t)P1
˙̃z(t)

+ ˙̃w∗(t)P2w̃(t) + w̃∗(t)P2
˙̃w(t)
]

≤ µ2(t) [2γ1z̃
∗(t)P1z̃(t) + 2γ1w̃

∗(t)P2w̃(t)+(
−D1z̃(t− δ) + A1f̃1(w̃(t)) +B1g̃1(w̃(t− τ(t))) + E1

˙̃z(t− η(t))
)∗
P1z̃(t)

+z̃∗(t)P1

(
−D1z̃(t− δ) + A1f̃1(w̃(t)) +B1g̃1(w̃(t− τ(t))) + E1

˙̃z(t− η(t))
)∗

+
(
−D2w̃(t− δ) + A2f̃2(z̃(t)) +B2g̃2(z̃(t− τ(t))) + E2

˙̃w(t− η(t))
)∗
P2w̃(t)

+w̃∗(t)P2

(
−D2w̃(t− δ) + A2f̃2(z̃(t)) +B2g̃2(z̃(t− τ(t))) + E2

˙̃w(t− η(t))
)]
,

(4.1.20)

V̇2(t) ≤ µ2(t)

[
2γ1

(
z̃(t)−D1

∫ t

t−δ
z̃(s)ds

)∗
Q1

(
z̃(t)−D1

∫ t

t−δ
z̃(s)ds

)
+2γ1

(
w̃(t)−D2

∫ t

t−δ
w̃(s)ds

)∗
Q2

(
w̃(t)−D2

∫ t

t−δ
w̃(s)ds

)
+
(

˙̃z(t)−D1z̃(t) +D1z̃(t− δ)
)∗
Q1

(
z̃(t)−D1

∫ t

t−δ
z̃(s)ds

)
+

(
z̃(t)−D1

∫ t

t−δ
z̃(s)ds

)∗
Q1

(
˙̃z(t)−D1z̃(t) +D1z̃(t− δ)

)
+
(

˙̃w(t)−D2w̃(t) +D2w̃(t− δ)
)∗
Q2

(
w̃(t)−D2

∫ t

t−δ
w̃(s)ds

)
+

(
w̃(t)−D2

∫ t

t−δ
w̃(s)ds

)∗
Q2

(
˙̃w(t)−D2w̃(t) +D2w̃(t− δ)

)]
,(4.1.21)

V̇3(t) = µ2(t)z̃∗(t)R1z̃(t)− µ2(t− δ)z̃∗(t− δ)R1z̃(t− δ)
+µ2(t)w̃∗(t)R2w̃(t)− µ2(t− δ)w̃∗(t− δ)R2w̃(t− δ)

≤ µ2(t)
[
z̃∗(t)R1z̃(t)− γ2

2 z̃
∗(t− δ)R1z̃(t− δ) + w̃∗(t)R2w̃(t)

−γ2
2w̃
∗(t− δ)R2w̃(t− δ)

]
, (4.1.22)



4. Dynamics of complex-valued neural networks (CVNNs) 83

V̇4(t) = δ2µ2(t)z̃∗(t)S1z̃(t)− δ
∫ t

t−δ
µ2(s)z̃∗(s)S1z̃(s)ds

+δ2µ2(t)w̃∗(t)S2w̃(t)− δ
∫ t

t−δ
µ2(s)w̃∗(s)S2w̃(s)ds

≤ µ2(t)

[
δ2z̃∗(t)S1z̃(t)− γ2

2

(∫ t

t−δ
z̃(s)ds

)∗
S1

(∫ t

t−δ
z̃(s)ds

)
+δ2w̃∗(t)S2w̃(t)− γ2

2

(∫ t

t−δ
w̃(s)ds

)∗
S2

(∫ t

t−δ
w̃(s)ds

)]
, (4.1.23)

V̇5(t) = µ2(t) [z̃∗(t)T1z̃(t) + f ∗2 (z̃(t))T1f2(z̃(t)) + g∗2(z̃(t))T1g2(z̃(t)) + w̃∗(t)T2w̃(t)

+f ∗1 (w̃(t))T2f2(w̃(t)) + g∗2(w̃(t))T2g2(w̃(t))]− (1− τ̇(t))µ2(t− τ(t))

× [z̃∗(t− τ(t))T1 z̃(t− τ(t)) + f ∗2 (z̃(t− τ(t)))T1f2(z̃(t− τ(t)))

+g∗2(z̃(t− τ(t)))T1g2(z̃(t− τ(t))) + w̃∗(t− τ(t))T2w̃(t− τ(t))

+f ∗1 (w̃(t− τ(t)))T2f1(z̃(t− τ(t))) + g∗1(w̃(t− τ(t)))T2g1(w̃(t− τ(t)))]

≤ µ2(t) [z̃∗(t)T1z̃(t) + f ∗2 (z̃(t))T1f2(z̃(t)) + g∗2(z̃(t))T1g2(z̃(t)) + w̃∗(t)T2w̃(t)

+f ∗1 (w̃(t))T2f2(w̃(t)) + g∗2(w̃(t))T2g2(w̃(t))− (1− τd)γ2
3 z̃
∗(t− τ(t))T1z̃(t− τ(t))

−(1− τd)γ2
3f
∗
2 (z̃(t− τ(t)))T1f2(z̃(t− τ(t)))

−(1− τd)γ2
3g
∗
2(z̃(t− τ(t)))T1g2(z̃(t− τ(t)))

−(1− τd)γ2
3w̃
∗(t− τ(t)))T2w̃(t− τ(t)))

−(1− τd)γ2
3f
∗
1 (w̃(t− τ(t)))T2f1(w̃(t− τ(t)))

−(1− τd)γ2
3g
∗
1(w̃(t− τ(t)))T2g1(w̃(t− τ(t)))

]
, (4.1.24)

V̇6(t) ≤ µ2(t)
[

˙̃z∗(t)U1
˙̃z(t) + ˙̃w∗(t)U2

˙̃w(t)− (1− ηd)γ2
4

˙̃z∗(t− η(t))U1
˙̃z(t− η(t))

−(1− ηd)γ2
4

˙̃w∗(t− η(t))U2
˙̃w(t− η(t))

]
, (4.1.25)

V̇7(t) ≤ µ2(t)
[

˙̃z∗(t)X1
˙̃z(t) + ˙̃w∗(t)X2

˙̃w(t)− γ2
4

˙̃z∗(t− η)X1
˙̃z(t− η)

−γ2
4

˙̃w∗(t− η)X2
˙̃w(t− η)

]
(4.1.26)

V̇8(t) ≤ µ2(t)

[
η2 ˙̃z∗(t)Y1

˙̃z(t)− ηγ2
4

∫ t

t−η
˙̃z∗(s)Y1

˙̃z(s)ds

+η2 ˙̃w∗(t)Y2
˙̃w(t)− ηγ2

4

∫ t

t−η
˙̃w∗(s)Y2

˙̃w(s)ds

]
, (4.1.27)

V̇9(t) = η4µ2(t) ˙̃z∗(t)Z1
˙̃z(t)− 2η2

∫ 0

−η

∫ t

t+θ

µ2(s) ˙̃z∗(s)Z1
˙̃z(s)dsdθ

+η4µ2(t) ˙̃w∗(t)Z2
˙̃w(t)− 2η2

∫ 0

−η

∫ t

t+θ

µ2(s) ˙̃w∗(s)Z2
˙̃w(s)dsdθ

≤ µ2(t)

[
η4 ˙̃z∗(t)Z1

˙̃z(t)− 4γ2
4

(∫ 0

−η

∫ t

t+θ

˙̃z(s)dsdθ

)∗
Z1

(∫ 0

−η

∫ t

t+θ

˙̃z(s)dsdθ

)
+η4 ˙̃w∗(t)Z2

˙̃w(t)− 4γ2
4

(∫ 0

−η

∫ t

t+θ

˙̃w(s)dsdθ

)∗
Z2

(∫ 0

−η

∫ t

t+θ

˙̃w(s)dsdθ

)]



84 4. Dynamics of complex-valued neural networks (CVNNs)

= µ2(t)

(
η4 ˙̃z∗(t)Z1

˙̃z(t)− 4γ2
4

(∫ 0

−η

(
˙̃z(t)− ˙̃z(t+ θ)

)
dθ

)∗
Z1

(∫ 0

−η

(
˙̃z(t)− ˙̃z(t+ θ)

)
dθ

)
+η4 ˙̃w∗(t)Z2

˙̃w(t)− 4γ2
4

(∫ 0

−η

(
˙̃w(t)− ˙̃w(t+ θ)

)
dθ

)∗
Z2

(∫ 0

−η

(
˙̃w(t)− ˙̃w(t+ θ)

)
dθ

))
= µ2(t)

(
η4 ˙̃z∗(t)Z1

˙̃z(t)− 4γ2
4

(
ηz̃(t)−

∫ t

t−η
z̃(s)ds

)∗
Z1

(
ηz̃(t)−

∫ t

t−η
z̃(s)ds

)
+η4 ˙̃w∗(t)Z2

˙̃w(t)− 4γ2
4

(
ηw̃(t)−

∫ t

t−η
w̃(s)ds

)∗
Z2

(
ηw̃(t)−

∫ t

t−η
w̃(s)ds

))
, (4.1.28)

where we used the conditions in (4.1.16) and Assumption 4.2 to obtain the inequalities in
(4.1.20)–(4.1.28), Lemma 4.3 for the inequality in (4.1.23), and Lemma 4.4 for the inequal-
ity in (4.1.28).

Using Lemmas 4.6–4.7, we have that

−η
∫ t

t−η
˙̃z∗(s)Y1

˙̃z(s)ds = −η
∫ t

t−η(t)

˙̃z∗(s)Y1
˙̃z(s)ds− η

∫ t−η(t)

t−η
˙̃z∗(s)Y1

˙̃z(s)ds

≤ − η

η(t)

[
z̃(t)− z̃(t− η(t))

z̃(t) + z̃(t− η(t))− 2
η(t)

∫ t
t−η(t)

z̃(s)ds

]∗ [
Y1 0
0 3Y1

]

×

[
z̃(t)− z̃(t− η(t))

z̃(t) + z̃(t− η(t))− 2
η(t)

∫ t
t−η(t)

z̃(s)ds

]

− η

η − η(t)

[
z̃(t− η(t))− z̃(t− η)

z̃(t− η(t)) + z̃(t− η)− 2
η−η(t)

∫ t−η(t)

t−η z̃(s)ds

]∗ [
Y1 0
0 3Y1

]

×

[
z̃(t− η(t))− z̃(t− η)

z̃(t− η(t)) + z̃(t− η)− 2
η−η(t)

∫ t−η(t)

t−η z̃(s)ds

]

= −ξ∗(t)
[
η

η(t)

[
en1 − en6

en1 + en6 − 2en15

]∗ [
Y1 0
0 3Y1

] [
en1 − en6

en1 + en6 − 2en15

]
+

η

η − η(t)

[
en6 − en5

en6 + en5 − 2en16

]∗ [
Y1 0
0 3Y1

] [
en6 − en5

en6 + en5 − 2en16

]]
ξ(t)

≤ −ξ∗(t)


en1 − en6

en1 + en6 − 2en15

en6 − en5
en6 + en5 − 2en16


∗ [
Y 1 M1

M∗
1 Y 1

]
en1 − en6

en1 + en6 − 2en15

en6 − en5
en6 + en5 − 2en16

 ξ(t),
= −ξ∗(t)ζ∗1Φ1ζ1ξ(t),

with the condition that Φ1 =

[
Y 1 M1

M∗
1 Y 1

]
> 0, which is true by (4.1.17). Analogously, we can

prove that

−η
∫ t

t−η
˙̃w∗(s)Y2

˙̃w(s)ds ≤ −ξ∗(t)ζ∗2Φ2ζ2ξ(t),

with the condition that Φ2 > 0, which is true by (4.1.17).
From Assumption 4.1 we deduce the existence of positive diagonal matrices G1, G2, . . .,

G8, so that
0 ≤ z̃∗(t)L∗f2G1Lf2 z̃(t)− f̃ ∗2 (z̃(t))G1f̃2(z̃(t)), (4.1.29)



4. Dynamics of complex-valued neural networks (CVNNs) 85

0 ≤ z̃∗(t− τ(t))L∗f2G2Lf2 z̃(t− τ(t))− f̃ ∗2 (z̃(t− τ(t)))G2f̃2(z̃(t− τ(t))), (4.1.30)

0 ≤ z̃∗(t)L∗g2G3Lg2 z̃(t)− g̃∗2(z̃(t))G3g̃2(z̃(t)), (4.1.31)

0 ≤ z̃∗(t− τ(t))L∗g2G4Lg2 z̃(t− τ(t))− g̃∗2(z̃(t− τ(t)))G4g̃2(z̃(t− τ(t))), (4.1.32)

0 ≤ w̃∗(t)L∗f1G5Lf1w̃(t)− f̃ ∗1 (w̃(t))G5f̃1(w̃(t)), (4.1.33)

0 ≤ w̃∗(t− τ(t))L∗f1G6Lf1w̃(t− τ(t))− f̃ ∗1 (w̃(t− τ(t)))G6f̃1(w̃(t− τ(t))), (4.1.34)

0 ≤ w̃∗(t)L∗g1G7Lg1w̃(t)− g̃∗1(w̃(t))G7g̃1(w̃(t)), (4.1.35)

0 ≤ w̃∗(t− τ(t))L∗g1G8Lg1w̃(t− τ(t))− g̃∗1(w̃(t− τ(t)))G8g̃1(w̃(t− τ(t))). (4.1.36)

Also, for any matrices N1, N2, . . ., N10, we have that

0 =
[

˙̃z∗(t)N1 + z̃∗(t− δ)N2 − f̃ ∗1 (w̃(t))N3 − g̃∗1(w̃(t− τ(t)))N4 − ˙̃z∗(t− η(t))N5

]
×
[
− ˙̃z(t)−D1z̃(t− δ) + A1f̃1(w̃(t)) +B1g̃1(w̃(t− τ(t))) + E1

˙̃z(t− η(t))
]

= − ˙̃z∗(t)N1
˙̃z(t)− ˙̃z∗(t)N1D1z̃(t− δ) + ˙̃z∗(t)N1A1f̃1(w̃(t)) + ˙̃z∗(t)N1B1g̃1(w̃(t− τ(t)))

+ ˙̃z∗(t)N1E1
˙̃z(t− η(t)))− z̃∗(t− δ)N2

˙̃z(t)− z̃∗(t− δ)N2D1z̃(t− δ) + z̃∗(t− δ)N2A1f̃1(w̃(t))

+z̃∗(t− δ)N2B1g̃1(w̃(t− τ(t))) + z̃∗(t− δ)N2E1
˙̃z(t− η(t))) + f̃ ∗1 (w̃(t))N3

˙̃z(t)

+f̃ ∗1 (w̃(t))N3D1z̃(t− δ)− f̃ ∗1 (w̃(t))N3A1f̃1(w̃(t))− f̃ ∗1 (w̃(t))N3B1g̃1(w̃(t− τ(t)))

−f̃ ∗1 (w̃(t))N3E1
˙̃z(t− η(t)) + g̃∗1(w̃(t− τ(t)))N4

˙̃z(t) + g̃∗1(w̃(t− τ(t)))N4D1z̃(t− δ)
−g̃∗1(w̃(t− τ(t)))N4A1f̃1(w̃(t))− g̃∗1(w̃(t− τ(t)))N4B1g̃1(w̃(t− τ(t)))

−g̃∗1(w̃(t− τ(t)))N4E1
˙̃z(t− η(t)) + ˙̃z∗(t− η(t))N5

˙̃z(t) + ˙̃z∗(t− η(t))N5D1z̃(t− δ)
− ˙̃z∗(t− η(t))N5A1f̃1(w̃(t))− ˙̃z∗(t− η(t))N5B1g̃1(w̃(t− τ(t)))

− ˙̃z∗(t− η(t))N5E1
˙̃z(t− η(t)), (4.1.37)

0 =
[

˙̃w∗(t)N6 + w̃∗(t− δ)N7 − f̃ ∗2 (z̃(t))N8 − g̃∗2(z̃(t− τ(t)))N9 − ˙̃w∗(t− η(t))N10

]
×
[
− ˙̃w(t)−D2w̃(t− δ) + A2f̃2(z̃(t)) +B2g̃2(z̃(t− τ(t))) + E2

˙̃w(t− η(t))
]

= − ˙̃w∗(t)N6
˙̃w(t)− ˙̃w∗(t)N6w̃(t− δ) + ˙̃w∗(t)N6A2f̃2(z̃(t)) + ˙̃w∗(t)N6B2g̃2(z̃(t− τ(t)))

+ ˙̃w∗(t)N6E2
˙̃w(t− η(t))− w̃∗(t− δ)N7

˙̃w(t)− w̃∗(t− δ)N7D2w̃(t− δ) + w̃∗(t− δ)N7A2f̃2(z̃(t))

+w̃∗(t− δ)N7B2g̃2(z̃(t− τ(t))) + w̃∗(t− δ)N7E2
˙̃w(t− η(t)) + f̃ ∗2 (z̃(t))N8

˙̃w(t)

+f̃ ∗2 (z̃(t))N8D2w̃(t− δ)− f̃ ∗2 (z̃(t))N8A2f̃2(z̃(t))− f̃ ∗2 (z̃(t))N8B2g̃2(z̃(t− τ(t)))

−f̃ ∗2 (z̃(t))N8E2
˙̃w(t− η(t)) + g̃∗2(z̃(t− τ(t)))N9

˙̃w(t) + g̃∗2(z̃(t− τ(t)))N9D2w̃(t− δ)
−g̃∗2(z̃(t− τ(t)))N9A2f̃2(z̃(t))− g̃∗2(z̃(t− τ(t)))N9B2g̃2(z̃(t− τ(t)))

−g̃∗2(z̃(t− τ(t)))N9E2
˙̃w(t− η(t)) + ˙̃w∗(t− η(t))N10

˙̃w(t) + ˙̃w∗(t− η(t))N10D2w̃(t− δ)
− ˙̃w∗(t− η(t))N10A2f̃2(z̃(t))− ˙̃w∗(t− η(t))N10B2g̃2(z̃(t− τ(t)))

− ˙̃w∗(t− η(t))N10E2
˙̃w(t− η(t)). (4.1.38)

Finally, by combining (4.1.20)–(4.1.28), (4.1.29)–(4.1.36) multiplied by µ2(t) > 0, and the
conjugate of (4.1.37)–(4.1.38) added to the initial relations, multiplied by µ2(t) > 0, we obtain

V̇ (t) ≤ µ2(t)ξ∗(t)
[
Π− γ2

4ζ
∗
1Φ1ζ1 − γ2

4ζ
∗
2Φ2ζ2

]
ξ(t), t 6= tk, k ∈ Z+, (4.1.39)



86 4. Dynamics of complex-valued neural networks (CVNNs)

where

ξ(t) =
[
z̃∗(t) ˙̃z∗(t) ˙̃z∗(t− η) ˙̃z∗(t− η(t)) z̃∗(t− η) z̃∗(t− η(t)) z̃∗(t− δ) z̃∗(t− τ(t))

f̃ ∗2 (z̃(t)) f̃ ∗2 (z̃(t− τ(t))) g̃∗2(z̃(t)) g̃∗2(z̃(t− τ(t)))
∫ t
t−δ z̃

∗(s)ds
∫ t
t−η z̃

∗(s)ds

1
η(t)

∫ t
t−η(t)

z̃∗(s)ds 1
η−η(t)

∫ t−η(t)

t−η z̃∗(s)ds

w̃∗(t) ˙̃w∗(t) ˙̃w∗(t− η) ˙̃w∗(t− η(t)) w̃∗(t− η) w̃∗(t− η(t)) w̃∗(t− δ) w̃∗(t− τ(t))

f̃ ∗1 (w̃(t)) f̃ ∗1 (w̃(t− τ(t))) g̃∗1(w̃(t)) g̃∗1(w̃(t− τ(t)))
∫ t
t−δ w̃

∗(s)ds
∫ t
t−η w̃

∗(s)ds

1
η(t)

∫ t
t−η(t)

w̃∗(s)ds 1
η−η(t)

∫ t−η(t)

t−η w̃∗(s)ds
]∗
,

and Π is the matrix defined in condition (4.1.17). From that condition we have that Π −
γ2

4ζ
∗
1 Φ1ζ1 − γ2

4ζ
∗
2Φ2ζ2 < 0, and thus inequality (4.1.39) yields

V̇ (t) < 0, ∀t ∈ [tk−1, tk) ∩ [T,+∞), k ∈ Z+, T ≥ 0. (4.1.40)

On the other hand, we have that

V1(tk) = µ2(tk)


z̃(tk)∫ tk

tk−δ
z̃(s)ds

w̃(tk)∫ tk
tk−δ

w̃(s)ds


∗ 
P1 0 0
0 0 0
0 P2 0
0 0 0




z̃(tk)∫ tk
tk−δ

z̃(s)ds

w̃(tk)∫ tk
tk−δ

w̃(s)ds

 ,

V2(tk) = µ2(tk)


z̃(tk)∫ tk

tk−δ
z̃(s)ds

w̃(tk)∫ tk
tk−δ

w̃(s)ds


∗ 

Q1 −Q1D1 0 0
−D1Q1 D1Q1D1 0 0

0 0 Q2 −Q2D2

0 0 −D2Q2 D2Q2D2




z̃(tk)∫ tk
tk−δ

z̃(s)ds

w̃(tk)∫ tk
tk−δ

w̃(s)ds

 ,
which, together with Assumption 4.3 written in the form

z̃(tk) = (In + F 1
k )z̃(t−k )− F 1

kD1

∫ tk

tk−δ
z̃(s)ds,

w̃(tk) = (Im + F 2
k )w̃(t−k )− F 2

kD2

∫ tk

tk−δ
w̃(s)ds,

yield

V1(tk) + V2(tk) = µ2(tk)


z̃(tk)∫ tk

tk−δ z̃(s)ds

w̃(tk)∫ tk
tk−δ w̃(s)ds


∗ 
P1 +Q1 −Q1D1 0 0
−D1Q1 D1Q1D1 0 0

0 0 P2 +Q2 −Q2D2

0 0 −D2Q2 D2Q2D2




z̃(tk)∫ tk
tk−δ z̃(s)ds

w̃(tk)∫ tk
tk−δ w̃(s)ds



= µ2(tk)


(In + F 1

k )z̃(t−k )− F 1
kD1

∫ tk
tk−δ z̃(s)ds∫ tk

tk−δ z̃(s)ds

(Im + F 2
k )w̃(t−k )− F 2

kD2

∫ tk
tk−δ w̃(s)ds∫ tk

tk−δ w̃(s)ds


∗

×


P1 +Q1 −Q1D1 0 0
−D1Q1 D1Q1D1 0 0

0 0 P2 +Q2 −Q2D2

0 0 −D2Q2 D2Q2D2




(In + F 1
k )z̃(t−k )− F 1

kD1

∫ tk
tk−δ z̃(s)ds∫ tk

tk−δ z̃(s)ds

(Im + F 2
k )w̃(t−k )− F 2

kD2

∫ tk
tk−δ w̃(s)ds∫ tk

tk−δ w̃(s)ds





4. Dynamics of complex-valued neural networks (CVNNs) 87

= µ2(tk)


z̃(t−k )∫ tk

tk−δ z̃(s)ds

w̃(t−k )∫ tk
tk−δ w̃(s)ds


∗ 
In + (F 1

k )∗ In 0 0
−D1(F 1

k )∗ 0 0 0
0 0 Im + (F 2

k )∗ Im
0 0 −D2(F 2

k )∗ 0



×


P1 +Q1 −Q1D1 0 0
−D1Q1 D1Q1D1 0 0

0 0 P2 +Q2 −Q2D2

0 0 −D2Q2 D2Q2D2



×


In + F 1

k −F 1
kD1 0 0

0 In 0 0
0 0 Im + F 2

k −F 2
kD2

0 0 0 Im




z̃(t−k )∫ tk
tk−δ z̃(s)ds

w̃(t−k )∫ tk
tk−δ w̃(s)ds



≤ µ2(t−k )


z̃(t−k )∫ tk

tk−δ z̃(s)ds

w̃(t−k )∫ tk
tk−δ w̃(s)ds


∗ 
P1 +Q1 −Q1D1 0 0
−D1Q1 D1Q1D1 0 0

0 0 P2 +Q2 −Q2D2

0 0 −D2Q2 D2Q2D2




z̃(t−k )∫ tk
tk−δ z̃(s)ds

w̃(t−k )∫ tk
tk−δ w̃(s)ds


= V1(t−k ) + V2(t−k ),

where we used condition (4.1.18). Also, we observe that V3(tk) = V3(t−k ), V4(tk) = V4(t−k ),
V5(tk) = V5(t−k ), V6(tk) = V6(t−k ), V7(tk) = V7(t−k ), V8(tk) = V8(t−k ), and V9(tk) = V9(t−k ).
Hence, we have that

V (tk) ≤ V (t−k ), k ∈ Z+. (4.1.41)

From (4.1.40) and (4.1.41), we deduce that V (t) is strictly decreasing for t ≥ T . This fact,
together with the definition of V (t), imply that

µ2(t)λmin(P )

∥∥∥∥[ z̃(t)
w̃(t)

]∥∥∥∥2

≤ µ2(t)

[
z̃(t)
w̃(t)

]∗
P

[
z̃(t)
w̃(t)

]
≤ V (t)

≤ V0, ∀t ≥ T,

where V0 = max
0≤t≤T

V (t). Consequently, we have that

∥∥∥∥[ z̃(t)
w̃(t)

]∥∥∥∥2

≤ V0

µ2(t)λmin(P )
, ∀t ≥ 0,

or, equivalently, ∥∥∥∥[ z̃(t)
w̃(t)

]∥∥∥∥ ≤ M

µ(t)
, ∀t ≥ 0,

for M =
√

V0
λmin(P )

. Now, Definition 4.1 implies that the origin of the system (4.1.15) is globally
µ-stable, thus ending the proof of the theorem.

Corollary 4.1. If Assumptions 4.1 and 4.2–4.3 hold, and τ(t) ≤ τ , then the origin of the system
(4.1.15) is globally exponentially stable if there exist positive definite Hermitian matrices P1,
P2, Q1, Q2, R1, R2, S1, S2, T1, T2, . . ., T6, U1, U2, X1, X2, Y1, Y2, Z1, Z2, positive diagonal
matrices G1, G2, . . ., G8, and any matrices M1, M2, N1, N2, . . ., N10, such that the conditions
(4.1.16)–(4.1.18) hold, with γ1 = ε, γ2 = e−εδ, γ3 = e−ετ , γ4 = e−εη, for some positive ε.



88 4. Dynamics of complex-valued neural networks (CVNNs)

Proof. Let µ(t) = eεt. Then, ∀t ≥ 0, we have

µ̇(t)

µ(t)
= ε,

infs∈[t−δ,t] µ(s)

µ(t)
= e−εδ,

µ(t− τ(t))

µ(t)
= e−ετ(t) ≥ e−ετ ,

min{infs∈[t−η,t] µ(s), µ(t− η(t))}
µ(t)

= min{e−εη, e−εη(t)}

≥ e−εη.

Now, from Theorem 4.2 and Definition 4.2, we get that the origin of system (4.1.15) is globally
exponentially stable.

Corollary 4.2. If Assumptions 4.1 and 4.2–4.3 hold, and τ(t) ≤ τdt, then the origin of the
system (4.1.15) is globally power stable if there exist positive definite Hermitian matrices P1,
P2, Q1, Q2, R1, R2, S1, S2, T1, T2, . . ., T6, U1, U2, X1, X2, Y1, Y2, Z1, Z2, positive diagonal
matrices G1, G2, . . ., G8, and any matrices M1, M2, N1, N2, . . ., N10, such that the conditions
(4.1.16)–(4.1.18) hold, with γ1 = ε, γ2 = (1 − δ)ε, γ3 = (1 − τd)ε, γ4 = (1 − η)ε, for some
positive ε.

Proof. Let µ(t) = tε for t ≥ 1. Then, ∀t ≥ 1, we have

µ̇(t)

µ(t)
=
ε

t
≤ ε,

infs∈[t−δ,t] µ(s)

µ(t)
=

(
1− δ

t

)ε
≥ (1− δ)ε,

µ(t− τ(t))

µ(t)
=

(
1− τ(t)

t

)ε
≥ (1− τd)ε,

min{infs∈[t−η,t] µ(s), µ(t− η(t))}
µ(t)

= min

{(
1− η

t

)ε
,

(
1− η(t)

t

)ε}
≥ (1− η)ε.

From Theorem 4.2 and Definition 4.3, we infer that the origin of system (4.1.15) is globally
power stable.

Corollary 4.3. If Assumptions 4.1 and 4.2–4.3 hold, and τ(t) ≤ t − t
ln t

, then the origin of
the system (4.1.15) is globally log-stable if there exist positive definite Hermitian matrices P1,
P2, Q1, Q2, R1, R2, S1, S2, T1, T2, . . ., T6, U1, U2, X1, X2, Y1, Y2, Z1, Z2, positive diagonal
matrices G1, G2, . . ., G8, and any matrices M1, M2, N1, N2, . . ., N10, such that the conditions
(4.1.16)–(4.1.18) hold, with γ1 = ε, γ2 = 1/2, γ3 = 1/2, γ4 = 1/2, for some positive ε.

Proof. Let µ(t) = ln(εt+ 1). Then

lim
t→∞

µ̇(t)

µ(t)
= lim

t→∞

ε

(εt+ 1) ln(εt+ 1)
= 0,



4. Dynamics of complex-valued neural networks (CVNNs) 89

lim
t→∞

µ(t− δ)
µ(t)

= lim
t→∞

ln (ε(t− δ) + 1)

ln (εt+ 1)
= 1,

lim
t→∞

µ(t− τ(t))

µ(t)
= lim

t→∞

ln (ε(t− τ(t)) + 1)

ln (εt+ 1)
≥ lim

t→∞

ln
(
εt
ln t

+ 1
)

ln (εt+ 1)
= 1,

lim
t→∞

µ(t− η)

µ(t)
= lim

t→∞

ln (ε(t− η) + 1)

ln (εt+ 1)
= 1,

which means that there exists T > 0 such that

µ̇(t)

µ(t)
≤ ε,

infs∈[t−δ,t] µ(s)

µ(t)
=
µ(t− δ)
µ(t)

≥ 1

2
,

µ(t− τ(t))

µ(t)
≥ 1

2
,

min{infs∈[t−η,t] µ(s), µ(t− η(t))}
µ(t)

≥ µ(t− η)

µ(t)
≥ 1

2
,

∀t ≥ T . Theorem 4.2 and Definition 4.4 now give the global log-stability of the origin of system
(4.1.15).

Remark 4.1. In [225], the global asymptotic stability of complex-valued BAM neural networks
with constant delays was studied. The existence, uniqueness, and global asymptotic stability
analysis for delayed complex-valued Cohen–Grossberg BAM neural networks was discussed
in [202]. Also, the existence, uniqueness, and exponential stability analysis for complex-
valued memristor-based BAM neural networks with time delays were the focus of [68]. Delay-
independent stability criteria for complex-valued BAM neutral-type neural networks with time
delays were established in [232]. However, the present paper greatly extends these results by
considering neutral-type impulsive complex-valued BAM neural networks with leakage delay
and unbounded time-varying delays, and giving delay-dependent sufficient conditions for the
global µ-stability of the equilibrium point of such networks.

Remark 4.2. The µ-stability of this type of networks with constant leakage delay, mixed delay,
and impulses was analyzed in [39]. Papers [38, 219] give sufficient conditions for the µ-stability
of the equilibrium point of complex-valued Hopfield neural networks with unbounded time-
varying delays. Paper [62] discusses the same type of stability for complex-valued Hopfield
neural networks with leakage delay and unbounded time-varying delays. Our results extend
the ones in these papers by considering neutral-type impulsive complex-valued BAM neural
networks with leakage delay and unbounded time-varying delays.

Remark 4.3. The real-valued Wirtiger-based integral inequality was used in [222] to study the
dynamical properties of complex-valued memristive neural networks, which were split into
their real and imaginary parts. Its complex-valued variant was given without proof in [113], and
was used for the state estimation of complex-valued neural networks with two additive time-
varying delays. In this paper, we provide a proof for the complex-valued Wirtiger-based integral
inequality for the first time, and employ it to obtain sufficient stability criteria. Also, we provide
a proof for the complex-valued reciprocally convex combination inequality, which, to the best
of our knowledge, is used here for the first time in its complex-valued variant.



90 4. Dynamics of complex-valued neural networks (CVNNs)

4.1.2 Numerical examples
In this section, we will prove the efficiency and correctness of the obtained results by a series
of examples. The numerical simulations are done in MATLAB, and the LMIs are solved using
the effective YALMIP tool.

Example 4.1. Consider the complex-valued bidirectional associative memories given by system
(4.1.1), where

D1 =

[
2 0
0 3

]
, A1 =

[
0.1 + 0.1ı −0.2 + 0.1ı
0.1− 0.1ı −0.1

]
,

B1 =

[
0.1 + 0.1ı 0.1ı
−0.1 + 0.1ı 0.2

]
, E1 =

[
0.1− 0.1ı 0

0 0.1 + 0.1ı

]
,

u1 =

[
2− ı
−2 + ı

]
,

D2 =

[
4 0
0 3

]
, A2 =

[
0.1− ı 0.1 + 0.1ı

0.2 + 0.2ı 0.2− 0.2ı

]
,

B2 =

[
0.1 + 0.2ı 0.2 + 0.1ı
0.3− 0.4ı −0.3 + 0.2ı

]
, E2 =

[
0.2− ı 0

0 0.1

]
,

u2 =

[
2− 3ı
−4 + ı

]
,

f 1
i (w) =

1

1 + e−w
, g1

i (w) =
1− e−2w

1 + e−2w
, ∀i = 1, 2,

f 2
j (z) =

1

1 + e−z
, g2

j (z) =
1− e−2z

1 + e−2z
, ∀j = 1, 2,

from which we get that

Lf1 = Lf2 =

[
1/4 0
0 1/4

]
, Lg1 = Lg2 =

[
1/2 0
0 1/2

]
.

The leakage, time-varying, and neutral-type delays are δ = 0.05, τ(t) = 0.3t, η(t) = 0.4, so
τd = 0.3, η = 0.4, ηd = 0.

Now, by applying Theorem 4.1, we obtain that system (4.1.1) with the above given pa-
rameters has a unique equilibrium point if conditions (4.1.2) and (4.1.3) are satisfied. These
conditions can be solved using MATLAB and YALMIP to get

P1 =

[
0.4481 −0.0002− 0.0001ı

−0.0002 + 0.0001ı 0.3212

]
,

P2 =

[
0.2495 0.0003− 0.0001ı

0.0003 + 0.0001ı 0.3185

]
,

G1 = diag(1.0119, 1.0122), G2 = diag(1.0132, 1.0134),

G3 = diag(1.0349, 1.0422), G4 = diag(1.0446, 1.0502).

We will take µ(t) = t, and so γ1 = 1, γ2 = 0.95, γ3 = 0.7, γ4 = 0.6. Applying Theorem
4.2, the equilibrium point of the system (4.1.1) with the same parameters is globally power
stable for (the values of the other matrices are not given for brevity reasons):

G1 = diag(0.2126, 1.5381), G2 = diag(0.0204, 0.2485),



4. Dynamics of complex-valued neural networks (CVNNs) 91

G3 = diag(0.0270, 0.2808), G4 = diag(0.2575, 0.7659),

G5 = diag(0.3509, 1.6191), G6 = diag(0.0130, 0.1347),

G7 = diag(0.0182, 0.1719), G8 = diag(0.1362, 0.3814),

which satisfy conditions (4.1.16)–(4.1.18).

Example 4.2. Consider now the complex-valued BAM neural network given by system (4.1.1),
where

D1 =

[
2 0
0 3

]
, A1 =

[
−0.1 + 0.3ı −0.1 + 0.2ı
−0.2− 0.2ı 0.2 + 0.5ı

]
,

B1 =

[
0.5 + 0.1ı 0.1ı
−0.2 + 0.5ı 0.1 + 0.5ı

]
, E1 =

[
0.1 + 0.2ı 0

0 0.2 + 0.1ı

]
,

F 1
k =

[
−0.4 + 0.2ı −0.1
−0.3 + 0.1ı −0.2 + 0.1ı

]
, tk = k, k ∈ Z+,

u1 =

[
2− 2ı
−2 + 3ı

]
,

D2 =

[
3 0
0 5

]
, A2 =

[
−0.5 + 0.1ı −0.5
−0.5 −0.5 + 0.1ı

]
,

B2 =

[
0.1 + 0.2ı 0.2 + 0.1ı
0.3 + 0.2ı 0.3 + 0.2ı

]
, E2 =

[
0.3− 0.1ı 0

0 −0.1 + 0.2ı

]
,

F 2
k =

[
−0.4− 0.2ı −0.1− 0.2ı
−0.3 + 0.1ı −0.2− 0.1ı

]
, tk = k, k ∈ Z+,

u2 =

[
−3 + 2ı

3− ı

]
,

f 1
i (w) =

1− e−2w

1 + e−2w
, g1

i (w) =
1

1 + e−w
, ∀i = 1, 2,

f 2
j (z) =

1− e−2z

1 + e−2z
, g2

j (z) =
1

1 + e−z
, ∀j = 1, 2,

from which we get that

Lf1 = Lf2 =

[
1/2 0
0 1/2

]
, Lg1 = Lg2 =

[
1/4 0
0 1/4

]
.

The leakage, neutral-type, and time-varying delays are δ = 0.02, τ(t) = 0.5, η(t) = 0.3, so
τd = 0, η = 0.3, ηd = 0. We will take µ(t) = et, and so γ1 = 1, γ2 = 0.9802, γ3 = 1, γ4 = 1.

Applying Theorem 4.2, the equilibrium point of the system (4.1.1) with the above parame-
ters is globally exponentially stable for (the values of the other matrices are not given for brevity
reasons):

G1 = diag(0.2159, 0.7085), G2 = diag(0.0082, 0.0888),

G3 = diag(0.1934, 0.7821), G4 = diag(0.1297, 0.4889),

G5 = diag(0.2885, 0.9510), G6 = diag(0.0087, 0.0606),

G7 = diag(0.7641, 0.8243), G8 = diag(0.1962, 0.4878),

which satisfy conditions (4.1.16)–(4.1.18).





Chapter 5

Dynamics of quaternion-valued neural
networks (QVNNs)

Quaternion-valued neural networks (QVNNs) are natural extensions of the extensively stud-
ied real-valued neural networks (RVNNs) and complex-valued neural networks (CVNNs) [79].
While two-dimensional data can be successfully operated by complex-valued neurons, QVNNs
are expected to be more adequate to process multidimensional information (e.g., three-dimensional
coordinates and color), by means of quaternionic neurons.

Quaternionic multilayer perceptrons have first been introduced by [4], proving their effi-
ciency in quaternionic function interpolation and chaotic time series prediction [5]. Applica-
tions of QVNNs also include color image compression [89], color night vision [104] and 3D
wind field modeling and forecasting [214]. Compared to RVNNs, [21] showed that QVNNs
provide improved performance in polarized signal classification.

Up to this date, few authors have considered the theoretical investigation of dynamical prop-
erties of quaternion-valued neural networks, concentrating mainly on global behavior such as
global stability.

5.1 Multistability and multiperiodicity in impulsive hybrid
QVNNs with mixed delays

It is important to emphasize that in certain applications, such as associative memory storage
for pattern recognition [90, 35], neural networks are required to exhibit configurations of sev-
eral attractors (equilibrium states or periodic orbits), which store information and constitute
distributed and parallel neural memory networks. While in mono-stability analysis, sufficient
conditions are needed to guarantee the convergence of all trajectories to the unique attractor, in
multistability analysis, the networks are allowed to have multiple attractors. With the aim of
ensuring recall capability, the investigation of locally asymptotically stable equilibrium states
or periodic orbits (existence, number, regions of attraction) is the main focus point in the case
of multistable networks.

In the past decade, multistability and multiperiodicity in real-valued neural networks with
delays have been extensively studied, showing the coexistence of 2n attractors [85, 125, 41,
235, 50, 93]. Improved storage capacity guaranteed by a configuration of 3n exponentially
stable equilibrium states has been achieved by [127] and [126], using non-monotonic piecewise
linear activation functions.

When it comes to complex-valued neural networks, significantly less multistability results

93



94 5. Dynamics of quaternion-valued neural networks (QVNNs)

have been obtained compared to the case of RVNNs. [83] analyzed multistability and mul-
tiperiodicity properties in complex-valued neural networks with discrete time-delay and one
step piecewise linear activation functions of real-imaginary type, showing the coexistence of 4n

locally exponentially stable equilibrium states/periodic orbits. Increased storage capacity has
been achieved in the case of CVNNs without delays by [84]. Employing discontinuous activa-
tion functions, [112] obtained sufficient conditions for the coexistence of 9n locally asymptoti-
cally stable equilibrium states in CVNNs with time-varying delays.

We investigate multistability and multiperiodicity properties of impulsive QVNNs with
both time-dependent and distributed delays, significantly extending the results obtained by
[95, 96, 97]. To the best of our knowledge, these are the first results concerning the coexistence
of several attractors in quaternion-valued neural networks. A very general theoretical setting is
considered: on one hand, impulsive effects are included to express instantaneous changes that
naturally occur in electronic networks, caused by frequency changes, switching phenomena or
noise [9]; on the other hand, time delays are incorporated to account for the lags in signal pro-
cessing and transmission, and the finite switching speed of amplifiers. The dynamical properties
of time-delayed systems are known to be much more complex than the behavior of non-delayed
dynamical systems, time delays being frequently responsible for unstable or oscillatory behav-
ior. Complementing time-varying delays, distributed delays reflect the whole past history of the
variables, proving to be more realistic and more accurate in real world applications than discrete
time delays [45].

The presentation in this section follows that in the author’s paper [176].

5.1.1 Main results

consider the quaternion-valued Hopfield neural network given by the following system of dif-
ferential equations

ẋi(t) = −dixi(t) +
n∑
j=1

aijfj(xj(t)) +
n∑
j=1

bijfj(xj(t− τij(t)))

+
n∑
j=1

cijfj

(∫ ∞
0

Kij(s)xj(t− s)ds
)

+ ui(t), t 6= tk, i = 1, n,

x(t−k ) = x(tk), x(t+k ) = x(tk) + Jk(x), t = tk, k ∈ Z+, (5.1.1)

where x(t) = (x1(t), . . . , xn(t))T ∈ Hn is the state vector at time t,D = diag(d1, d2, . . . , dn) ∈
Rn×n, di > 0, ∀i = 1, n, is the self-feedback connection weight matrix, A = (aij)1≤i,j≤n ∈
Hn×n is the connection weight matrix, B = (bij)1≤i,j≤n ∈ Hn×n is the time-varying delay
connection weight matrix, C = (cij)1≤i,j≤n ∈ Hn×n is the distributed delay connection weight
matrix, fj : H → H are the neuron activation functions, ∀j = 1, n, and ui : R → H are
the external inputs, which can be constants or ω-periodic functions. The sequence of times
{tk}k∈Z+ satisfies 0 = t0 < t1 < t2 < · · · < limk→∞ tk =∞.

Every quaternion x ∈ H can be written as

x = xR + xIı+ xJ+ xKκ,

where xR, xI , xJ , xK ∈ R are the real components of quaternion x, and ı, , κ represent the
quaternion imaginary units, which satisfy ı2 = 2 = κ2 = ıκ = −1. The product of two



5. Dynamics of quaternion-valued neural networks (QVNNs) 95

quaternions x, y ∈ H is given by

xy = xRyR − xIyI − xJyJ − xKyK

+(xRyI + xIyR + xJyK − xKyJ)ı

+(xRyJ − xIyK + xJyR + xKyI)

+(xRyK + xIyJ − xJyI + xKyR)κ,

from which we can see that quaternion multiplication is not commutative, but it can be verified
that it is associative. The conjugate of quaternion x ∈ H is defined as

x = xR − xIı− xJ− xKκ,

and the norm as
|x| =

√
xx =

√
(xR)2 + (xI)2 + (xJ)2 + (xK)2.

We assume that the activation functions fj can be written in the form

fj(x) = fRj (x) + f Ij (x)ı+ fJj (x)+ fKj (x)κ, ∀x ∈ H,

where fRj , f Ij , fJj , fKj : H→ R, ∀j = 1, n.
The initial conditions associated with (5.1.1) have the form

x(s) = φ(s), s ∈ (−∞, 0],

where the function φ = (φ1(·), φ2(·), . . . , φn(·))T is piecewise continuous and bounded with
respect to the norm

||φ||∞ = max
i=1,n

(
sup

s∈(−∞,0]

|φi(s)|

)
.

DenoteM = {R, I, J,K}. System (5.1.1) can be decomposed in the following way, ∀P ∈
M,

ẋPi (t) = −dixPi (t) +
n∑
j=1

(aijfj(xj(t)))
P +

n∑
j=1

(bijfj(xj(t− τij(t))))P

+
n∑
j=1

(
cijfj

(∫ ∞
0

Kij(s)xj(t− s)ds
))P

+ uPi (t), t 6= tk, i = 1, n,

xP (t−k ) = xP (tk), xP (t+k ) = xP (tk) + JPk (x), t = tk, k ∈ Z+. (5.1.2)

In order to study the multistability and multiperiodicity of the above defined network, we
need a series of assumptions.

Assumption 5.1. The time-varying delays τij : R → R are continuously differentiable (ω-
periodic) functions and there exist ρij > 0 and ρ′ij ∈ [0, 1), such that τij(t) < ρij and τ ′ij(t) ≤
ρ′ij , ∀t > 0, ∀i, j = 1, n.

Assumption 5.2. The delay kernels Kij : [0, 1) → [0, 1) are bounded, piecewise continuous,
and satisfy∫ ∞

0

Kij(s)ds = 1 and ∃µ > 0 such that
∫ ∞

0

Kij(s)e
µsds <∞, ∀i, j = 1, n. (5.1.3)



96 5. Dynamics of quaternion-valued neural networks (QVNNs)

Assumption 5.3. The jump operators Jk = (Jk1, Jk2, . . . , Jkn)T are defined on the following set
of functions: {u : (−∞, tk] → Hn|u is piecewise continuous on (−∞, 0], u is left continuous
on [0, tk], with first kind discontinuity at tl, and u is differentiable on every interval (tl−1, tl),
1 ≤ l ≤ k}. We will require that

Jk(u0) ≡ 0 for any constant function u0. (5.1.4)

For example, we may consider jump operators of the following forms (or their linear combina-
tions):

(i) Jk(x) =
∫ tk
tk−1

B1
k(s)ẋ(s)ds;

(ii) Jk(x) =
∫ tk
tk−1

B2
k(s)[x(s)− x(tk)]ds;

(iii) Jk(x) =
∑k−1

l=0 B
3
kl[x(t+l )− x(t−l )],

where B1
k : [tk−1, tk] → Hn×n and B2

k : [tk−1, tk] → Hn×n are measurable and essentially
bounded functions and B3

kl ∈ Hn×n.

Denoting J(1) = (1,∞), J(−1) = (−∞,−1), and JH(x) = J(xR) + J(xI)ı + J(xJ) +
J(xK)κ, for every ε ∈ {±1± 1ı± 1± 1κ}n, we define the rectangle

∆ε = JH(ε1)× JH(ε2)× · · · × JH(εn).

For example, JH(−1 + 1ı− 1+ 1κ) = (−∞,−1) + (1,∞)ı+ (−∞,−1)+ (1,∞)κ.

Assumption 5.4. The components of the activation functions fPj are bounded: |fPj (s)| ≤ 1,
∀s ∈ H, ∀P ∈M, ∀j = 1, n.

Assumption 5.5. There exists α ∈ (0, 1) such that the functions fPj satisfy fPj (s) ≥ α, if
sP ≥ 1, and fPj (s) ≤ −α, if sP ≤ −1, ∀s ∈ H, ∀P ∈M, ∀j = 1, n.

Assumption 5.6. For any k ∈ Z+ and ε ∈ {±1± 1ı± 1± 1κ}n, if ϕ(t) ∈ ∆ε for t ≤ tk, then
ϕ(tk) + Jk(ϕ) ∈ ∆ε.

Assumption 5.7. The activation functions fPj are globally Lipschitz continuous. Moreover, βPj
denotes the Lipschitz constant, i.e., |fPj (u) − fPj (v)| ≤ βPj |u − v|, ∀u, v ∈ H, ∀P ∈ M,
∀j = 1, n.

Assumption 5.8. With the notations from Assumption 5.7, the following inequalities are satis-
fied:

n∑
i=1

∑
P∈M

∑
Q∈M

∣∣∣aQij∣∣∣+

∣∣∣bQij∣∣∣
1− ρ′ij

+
∣∣∣cQij∣∣∣

 βPj < dj, ∀j = 1, n.

Because ρ′ij ∈ [0, 1), we can also deduce that the following inequalities hold:

n∑
i=1

∑
P∈M

∑
Q∈M

(∣∣∣aQij∣∣∣+
∣∣∣bQij∣∣∣+

∣∣∣cQij∣∣∣) βPj < dj, ∀j = 1, n.



5. Dynamics of quaternion-valued neural networks (QVNNs) 97

Assumption 5.9. For any k ∈ Z+ and ε ∈ {±1±1ı±1±1κ}n, there exist γk ≥ 0 and δk ≥ 0,
such that if ϕ(t), ψ(t) ∈ ∆ε for t ≤ tk, we have

‖Jk(ϕ)− Jk(ψ)‖1 ≤ γk ‖ϕ(tk)− ψ(tk)‖1 + δk

∫ tk

tk−1

‖ϕ(s)− ψ(s)‖1 ds.

In particular, if ψ(t) = u0 ∈ ∆ε, we have

‖Jk(ϕ)‖1 ≤ γk ‖ϕ(tk)− u0‖1 + δk

∫ tk

tk−1

‖ϕ(s)− u0‖1 ds.

Assumption 5.10. The following inequality is satisfied:

ζ = sup
k∈Z∗+

1

tk

k∑
j=1

ln

(
1 + γj + δj

eµ0(tj−tj−1) − 1

µ0

)
< µ0,

where µ0 ∈ (0, µ] is chosen such that the following inequality is satisfied:

µ0 − di +
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣aQji∣∣∣ βPi +
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣bQji∣∣∣ βPi eµ0ρji

1− ρ′ji

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣cQji∣∣∣ βPi (∫ ∞
0

Kji(s)e
µ0sds

)
< 0, ∀i = 1, n. (5.1.5)

This choice is possible due to the fact that the functions

Fi(u) = u− di +
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣aQji∣∣∣ βPi +
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣bQji∣∣∣ βPi euρji

1− ρ′ji

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣cQji∣∣∣ βPi (∫ ∞
0

Kji(s)e
usds

)
, ∀i = 1, n

are continuous and satisfy

Fi(0) = −di +
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣aQji∣∣∣+

∣∣∣bQji∣∣∣
1− ρ′ji

+
∣∣∣cQji∣∣∣

 βPi < 0,

based on Assumption 5.8.

In what follows, PC([0, L],Hn) denotes the space of left continuous functions defined on
the interval [0, L], with values in Hn, having discontinuities of the first kind only at the points
{tk}k∈Z+ ∩ [0, L].

Assumption 5.11. The jump operators Jk = (Jk1, Jk2, . . . , Jkn)T : PC([0, tk],Hn) → Hn are
continuous.

Assumption 5.12. Considering p > 0 such that [0, ω]∩{tk}k∈Z+ = {t0, t1, . . . , tp}, we assume
that tk+p = tk + ω and Jk+p(x) = Jk(x), for any k ∈ Z+ and any ω-periodic function x.



98 5. Dynamics of quaternion-valued neural networks (QVNNs)

Assumption 5.13. The external inputs satisfy:∣∣uPi (t)
∣∣ <

(
aRii + bRii + cRii

)
α− di −

∑
Q∈M\{R}

(∣∣∣aQii ∣∣∣+
∣∣∣bQii ∣∣∣+

∣∣∣cQii ∣∣∣)
−
∑
j 6=i

∑
Q∈M

(∣∣∣aQij∣∣∣+
∣∣∣bQij∣∣∣+

∣∣∣cQij∣∣∣) , ∀P ∈M, ∀i = 1, n, ∀t ∈ R. (5.1.6)

Assumption 5.14. For any k ∈ Z+, P ∈ M, ε ∈ {±1 ± 1ı ± 1 ± 1κ}n, and i = 1, n, there
exists MP

ki > 0 such that, if ϕ(t) ∈ ∆ε for any t ≤ tk, then 0 ≤ εPi J
P
ki(ϕ) ≤MP

ki.

Lemma 5.1. For any x, y ∈ H, we have that∣∣(xy)R
∣∣ ≤ ∣∣xR∣∣ ∣∣yR∣∣+

∣∣xI∣∣ ∣∣yI∣∣+
∣∣xJ ∣∣ ∣∣yJ ∣∣+

∣∣xK∣∣ ∣∣yK∣∣ ,∣∣(xy)I
∣∣ ≤ ∣∣xR∣∣ ∣∣yI∣∣+

∣∣xI∣∣ ∣∣yR∣∣+
∣∣xJ ∣∣ ∣∣yK∣∣+

∣∣xK∣∣ ∣∣yJ ∣∣ ,∣∣(xy)J
∣∣ ≤ ∣∣xR∣∣ ∣∣yJ ∣∣+

∣∣xI∣∣ ∣∣yK∣∣+
∣∣xJ ∣∣ ∣∣yR∣∣+

∣∣xK∣∣ ∣∣yI∣∣ ,∣∣(xy)K
∣∣ ≤ ∣∣xR∣∣ ∣∣yK∣∣+

∣∣xI∣∣ ∣∣yJ ∣∣+
∣∣xJ ∣∣ ∣∣yI∣∣+

∣∣xK∣∣ ∣∣yR∣∣ .
Moreover, if we denoteMR = {(R,R), (I, I), (J, J), (K,K)},MI = {(R, I), (I, R), (J,K), (K, J)},
MJ = {(R, J), (I,K), (J,R), (K, I)},MK = {(R,K), (I, J), (I, J), (K,R)}, the above in-
equalities can be written compactly as∣∣(xy)P

∣∣ ≤ ∑
(Q,S)∈MP

∣∣xQ∣∣ ∣∣yS∣∣ , ∀P ∈M.

Proof. Using the product of quaternions,

xy = xRyR − xIyI − xJyJ − xKyK

+(xRyI + xIyR + xJyK − xKyJ)ı

+(xRyJ − xIyK + xJyR + xKyI)

+(xRyK + xIyJ − xJyI + xKyR)κ,

we can easily obtain the inequalities above.
Also, we can write

(xy)P =
∑

(Q,S)∈MP

ηQSx
QyS, ∀P ∈M,

where ηQS ∈ {±1} is the sign of the product xQyS , ∀(Q,S) ∈ MP . From this, we can deduce
that ∣∣(xy)P

∣∣ ≤ ∑
(Q,S)∈MP

∣∣xQ∣∣ ∣∣yS∣∣ , ∀P ∈M.

5.1.1.1 Multistability analysis

A solution x : (−∞, T )→ Hn of (5.1.1) with the initial condition x(s) = φ(s), s ∈ (−∞, 0],
is piecewise continuous with first kind discontinuity at the points tk < T , left continuous at
each tk < T , and differentiable on the open intervals (tk, tk+1) ⊂ (0, T ).



5. Dynamics of quaternion-valued neural networks (QVNNs) 99

In this subsection, the external inputs are considered to be constants. A steady state xu =
(xu1 , x

u
2 , . . . , x

u
n)T ∈ Hn of (5.1.1) corresponding to the input u = (u1, u2, . . . , un)T satisfies

0 = −dixui +
n∑
j=1

aijfj(x
u
j ) +

n∑
j=1

bijfj(x
u
j )

+
n∑
j=1

cijfj

(
xuj

∫ ∞
0

Kij(s)ds

)
+ ui, i = 1, n,

xu = xu + Jk(x
u), k ∈ Z+.

Taking into account the fact that the delay kernels Kij satisfy (5.1.3) and the jump operators Jk
satisfy (5.1.4), the above system is equivalent to

−dixui +
n∑
j=1

aijfj(x
u
j ) +

n∑
j=1

bijfj(x
u
j ) +

n∑
j=1

cijfj(x
u
j ) + ui = 0, i = 1, n,

which, in vector form, can be written as

−Dxu + (A+B + C)f(xu) + u = 0, (5.1.7)

where f(x) = (f1(x1), f2(x2), . . . , fn(xn))T .
The following lemma provides a bound for the set of steady states of (5.1.1) corresponding

to an input u:

Lemma 5.2. If Assumption 5.4 is fulfilled, then, for any input vector u ∈ Hn, the following
statements hold:

i. There exists at least one steady state of (5.1.1) (corresponding to u) in the rectangle

∆u =
n∏
i=1

([
−MR

i ,M
R
i

]
+
[
−M I

i ,M
I
i

]
ı+
[
−MJ

i ,M
J
i

]
+

[
−MK

i ,M
K
i

]
κ
)

of Hn, where

MP
i =

1

di

(∣∣uPi ∣∣+
n∑
j=1

∑
Q∈M

(∣∣∣aQij∣∣∣+
∣∣∣bQij∣∣∣+

∣∣∣cQij∣∣∣)
)
, ∀P ∈M, ∀i = 1, n.

ii. Every steady state of (5.1.1), corresponding to u, belongs to the rectangle ∆u, defined
above.

Proof. The set of steady states of (5.1.1) corresponding to u are given by equation (5.1.7),
which is equivalent to

x = D−1 (u+ (A+B + C)f(x)) .

Define the function h : Hn → Hn, h(x) = D−1 (u+ (A+B + C)f(x)). For any x ∈ Hn,
P ∈M, and i = 1, n, based on Assumption 5.4, we have∣∣hPi (x)

∣∣ =

∣∣∣∣∣ 1

di

(
uPi +

n∑
j=1

(
(aijfj(xj))

P + (bijfj(xj))
P + (cijfj(xj))

P
))∣∣∣∣∣

≤ 1

di

∣∣uPi ∣∣+
n∑
j=1

∑
(Q,S)∈MP

(∣∣∣aQij∣∣∣+
∣∣∣bQij∣∣∣+

∣∣∣cQij∣∣∣) ∣∣fSj (xj)
∣∣

≤ 1

di

(∣∣uPi ∣∣+
n∑
j=1

∑
Q∈M

(∣∣∣aQij∣∣∣+
∣∣∣bQij∣∣∣+

∣∣∣cQij∣∣∣)
)

= MP
i ,



100 5. Dynamics of quaternion-valued neural networks (QVNNs)

where we used Lemma 5.1 for the inequalities. Therefore, h(Hn) ⊂ ∆u, which proves ii.
Moreover, one gets that h(∆u) ⊂ ∆u, and, as h is a continuous function, Brouwer’s fixed point
theorem guarantees the existence of at least one steady state of (5.1.1) corresponding to u in
∆u, so statement i. also holds.

The main result concerning the existence of 16n steady states for system (5.1.1) is presented
in the following.

Theorem 5.1. Suppose that Assumptions 5.4, 5.5, and 5.13 hold. Then, the following statements
hold:

i. In every rectangle ∆ε, ε ∈ {±1± 1ı± 1± 1κ}n, there exists at least one steady state of
(5.1.1) corresponding to input u.

ii. If Assumption 5.6 is fulfilled, then every ∆ε, ε ∈ {±1 ± 1ı ± 1 ± 1κ}n, is invariant to
the flow of system (5.1.1).

iii. Moreover, if Assumptions 5.7, 5.8, 5.9, and 5.10 hold as well, then the steady state of
(5.1.1) corresponding to the input u, lying in the rectangle ∆ε, ε ∈ {±1±1ı±1±1κ}n,
is unique, it is exponentially stable, and its region of attraction includes ∆ε.

Proof. Let u satisfy (5.1.6) and ε ∈ {±1± 1ı± 1± 1κ}n.
i. Consider the function h : Hn → ∆u, defined by

h(x) = D−1 (u+ (A+B + C)f(x)) ,

and the rectangle ∆u given by Lemma 5.2. For x ∈ ∆ε, we have that εPi x
P
i ≥ 1, ∀P ∈

M, ∀i = 1, n, and therefore, based on Assumptions 5.4 and 5.5, we have

εPi h
P
i (x) =

εPi
di

(
n∑
j=1

((aij + bij + cij)fj(xj))
P + uPi

)

=
εPi
di

 n∑
j=1

∑
(Q,S)∈MP

ηQS(aQij + bQij + cQij)f
S
j (xj) + uPi


≥ 1

di

(aRii + bRii + cRii
)
α−

∑
Q∈M\{R}

(∣∣∣aQii ∣∣∣+
∣∣∣bQii ∣∣∣+

∣∣∣cQii ∣∣∣)

−
∑
j 6=i

∑
Q∈M

(∣∣∣aQij∣∣∣+
∣∣∣bQij∣∣∣+

∣∣∣cQij∣∣∣)− ∣∣uPi ∣∣
)

> 1,

∀P ∈ M, ∀i = 1, n. This means that hi(x) ∈ JH(εi) for any i = 1, n, and, therefore,
hi(x) ∈ ∆ε. We have just proved that h(∆ε) ⊂ ∆ε ∩∆u, and, based on Brouwer’s fixed point
theorem, we obtain the existence of at least one steady state of (5.1.1) corresponding to the input
u in ∆ε ∩∆u.

ii. Consider an initial function satisfying φ(s) ∈ ∆ε for any s ≤ 0 = t0. Assumption 5.6
provides that x(t+0 ) ∈ ∆ε, where x(t) = x(t;φ, u). Hence, there exists τ ∈ (t0, t1) such that
x(t) ∈ ∆ε, for any t ∈ (t0, τ).

Assuming that x(τ) ∈ ∂∆ε, there exists i ∈ {1, 2, . . . , n} and P ∈ M such that xPi (τ) =
εPi . Based on (5.1.6) and Assumptions 5.4 and 5.5, we have



5. Dynamics of quaternion-valued neural networks (QVNNs) 101

εPi ẋ
P
i (τ) = εPi

(
−diεPi +

n∑
j=1

(aijfj(xj(τ)))P +
n∑
j=1

(bijfj(xj(τ − τij(τ))))P

+
n∑
j=1

(
cijfj

(∫ ∞
0

Kij(s)xj(τ − s)ds
))P

+ uPi

)
≥ −di +

(
aRii + bRii + cRii

)
α−

∑
Q∈M\{R}

(∣∣∣aQii ∣∣∣+
∣∣∣bQii ∣∣∣+

∣∣∣cQii ∣∣∣)
−
∑
j 6=i

∑
Q∈M

(∣∣∣aQij∣∣∣+
∣∣∣bQij∣∣∣+

∣∣∣cQij∣∣∣)− ∣∣uPi ∣∣
> 0.

Therefore, the function εPi x
P
i is strictly increasing on some small interval (τ − δ, τ ] ⊂ (t0, τ ].

Hence εPi x
P
i (t) < εPi x

P
i (τ) =

(
εPi
)2

= 1 for any t ∈ (τ−δ, τ). This is absurd, as xi(t) ∈ JH(εi)
for any t < τ .

It follows that x(t) ∈ ∆ε for any t ∈ (t0, t1] and, by mathematical induction, it can be
similarly shown that x(t) ∈ ∆ε, for any t ∈ (tk, tk+1], k ∈ Z+.

Hence, the solution x(t;φ, u), with the initial condition φ(s) ∈ ∆ε for any s ≤ 0, will
remain in ∆ε, for any t ≥ 0.

iii. For the proof of uniqueness, suppose the contrary, i.e., there exist two steady states x,
y ∈ ∆ε, x 6= y of (5.1.1). Based on Assumption 5.7, for every i = 1, n and every P ∈M, one
has

di
∣∣xPi − yPi ∣∣ =

∣∣∣∣∣
n∑
j=1

(aij(fj(xj)− fj(yj)))P +
n∑
j=1

(bij(fj(xj)− fj(yj)))P

+
n∑
j=1

(cij(fj(xj)− fj(yj)))P
∣∣∣∣∣

≤
n∑
j=1

 ∑
(Q,S)∈MP

(∣∣∣aQij∣∣∣+
∣∣∣bQij∣∣∣+

∣∣∣cQij∣∣∣) βSj |xj − yj|
 .

Therefore, using Assumption 5.8, we get

n∑
i=1

di |xi − yi| ≤
n∑
i=1

∑
P∈M

di
∣∣xPi − yPi ∣∣

≤
n∑
i=1

n∑
j=1

(∑
Q∈M

(∣∣∣aQij∣∣∣+
∣∣∣bQij∣∣∣+

∣∣∣cQij∣∣∣)
)(∑

S∈M

βSj |xj − yj|

)

=
n∑
j=1

n∑
i=1

∑
S∈M

∑
Q∈M

(∣∣∣aQij∣∣∣+
∣∣∣bQij∣∣∣+

∣∣∣cQij∣∣∣) βSj |xj − yj|
<

n∑
j=1

dj |xj − yj| ,

which is absurd. Therefore, there exists a unique steady state of (5.1.1) corresponding to the
input u, lying in the rectangle ∆ε. It will be denoted by xu,ε.



102 5. Dynamics of quaternion-valued neural networks (QVNNs)

Let us prove that xu,ε is exponentially stable and its region of attraction includes ∆ε. Con-
sider the initial function φ(s) ∈ ∆ε, for any s ≤ 0. From ii. we get that x(t;φ, u) ∈ ∆ε for
any t ≥ 0. For t > 0, t 6= tk, we have

D+ |xi(t)− xu,εi | =
∑
P∈M

xPi (t)− xu,ε,Pi

|xi(t)− xu,εi |
ẋPi (t)

=
∑
P∈M

xPi (t)− xu,ε,Pi

|xi(t)− xu,εi |

(
−dixPi (t) +

n∑
j=1

(aijfj(xj(t)))
P

+
n∑
j=1

(bijfj(xj(t− τij(t))))P +
n∑
j=1

(
cijfj

(∫ ∞
0

Kij(s)xj(t− s)ds
))P

+ uPi

)

=
∑
P∈M

xPi (t)− xu,ε,Pi

|xi(t)− xu,εi |

(
−di

(
xPi (t)− xu,ε,Pi

)
+

n∑
j=1

(
aij
(
fj(xj(t))− fj(xu,εj )

))P
+

n∑
j=1

(
bij
(
fj(xj(t− τij(t)))− fj(xu,εj )

))P
+

n∑
j=1

(
cij

(
fj

(∫ ∞
0

Kij(s)xj(t− s)ds
)
− fj(xu,εj )

))P)

= −di |xi(t)− xu,εi |+
∑
P∈M

xPi (t)− xu,ε,Pi

|xi(t)− xu,εi |

(
n∑
j=1

(
aij
(
fj(xj(t))− fj(xu,εj )

))P
+

n∑
j=1

(
bij
(
fj(xj(t− τij(t)))− fj(xu,εj )

))P
+

n∑
j=1

(
cij

(
fj

(∫ ∞
0

Kij(s)xj(t− s)ds
)
− fj(xu,εj )

))P)

≤ −di |xi(t)− xu,εi |+
∑
P∈M

n∑
j=1

∑
(Q,S)∈MP

(∣∣∣aQij∣∣∣ βSj ∣∣xj(t)− xu,εj ∣∣
+
∣∣∣bQij∣∣∣ βSj ∣∣xj(t− τij(t))− xu,εj ∣∣+

∣∣∣cQij∣∣∣ βSj ∫ ∞
0

Kij(s) |xj(t− s)− xu,εi | ds
)

= −di |xi(t)− xu,εi |+
n∑
j=1

∑
P∈M

∑
Q∈M

(∣∣∣aQij∣∣∣ βPj ∣∣xj(t)− xu,εj ∣∣
+
∣∣∣bQij∣∣∣ βPj ∣∣xj(t− τij(t))− xu,εj ∣∣+

∣∣∣cQij∣∣∣ βPj ∫ ∞
0

Kij(s) |xj(t− s)− xu,εi | ds
)
.

Denoting wi(t) = eµ0t |xi(t)− xu,εi |, for t > 0, t 6= tk, we obtain

D+wi(t) = µ0wi(t) + eµ0tD+ |xi(t)− xu,εi |

≤ (µ0 − di)wi(t) +
n∑
j=1

∑
P∈M

∑
Q∈M

(∣∣∣aQij∣∣∣ βPj wj(t)
+
∣∣∣bQij∣∣∣ βPj eµ0ρijwj(t− τij(t)) +

∣∣∣cQij∣∣∣ βPj ∫ ∞
0

Kij(s)e
µ0swj(t− s)ds

)
.



5. Dynamics of quaternion-valued neural networks (QVNNs) 103

Denoting by θij the inverse of the strictly increasing function t − τij(t), we consider the
function V : R+ → R+ defined by

V (t) =
n∑
i=1

(wi(t)

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣bQij∣∣∣ βPj eµ0ρij ∫ t

t−τij(t)

wj(s)

1− τ ′ij(θij(s))
ds

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣cQij∣∣∣ βPj ∫ ∞
0

Kij(s)e
µ0s

(∫ t

t−s
wj(u)du

)
ds

)
.

For t > 0, t 6= tk, we obtain

D+V (t) =
n∑
i=1

(
D+wi(t)

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣bQij∣∣∣ βPj eµ0ρij ( wj(t)

1− τ ′ij(θij(t))
−

(1− τ ′ij(t))wj(t− τij(t))
1− τ ′ij(θij(t− τij(t)))

)

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣cQij∣∣∣ βPj ∫ ∞
0

Kij(s)e
µ0s(wj(t)− wj(t− s))ds

)

≤
n∑
i=1

(
(µ0 − di)wi(t) +

n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣aQij∣∣∣ βPj wj(t)
+

n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣bQij∣∣∣ βPj eµ0ρij

1− τ ′ij(θij(t))
wj(t)

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣cQij∣∣∣ βPj (∫ ∞
0

Kij(s)e
µ0sds

)
wj(t)

)

≤
n∑
i=1

(
µ0 − di +

n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣aQji∣∣∣ βPi
+

n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣bQji∣∣∣ βPi eµ0ρji

1− ρ′ji

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣cQji∣∣∣ βPi (∫ ∞
0

Kji(s)e
µ0sds

))
wi(t)

< 0.

Hence, the function V is strictly decreasing on every interval (tk, tk+1), and therefore V (t) <
V (t+k ) for any (tk, tk+1].

Moreover, from Assumption 5.9, and taking into consideration that
∑n

i=1wi(t) ≤ V (t) for
any t ∈ R+, we have



104 5. Dynamics of quaternion-valued neural networks (QVNNs)

n∑
i=1

wi(t
+
k ) = eµ0tk

∥∥x(t+k )− xu,ε
∥∥

1

= eµ0tk ‖x(tk) + Jk(x)− xu,ε‖1

≤ (1 + γk) ‖x(tk)− xu,ε‖1 + δk

∫ tk

tk−1

eµ0tk ‖x(s)− xu,ε‖1 ds

= (1 + γk)
n∑
i=1

wi(tk) + δk

∫ tk

tk−1

eµ0(tk−s)
n∑
i=1

wi(s)ds

≤ (1 + γk)
n∑
i=1

wi(tk) + δk

∫ tk

tk−1

eµ0(tk−s)V (s)ds

≤ (1 + γk)
n∑
i=1

wi(tk) + δkV (t+k−1)

∫ tk

tk−1

eµ0(tk−s)ds

= (1 + γk)
n∑
i=1

wi(tk) + δk
eµ0(tk−tk−1) − 1

µ0

V (t+k−1),

and hence

V (t+k ) =
n∑
i=1

(
wi(t

+
k )

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣bQij∣∣∣ βPj eµ0ρij ∫ t+k

t+k −τij(t
+
k )

wj(s)

1− τ ′ij(θij(s))
ds

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣cQij∣∣∣ βPj ∫ ∞
0

Kij(s)e
µ0s

(∫ t+k

t+k −s
wj(u)du

)
ds

)

≤ (1 + γk)

(
n∑
i=1

[wi(tk)

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣bQij∣∣∣ βPj eµ0ρij ∫ tk

tk−τij(tk)

wj(s)

1− τ ′ij(θij(s))
ds

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣cQij∣∣∣ βPj ∫ ∞
0

Kij(s)e
µ0s

(∫ tk

tk−s
wj(u)du

)
ds

])

+δk
eµ0(tk−tk−1) − 1

µ0

V (t+k−1)

= (1 + γk)V (tk) + δk
eµ0(tk−tk−1) − 1

µ0

V (t+k−1)

<

(
1 + γk + δk

eµ0(tk−tk−1) − 1

µ0

)
V (t+k−1).



5. Dynamics of quaternion-valued neural networks (QVNNs) 105

Using Assumption 5.10, we obtain

V (t+k ) < V (0+)
k∏
j=1

(
1 + γj + δj

eµ0(tj−tj−1) − 1

µ0

)

≤ (1 + γ0)V (0)
k∏
j=1

(
1 + γj + δj

eµ0(tj−tj−1) − 1

µ0

)
≤ (1 + γ0)V (0)eζtk .

Moreover, we have

V (0) =
n∑
i=1

(|xi(0)− xu,εi |

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣bQij∣∣∣ βPj eµ0ρij ∫ 0

−τij(0)

eµ0s |xi(s)− xu,εi |
1− τ ′ij(θij(s))

ds

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣cQij∣∣∣ βPj ∫ ∞
0

Kij(s)e
µ0s

(∫ 0

−s
eµ0u |xi(u)− xu,εi | du

)
ds

)

≤ ‖φ− xu,ε‖∞

[
n+

n∑
i=1

n∑
j=1

∑
P∈M

∑
Q∈M

βPj

(∣∣∣bQij∣∣∣ eµ0ρij ∫ 0

−τij(0)

eµ0s

1− τ ′ij(θij(s))
ds+

+
∣∣∣cQij∣∣∣ 1

µ0

(∫ ∞
0

Kij(s)e
µ0sds− 1

))]
= ‖φ− xu,ε‖∞

[
n+

n∑
i=1

n∑
j=1

∑
P∈M

∑
Q∈M

βPj

(∣∣∣bQij∣∣∣ eµ0ρij ∫ θij(0)

0

eµ0(u−τij(u))du+

+
∣∣∣cQij∣∣∣ 1

µ0

(∫ ∞
0

Kij(s)e
µ0sds− 1

))]
.

For any t ∈ (tk, tk+1], we obtain

V (t) < V (t+k ) < Λ ‖φ− xu,ε‖∞ e
ζtk < Λ ‖φ− xu,ε‖∞ e

ζt,

where

Λ = (1 + γ0)

[
n+

n∑
i=1

n∑
j=1

∑
P∈M

∑
Q∈M

βPj

(∣∣∣bQij∣∣∣ eµ0ρij ∫ θij(0)

0

eµ0(u−τij(u))du+

+
∣∣∣cQij∣∣∣ 1

µ0

(∫ ∞
0

Kij(s)e
µ0sds− 1

))]
.

Finally, it follows that

|xi(t)− xu,εi | = e−µ0twi(t) < e−µ0tV (t) < Λ ‖φ− xu,ε‖∞ e
(ζ−µ0)t,

∀t > 0, ∀i = 1, n, which, taking into account that ζ < µ0 (by Assumption 5.10), means that
x(t;φ, u) converges exponentially to xu,ε.



106 5. Dynamics of quaternion-valued neural networks (QVNNs)

5.1.1.2 Multiperiodicity analysis

In this subsection, the external inputs are considered to be ω-periodic functions.

Lemma 5.3. The function x(t) = (x1(t), x2(t), . . . , xn(t))T is an ω-periodic solution of (5.1.1)
if and only if it is an ω-periodic solution of

xi(t) =

∫ ω

0

Gi

(
t−
[
t

ω

]
ω, s

)
Hi(x)(s)ds+

p∑
k=0

Gi

(
t−
[
t

ω

]
ω, tk

)
Jki(x),

for any i = 1, n, where

Hi(x)(s) =
n∑
j=1

aijfj(xj(s))+
n∑
j=1

bijfj(xj(s−τij(s)))+
n∑
j=1

cijfj

(∫ ∞
0

Kij(u)xj(s− u)du

)
+ui(s),

Gi(u, s) =
1

ediω − 1

{
edi(ω+s−u), if 0 ≤ s < u ≤ ω

edi(s−u), if 0 ≤ u ≤ s ≤ ω
,

and [·] denotes the integer part.

Consider the Banach space of piecewise continuous ω-periodic functions

X = {x : R→ H | x ∈ PC([0, ω],Hn), x(t+ ω) = x(t), ∀t ∈ R},

endowed with the norm

‖x‖ =
n∑
i=1

sup
t∈[0,ω]

|xi(t)| ,

and define the operator U : X → X , given by U(x) = (U1(x), U2(x), . . . , Un(x))T , where

Ui(x)(t) =

∫ ω

0

Gi

(
t−
[
t

ω

]
ω, s

)
Hi(x)(s)ds+

p∑
k=0

Gi

(
t−
[
t

ω

]
ω, tk

)
Jki(x), ∀i = 1, n.

It follows from Lemma 5.3 that x(t) is an ω-periodic solution of (5.1.1) if and only if it is a
fixed point of the operator U .

For every ε ∈ {±1± 1ı± 1± 1κ}n, we define the closed convex set

Kε = {x ∈ X | εPi xPi ≥ 1, ∀t ∈ R, ∀P ∈M, ∀i = 1, n}.

The main result of this subsection will be obtained using the following fixed point theorem:

Theorem 5.2 (Leray–Schauder). Let X be a Banach space, K ⊂ X a closed convex subset,
B ⊂ K a bounded set, open in K, and x0 ∈ K a fixed element. Assume that the operator U :
B → K is completely continuous and satisfies the boundary condition x 6= (1−λ)x0 +λU(x),
∀x ∈ ∂B, λ ∈ (0, 1). Then, the operator U has at least one fixed point in B.

Moreover, the following compactness criterion will be used (based on Lemma 1.6 from “D.
Bainov, P. Simeonov, Impulsive Differential Equations, World Scientific, Singapore, 1995.”).

Lemma 5.4 (Compactness criterion). The set F ⊂ X is relatively compact if and only if the
following hold:

1. F is bounded, that is, there exists c > 0 such that ‖x‖ ≤ c, for any x ∈ F;



5. Dynamics of quaternion-valued neural networks (QVNNs) 107

2. F is quasi-equicontinuous in [0, ω], i.e., for any ε > 0 there exists δ > 0, such that
for any x ∈ F , l ∈ Z+, T1, T2 ∈ (tl−1, tl] ∩ [0, ω], such that |T1 − T2| < δ, one has
‖x(T1)− x(T2)‖1 < ε.

Lemma 5.5. Let ε ∈ {±1±1ı±1±1κ}n. If Assumptions 5.2, 5.7, and 5.11 hold, the operator
U is continuous on Kε.

Proof. Let x, y ∈ Kε. Using Assumptions 5.7 and 5.2, and Lemma 5.1, we first evaluate:

∣∣HP
i (x)(s)−HP

i (y)(s)
∣∣ ≤ n∑

j=1

∑
(Q,S)∈MP

∣∣∣aQij∣∣∣ ∣∣fSj (xj(s))− fSj (yj(s))
∣∣

+
n∑
j=1

∑
(Q,S)∈MP

∣∣∣bQij∣∣∣ ∣∣fSj (xj(s− τij(s)))− fSj (yj(s− τij(s)))
∣∣

+
n∑
j=1

∑
(Q,S)∈MP

∣∣∣cQij∣∣∣ ∣∣∣∣fSj (∫ ∞
0

Kij(u)xj(s− u)du

)

−fSj
(∫ ∞

0

Kij(u)yj(s− u)du

)∣∣∣∣
≤

n∑
j=1

∑
(Q,S)∈MP

(∣∣∣aQij∣∣∣+
∣∣∣bQij∣∣∣+

∣∣∣cQij∣∣∣) βSj ‖x− y‖ , ∀P ∈M,

from which we get that

|Hi(x)(s)−Hi(y)(s)| ≤
n∑
j=1

∑
P∈M

∑
Q∈M

(∣∣∣aQij∣∣∣+
∣∣∣bQij∣∣∣+

∣∣∣cQij∣∣∣) βPj ‖x− y‖ .
The functionGi(u, s) is positive and it can be easily seen that

∫ ω
0
Gi(u, s)ds = 1

di
andGi(u, s) ≤

ediω

ediω−1
, for any u, s ∈ [0, ω]. Therefore, for any t ∈ [0, ω), we obtain

|Ui(x)(t)− Ui(y)(t)| ≤
∫ ω

0

Gi(t, s) |Hi(x)(s)−Hi(y)(s)| ds+

p∑
k=0

Gi(t, tk) |Jki(x)− Jki(y)|

≤ 1

di

n∑
j=1

∑
P∈M

∑
Q∈M

(∣∣∣aQij∣∣∣+
∣∣∣bQij∣∣∣+

∣∣∣cQij∣∣∣) βPj ‖x− y‖
+

ediω

ediω − 1

p∑
k=0

|Jki(x)− Jki(y)| ,

and hence

‖U(x)− U(y)‖ ≤
n∑
i=1

n∑
j=1

∑
P∈M

∑
Q∈M

1

di

(∣∣∣aQij∣∣∣+
∣∣∣bQij∣∣∣+

∣∣∣cQij∣∣∣) βPj ‖x− y‖
+

ediω

ediω − 1

p∑
k=0

‖Jk(x)− Jk(y)‖1 .

Based on the continuity of the operators Jk given by Assumption 5.11, we obtain that the oper-
ator U is continuous on Kε.



108 5. Dynamics of quaternion-valued neural networks (QVNNs)

Lemma 5.6. If Assumptions 5.4, 5.5, 5.13, and 5.14 hold, for every ε ∈ {±1± 1ı± 1± 1κ}n,
the operator U maps Kε into itself, i.e., U(Kε) ⊂ Kε.

Proof. Let ε ∈ {±1 ± 1ı ± 1 ± 1κ}n and x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Kε. Based on
Assumptions 5.4, 5.5, and 5.13, we have, ∀P ∈M, that

εPi H
P
i (x)(s) = εPi

(
n∑
j=1

(aijfj(xj(s)))
P +

n∑
j=1

(bijfj(xj(s− τij(s))))P

+
n∑
j=1

(
cijfj

(∫ ∞
0

Kij(u)xj(s− u)du

))P
+ uPi (s)

)

= εPi

 n∑
j=1

∑
(Q,S)∈MP

ηQS

(
aQijf

S
j (xj(s)) + bQijf

S
j (xj(s− τij(s)))

+cQijf
S
j

(∫ ∞
0

Kij(u)xj(s− u)du

))
+ uPi (s)

)
≥

(
aRii + bRii + cRii

)
α−

∑
Q∈M\{R}

(∣∣∣aQii ∣∣∣+
∣∣∣bQii ∣∣∣+

∣∣∣cQii ∣∣∣)
−
∑
i 6=j

∑
Q∈M

(∣∣∣aQij∣∣∣+
∣∣∣bQij∣∣∣+

∣∣∣cQij∣∣∣)− ∣∣uPi (s)
∣∣

≥ di.

Using Assumption 5.14 as well, it follows that

εPi U
P
i (x)(t) =

∫ ω

0

Gi

(
t−
[
t

ω

]
ω, s

)
εPi H

P
i (x)(s)ds+

p∑
k=0

Gi

(
t−
[
t

ω

]
ω, tk

)
εPi J

P
ki(x) ≥ di

1

di
= 1.

Hence, U(Kε) ⊂ Kε.

Lemma 5.7. Suppose that Assumptions 5.4, 5.5, 5.13, and 5.14 hold. Let ε ∈ {±1± 1ı± 1±
1κ}n and xε ∈ Kε, the constant function defined by xε(t) = ε, for any t ∈ R. If there exists
x ∈ Kε and λ ∈ (0, 1) such that

x = (1− λ)xε + λU(x), (5.1.8)

then ‖x− xε‖ < R, where

R =
n∑
i=1

∑
P∈M

[
(1 + α)

(
aRii + bRii + cRii

)
di

− 2 +
ediω

ediω − 1

p∑
k=0

MP
ki

]
.

Proof. Assume that x ∈ Kε and λ ∈ (0, 1) satisfy equation (5.1.8). Hence

xPi (t)− εPi = λ
[
UP
i (x)(t)− εPi

]
, ∀t ∈ [0, ω), ∀P ∈M, ∀i = 1, n.

Since x ∈ Kε, it follows that εPi x
P
i (t) ≥ 1, for any t ∈ [0, ω), and so, εPi

(
xPi (t)− εPi

)
≥ 0, for

any t ∈ [0, ω). Therefore, for any t ∈ [0, ω), P ∈M, and i = 1, n, we obtain:∣∣xPi (t)− εPi
∣∣ =

∣∣εPi (xPi (t)− εPi
)∣∣ = εPi

(
xPi (t)− εPi

)
= εPi λ

[
UP
i (x)(t)− εPi

]
= λ

[
εPi U

P
i (x)(t)− 1

]
.



5. Dynamics of quaternion-valued neural networks (QVNNs) 109

Based on Assumptions 5.4, 5.5, and 5.13, we evaluate

εPi H
P
i (x)(s) = εPi

n∑
j=1

(aijfj(xj(s)))
P + εPi

n∑
j=1

(bijfj(xj(s− τij(s))))P

+εPi

n∑
j=1

(
cijfj

(∫ ∞
0

Kij(u)xj(s− u)du

))P
+ εPi u

P
i (s)

≤
n∑
j=1

∑
Q∈M

(∣∣∣aQij∣∣∣+
∣∣∣bQij∣∣∣+

∣∣∣cQij∣∣∣)+
∣∣uPi (s)

∣∣
≤ (1 + α)

(
aRii + bRii + cRii

)
− di.

Using Assumption 5.14 as well, for any t ∈ [0, ω), we obtain

εPi U
P
i (x)(t) =

∫ ω

0

Gi(t, s)ε
P
i H

P
i (x)(s)ds+

p∑
k=0

Gi(t, tk)ε
P
i J

P
ki(x)

≤
[
(1 + α)

(
aRii + bRii + cRii

)
− di

] ∫ ω

0

Gi(t, s)ds+

p∑
k=0

Gi(t, tk)M
P
ki

≤
(1 + α)

(
aRii + bRii + cRii

)
di

− 1 +
ediω

ediω − 1

p∑
k=0

MP
ki.

Hence, for any t ∈ [0, ω),∣∣xPi (t)− εPi
∣∣ = λ

[
εPi U

P
i (x)(t)− 1

]
<

(1 + α)
(
aRii + bRii + cRii

)
di

− 2 +
ediω

ediω − 1

p∑
k=0

MP
ki,

and

‖x− xε‖ =
n∑
i=1

sup
t∈[0,ω]

|xi(t)− εi|

≤
n∑
i=1

∑
P∈M

sup
t∈[0,ω]

∣∣xPi (t)− εPi
∣∣

<

n∑
i=1

∑
P∈M

[
(1 + α)

(
aRii + bRii + cRii

)
di

− 2 +
ediω

ediω − 1

p∑
k=0

MP
ki

]
.

Theorem 5.3. Let ε ∈ {±1± 1ı± 1± 1κ}n. If Assumptions 5.4, 5.5, 5.7, 5.13, and 5.14 hold,
the operator U : Bε ⊂ Kε → Kε has at least one fixed point in Bε, where Bε = {x ∈ Kε |
‖x− xε‖ < R}, with xε and R given by Lemma 5.7.

Proof. Based on the Leray–Schauder theorem and Lemmas 5.5–5.7, we only need to show that
the operator U : Bε ⊂ Kε → Kε is completely continuous.

Consider Ω ⊂ Bε a bounded set. We will show that U(Ω) is relatively compact, using
Lemma 5.4.

Based on a similar argument as in the proof of Lemma 5.7, for any x ∈ Bε, we have

UP
i (x)(t) ≤

(1 + α)
(
aRii + bRii + cRii

)
di

− 1 +
ediω

ediω − 1

p∑
k=0

MP
ki, ∀t ∈ [0, ω), ∀i = 1, n,



110 5. Dynamics of quaternion-valued neural networks (QVNNs)

and hence

‖Ui(x)‖ ≤
n∑
i=1

∑
P∈M

[
(1 + α)

(
aRii + bRii + cRii

)
di

− 1 +
ediω

ediω − 1

p∑
k=0

MP
ki

]
.

Therefore, the set U(Ω) is bounded.
To show that U(Ω) is quasi-equicontinuous in [0, ω], consider x ∈ Ω, l ∈ {1, 2, . . . , p+ 1},

and T1, T2 ∈ (tl−1, tl] ∩ [0, ω], and evaluate:

∣∣UP
i (x)(T1)− UP

i (x)(T2)
∣∣ ≤ ∣∣∣∣∫ ω

0

[Gi(T1, s)−Gi(T2, s)]H
P
i (x)(s)ds

+

p∑
k=0

[Gi(T1, tk)−Gi(T2, tk)] J
P
ki(x)

∣∣∣∣∣
≤

[
(1 + α)

(
aRii + bRii + cRii

)
− di

] ∫ ω

0

|Gi(T1, s)−Gi(T2, s)| ds

+

p∑
k=0

MP
ki |Gi(T1, tk)−Gi(T2, tk)| .

On one hand, it can be easily seen that∫ ω

0

|Gi(T1, s)−Gi(T2, s)| ds =
2

di(ediω − 1)

[
ediω + 1− edi(ω−|T1−T2|) − edi|T1−T2|

]
.

On the other hand, we have

p∑
k=0

MP
ki |Gi(T1, tk)−Gi(T2, tk)| =

1

ediω − 1

[
l−1∑
k=0

MP
ki

∣∣edi(ω+tk−T1) − edi(ω+tk−T2)
∣∣

+

p∑
k=l

MP
ki

∣∣edi(tk−T1) − edi(tk−T2)
∣∣]

≤ ediω

ediω − 1

p∑
k=0

MP
kie

ditk
∣∣e−diT1 − e−diT2∣∣

≤ die
diω

ediω − 1

p∑
k=0

MP
kie

ditk |T1 − T2| .

Hence, for any x ∈ Ω, l ∈ {1, 2, . . . , p + 1}, and T1, T2 ∈ (tl−1, tl] ∩ [0, ω], the following
estimate holds:

‖Ui(x)(T1)− Ui(x)(T2)‖1 ≤
n∑
i=1

∑
P∈M

∣∣UP
i (x)(T1)− UP

i (x)(T2)
∣∣

≤
n∑
i=1

∑
P∈M

2
[
(1 + α)

(
aRii + bRii + cRii

)
− di

]
di(ediω − 1)

[
ediω + 1

−edi(ω−|T1−T2|) − edi|T1−T2|
]

+
n∑
i=1

∑
P∈M

(
die

diω

ediω − 1

p∑
k=0

MP
kie

ditk

)
|T1 − T2| .



5. Dynamics of quaternion-valued neural networks (QVNNs) 111

The right hand side of the inequality does not depend on x and converges to 0 as |T1 − T2| → 0.
Therefore, U(Ω) is quasi-equicontinuous in [0, ω], and hence, relatively compact, and the proof
is now complete.

Corollary 5.1. If Assumptions 5.4, 5.5, 5.7, 5.13, and 5.14 hold, there exist at least 16n periodic
solutions of system (5.1.1), that is, at least one periodic solution in every set Bε, ε ∈ {±1 ±
1ı± 1± 1κ}n.

Lemma 5.8. Let ε ∈ {±1 ± 1ı ± 1 ± 1κ}n. If Assumptions 5.4, 5.5, 5.7, 5.13, and 5.14 are
fulfilled, then the set ∆ε is invariant to the flow of system (5.1.1).

Proof. Let ε ∈ {±1 ± 1ı ± 1 ± 1κ}n. Consider an initial function satisfying φ(s) ∈ ∆ε for
any s ≤ 0, and let x(t) = x(t;φ) be the solution of system (5.1.1).

Assume that there exists τ ∈ (t0, t1] such that x(t) ∈ ∆ε, for any t ∈ (0, τ), and x(τ) ∈
∂∆ε. Hence, there exists i ∈ {1, 2, . . . , n} such that xPi (τ) = εPi . Based on Assumptions 5.4,
5.5, and 5.13, we have

εPi ẋ
P
i (τ) = εPi

(
−diεPi +

n∑
j=1

(aijfj(xj(τ)))P +
n∑
j=1

(bijfj(xj(τ − τij(τ))))P

+
n∑
j=1

(
cijfj

(∫ ∞
0

Kij(s)xj(τ − s)ds
))P

+ uPi (τ)

)
≥ −di +

(
aRii + bRii + cRii

)
α−

∑
Q∈M\{R}

(∣∣∣aQii ∣∣∣+
∣∣∣bQii ∣∣∣+

∣∣∣cQii ∣∣∣)
−
∑
j 6=i

∑
Q∈M

(∣∣∣aQij∣∣∣+
∣∣∣bQij∣∣∣+

∣∣∣cQij∣∣∣)− ∣∣uPi (τ)
∣∣

> 0,

Therefore, the function εPi x
P
i is strictly increasing on some small interval (τ − δ, τ ] ⊂ (t0, τ ].

Hence εPi x
P
i (t) < εPi x

P
i (τ) =

(
εPi
)2

= 1 for any t ∈ (τ−δ, τ). This is absurd, as xi(t) ∈ JH(εi)
for any t < τ .

It follows that x(t) ∈ ∆ε for any t ∈ (t0, t1]. Assumption 5.14 guarantees that x(t+1 ) ∈ ∆ε.
By mathematical induction, it can be easily shown that x(t) ∈ ∆ε for any t ∈ (tk−1, tk], and

x(t+k ) ∈ ∆ε, for any k ∈ Z+.
Hence, the solution x(t;φ), with the initial condition φ(s) ∈ ∆ε for any s ≤ 0, will remain

in ∆ε for any t ≥ 0.

Theorem 5.4. Assume that Assumptions 5.4, 5.5, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, and 5.14
hold. Then, for every ε ∈ {±1 ± 1ı ± 1 ± 1κ}n, there exists a unique exponentially stable
periodic solution in Bε, and its region of attraction includes ∆ε.

Proof. Let ε ∈ {±1± 1ı± 1± 1κ}n. Let x(t) = x(t;φ) and y(t) = y(t;ψ) two solutions of
system (5.1.1) with the initial functions φ(s), ψ(s) ∈ ∆ε, for any s ≤ 0. Based on Lemma 5.8,
we get that x(t;φ), y(t;ψ) ∈ ∆ε for any t > 0. For t > 0, t 6= tk, we have



112 5. Dynamics of quaternion-valued neural networks (QVNNs)

D+ |xi(t)− yi(t)| =
∑
P∈M

xPi (t)− yPi (t)

|xi(t)− yi(t)|
(
ẋPi (t)− ẏPi (t)

)
=

∑
P∈M

xPi (t)− yPi (t)

|xi(t)− yi(t)|

(
−di

(
xPi (t)− yPi (t)

)
+

n∑
j=1

(aij (fj(xj(t))− fj(yj(t))))P

+
n∑
j=1

(bij (fj(xj(t− τij(t)))− fj(yj(t− τij(t)))))P

+
n∑
j=1

(
cij

(
fj

(∫ ∞
0

Kij(s)xj(t− s)ds
)
− fj

(∫ ∞
0

Kij(s)yj(t− s)ds
)))P)

= −di |xi(t)− yi(t)|+
∑
P∈M

xPi (t)− yPi (t)

|xi(t)− yi(t)|

(
n∑
j=1

(aij (fj(xj(t))− fj(yj(t))))P

+
n∑
j=1

(bij (fj(xj(t− τij(t)))− fj(yj(t− τij(t)))))P

+
n∑
j=1

(
cij

(
fj

(∫ ∞
0

Kij(s)xj(t− s)ds
)
− fj

(∫ ∞
0

Kij(s)yj(t− s)ds
)))P)

≤ −di |xi(t)− yi(t)|+
∑
P∈M

n∑
j=1

∑
(Q,S)∈MP

(∣∣∣aQij∣∣∣ βSj |xj(t)− yj(t)|
+
∣∣∣bQij∣∣∣ βSj |xj(t− τij(t))− yj(t− τij(t))|

+
∣∣∣cQij∣∣∣ βSj ∫ ∞

0

Kij(s) |xj(t− s)− yj(t− s)| ds
)

= −di |xi(t)− yi(t)|+
n∑
j=1

∑
P∈M

∑
Q∈M

(∣∣∣aQij∣∣∣ βPj |xj(t)− yj(t)|
+
∣∣∣bQij∣∣∣ βPj |xj(t− τij(t))− yj(t− τij(t))|

+
∣∣∣cQij∣∣∣ βPj ∫ ∞

0

Kij(s) |xj(t− s)− yj(t− s)| ds
)
.

Denoting wi(t) = eµ0t |xi(t)− yi(t)|, for t > 0, t 6= tk, we obtain

D+wi(t) = µ0wi(t) + eµ0tD+ |xi(t)− yi(t)|

≤ (µ0 − di)wi(t) +
n∑
j=1

∑
P∈M

∑
Q∈M

(∣∣∣aQij∣∣∣ βPj wj(t)
+
∣∣∣bQij∣∣∣ βPj eµ0ρijwj(t− τij(t)) +

∣∣∣cQij∣∣∣ βPj ∫ ∞
0

Kij(s)e
µ0swj(t− s)ds

)
.

If, like above, θij is the inverse of the strictly increasing function t− τij(t), we consider the
function V : R+ → R+ defined by



5. Dynamics of quaternion-valued neural networks (QVNNs) 113

V (t) =
n∑
i=1

(wi(t)

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣bQij∣∣∣ βPj eµ0ρij ∫ t

t−τij(t)

wj(s)

1− τ ′ij(θij(s))
ds

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣cQij∣∣∣ βPj ∫ ∞
0

Kij(s)e
µ0s

(∫ t

t−s
wj(u)du

)
ds

)
.

For t > 0, t 6= tk, we obtain

D+V (t) =
n∑
i=1

(
D+wi(t)

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣bQij∣∣∣ βPj eµ0ρij ( wj(t)

1− τ ′ij(θij(t))
−

(1− τ ′ij(t))wj(t− τij(t))
1− τ ′ij(θij(t− τij(t)))

)

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣cQij∣∣∣ βPj ∫ ∞
0

Kij(s)e
µ0s(wj(t)− wj(t− s))ds

)

≤
n∑
i=1

(
(µ0 − di)wi(t) +

n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣aQij∣∣∣ βPj wj(t)
+

n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣bQij∣∣∣ βPj eµ0ρij

1− τ ′ij(θij(t))
wj(t)

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣cQij∣∣∣ βPj (∫ ∞
0

Kij(s)e
µ0sds

)
wj(t)

)

≤
n∑
i=1

(
µ0 − di +

n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣aQji∣∣∣ βPi
+

n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣bQji∣∣∣ βPi eµ0ρji

1− ρ′ji

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣cQji∣∣∣ βPi (∫ ∞
0

Kji(s)e
µ0sds

))
wi(t)

< 0.

Hence, the function V is strictly decreasing on every interval (tk, tk+1), and therefore V (t) <
V (t+k ), for any (tk, tk+1].

Moreover, from Assumption 5.9, and taking into consideration that
∑n

i=1 wi(t) ≤ V (t), for
any t ∈ R+, we have



114 5. Dynamics of quaternion-valued neural networks (QVNNs)

n∑
i=1

wi(t
+
k ) = eµ0tk

∥∥x(t+k )− y(t+k )
∥∥

1

= eµ0tk ‖x(tk) + Jk(x)− y(tk)− Jk(y)‖1

≤ (1 + γk) ‖x(tk)− y(tk)‖1 + δk

∫ tk

tk−1

eµ0tk ‖x(s)− y(s)‖1 ds

= (1 + γk)
n∑
i=1

wi(tk) + δk

∫ tk

tk−1

eµ0(tk−s)
n∑
i=1

wi(s)ds

≤ (1 + γk)
n∑
i=1

wi(tk) + δk

∫ tk

tk−1

eµ0(tk−s)V (s)ds

≤ (1 + γk)
n∑
i=1

wi(tk) + δkV (t+k−1)

∫ tk

tk−1

eµ0(tk−s)ds

= (1 + γk)
n∑
i=1

wi(tk) + δk
eµ0(tk−tk−1) − 1

µ0

V (t+k−1),

and hence

V (t+k ) =
n∑
i=1

(
wi(t

+
k )

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣bQij∣∣∣ βPj eµ0ρij ∫ t+k

t+k −τij(t
+
k )

wj(s)

1− τ ′ij(θij(s))
ds

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣cQij∣∣∣ βPj ∫ ∞
0

Kij(s)e
µ0s

(∫ t+k

t+k −s
wj(u)du

)
ds

)

≤ (1 + γk)

(
n∑
i=1

[wi(tk)

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣bQij∣∣∣ βPj eµ0ρij ∫ tk

tk−τij(tk)

wj(s)

1− τ ′ij(θij(s))
ds

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣cQij∣∣∣ βPj ∫ ∞
0

Kij(s)e
µ0s

(∫ tk

tk−s
wj(u)du

)
ds

])

+δk
eµ0(tk−tk−1) − 1

µ0

V (t+k−1)

= (1 + γk)V (tk) + δk
eµ0(tk−tk−1) − 1

µ0

V (t+k−1)

<

(
1 + γk + δk

eµ0(tk−tk−1) − 1

µ0

)
V (t+k−1).

Using Assumption 5.10, we obtain



5. Dynamics of quaternion-valued neural networks (QVNNs) 115

V (t+k ) < V (0+)
k∏
j=1

(
1 + γj + δj

eµ0(tj−tj−1) − 1

µ0

)

≤ (1 + γ0)V (0)
k∏
j=1

(
1 + γj + δj

eµ0(tj−tj−1) − 1

µ0

)
≤ (1 + γ0)V (0)eζtk .

Moreover, we have

V (0) =
n∑
i=1

(|xi(0)− yi(0)|

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣bQij∣∣∣ βPj eµ0ρij ∫ 0

−τij(0)

eµ0s |xi(s)− yi(s)|
1− τ ′ij(θij(s))

ds

+
n∑
j=1

∑
P∈M

∑
Q∈M

∣∣∣cQij∣∣∣ βPj ∫ ∞
0

Kij(s)e
µ0s

(∫ 0

−s
eµ0u |xi(u)− yi(u)| du

)
ds

)

≤ ‖φ−ψ‖∞

[
n+

n∑
i=1

n∑
j=1

∑
P∈M

∑
Q∈M

βPj

(∣∣∣bQij∣∣∣ eµ0ρij ∫ 0

−τij(0)

eµ0s

1− τ ′ij(θij(s))
ds+

+
∣∣∣cQij∣∣∣ 1

µ0

(∫ ∞
0

Kij(s)e
µ0sds− 1

))]
= ‖φ−ψ‖∞

[
n+

n∑
i=1

n∑
j=1

∑
P∈M

∑
Q∈M

βPj

(∣∣∣bQij∣∣∣ eµ0ρij ∫ θij(0)

0

eµ0(u−τij(u))du+

+
∣∣∣cQij∣∣∣ 1

µ0

(∫ ∞
0

Kij(s)e
µ0sds− 1

))]
.

For any t ∈ (tk, tk+1], we obtain

V (t) < V (t+k ) < Λ ‖φ−ψ‖∞ e
ζtk < Λ ‖φ−ψ‖∞ e

ζt,

where

Λ = (1 + γ0)

[
n+

n∑
i=1

n∑
j=1

∑
P∈M

∑
Q∈M

βPj

(∣∣∣bQij∣∣∣ eµ0ρij ∫ θij(0)

0

eµ0(u−τij(u))du+

+
∣∣∣cQij∣∣∣ 1

µ0

(∫ ∞
0

Kij(s)e
µ0sds− 1

))]
.

Finally, it follows that

|xi(t)− yi(t)| = e−µ0twi(t) < e−µ0tV (t) < Λ ‖φ−ψ‖∞ e
(ζ−µ0)t,

∀t > 0, ∀i = 1, n. Using Corollary 5.1, and taking into account that ζ < µ0 (by Assumption
5.10), it easily follows that there exists a unique periodic solution x?ε(t) ∈ ∆ε, for any t ∈ R,
which is exponentially stable and its region of attraction includes ∆ε.



116 5. Dynamics of quaternion-valued neural networks (QVNNs)

5.1.2 Numerical examples
Example 5.1. Consider the following impulsive quaternion-valued neural network with one
neuron, with mixed delays:

{
ẋ(t) = −d1x(t) + a11f1(x(t)) + b11f1(x(t− τ11(t))) + c11f1

(∫∞
0
e−sx(t− s)ds

)
+ u1, t 6= tk,

x(t−k ) = x(tk), x(t+k ) = x(tk) + 1
tk−tk−1

∫ tk
tk−1

1
s+1

[x(s)− x(tk)]ds, t = tk, k ∈ Z+,

(5.1.9)
where

d1 = 2, a11 = 12− ı+ 2− 3κ, b11 = 18− 4ı+ 5− 6κ,

c11 = 16− ı+ 2− 3κ, u1 = 2− 3ı+ 3− 2κ.

The activation function components are fP1 (s) = tanh
(
5sP
)

tanh
(

10
(
sP
)2 − 1

)
, ∀P ∈ M,

and tk = 2k. We can see that βP1 = 0.0009, that
∣∣fP1 (s)

∣∣ ≤ 1, and that there exists α = fP1 (1) =
0.9999 for which fP1 (s) ≥ α, if sP ≥ 1, and fP1 (s) ≤ −α, if sP ≤ −1, ∀s ∈ H, ∀P ∈ M,
showing that the functions fP1 satisfy Assumptions 5.4, 5.5, and 5.7. It can be verified that
Assumptions 5.8 and 5.13 also hold. The delay kernel is K11(s) = e−s, and satisfies (5.1.3) in
Assumption 5.2 with µ ∈ (0, 1). The time-varying delay is τ11(t) = 1

π
sin2

(
π
2
t
)
, which satisfies

Assumption 5.1 with ρ11 = 1
π

, ρ′11 = 0.5. The jump operators are given by:

Jk(x) =
1

tk − tk−1

∫ tk

tk−1

1

s+ 1
[x(s)− x(tk)]ds,

and satisfy Assumptions 5.3 and 5.9, with

γk =
1

tk − tk−1

∫ tk

tk−1

1

s+ 1
ds =

1

2
ln

(
1 +

2

2k − 1

)
≤ ln 3

2
,

δk =
1

tk − tk−1

· 1

tk−1 + 1
=

1

2(2k − 1)
≤ 1

2
.

Considering x ∈ ∆ε for any t ≤ tk, we obtain

x(tk) + Jk(x) = x(tk) +
1

tk − tk−1

∫ tk

tk−1

1

s+ 1
[x(s)− x(tk)]ds

=
1

tk − tk−1

∫ tk

tk−1

[
1

s+ 1
x(s) +

(
1− 1

s+ 1

)
x(tk)

]
ds.

Since εPxP (t) > 1 for any t ≤ tk, and any P ∈M, it easily follows that

εP
[

1

s+ 1
xP (s) +

(
1− 1

s+ 1

)
xP (tk)

]
>

1

s+ 1
+

(
1− 1

s+ 1

)
= 1, ∀s ≥ 0,

and hence, for any P ∈M, we have

εP [x(tk) + Jk(x)]P =
1

tk − tk−1

∫ tk

tk−1

εP
[

1

s+ 1
xP (s) +

(
1− 1

s+ 1

)
xP (tk)

]
ds > 1.

Therefore, x(tk) + Jk(x) ∈ ∆ε, and we obtain that the operators Jk satisfy Assumption 5.6 as
well.



5. Dynamics of quaternion-valued neural networks (QVNNs) 117

Choosing µ0 < 0.8912, inequality (5.1.5) from Assumption 5.10 is satisfied. Moreover, it
can be shown that

ζ = sup
k∈Z∗+

1

tk

k∑
j=1

ln

(
1 + γj + δj

eµ0(tj−tj−1) − 1

µ0

)
=

1

2
ln

(
1 +

ln 3

2
+
e2µ0 − 1

2µ0

)
,

and it follows that ζ < µ0 whenever µ0 > 0.6361. Therefore, Assumption 5.10 is satisfied for
µ0 ∈ (0.6361, 0.8912).

It follows from Theorem 5.1 that if
∣∣uP1 ∣∣ < 16.9954 for P ∈ M, then system (5.1.9) has 16

exponentially stable equilibrium states. For u1 = 2− 3ı+ 3− 2κ, these steady states are:

No. Steady state Domain of attraction

1 x1+ı++κ = 28.5 + 29ı+ 26+ 8.50κ ∆1+ı++κ = (1,∞) + (1,∞)ı+ (1,∞)+ (1,∞)κ

2 x1+ı+−κ = 16.5 + 20ı+ 20− 37.5κ ∆1+ı+−κ = (1,∞) + (1,∞)ı+ (1,∞)+ (−∞,−1)κ

3 x1+ı−+κ = 37.5 + 17ı− 20+ 14.5κ ∆1+ı−+κ = (1,∞) + (1,∞)ı+ (−∞,−1)+ (1,∞)κ

4 x1+ı−−κ = 25.5 + 8ı− 26− 31.5κ ∆1+ı−−κ = (1,∞) + (1,∞)ı+ (−∞,−1)+ (−∞,−1)κ

5 x1−ı++κ = 22.5− 17ı+ 38+ 17.5κ ∆1−ı++κ = (1,∞) + (−∞,−1)ı+ (1,∞)+ (1,∞)κ

6 x1−ı+−κ = 10.5− 26ı+ 32− 28.5κ ∆1−ı+−κ = (1,∞) + (−∞,−1)ı+ (1,∞)+ (−∞,−1)κ

7 x1−ı−+κ = 31.5− 29ı− 8+ 23.5κ ∆1−ı−+κ = (1,∞) + (−∞,−1)ı+ (−∞,−1)+ (1,∞)κ

8 x1−ı−−κ = 19.5− 38ı− 14− 22.5κ ∆1−ı−−κ = (1,∞) + (−∞,−1)ı+ (−∞,−1)+ (−∞,−1)κ

9 x−1+ı++κ = −17.5 + 35ı+ 17+ 20.5κ ∆−1+ı++κ = (−∞,−1) + (1,∞)ı+ (1,∞)+ (1,∞)κ

10 x−1+ı+−κ = −29.5 + 26ı+ 11− 25.5κ ∆−1+ı+−κ = (−∞,−1) + (1,∞)ı+ (1,∞)+ (−∞,−1)κ

11 x−1+ı−+κ = −8.50 + 23ı− 29+ 26.5κ ∆−1+ı−+κ = (−∞,−1) + (1,∞)ı+ (−∞,−1)+ (1,∞)κ

12 x−1+ı−−κ = −20.5 + 14ı− 35− 19.5κ ∆−1+ı−−κ = (−∞,−1) + (1,∞)ı+ (−∞,−1)+ (−∞,−1)κ

13 x−1−ı++κ = −23.5− 11ı+ 29+ 29.5κ ∆−1−ı++κ = (−∞,−1) + (−∞,−1)ı+ (1,∞)+ (1,∞)κ

14 x−1−ı+−κ = −35.5− 20ı+ 23− 16.5κ ∆−1−ı+−κ = (−∞,−1) + (−∞,−1)ı+ (1,∞)+ (−∞,−1)κ

15 x−1−ı−+κ = −14.5− 23ı− 17+ 35.5κ ∆−1−ı−+κ = (−∞,−1) + (−∞,−1)ı+ (−∞,−1)+ (1,∞)κ

16 x−1−ı−−κ = −26.5− 32ı− 23− 10.5κ ∆−1−ı−−κ = (−∞,−1) + (−∞,−1)ı+ (−∞,−1)+ (−∞,−1)κ

Example 5.2. Consider the following impulsive hybrid quaternion-valued network of one neu-
ron with mixed delays:{
ẋ(t) = −d1x(t) + a11f1(x(t)) + b11f1(x(t− τ11(t))) + c11f1

(∫∞
0
e−sx(t− s)ds

)
+ u1(t), t 6= tk,

xP (t−k ) = xP (tk), xP (t+k ) = xP (tk) + arctan(xP (tk)) +
∫ tk
tk−1

xP (s)

(xP (s))2+1
ds, ∀P ∈M, t = tk, k ∈ Z+,

(5.1.10)
where

d1 = 2, a11 = 12− ı+ 2− 3κ, b11 = 18− 4ı+ 5− 6κ,

c11 = 16− ı+ 2− 3κ, u1(t) = 4 sin
(π

2
t
)

(1 + ı+ + κ) .

The external input u1(t) is a periodic function of period ω = 4. The activation function compo-
nents are fP1 (s) = tanh

(
5sP
)

tanh
(

10
(
sP
)2 − 1

)
, ∀P ∈M, and tk = 2k. The time-varying

delay is τ11(t) = 1
π

sin2
(
π
2
t
)
. Like in Example 5.1, it can be verified that Assumptions 5.1,

5.2, 5.3, 5.4, 5.5, 5.7, 5.8, and 5.13 hold with βP1 = 0.0009, α = 0.9999, µ ∈ (0, 1), ρ11 = 1
π

,
ρ′11 = 0.5. Also, Assumption 5.12 holds for p = 2.

The jump operators are given by:

Jk(x) = arctan(xP (tk)) +

∫ tk

tk−1

xP (s)

(xP (s))2 + 1
ds,



118 5. Dynamics of quaternion-valued neural networks (QVNNs)

and satisfy Assumptions 5.9, 5.11, and 5.14, with γk = δk = 0.5.
Inequality (5.1.5) from Assumption 5.10 is satisfied for any µ0 < 0.8912. Moreover, it can

be shown that

ζ = sup
k∈Z∗+

1

tk

k∑
j=1

ln

(
1 + γj + δj

eµ0(tj−tj−1) − 1

µ0

)
=

1

2
ln

(
3

2
+
e2µ0 − 1

2µ0

)
,

and it follows that ζ < µ0 whenever µ0 > 0.6255. Therefore, Assumption 5.10 is satisfied for
µ0 ∈ (0.6255, 0.8912).

It follows from Theorem 5.4 that if
∣∣uP1 (t)

∣∣ < 16.9954 for P ∈ M, ∀t ∈ R, then system
(5.1.10) has 16 exponentially stable periodic solutions of period ω = 4, denoted as follows:

No. Periodic solution Domain of attraction
1 x1+ı++κ(t) ∆1+ı++κ = (1,∞) + (1,∞)ı+ (1,∞)+ (1,∞)κ
2 x1+ı+−κ(t) ∆1+ı+−κ = (1,∞) + (1,∞)ı+ (1,∞)+ (−∞,−1)κ
3 x1+ı−+κ(t) ∆1+ı−+κ = (1,∞) + (1,∞)ı+ (−∞,−1)+ (1,∞)κ
4 x1+ı−−κ(t) ∆1+ı−−κ = (1,∞) + (1,∞)ı+ (−∞,−1)+ (−∞,−1)κ
5 x1−ı++κ(t) ∆1−ı++κ = (1,∞) + (−∞,−1)ı+ (1,∞)+ (1,∞)κ
6 x1−ı+−κ(t) ∆1−ı+−κ = (1,∞) + (−∞,−1)ı+ (1,∞)+ (−∞,−1)κ
7 x1−ı−+κ(t) ∆1−ı−+κ = (1,∞) + (−∞,−1)ı+ (−∞,−1)+ (1,∞)κ
8 x1−ı−−κ(t) ∆1−ı−−κ = (1,∞) + (−∞,−1)ı+ (−∞,−1)+ (−∞,−1)κ
9 x−1+ı++κ(t) ∆−1+ı++κ = (−∞,−1) + (1,∞)ı+ (1,∞)+ (1,∞)κ
10 x−1+ı+−κ(t) ∆−1+ı+−κ = (−∞,−1) + (1,∞)ı+ (1,∞)+ (−∞,−1)κ
11 x−1+ı−+κ(t) ∆−1+ı−+κ = (−∞,−1) + (1,∞)ı+ (−∞,−1)+ (1,∞)κ
12 x−1+ı−−κ(t) ∆−1+ı−−κ = (−∞,−1) + (1,∞)ı+ (−∞,−1)+ (−∞,−1)κ
13 x−1−ı++κ(t) ∆−1−ı++κ = (−∞,−1) + (−∞,−1)ı+ (1,∞)+ (1,∞)κ
14 x−1−ı+−κ(t) ∆−1−ı+−κ = (−∞,−1) + (−∞,−1)ı+ (1,∞)+ (−∞,−1)κ
15 x−1−ı−+κ(t) ∆−1−ı−+κ = (−∞,−1) + (−∞,−1)ı+ (−∞,−1)+ (1,∞)κ
16 x−1−ı−−κ(t) ∆−1−ı−−κ = (−∞,−1) + (−∞,−1)ı+ (−∞,−1)+ (−∞,−1)κ



Chapter 6

Dynamics of octonion-valued neural
networks (OVNNs)

Neural networks with values in multidimensional domains have attracted the attention of re-
searchers over the last few years. First introduced by [227], complex-valued neural networks
(CVNNs) have found numerous applications, which include antenna design, radar imaging,
estimation of direction of arrival and beamforming, image processing, communications signal
processing, and many others [77, 78]. Quaternion-valued neural networks (QVNNs) were intro-
duced by [4], and have applications in chaotic time-series prediction [7], color image compres-
sion [89], color night vision [104], polarized signal classification [22], and 3D wind forecasting
[92, 213]. Clifford-valued neural networks (ClVNNs), proposed by [139, 140], and later dis-
cussed by [24, 103], have potential applications in high-dimensional data processing. They rep-
resent a generalization of the complex- and quaternion-valued neural networks, because com-
plex and quaternion algebras are special cases of the 2n-dimensional Clifford algebras, where
n ≥ 1.

A different generalization of the complex and quaternion algebras is the octonion algebra.
It is an 8-dimensional normed division algebra, which means that a norm and a multiplicative
inverse can be defined on it. In fact, it is the only normed division algebra that can be defined
over the field of real numbers, besides the complex and quaternion algebras. The octonion
algebra is not a special kind of Clifford algebra, because the Clifford algebras are all associative,
whereas the octonion algebra is not.

Octonions have applications in physics and geometry [136, 49], and have also been success-
fully applied in the signal processing domain in the recent years [197]. The signal processing
applications include salient object detection [56, 57], hyperspectral fluorescence data fusion
[13], L1-norm minimization for octonion signals [224], and the octonion Fourier transform
[19]. In physics, octonions were used to reformulate electrodynamics and chromodynamics
equations [25, 26, 27, 28], the Maxwell equations [48], the gravitational field equations [47],
and the Dirac equation [99].

Taking all the above facts into consideration, octonions may have potential applications in
the neural network domain, also. Thus, feedforward octonion-valued neural networks (OVNNs)
were first proposed in the author’s paper [149]. They may be applied in the signal process-
ing domain, where certain signals can be better represented in the octonion domain. High-
dimensional data processing could also benefit from the use of octonion networks. In the same
way as complex-valued networks were better than real-valued ones for some applications, and
quaternion-valued networks were better than both real- and complex-valued networks in oth-
ers, octonion-valued networks may outperform all of the above in yet other problems. They

119



120 6. Dynamics of octonion-valued neural networks (OVNNs)

could represent an alternative for 8-dimensional Clifford-valued neural networks, because of
the property of being a normed division algebra that the octonion algebra has.

Thus, the multidimensional algebras can constitute a more general framework for neural
networks, which could benefit not only from increasing the number of hidden layers and making
the architecture ever more complicated, but also from increasing the dimensionality of the data
that is being handled by the network. The multidimensional neural networks field is rather new,
and it is expected that the future will bring even more applications for this type of networks.

6.1 Octonion-valued feedforward neural networks
We will first give the definition and some properties of the algebra of octonions.

The algebra of octonions is defined as

O :=

{
x =

7∑
p=0

[x]pep

∣∣∣∣∣ [x]0, [x]1, . . . , [x]7 ∈ R

}
,

in which ep are the octonion units, 0 ≤ p ≤ 7.
Octonion addition is defined by x+ y =

∑7
p=0([x]p + [y]p)ep. Scalar multiplication is given

by αx =
∑7

p=0(α[x]p)ep, and octonion multiplication is given by the multiplication of the
octonion units:

× e0 e1 e2 e3 e4 e5 e6 e7

e0 e0 e1 e2 e3 e4 e5 e6 e7

e1 e1 −e0 e3 −e2 e5 −e4 −e7 e6

e2 e2 −e3 −e0 e1 e6 e7 −e4 −e5

e3 e3 e2 −e1 −e0 e7 −e6 e5 −e4

e4 e4 −e5 −e6 −e7 −e0 e1 e2 e3

e5 e5 e4 −e7 e6 −e1 −e0 −e3 e2

e6 e6 e7 e4 −e5 −e2 e3 −e0 −e1

e7 e7 −e6 e5 e4 −e3 −e2 e1 −e0

These operations make O a real algebra. From the multiplication table, we have that eiej =
−ejei 6= ejei, ∀i 6= j, 0 < i, j ≤ 7, from which we deduce that O is not commutative, and
that (eiej)ek = −ei(ejek) 6= ei(ejek), for i, j, k distinct, 0 < i, j, k ≤ 7, or eiej 6= ±ek, which
allows us to see that O is not associative.

The conjugate of an octonion x is defined as x = [x]0e0 −
∑7

p=1[x]pep, its norm as |x| =
√
xx =

√∑7
p=0[x]2p, and its inverse as x−1 = x

|x|2 . We can now see that O is a normed division
algebra, and it can be proved that the only three division algebras that can be defined over the
reals are the complex, quaternion, and octonion algebras.

By the Cayley–Dickson construction, the octonion units can be written as

e0 = 1, e1 = ı, e2 = , e3 = ı, e4 = `, e5 = ı`, e6 = `, e7 = ı`,

where C := {z = [z]0 + [z]1ı| [z]0, [z]1 ∈ R, ı2 = −1} is the complex number set. This means
that any x ∈ O can be written as

x = [x′]0 + [x′]1+ [x′]2`+ [x′]3`,



6. Dynamics of octonion-valued neural networks (OVNNs) 121

where [x′]0 = [x]0 + [x]1ı, [x′]1 = [x]2 + [x]3ı, [x′]2 = [x]4 + [x]5ı, [x′]3 = [x]6 + [x]7ı ∈ C.
The product of two octonions x, y ∈ O written in this way is given by

xy = [x′]0[y′]0 − [x′]1[y′]1 − [x′]2[y′]2 − [x′]3[y′]3

+([x′]0[y′]1 + [x′]1[y′]0 + [x′]2[y′]3 − [x′]3[y′]2)

+([x′]0[y′]2 − [x′]1[y′]3 + [x′]2[y′]0 + [x′]3[y′]1)`

+([x′]0[y′]3 + [x′]1[y′]2 − [x′]2[y′]1 + [x′]3[y′]0)`.

The derivative of an octonion-valued function x : R+ → O is defined as the octonion
formed by the derivatives of each element [x(t)]p of the octonion x(t) with respect to t: ẋ(t) =
dx(t)
dt

:=
∑7

p=0
d([x]p)

dt
ep,∀t ∈ R+.

The presentation in this section follows that in the author’s paper [149].

6.1.1 Model formulation
In what follows, we will define feedforward neural networks for which the inputs, outputs,
weights, and biases are all from O, which means that they are octonions. Let’s assume we have
a fully connected feedforward neural network with values from O, with L layers, where 1 is the
input layer, L is the output layer, and the layers denoted by {2, . . . , L − 1} are hidden layers.
The error function E : ON → R for such a network is

E(w) =
1

2

c∑
i=1

(yLi − ti)(yLi − ti), (6.1.1)

where y is the conjugate of the octonion y. yL = (yLi )1≤i≤c ∈ Oc represents the vector of
outputs of the network, t = (ti)1≤i≤c ∈ Oc represents the vector of targets of the network, and
w ∈ ON represents the vector of the N weights and biases of the network, all being vectors
whose components are octonions.

If we denote by wljk ∈ O the weight connecting neuron j from layer l with neuron k from
layer l − 1, for all l ∈ {2, . . . , L}, we can define the update step of weight wljk in epoch t as
being ∆wljk(t) = wljk(t + 1)− wljk(t). With this notation, the gradient descent method has the

following update rule for the weight wljk ∈ O: ∆wljk(t) = −ε
(∑7

a=0
∂E

∂[wljk]a
(t)ea

)
, where ε is

a real number representing the learning rate, and we denoted by ∂E
∂[wljk]a

(t) the partial derivative

of the error function E with respect to each element [wljk]a of the octonion wljk ∈ O, where
0 ≤ a ≤ 7. Thus, we need to compute the partial derivatives ∂E

∂[wljk]a
(t). For this, we will make

the following notations
slj =

∑
k

wljkx
l−1
k , (6.1.2)

ylj = Gl(slj), (6.1.3)

where equation (6.1.2) shows that the multiplication from the real-valued case is replaced by
the octonion multiplication, Gl represents the activation function for the layer l ∈ {2, . . . , L},
x1 = (x1

k)1≤k≤d ∈ Od is the vector of inputs of the network, and we have that xlk := ylk,
∀l ∈ {2, . . . , L − 1}, ∀k, because x1

k are the inputs, yLk are the outputs, and ylk = xlk are the
outputs of layer l, which are also inputs to layer l + 1. The activation function is considered to
be defined element-wise. For instance, for the octonion x =

∑7
a=0[x]aea, an example of acti-

vation function is the element-wise hyperbolic tangent function defined by G
(∑7

a=0[x]aea
)

=∑7
a=0 (tanh[x]a) ea.



122 6. Dynamics of octonion-valued neural networks (OVNNs)

We will first compute the update rule for the weights between layer L− 1 and output layer
L, i.e. ∆wLjk(t) = −ε

(∑7
a=0

∂E
∂[wLjk]a

ea

)
. Using the chain rule, we can write ∀0 ≤ a ≤ 7:

∂E

∂[wLjk]a
=

7∑
b=0

∂E

∂[sLj ]b

∂[sLj ]b

∂[wLjk]a
. (6.1.4)

To compute
∂[sLj ]b

∂[wLjk]a
, we need an explicit formula for [sLj ]b, which can be easily deduced from

(6.1.2): [sLj ]b =
[∑

k w
L
jkx

L−1
k

]
b
, ∀0 ≤ b ≤ 7. Now, we can easily see that

∂[sLj ]b

∂[wLjk]a
=
∂
[∑

k w
L
jkx

L−1
k

]
b

∂[wLjk]a
=
∂[wLjkx

L−1
k ]b

∂[wLjk]a
. (6.1.5)

Using the fact that wLjkx
L−1
k =

∑
0≤c,d≤7[wLjk]c[x

L−1
k ]deced, equation (6.1.5) can be written as

∂[sLj ]b

∂[wLjk]a
=

∂
[∑

0≤c,d≤7[wLjk]c[x
L−1
k ]deced

]
b

∂[wLjk]a
=

∂

(∑
0≤c,d≤7

κc,deced=eb
κc,d[w

L
jk]c[x

L−1
k ]d

)
∂[wLjk]a

= κa,d[x
L−1
k ]d, κa,deaed = eb, κa,d ∈ {±1}.

So, relation (6.1.4) can be written in the form

∂E

∂[wLjk]a
=

∑
0≤b≤7

κa,deaed=eb

∂E

∂[sLj ]b
κa,d[x

L−1
k ]d. (6.1.6)

Next, by denoting δLj := ∂E
∂sLj

, we have from the chain rule that [δLj ]b = ∂E
∂[sLj ]b

=
∑

0≤e≤7
∂E

∂[yLj ]e

∂[yLj ]e

∂[sLj ]b
,

∀0 ≤ b ≤ 7. Taking into account notation (6.1.3), and the expression of the error function given
in (6.1.1), we have that

[δLj ]b =
∑

0≤e≤7

([yLj ]e − [tj]e)
∂[GL(sLj )]e

∂[sLj ]b
= ([yLj ]b − [tj]b)

∂[GL(sLj )]b

∂[sLj ]b
,

∀0 ≤ b ≤ 7, because [GL(sLj )]e depends upon [sLj ]b only for e = b, which means that
∂[GL(sLj )]e

∂[sLj ]b
= 0, ∀e 6= b. If we denote by � the element-wise multiplication of two octonions,

the above relation gives

δLj = (yLj − tj)�
∂GL(sLj )

∂sLj
, (6.1.7)

where
∂GL(sLj )

∂sLj
represents the octonion of element-wise derivatives of the activation functionGL.

For instance, if x =
∑7

a=0[x]aea ∈ O, then ∂G(x)
∂x

=
∑7

a=0

(
sech2[x]a

)
ea, with the function G

defined as in the above example.
Finally, from (6.1.6), we get the expression for the desired update rule in the form: ∆wLjk(t) =

−εδLj xL−1
k , where the octonion δLj ∈ O is given by relation (6.1.7).

Now, we will compute the update rule for an arbitrary weight wljk, where l ∈ {2, . . . , L−1}.
First, we can write that ∆wljk(t) = −ε

(∑7
a=0

∂E
∂[wljk]a

ea

)
, and then, from the chain rule, we

have that
∂E

∂[wljk]a
=
∑

0≤b≤7

∂E

∂[slj]b

∂[slj]b

∂[wljk]a
. (6.1.8)



6. Dynamics of octonion-valued neural networks (OVNNs) 123

∀0 ≤ a ≤ 7. Applying the chain rule again, we obtain that

∂E

∂[slj]b
=
∑
r

∑
0≤c≤7

∂E

∂[sl+1
r ]c

∂[sl+1
r ]c

∂[slj]b
, (6.1.9)

∀0 ≤ b ≤ 7, where the sum is taken over all neurons r in layer l+1 to which neuron j from layer
l sends connections. Next, we can write that ∂[sl+1

r ]c
∂[slj ]b

=
∑

0≤d≤7
∂[sl+1

r ]c
∂[ylj ]d

∂[ylj ]d

∂[slj ]b
, ∀0 ≤ b, c ≤ 7.

Again from (6.1.2), we can compute

∂[sl+1
r ]c

∂[ylj]d
=
∂
[∑

j w
l+1
rj y

l
j

]
c

∂[ylj]d
=
∂[wl+1

rj y
l
j]c

∂[ylj]d
. (6.1.10)

From wl+1
rj y

l
j =

∑
0≤e,f≤7[wl+1

rj ]e[y
l
j]feeef , equation (6.1.10) can be written as

∂[sl+1
r ]c

∂[ylj]d
=

∂
[∑

0≤e,f≤7[wl+1
rj ]e[y

l
j]feeef

]
c

∂[ylj]d
=

∂(
∑

0≤e,f≤7
κe,f eeef=ec

κe,f [w
l+1
rj ]e[y

l
j]f )

∂[ylj]d

= κe,d[w
l+1
rj ]e, κe,deeed = ec, κe,d ∈ {±1},

and then
∂[sl+1

r ]c
∂[slj]b

=
∑

0≤d≤7

κe,d[w
l+1
rj ]e

∂[Gl(slj)]d

∂[slj]b
= κe,b[w

l+1
rj ]e

∂[Gl(slj)]b

∂[slj]b
, κe,beeeb = ec,

∀0 ≤ b, c ≤ 7, where again we took into account the fact that
∂[Gl(slj)]d

∂[slj ]b
= 0, ∀d 6= b. Now,

returning to equation (6.1.9), and putting it all together, we have that

∂E

∂[slj]b
=

∑
r

∑
0≤c≤7

κe,beeeb=ec

∂E

∂[sl+1
r ]c

κe,b[w
l+1
rj ]e

∂[Gl(slj)]b

∂[slj]b
=
∑
r

 ∑
0≤c≤7

κe,beeeb=ec

∂E

∂[sl+1
r ]c
·

· κe,b[w
l+1
rj ]e

∂[Gl(slj)]b

∂[slj]b

)
=
∑
r

[wl+1
rj δ

l+1
r ]b

∂[Gl(slj)]b

∂[slj]b
,

∀0 ≤ b ≤ 7. By denoting δlj := ∂E
∂slj

, we can write the above relation in the form

δlj =

(∑
r

wl+1
rj δ

l+1
r

)
�
∂Gl(slj)

∂slj
. (6.1.11)

Finally, taking into account the fact that
∂[slj ]b

∂[wljk]a
= κa,d[x

l−1
k ]d, κa,deaed = eb, relation (6.1.8)

becomes ∂E
∂[wljk]a

=
∑

0≤b≤7
κa,deaed=eb

∂E
∂[slj ]b

κa,d[x
l−1
k ]d = [δljx

l−1
k ]a, ∀0 ≤ a ≤ 7. Thus, the update rule

for the weight wljk can be written in octonion form in the following way: ∆wljk(t) = −εδljxl−1
k ,

which is similar to the formula we obtained for the layer L.
To summarize, we have the following formula for the update rule of the weight wljk:

∆wljk(t) = −εδljxl−1
k , ∀l ∈ {2, . . . , L},

where

δlj =


(∑

r w
l+1
rj δ

l+1
r

)
� ∂Gl(slj)

∂slj
, l ≤ L− 1

(ylj − tj)�
∂Gl(slj)

∂slj
, l = L

.



124 6. Dynamics of octonion-valued neural networks (OVNNs)

6.1.2 Experimental results
6.1.2.1 Synthetic function approximation problem I

The first function we will test the proposed algorithm on is the simple quadratic function
f1(o1, o2) = 1

6
(o2

1 + o2
2). This function was used to test the performance of different complex-

valued neural network architectures and learning algorithms, for example in [191, 190, 205],
and so we decided to test the octonion-valued algorithms on it, also.

For training of the octonion-valued neural network, we generated 1500 octonion training
samples with random elements between 0 and 1. The testing set contained 500 samples gen-
erated in the same way. The network had 15 neurons on a single hidden layer. The activa-
tion function for the hidden layer was the element-wise hyperbolic tangent function given by
G2
(∑7

a=0[x]aea
)

=
∑7

a=0 (tanh[x]a) ea, and for the output layer, the activation function was
the identity function: G3(S) = S.

The experiment showed that the neural network converges, and the mean squared error
(MSE) for the training set was 0.000733 and for the test set was 0.000651. Training was done
for 5000 epochs. Although the result is not spectacular, we must take into account the fact that
each octonion is formed of 8 real numbers.

6.1.2.2 Synthetic function approximation problem II

A more complicated example, which involves four input variables and the reciprocal of one of
the variables, is given by the following function: f2(o1,o2, o3, o4) = 1

1.5

(
o3 + 10o1o4 +

o22
o1

)
,

which was used as a benchmark in [191, 192] for complex-valued neural networks, so we used
it for octonion-valued neural networks, also. The training and testing sets were randomly gen-
erated octonions with elements between 0 and 1, 1500 for the training set, and 500 for the test
set. The activation functions were the same as the ones above. The architecture had 15 neurons
on a single hidden layer, and the network was trained for 5000 epochs.

In this experiment, the training and testing MSE had similar values, and equal approximately
with 0.0071. The performance is worse than the one obtained in the previous experiment,
but in this case, the function was more complicated. These results give reasons for hope that
in the future these networks can be optimized to perform better on octonion-valued function
approximation problems.

6.1.2.3 Linear time series prediction

A possible application of octonion-valued neural networks is in signal processing. A known
benchmark proposed in [120], and used in [58, 61, 228] for complex-valued neural networks, is
the prediction of the white noise n(k), passed through the stable autoregressive filter given by
y(k) = 1.79y(k−1)−1.85y(k−2)+1.27y(k−3)−0.41y(k−4)+n(k). In the octonion setting,
the octonion-valued white noise n(k) is given by n(k) =

∑7
a=0[n(k)]aea, where [n(k)]a ∼

N (0, 1), ∀0 ≤ a ≤ 7.
The tap input of the filter was 4, so the networks had 4 inputs, 4 hidden neurons on a single

hidden layer, and one output. The activation function for the hidden layer was the element-wise
hyperbolic tangent function and for the output layer was the identity. Training was done for
5000 epochs with 2500 training samples.

We use a measure of performance called prediction gain, defined by Rp = 10 log10
σ2
x

σ2
e
,

where σ2
x represents the variance of the input signal and σ2

e represents the variance of the pre-
diction error. The prediction gain is given in dB. It is obvious that, because of the way it is



6. Dynamics of octonion-valued neural networks (OVNNs) 125

defined, a bigger prediction gain means better performance. The network obtained a prediction
gain of 0.485.

6.2 Octonion-valued bidirectional associative memories
Bidirectional associative memories represent an extension of the unidirectional Hopfield neural
networks, and were first introduced by Kosko in [100]. Since then, they were applied in pat-
tern recognition and automatic control, for example. Complex-valued bidirectional associative
memories were introduced in [110], quaternion-valued bidirectional associative memories in
[102], and Clifford-valued bidirectional associative memories in [217]. Taking these facts into
account, and also the ones mentioned in Section 6.1, we introduce octonion-valued bidirectional
associative memories, which could be applied to store octonion patterns and to solve octonion
optimization problems.

The presentation in this section follows that in the author’s paper [156].

6.2.1 Main results

We introduce octonion-valued bidirectional associative memories for which the states, outputs,
and thresholds are all from O.

The following set of differential equations describes this type of networks:
τi
dxi(t)

dt
= −xi(t) +

P∑
j=1

wijf(yj(t)) + ai, ∀i ∈ {1, . . . , N},

υj
dyj(t)

dt
= −yj(t) +

N∑
i=1

wjif(xi(t)) + bj, ∀j ∈ {1, . . . , P}.
(6.2.1)

τi ∈ R, τi > 0 and υj ∈ R, υj > 0 represent the time constants of neurons xi and yj ,
respectively, xi(t), yj(t) ∈ O are the states of neurons xi and yj at time t, respectively, wij ∈ O
is the weight connecting neuron xi to neuron yj , f : O → O is the nonlinear octonion-valued
activation function, and ai and bj are the thresholds of neurons xi and yj , respectively, ∀i ∈
{1, . . . , N}, ∀j ∈ {1, . . . , P}. The derivative dxi(t)

dt
is considered to be the octonion formed by

the derivatives of each element [xi(t)]a of the octonion xi(t) with respect to t:

dxi(t)

dt
:=

7∑
a=0

d([xi]a)

dt
ea.

Thus, the above differential equations have values in O, and the multiplication between the
weights and the values of the activation function is the octonion multiplication. Making the no-
tations ui(t) := f(xi(t)) and vj(t) := f(yj(t)) for the output of neurons xi and yj , respectively,
system (6.2.1) can be written as:

τi
dxi(t)

dt
= −xi(t) +

P∑
j=1

wijvj(t) + ai, ∀i ∈ {1, . . . , N},

υj
dyj(t)

dt
= −yj(t) +

N∑
i=1

wjiui(t) + bj, ∀j ∈ {1, . . . , P}.



126 6. Dynamics of octonion-valued neural networks (OVNNs)

We assume that the activation function f is formed of 8 functions fa : O→ R, 0 ≤ a ≤ 7, thus
having the expression:

f(x) =
7∑

a=0

fa(x)ea.

In order to define an energy function for the network (6.2.1), we need to make a series of
assumptions, which will be detailed below.

The first assumption is that the function f is bounded: ∃M > 0, |f(x)| ≤ M, ∀x ∈ O,
and that the functions fa are continuously differentiable with respect to each [x]b, ∀0 ≤ b ≤ 7,
∀0 ≤ a ≤ 7. This allows us to define the 8× 8 Jacobian matrix of the function f as

Jacf (x) =

(
∂fa(x)

∂[x]b

)
0≤a≤7
0≤b≤7

.

The second assumption is that Jacf (x) is symmetric and positive definite, ∀x ∈ O, and that
the function f is injective.

The above assumptions ensure the existence of the inverse function g : O → O of f ,
g = f−1. We can thus write g(ui(t)) = xi(t), ∀i ∈ {1, . . . , N}, and g(vj(t)) = yj(t), ∀j ∈
{1, . . . , P}. Now, we will construct a function G : O→ R, which satisfies

∂G(x)

∂[x]a
= ga(x), ∀0 ≤ a ≤ 7, (6.2.2)

where ga : O→ R are the component functions of g, i.e.,

g(x) =
7∑

a=0

ga(x)ea.

It can be proved that the function

G(x) =
7∑

a=0

∫ [x]a

0

ga(ya)dy,

satisfies the conditions (6.2.2), where the octonions ya have the following form

[ya]b =


[x]b, b < a

y b = a

0, b > a

, ∀0 ≤ a, b ≤ 7.

We can write the conditions (6.2.2) in octonion form as:

∂G(x)

∂x
:=

7∑
a=0

∂G(x)

∂[x]a
ea =

7∑
a=0

ga(x)ea = g(x). (6.2.3)

The third assumption is made about the weights of the network, which must satisfy:

wji = wij, ∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , P}.

At this point, we can define an energy function for network (6.2.1). A functionE : ON+P →
R is an energy function for the network (6.2.1) if the derivative of E along the trajectories of



6. Dynamics of octonion-valued neural networks (OVNNs) 127

the network, denoted by dE(u(t),v(t))
dt

, satisfies the condition dE(u(t),v(t))
dt

≤ 0 and dE(u(t),v(t))
dt

=

0⇔ dui(t)
dt

=
dvj(t)

dt
= 0, ∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , P}.

In the following, we will show that the function E : ON+P → R, defined by

E(u(t),v(t)) := −
N∑
i=1

P∑
j=1

Re
(
ui(t) (wijvj(t))

)
+

N∑
i=1

G(ui(t))−
N∑
i=1

Re (aiui(t))

+
P∑
j=1

G(vj(t))−
P∑
j=1

Re
(
bjvj(t)

)
, (6.2.4)

is an energy function for the network (6.2.1), if the above assumptions are satisfied, where Re(x)
represents the real part of octonion x =

∑7
a=0[x]aea ∈ O, i.e., Re(x) = [x]0. The brackets in

the first term of E are necessary, because, as noted above, the algebra O of octonions is not
associative. Nonetheless, it can be proved that

Re(x(yz)) = Re((xy)z), ∀x, y, z ∈ O,

so the other choice of brackets would have yielded the same expression.
We start by applying the chain rule:

dE(u(t),v(t))

dt
=

N∑
i=1

7∑
a=0

∂E(u(t),v(t))

∂[ui(t)]a

d[ui(t)]a
dt

+
P∑
j=1

7∑
b=0

∂E(u(t),v(t))

∂[vj(t)]a

d[vj(t)]a
dt

=
N∑
i=1

Re

((
∂E(u(t),v(t))

∂ui(t)

)
dui(t)

dt

)

+
P∑
j=1

Re

((
∂E(u(t),v(t))

∂vj(t)

)
dvj(t)

dt

)
, (6.2.5)

where we denoted by
∂E(u(t),v(t))

∂ui(t)
:=

7∑
a=0

∂E(u(t),v(t))

∂[ui(t)]a
ea,

∂E(u(t),v(t))

∂vj(t)
:=

7∑
a=0

∂E(u(t),v(t))

∂[vj(t)]a
ea.

Now, we can prove by direct computation that

dRe(ax)

dx
= a, ∀a, x ∈ O,

dRe(x(ay))

dx
= ay, ∀x, a, y ∈ O,



128 6. Dynamics of octonion-valued neural networks (OVNNs)

dRe(x(ay))

dy
= ax, ∀x, a, y ∈ O,

where the derivatives are defined as in relation (6.2.3). If we also take into account the assump-
tion wji = wij , relation (6.2.3), and the set of equations given by (6.2.1), we can deduce from
(6.2.4) the following expressions for the partial derivatives ∂E(u(t),v(t))

∂ui(t)
and ∂E(u(t),v(t))

∂vj(t)
:

∂E(u(t),v(t))

∂ui(t)
= −

P∑
j=1

wijvj(t) + g(ui(t))− ai

= −

(
P∑
j=1

wijvj(t)− xi(t) + ai

)

= −τi
dxi(t)

dt
, ∀i ∈ {1, . . . , N},

∂E(u(t),v(t))

∂vj(t)
= −

N∑
i=1

wijui(t) + g(vj(t))− bj

= −
N∑
i=1

wjiui(t) + g(vj(t))− bj

= −

(
N∑
i=1

wjiuj(t)− yj(t) + bj

)

= −υj
dyj(t)

dt
, ∀j ∈ {1, . . . , P}.

Plugging these expressions back into relation (6.2.5), we have:

dE(u(t),v(t))

dt
=

N∑
i=1

Re

((
−τi

dxi(t)

dt

)
dui(t)

dt

)

+
P∑
j=1

Re

((
−υj

dyj(t)

dt

)
dvj(t)

dt

)

= −
N∑
i=1

τi

[
vec
(
dxi(t)

dt

)]T
vec
(
dui(t)

dt

)

−
P∑
j=1

υj

[
vec
(
dyj(t)

dt

)]T
vec
(
dvj(t)

dt

)
, (6.2.6)

where we denoted by vec (x) the vectorization of octonion x, i.e.,

vec(x) := ([x]0, [x]1, . . . , [x]7)T , ∀x ∈ O.

We also used the identity

Re(ab) = vec(a)Tvec(b), ∀a, b ∈ O.



6. Dynamics of octonion-valued neural networks (OVNNs) 129

From g(ui(t)) = xi(t) and g(vj(t)) = yj(t), we can obtain that

vec
(
dg(ui(t))

dt

)
= Jacg(ui(t))vec

(
dui(t)

dt

)
,

vec
(
dg(vj(t))

dt

)
= Jacg(vj(t))vec

(
dvj(t)

dt

)
,

∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , P}. The second assumption made above tells us that Jacf (x)
is symmetric and positive definite, and so Jacg(u) is also symmetric and positive definite. This
means that [

vec
(
dui(t)

dt

)]T
[Jacg(ui(t))]Tvec

(
dui(t)

dt

)
≥ 0,[

vec
(
dvj(t)

dt

)]T
[Jacg(vj(t))]Tvec

(
dvj(t)

dt

)
≥ 0,

∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , P}, and thus relation (6.2.6) becomes

dE(u(t),v(t))

dt
= −

N∑
i=1

τi

[
vec
(
dg(ui(t))

dt

)]T
vec
(
dui(t)

dt

)

−
P∑
j=1

υj

[
vec
(
dg(vj(t))

dt

)]T
vec
(
dvj(t)

dt

)
,

= −
N∑
i=1

{
τi

[
vec
(
dui(t)

dt

)]T
[Jacg(ui(t))]Tvec

(
dui(t)

dt

)}

−
P∑
j=1

{
υj

[
vec
(
dvj(t)

dt

)]T
[Jacg(vj(t))]Tvec

(
dvj(t)

dt

)}
≤ 0,

Equality is attained when dE(u(t),v(t))
dt

= 0 ⇔ vec
(
dui(t)
dt

)
= vec

(
dvj(t)

dt

)
= 0 ⇔ dui(t)

dt
=

dvj(t)

dt
= 0, ∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , P}, thus ending the proof that E is indeed an

energy function for the network (6.2.1).
Possible examples of activation functions, inspired by the ones used in real-valued and

complex-valued neural networks, are:

f(v) =
v

1 + ||v||
, ∀v ∈ O,

f

(
7∑

a=0

[v]aea

)
=

7∑
a=0

(tanh[v]a)ea, ∀v ∈ O.

The first one corresponds to the fully complex activation functions, while the second one corre-
sponds to the split complex activation functions from the complex-valued domain.

6.3 Asymptotic stability for OVNNs with delay
The practical applications of neural networks heavily rely on their dynamical properties. To
solve problems of optimization, neural control, and signal processing, neural networks have to



130 6. Dynamics of octonion-valued neural networks (OVNNs)

be designed in such way that they exhibit only one globally stable steady state. Thus, suffi-
cient conditions can be determined, which depend on the system parameters, that guarantee the
existence of a unique globally stable steady state for a certain neural network.

At the beginning of the 1980’s, Hopfield had the idea of introducing an energy function
in order to study the dynamics of fully connected recurrent neural networks, see [80, 81]. He
showed that combinatorial problems can be solved by using this type of networks. Since then,
Hopfield neural networks have been applied to the synthesis of associative memories, image
processing, speech processing, control systems, signal processing, pattern matching, etc. Be-
cause of the finite switching speed of amplifiers, delays occur in real-life implementations of
neural networks, and can cause unstable or oscillatory behavior. This fact lead to the definition
of Hopfield neural networks with different types of delays.

Generalizations of the Hopfield neural networks to multidimensional domains appeared
over the last few years. Complex-valued Hopfield networks were discussed in [115, 199, 198],
quaternion-valued Hopfield networks in [117, 216], and Clifford-valued Hopfield networks in
[116, 240]. Taking these facts into account, we introduce octonion-valued Hopfield neural net-
works with delay, which could be applied to solve octonion optimization problems.

In this and the next sections of this chapter, the following notations will be used: R is
the real number set, C is the complex number set, and O is the octonion number set. RN

(respectively, CN and ON ) denotes the set of real-valued (respectively, complex-valued and
octonion-valued) N -dimensional vectors, and RN×N (respectively, CN×N and ON×N ) denotes
the set of real-valued (respectively, complex-valued and octonion-valued) matrices of dimension
N × N . | · | represents the octonion norm, and || · || stands for the Euclidean vector norm or
the matrix Frobenius norm. A > 0 (A < 0) means that matrix A is positive definite (negative
definite). (·)T is the transpose of a real-valued vector or matrix. (·)H is the Hermitian transpose
or complex conjugate transpose of a complex-valued vector or matrix. ∗ denotes the symmetric
terms in a matrix. IN is the identity matrix of dimension N × N . Finally, λmin(P ) denotes the
smallest eigenvalue of positive definite matrix P .

The presentation in this section follows that in the author’s paper [157].

6.3.1 Main results
We introduce octonion-valued Hopfield neural networks for which the states and weights are
from O. The following set of differential equations describes this type of networks:

ẋi(t) = −dixi(t) +
N∑
j=1

aijfj(xj(t)) +
N∑
j=1

bijgj(xj(t− τ)) + ui, (6.3.1)

for i ∈ {1, . . . , N}, where xi(t) ∈ O is the state of neuron i at time t, di ∈ R, di > 0, is the self-
feedback connection weight of neuron i, aij ∈ O is the weight connecting neuron j to neuron i
without delay, bij ∈ O is the weight connecting neuron j to neuron i with delay, fj : O→ O is
the nonlinear octonion-valued activation function of neuron j without delay, gj : O→ O is the
nonlinear octonion-valued activation function of neuron j with delay, τ ∈ R is the delay and
we assume τ > 0, and ui ∈ O is the external input of neuron i, ∀i, j ∈ {1, . . . , N}.

The definition of the derivative ẋi(t) is the one given in Section (6.1), ∀i ∈ {1, . . . , N}.
Thus, the above set of differential equations has values in O, and the multiplication between the
weights and the values of the activation functions is the octonion multiplication.

We need to make an assumption about the activation functions, in order to study the stability
of the above defined network.



6. Dynamics of octonion-valued neural networks (OVNNs) 131

Assumption 6.1. The octonion-valued activation functions fj and gj satisfy the following Lip-
schitz conditions:

||fj(x)− fj(x′)|| ≤ lfj ||x− x′||, ∀x, x′ ∈ O,

||gj(x)− gj(x′)|| ≤ lgj ||x− x′||, ∀x, x′ ∈ O,

where lfj > 0 and lgj > 0 are the Lipschitz constants, ∀j ∈ {1, . . . , N}. Moreover, we denote
Lf = diag(lf1I8, l

f
2I8, . . . , l

f
NI8), Lg = diag(lg1I8, l

g
2I8, . . . , l

g
NI8).

We will first transform the octonion-valued differential equations (6.3.1) into real-valued
ones. To do so, we will detail each equation in (6.3.1) into 8 real-valued equations:

[ẋi(t)]p = −di[xi(t)]p +
N∑
j=1

7∑
q=0

[aij]pq[fj(xj(t))]q

+
N∑
j=1

7∑
q=0

[bij]pq[gj(xj(t− τ))]q + [ui]p, (6.3.2)

for 0 ≤ p ≤ 7, i ∈ {1, . . . , N}, where [x]pq is an element of the matrix mat(x), defined by

mat(x) :=



[x]0 −[x]1 −[x]2 −[x]3 −[x]4 −[x]5 −[x]6 −[x]7
[x]1 [x]0 −[x]3 [x]2 −[x]5 [x]4 [x]7 −[x]6
[x]2 [x]3 [x]0 −[x]1 −[x]6 −[x]7 [x]4 [x]5
[x]3 −[x]2 [x]1 [x]0 −[x]7 [x]6 −[x]5 −[x]4
[x]4 [x]5 [x]6 [x]7 [x]0 −[x]1 −[x]2 −[x]3
[x]5 −[x]4 [x]7 −[x]6 [x]1 [x]0 [x]3 −[x]2
[x]6 −[x]7 −[x]4 [x]5 [x]2 −[x]3 [x]0 [x]1
[x]7 [x]6 −[x]5 −[x]4 [x]3 [x]2 −[x]1 [x]0


.

Now, if we denote vec(x) = ([x]0, [x]1, . . . , [x]7)T , the equations (6.3.2) can be written as

vec(ẋi(t)) = −diI8vec(xi(t)) +
N∑
j=1

mat(aij)vec(fj(xj(t)))

+
N∑
j=1

mat(bij)vec(gj(xj(t− τ))) + vec(ui), (6.3.3)

for i ∈ {1, . . . , N}. Denoting w(t) = (vec(x1(t))T , vec(x2(t))T , . . . , vec(xN(t))T )T , D =
diag(d1I8, d2I8, . . . , dNI8), A = (mat(aij))1≤i,j≤N , B = (mat(bij))1≤i,j≤N ,

f(w(t)) = (vec(f1(x1(t)))T , vec(f2(x2(t)))T , . . . , vec(fN(xN(t)))T )T ,

g(w(t− τ)) = (vec(g1(x1(t− τ)))T , vec(g2(x2(t− τ)))T , . . . , vec(gN(xN(t− τ)))T )T ,

u = (vec(u1)T , vec(u2)T , . . . , vec(uN)T )T , with the simplifying notations w = w(t) and wτ =
w(t− τ), system (6.3.1) becomes

ẇ = −Dw + Af(w) +B g(wτ ) + u. (6.3.4)



132 6. Dynamics of octonion-valued neural networks (OVNNs)

Remark 6.1. The system (6.3.4) is equivalent with the system (6.3.1), which means that any
property proven about system (6.3.4) will also hold for system (6.3.1). Because of this, from
now on we will only study the existence, uniqueness, and global asymptotic stability of the
equilibrium point of system (6.3.4).

We will also need the following lemmas:

Lemma 6.1. ([55]). If H(w) : R8N → R8N is a continuous map that satisfies the following
conditions:

(i) H(w) is injective on R8N ,

(ii) ||H(w)|| → ∞ as ||w|| → ∞,

then H(w) is a homeomorphism of R8N onto itself.

Lemma 6.2. ([114]). For any vectors x, y ∈ R8N , positive definite matrix P ∈ R8N×8N , and
real constant ε > 0, the following linear matrix inequality (LMI) holds:

2xTy ≤ εxTPx+
1

ε
yTP−1y.

Now, we give an LMI-based sufficient condition for the existence, uniqueness, and global
asymptotic stability of the equilibrium point for (6.3.4).

Theorem 6.1. If Assumption 6.1 holds, then system (6.3.4) has a unique equilibrium point which
is globally asymptotically stable if there exist real numbers ε1 > 0 and ε2 > 0, and positive
definite matrix P ∈ R8N×8N such that the following LMI holdsPD +DP − ε1Lf

T
Lf − ε2Lg

T
Lg PA PB

∗ ε1I8N 0
∗ ∗ ε2I8N

 > 0. (6.3.5)

Proof. Define the function H : R8N → R8N ,

H(w) = −Dw + Af(w) +B g(w) + u. (6.3.6)

We will first prove thatH is injective. Assume by contradiction that there existw,w′ ∈ R8N ,
w 6= w′, such that H(w) = H(w′). This equality is equivalent with

−D(w − w′) + A(f(w)− f(w′)) +B(g(w)− g(w′)) = 0. (6.3.7)

By left multiplying this relation by 2(w − w′)TP , we get that

2(w − w′)TP (−D(w − w′) + A(f(w)− f(w′)) +B(g(w)− g(w′))) = 0, (6.3.8)

which can be rewritten as

(w − w′)T (−PD −DP )(w − w′) + 2(w − w′)TPA(f(w)− f(w′))

+2(w − w′)TPB(g(w)− g(w′)) = 0, (6.3.9)

From Assumption 6.1, we can deduce that

(f(w)− f(w′))T (f(w)− f(w′)) ≤ (w − w′)TLf
T
Lf (w − w′), (6.3.10)



6. Dynamics of octonion-valued neural networks (OVNNs) 133

(g(w)− g(w′))T (g(w)− g(w′)) ≤ (w − w′)TLg
T
Lg(w − w′). (6.3.11)

Now, taking into account Lemma 6.2 and inequalities (6.3.10) and (6.3.11), we have from
(6.3.9) that

(w − w′)T (−PD −DP )(w − w′) + 2(w − w′)TPA(f(w)− f(w′))

+2(w − w′)TPB(g(w)− g(w′))

≤ (w − w′)T (−PD −DP )(w − w′) + ε1(f(w)− f(w′))T (f(w)− f(w′))

+ε−1
1 (w − w′)TPAATP (w − w′) + ε2(g(w)− g(w′))T (g(w)− g(w′))

+ε−1
2 (w − w′)TPB B

T
P (w − w′)

≤ (w − w′)T (−PD −DP )(w − w′) + ε1(w − w′)TLf
T
Lf (w − w′)

+ε−1
1 (w − w′)TPAATP (w − w′) + ε2(w − w′)TLg

T
Lg(w − w′)

+ε−1
2 (w − w′)TPB B

T
P (w − w′)

= −(w − w′)T (PD +DP − ε1Lf
T
Lf − ε2Lg

T
Lg − ε−1

1 PAA
T
P

−ε−1
2 PB B

T
P )(w − w′). (6.3.12)

Using Schur’s complement, from condition (6.3.5), we get that

PD +DP − ε1Lf
T
Lf − ε2Lg

T
Lg − ε−1

1 PAA
T
P − ε−1

2 PB B
T
P > 0, (6.3.13)

which, plugged back into (6.3.12), finally yields H(w) −H(w′) < 0, which is a contradiction
with our initial assumption. We deduce that H is injective.

Next, we prove that ||H(w)|| → ∞ as ||w|| → ∞. To this end, we deduce from (6.3.13)
that there exists a sufficiently small ε > 0, such that −PD − DP + ε1Lf

T
Lf + ε2Lg

T
Lg +

ε−1
1 PAA

T
P + ε−1

2 PB B
T
P < −εI8N . Considering w′ = 0 in (6.3.12), we have

2wTP (H(w)−H(0)) ≤ wT (−PD −DP + ε1Lf
T
Lf + ε2Lg

T
Lg + ε−1

1 PAA
T
P

+ε−1
2 PB B

T
P )w < −ε||w||2. (6.3.14)

By applying the Cauchy-Schwarz inequality in relation (6.3.14), we get that

2||w||||P ||(||H(w)||+ ||H(0)||) > ε||w||2,

from which we conclude that ||H(w)|| → ∞ when ||w|| → ∞.
Now we can use Lemma 6.1 to deduce that H is a homeomorphism of R8N onto itself. This

means that the equation H(w) = 0 has a unique solution, and so system (6.3.4) also has a
unique equilibrium point, which we will denote by ŵ.

We shift this equilibrium point to the origin, and thus system (6.3.4) is equivalent with

˙̃w = −Dw̃ + A f̃(w̃) +B g̃(w̃τ ), (6.3.15)

where w̃ = w− ŵ, w̃τ = wτ − ŵ, f̃(w̃) = f(w̃+ ŵ)− f(ŵ), and g̃(w̃τ ) = g(w̃τ + ŵ)− g(ŵ).
Construct the following Lyapunov-Krasovskii functional:

V (w̃(t)) = w̃T (t)Pw̃(t) +

∫ t

t−τ
w̃(s)TQw̃(s)ds,

where Q ∈ R8N×8N , Q > 0.



134 6. Dynamics of octonion-valued neural networks (OVNNs)

The derivative of V (w̃(t)) with respect to t along the trajectories of system (6.3.15) is com-
puted as

V̇ (w̃) = ˙̃wTPw̃ + w̃TP ˙̃w + w̃TQw̃ − w̃τTQw̃τ

= w̃TP (−Dw̃ + A f̃(w̃) +B g̃(w̃τ ))

(−Dw̃ + A f̃(w̃) +B g̃(w̃τ ))TPw̃ + w̃TQw̃ − w̃τTQw̃τ

= w̃T (−PD −DP )w̃ + w̃TPA f̃(w̃) + f̃T (w̃)A
T
Pw̃ + w̃TPB g̃(w̃τ )

+g̃T (w̃τ )B
T
Pw̃ + w̃TQ ˜w̃ − w̃τTQw̃τ . (6.3.16)

If we multiply relations (6.3.10) and (6.3.11) by ε1 > 0 and ε2 > 0, we obtain

0 ≤ ε1(w̃TLf
T
Lf w̃ − f̃T (w̃)f̃(w̃)), (6.3.17)

0 ≤ ε2(w̃τTLg
T
Lgw̃

τ − g̃T (w̃τ )g̃(w̃τ )). (6.3.18)

Adding inequalities (6.3.17) and (6.3.18) to (6.3.16), gives

V̇ (w̃) ≤ ξTΩξ, (6.3.19)

where
ξ =

[
w̃T w̃τT f̃T (w̃) g̃T (w̃τ )

]T
,

Ω =


−PD −DP +Q+ ε1Lf

T
Lf 0 PA PB

∗ −Q+ ε2Lg
T
Lg 0 0

∗ ∗ −ε1I8N 0
∗ ∗ ∗ −ε2I8N

 .
Now, we have Ω < 0 if and only if Q > ε2Lg

T
Lg and−PD −DP +Q+ ε1Lf
T
Lf PA PB

∗ −ε1I8N 0
∗ ∗ −ε2I8N

 < 0. (6.3.20)

Together, the linear matrix inequalities (6.3.20) and Q > ε2Lg
T
Lg are equivalent with condi-

tion (6.3.5), which means that (6.3.19) becomes V̇ (w̃) < 0, from which we can conclude that
the equilibrium point of (6.3.4) is globally asymptotically stable, thus ending the proof of the
theorem.

6.3.2 Numerical example
A numerical example is given to demonstrate the effectiveness of our results.

Example 6.1. Consider the following two-neuron octonion-valued recurrent neural network
with time delay:{

ẋ1(t) = −d1x1(t) +
∑2

j=1 a1jfj(xj(t)) +
∑2

j=1 b1jgj(xj(t− τ)) + u1,

ẋ2(t) = −d2x2(t) +
∑2

j=1 a2jfj(xj(t)) +
∑2

j=1 b1jgj(xj(t− τ)) + u2,
(6.3.21)

where d1 = 50, d2 = 40,

vec(a11) = (1, 1, 2, 2, 1,−1,−1, 1)T , vec(a12) = (2, 1, 1,−2, 2, 1,−2, 2)T



6. Dynamics of octonion-valued neural networks (OVNNs) 135

vec(a21) = (2,−2, 2, 1, 2,−2, 1, 2)T , vec(a22) = (1, 2, 2,−2, 1, 1, 2,−2)T ,

vec(b11) = (2, 1, 2, 1,−2, 2,−1, 2)T , vec(b12) = (−2, 2,−2, 2, 1, 2,−2, 2)T ,

vec(b21) = (1,−2, 2,−2, 1, 2, 2, 2)T , vec(b22) = (1, 2, 2, 1, 2,−2,−2, 1)T ,

vec(u1) = (10,−20, 30,−40, 50,−70, 80,−90)T ,

vec(u2) = (90,−40, 10,−60, 30,−80, 50,−20)T ,

fj ([x]p) =
1

1 + e−[x]p
, gj ([x]p) =

1− e−[x]p

1 + e−[x]p
, p ∈ {0, 1, . . . , 7}, j ∈ {1, 2},

from which we deduce that lf1 = lf2 = 1√
2

and lg1 = lg2 = 2
√

2. The time delay is taken to be
τ = 0.5.

By solving the LMI condition (6.3.5) in Theorem 6.1, we get that system (6.3.21) has a
unique equilibrium point which is globally asymptotically stable for ε1 = 1.3270, ε2 = 0.7199.

6.4 Exponential stability for OVNNs with delay
The presentation in this section follows that in the author’s paper [158].

6.4.1 Main results
Assuming that system (6.3.4) has a unique equilibrium point ŵ, this equilibrium point can be
shifted to the origin, and so the system (6.3.4) becomes

˙̃y = −Dỹ + A f̃(ỹ) +B g̃(ỹτ ), (6.4.1)

where ỹ = w − ŵ, ỹτ = wτ − ŵ, f̃(ỹ) = f(w̃ + ŵ)− f(ŵ), and g̃(ỹτ ) = g(w̃τ + ŵ)− g(ŵ).

Remark 6.2. Systems (6.4.1) and (6.3.1) are equivalent, meaning that any property that holds
for system (6.4.1), will also hold for system (6.3.1). For this reason, we will study the global
exponential stability of the origin of system (6.4.1).

We give an LMI-based sufficient condition for the global exponential stability of the origin
of (6.4.1).

For this, we will also need the following lemma:

Lemma 6.3. ([66]). For any vector function y : [a, b] → R8N and positive definite matrix
M ∈ R8N×8N , the following linear matrix inequality (LMI) holds:(∫ b

a

y(s)ds

)T
M

(∫ b

a

y(s)ds

)
≤ (b− a)

∫ b

a

yT (s)My(s)ds,

where the integrals are well defined.

Theorem 6.2. If Assumption 6.1 holds, then the origin of system (6.4.1) is globally exponen-
tially stable if there exist positive definite matrices P , Q1, Q2, Q3, S1, S2, S3, S4, positive
block-diagonal matrices R1, R2, R3, R4, all from R8N×8N , and ε > 0, such that the following
linear matrix inequality (LMI) holds

(Π)9×9 < 0, (6.4.2)



136 6. Dynamics of octonion-valued neural networks (OVNNs)

where Π1,1 = 2εP −PD−DP +Q1 + τS2 + τ−1e−2ετS1 + τDS1D+Lf
T
R1Lf +Lg

T
R3Lg,

Π1,3 = PA− τ−1e−2ετS1− τDS1A, Π1,6 = PB− τDS1B, Π2,2 = −e−2ετQ1 + τ−1e−2ετS1 +

Lf
T
R2Lf +Lg

T
R4Lg, Π3,3 = Q2 +τS3−R1 +τA

T
S1A, Π3,6 = τA

T
S1B, Π4,4 = −e−2ετQ2−

R2, Π5,5 = Q3 + τS4 − R3, Π6,6 = −e−2ετQ1 − R4 + τB
T
S1B, Π7,7 = −τ−1e−2ετS2,

Π8,8 = −τ−1e−2ετS3, Π9,9 = −τ−1e−2ετS4.

Proof. We begin by defining the Lyapunov-Krasovskii functional

V (ỹ(t)) = e2εtỹT (t)P ỹ(t)

+

∫ t

t−τ
e2εsỹT (s)Q1ỹ(s)ds

+

∫ t

t−τ
e2εsf̃T (ỹ(s))Q2f̃(ỹ(s))ds

+

∫ t

t−τ
e2εsg̃T (ỹ(s))Q3g(ỹ(s))ds

+

∫ 0

−τ

∫ t

t+θ

e2εs ˙̃yT (s)S1
˙̃y(s)dsdθ

+

∫ 0

−τ

∫ t

t+θ

e2εsỹT (s)S2ỹ(s)dsdθ

+

∫ 0

−τ

∫ t

t+θ

e2εsf̃T (ỹ(s))S3f̃(ỹ(s))dsdθ

+

∫ 0

−τ

∫ t

t+θ

e2εsg̃T (ỹ(s))S4g(ỹ(s))dsdθ.

The time derivative of V along the trajectories of system (6.4.1) is

V̇ (ỹ) = e2εt
[
2εỹTP ỹ + ˙̃yTP ỹ + ỹTP ˙̃y + ỹTQ1ỹ − e−2ετ ỹτTQ1ỹ

τ

+f̃T (ỹ)Q2f̃(ỹ)− e−2ετ f̃T (ỹτ )Q2f̃(ỹτ ) + g̃T (ỹ)Q3g̃(ỹ)

−e−2ετ g̃T (ỹτ )Q3g̃(ỹτ ) + τ ˙̃yTS1
˙̃y −
∫ t

t−τ
e2ε(s−t) ˙̃yT (s)S1

˙̃y(s)ds

+τ ỹTS2ỹ −
∫ t

t−τ
e2ε(s−t)ỹT (s)S2ỹ(s)ds+ τ f̃T (ỹ)S3f̃(ỹ)

−
∫ t

t−τ
e2ε(s−t)f̃T (ỹ(s))S3f̃(ỹ(s))ds+ τ g̃T (ỹ)S4g̃(ỹ)

−
∫ t

t−τ
e2ε(s−t)g̃T (ỹ(s))S4g(ỹ(s))ds

]
≤ e2εt

[
2εỹTP ỹ + (−Dỹ + A f̃(ỹ) +B g̃(ỹτ ))TP ỹ + ỹTP (−Dỹ

+A f̃(ỹ) +B g̃(ỹτ )) + ỹTQ1ỹ − e−2ετ ỹτTQ1ỹ
τ + f̃T (ỹ)Q2f̃(ỹ)

−e−2ετ f̃T (ỹτ )Q2f̃(ỹτ ) + g̃T (ỹ)Q3g̃(ỹ)− e−2ετ g̃T (ỹτ )Q3g̃(ỹτ )

+τ ˙̃yTS1
˙̃y − τ−1e−2ετ

(∫ t

t−τ
˙̃y(s)ds

)T
S1

(∫ t

t−τ
˙̃y(s)ds

)
+τ ỹTS2ỹ − τ−1e−2ετ

(∫ t

t−τ
ỹ(s)ds

)T
S2

(∫ t

t−τ
ỹ(s)ds

)



6. Dynamics of octonion-valued neural networks (OVNNs) 137

+τ f̃T (ỹ)S3f̃(ỹ)− τ−1e−2ετ

(∫ t

t−τ
f̃(ỹ(s))ds

)T
S3

(∫ t

t−τ
f̃(ỹ(s))ds

)
+τ g̃T (ỹ)S4g̃(ỹ)− τ−1e−2ετ

(∫ t

t−τ
g̃(ỹ(s))ds

)T
S4

(∫ t

t−τ
g̃(ỹ(s))ds

)]
, (6.4.3)

where the inequality was deduced using Lemma 6.3.
The Lipschitz conditions in Assumption 6.1 are equivalent with

||fj(x)− fj(x′)|| ≤ lfj ||x− x′|| ⇔ ||vec(fj(x))− vec(fj(x
′))|| ≤ lfj ||vec(x)− vec(x′)||,

for j ∈ {1, . . . N}, and the analogous ones for the functions gj . Now, from these inequalities we
can deduce that there exist positive block-diagonal matrices R1 = diag(r1

1I8, r
1
2I8, . . . , r

1
NI8),

R2 = diag(r2
1I8, r

2
2I8, . . . , r

2
NI8),R3 = diag(r3

1I8, r
3
2I8, . . . , r

3
NI8),R4 = diag(r4

1I8, r
4
2I8, . . . , r

4
NI8),

such that

0 ≤ ỹTLf
T
R1Lf ỹ − f̃T (ỹ)R1f̃(ỹ), 0 ≤ ỹτTLf

T
R2Lf ỹ

τ − f̃T (ỹτ )R2f̃(ỹτ ), (6.4.4)

0 ≤ ỹTLg
T
R3Lgỹ − g̃T (ỹ)R3g̃(ỹ), 0 ≤ ỹτTLg

T
R4Lgỹ

τ − g̃T (ỹτ )R4g̃(ỹτ ). (6.4.5)

Adding inequalities (6.4.4) and (6.4.5), with inequality (6.4.3), yields

V̇ (ỹ) ≤ e2εtζTΠζ, (6.4.6)

where

ζ =
[
ỹT ỹτT f̃T (ỹ) f̃T (ỹτ ) g̃T (ỹ)g̃T (ỹτ )(∫ t
t−τ ỹ(s)ds

)T (∫ t
t−τ f̃(ỹ(s))ds

)T (∫ t
t−τ g̃(ỹ(s))ds

)T ]T
,

and Π is defined by (6.4.2). Condition (6.4.2) says that Π < 0, so we can infer from (6.4.6) that
V̇ (ỹ) < 0, which means that V (ỹ(t)) is strictly decreasing for t ≥ 0. From the definition of
V (ỹ(t)), we can further deduce that

e2εtλmin(P )||ỹ(t)||2 ≤ e2εtỹT (t)P ỹ(t) ≤ V (t) ≤ V0, ∀t ≥ T, T ≥ 0,

where V0 = max
0≤t≤T

V (t). Consequently,

||ỹ(t)||2 ≤ V0

e2εtλmin(P )
⇔ ||ỹ(t)|| ≤Me−εt, ∀t ≥ 0,

for M =
√

V0
λmin(P )

. Thus, we obtained the global exponential stability for the origin of system
(6.4.1).

6.4.2 Numerical example
We now give a numerical example to prove the correctness of the result derived above.

Example 6.2. Consider the following delayed octonion-valued Hopfield neural network with
two neurons:{

ẋ1(t) = −d1x1(t) +
∑2

j=1 a1jfj(xj(t)) +
∑2

j=1 b1jgj(xj(t− τ)) + u1,

ẋ2(t) = −d2x2(t) +
∑2

j=1 a2jfj(xj(t)) +
∑2

j=1 b1jgj(xj(t− τ)) + u2,
(6.4.7)



138 6. Dynamics of octonion-valued neural networks (OVNNs)

where d1 = 50, d2 = 40, and

vec(a11) = (1, 1, 2, 2, 1,−1,−1, 1)T , vec(a12) = (2, 1, 1,−2, 2, 1,−2, 2)T ,

vec(a21) = (2,−2, 2, 1, 2,−2, 1, 2)T , vec(a22) = (1, 2, 2,−2, 1, 1, 2,−2)T ,

vec(b11) = (2, 1, 2, 1,−2, 2,−1, 2)T , vec(b12) = (−2, 2,−2, 2, 1, 2,−2, 2)T ,

vec(b21) = (1,−2, 2,−2, 1, 2, 2, 2)T , vec(b22) = (1, 2, 2, 1, 2,−2,−2, 1)T ,

vec(u1) = (10,−20, 30,−40, 50,−70, 80,−90)T ,

vec(u2) = (90,−40, 10,−60, 30,−80, 50,−20)T ,

fj ([x]p) =
1

1 + e−[x]p
, gj ([x]p) =

1− e−[x]p

1 + e−[x]p
, p ∈ {0, 1, . . . , 7}, j ∈ {1, 2}.

We have that lf1 = lf2 =
√

2
2

and lg1 = lg2 = 2
√

2. Also, the constant delay is τ = 0.5.
The global exponential stability of the equilibrium point of system (6.4.7) is obtained by

solving the LMI in condition (6.4.2) in Theorem 6.2, to get ε = 3,R1 = diag(3.1392I8, 3.0388I8),
R2 = diag(0.4777I8, 0.4685I8),R3 = diag(0.2165I8, 0.1348I8),R4 = diag(0.0017I8, 0.0016I8).

6.5 Asymptotic stability of delayed OVNNs with leakage de-
lay

The presentation in this section follows that in the author’s paper [159].

6.5.1 Main results
We define delayed octonion-valued Hopfield neural networks with leakage delays, for which
the states and weights are from O. This type of network is described by the following set of
differential equations:

ẋi(t) = −dixi(t− δ) +
N∑
j=1

aijfj(xj(t)) +
N∑
j=1

bijgj(xj(t− τ)) + ui, (6.5.1)

for i ∈ {1, . . . , N}, where the notations are the same as the ones in Section 6.3, and δ ∈ R,
δ > 0 is the leakage delay.

Using the same ideas as in Section 6.3, system (6.5.1) can be transformed into the real-
valued one:

ẏ(t) = −Dy(t− δ) + Af(y(t)) +B g(y(t− τ)) + u, (6.5.2)

where we denoted y(t) =
(
vec(xi(t))

T
)T

1≤i≤N , D = diag (diI8)1≤i≤N , A = (mat(aij))1≤i,j≤N ,

B = (mat(bij))1≤i,j≤N , f(y(t)) =
(
vec(fj(xj(t)))

T
)T

1≤j≤N , g(w(t−τ)) =
(
vec(gj(xj(t− τ)))T

)T
1≤j≤N .

By shifting the equilibrium point ŷ of (6.5.2) to the origin, we obtain

˙̃y(t) = −Dỹ(t− δ) + A f̃(ỹ(t)) +B g̃(ỹ(t− τ)), (6.5.3)

where ỹ(t) = y(t)− ŷ, f̃(ỹ(t)) = f(ỹ(t) + ŷ)− f(ŷ), g̃(ỹ(t)) = g(ỹ(t) + ŷ)− g(ŷ).

Remark 6.3. Systems (6.5.3) and (6.5.1) are equivalent. This means that any property of system
(6.5.3), will also be true for system (6.5.1). Thus, the asymptotic stability of the origin of system
(6.5.3) will imply the asymptotic stability of the equilibrium point of (6.5.1).



6. Dynamics of octonion-valued neural networks (OVNNs) 139

We give an LMI-based sufficient condition for the asymptotic stability of the origin of
(6.5.3).

Theorem 6.3. If Assumption 6.1 holds, then the origin of system (6.5.3) is globally asymptot-
ically stable if there exist positive definite matrices P1, P2, P3, P4, P 1

5 , P 2
5 , P 3

5 , P6, positive
definite block-diagonal matrices R1, R2, R3, R4, all from R8N×8N , such that the following
linear matrix inequality (LMI) holds

(Π)8×8 < 0, (6.5.4)

where Π1,1 = −DP2−P2D+P3 + δP4 +P 1
5 − τ−1P6 +Lf

T
R1Lf +Lg

T
R3Lg, Π1,2 = −P1D,

Π1,3 = τ−1P6, Π1,4 = P1A+P2A, Π1,7 = P1B+P2B, Π1,8 = DP2D, Π2,2 = −P3 + τDP6D,
Π2,4 = −τDP6A, Π2,7 = −τDP6B, Π3,3 = −P 1

5 − τ−1P6 + Lf
T
R2Lf + Lg

T
R4Lg, Π4,4 =

P 2
5 + τA

T
P6A−R1, Π4,7 = τA

T
P6B, Π4,8 = −ATP2D, Π5,5 = −P 2

5 −R2, Π6,6 = P 3
5 −R3,

Π7,7 = −P 3
5 + τB

T
P6B −R4, Π7,8 = −BT

P2D, Π8,8 = −δ−1P4.

Proof. We define the following Lyapunov-Krasovskii functional

V (t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t) + V6(t),

where
V1(t) = ỹT (t)P1ỹ(t),

V2(t) =

(
ỹ(t)−D

∫ t

t−δ
ỹ(s)ds

)T
P2

(
ỹ(t)−D

∫ t

t−δ
ỹ(s)ds

)
,

V3(t) =

∫ t

t−δ
ỹT (s)P3ỹ(s)ds,

V4(t) =

∫ 0

−δ

∫ t

t+θ

ỹT (s)P4ỹ(s)dsdθ,

V5(t) =

∫ t

t−τ
ξT (s)P5ξ(s)ds, P5 = diag(P 1

5 , P
2
5 , P

3
5 ),

ξ(s) =
[
ỹT (s) f̃T (ỹ(s)) g̃T (ỹ(s))

]T
,

V6(t) =

∫ 0

−τ

∫ t

t+θ

˙̃yT (s)P6
˙̃y(s)dsdθ.

The derivative of V (t) along the trajectories of system (6.5.3) is

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t) + V̇5(t) + V̇6(t),

where
V̇1(t) = ˙̃yT (t)P1ỹ(t) + ỹT (t)P1

˙̃y(t), (6.5.5)

V̇2(t) =
(

˙̃y(t)−Dỹ(t) +Dỹ(t− δ)
)T
P2

(
ỹ(t)−D

∫ t

t−δ
ỹ(s)ds

)
+

(
ỹ(t)−D

∫ t

t−δ
ỹ(s)ds

)T
P2

(
˙̃y(t)−Dỹ(t) +Dỹ(t− δ)

)
, (6.5.6)



140 6. Dynamics of octonion-valued neural networks (OVNNs)

V̇3(t) = ỹT (t)P3ỹ(t)− ỹT (t− δ)P3ỹ(t− δ), (6.5.7)

V̇4(t) = δỹT (t)P4ỹ(t)−
∫ t

t−δ
ỹT (s)P4ỹ(s)ds

≤ δỹT (t)P4ỹ(t)− δ−1

(∫ t

t−δ
ỹ(s)ds

)T
P4

(∫ t

t−δ
ỹ(s)ds

)
, (6.5.8)

V̇5(t) = ξT (t)P5ξ(t)− ξT (t− τ)P5ξ(t− τ), (6.5.9)

V̇6(t) = τ ˙̃yT (t)P6
˙̃y(t)−

∫ t

t−τ
˙̃yT (s)P6

˙̃y(s)ds

≤ τ ˙̃yT (t)P6
˙̃y(t)− τ−1

(∫ t

t−τ
˙̃y(s)ds

)T
P6

(∫ t

t−τ
˙̃y(s)ds

)
, (6.5.10)

where we have used Lemma 6.3 to obtain the inequalities in (6.5.8) and (6.5.10).
From Assumption 6.1 about the Lipschitz condition, we can deduce that

||fj(x)− fj(x′)|| ≤ lfj ||x− x′|| ⇔ ||vec(fj(x))− vec(fj(x
′))|| ≤ lfj ||vec(x)− vec(x′)||,

∀j ∈ {1, . . . N}, ∀x, x′ ∈ O, and analogously for the functions gj . Thus, there exist posi-
tive definite block-diagonal matrices R1 = diag

(
r1
j I8

)
1≤j≤N , R2 = diag

(
r2
j I8

)
1≤j≤N , R3 =

diag
(
r3
j I8

)
1≤j≤N , R4 = diag

(
r4
j I8

)
1≤j≤N , such that

0 ≤ ỹT (t)Lf
T
R1Lf ỹ(t)− f̃T (ỹ(t))R1f̃(ỹ(t)), (6.5.11)

0 ≤ ỹT (t− τ)Lf
T
R2Lf ỹ(t− τ)− f̃T (ỹ(t− τ))R2f̃(ỹ(t− τ)), (6.5.12)

0 ≤ ỹT (t)Lg
T
R3Lgỹ(t)− g̃T (ỹ(t))R3g̃(ỹ(t)), (6.5.13)

0 ≤ ỹT (t− τ)Lg
T
R4Lgỹ(t− τ)− g̃T (ỹ(t− τ))R4g̃(ỹ(t− τ)). (6.5.14)

Now, adding inequalities (6.5.11)–(6.5.14) to (6.5.5)–(6.5.10), we obtain

V̇ (t) ≤ ζT (t)Πζ(t),

where Π is defined by (6.5.4), and

ζ(t) =
[
ỹT (t) ỹT (t− δ) ỹT (t− τ) f̃T (ỹ(t)) f̃T (ỹ(t− τ)) g̃T (ỹ(t)) g̃T (ỹ(t− τ))(∫ t
t−δ ỹ(s)ds

)T ]T
.

From (6.5.4) we have that Π < 0, which implies that V̇ (t) < 0, meaning that V (t) is strictly
decreasing for t ≥ 0. It can be further deduced from the definition of V (t) that

λmin(P1)||ỹ(t)||2 ≤ ỹT (t)P1ỹ(t) ≤ V (t) ≤ V0, ∀t ≥ T, T ≥ 0,

where V0 = max
0≤t≤T

V (t). Thus,

||ỹ(t)||2 ≤ V0

λmin(P1)
⇔ ||ỹ(t)|| ≤M, ∀t ≥ 0,

where M =
√

V0
λmin(P1)

. The above inequality proves the asymptotic stability of the origin of
system (6.5.3), completing the proof of the theorem.



6. Dynamics of octonion-valued neural networks (OVNNs) 141

6.5.2 Numerical example

To assess the effectiveness of the main result, we give a numerical example.

Example 6.3. Consider the following two-neuron delayed octonion-valued Hopfield neural net-
work with leakage delay:{

ẋ1(t) = −d1x1(t− δ) +
∑2

j=1 a1jfj(xj(t)) +
∑2

j=1 b1jgj(xj(t− τ)) + u1,

ẋ2(t) = −d2x2(t− δ) +
∑2

j=1 a2jfj(xj(t)) +
∑2

j=1 b1jgj(xj(t− τ)) + u2,
(6.5.15)

where d1 = 30, d2 = 20, and

vec(a11) = (1, 1, 2, 2, 1,−1,−1, 1)T , vec(a12) = (2, 1, 1,−2, 2, 1,−2, 2)T ,

vec(a21) = (2,−2, 2, 1, 2,−2, 1, 2)T , vec(a22) = (1, 2, 2,−2, 1, 1, 2,−2)T ,

vec(b11) = (2, 1, 2, 1,−2, 2,−1, 2)T , vec(b12) = (−2, 2,−2, 2, 1, 2,−2, 2)T ,

vec(b21) = (1,−2, 2,−2, 1, 2, 2, 2)T , vec(b22) = (1, 2, 2, 1, 2,−2,−2, 1)T ,

vec(u1) = (10,−20, 30,−40, 50,−70, 80,−90)T ,

vec(u2) = (90,−40, 10,−60, 30,−80, 50,−20)T ,

fj ([x]p) =
1

1 + e−[x]p
, gj ([x]p) =

1− e−[x]p

1 + e−[x]p
, p ∈ {0, 1, . . . , 7}, j ∈ {1, 2},

from where we can deduce that lf1 = lf2 =
√

2
2

and lg1 = lg2 =
√

2. The leakage delay is δ = 0.02
and the time delay is τ = 0.7.

Applying Theorem 6.3, if condition (6.5.4) is satisfied, then the equilibrium point of system
(6.5.15) is asymptotically stable. The LMI condition can be solved to yield the matrices R1 =
diag(0.0107I8, 0.0080I8), R2 = diag(0.0005I8, 0.0003I8), R3 = diag(0.0034I8, 0.0026I8),
R4 = diag(0.0023I8, 0.0019I8).

6.6 Exponential stability of neutral-type OVNNs with time-
varying delays

As previously mentioned in Section 6.3, because of the finite switching speed of amplifiers, de-
lays occur in real-life implementations of neural networks, and can cause unstable or oscillatory
behavior. For this reason, we consider both bounded leakage delay, and bounded time-varying
delays in the OVNN model in this section. On the other hand, distribution propagation delays
may appear as a consequence of a distribution of conduction velocities along the pathways of
a neural network implementation, which compelled us to also add continuously distributed de-
lays to our model. Taking these facts into account, we develop exponential stability criteria for
OVNNs with leakage delay, time-varying delays, and distributed delays in this section.

The presentation in this section follows that in the author’s paper [166].



142 6. Dynamics of octonion-valued neural networks (OVNNs)

6.6.1 Main results
we will consider the octonion-valued Hopfield neural networks given by the following system
of differential equations

ẋi(t) = −dixi(t− δ) +
N∑
j=1

aijfj(xj(t)) +
N∑
j=1

bijfj(xj(t− τij(t)))

+
N∑
j=1

cij

∫ t

t−ηij(t)
fj(xj(s))ds+ ui, i = 1, N, (6.6.1)

where x(t) = (x1(t), . . . , xN(t))T ∈ ON is the state vector at time t, D = diag(d1, . . . , dN) ∈
RN×N , di > 0, ∀i = 1, N , is the self-feedback connection weight matrix, A = (aij)1≤i,j≤N ∈
ON×N is the connection weight matrix, B = (bij)1≤i,j≤N ∈ ON×N is the time-varying delay
connection weight matrix, C = (cij)1≤i,j≤N ∈ ON×N is the distributed delay connection weight
matrix, fj : O → O are the neuron activation functions, ∀j = 1, N , and u = (u1, . . . , uN)T ∈
ON is the external input vector. δ > 0 represents the leakage delay, τij : R → R are the
time-varying delays, and ηij : R→ R are the distributed delays, ∀i, j = 1, N .

The derivative is defined as the element-wise derivative of xi(t) with respect to t: ẋi(t) =∑7
p=0

d([xi(t)]p)

dt
ep, ∀i = 1, N . The multiplication between the weights and the values of the

activation functions in the set of differential equations (6.6.1) is the octonion multiplication,
defined above. We assume that the activation functions fj can be written in the form

fj(x) = [f ′j]0(x) + [f ′j]1(x)+ [f ′j]2(x)`+ [f ′j]3(x)`, ∀x ∈ O,

where [f ′j]0, [f ′j]1, [f ′j]2, [f ′j]3 : O→ C, ∀j = 1, N .
In order to study the dynamic properties of (6.6.1), we need to make the following assump-

tions:

Assumption 6.2. The time-varying delays τij : R→ R and the distributed delays ηij : R→ R
are continuously differentiable functions and there exist τ, η > 0 and τ ′ < 1, such that τij(t) <
τ , ηij(t) < η, τ̇ij(t) ≤ τ ′, ∀t > 0, ∀i, j = 1, N .

Assumption 6.3. The octonion-valued activation functions fj satisfy the following Lipschitz
conditions, ∀x, y ∈ O:

||[f ′j]p(x)− [f ′j]p(y)|| ≤ l
[f ′]p
j ||[x′]p − [y′]p||,

where l[f
′]p

j > 0 are the Lipschitz constants, ∀p ∈ {0, 1, 2, 3}, ∀j = 1, N .

Assumption 6.4. The octonion-valued activation functions fj satisfy the following Lipschitz
conditions, ∀x, y ∈ O:

||fj(x)− fj(y)|| ≤ lfj ||x− y||,

where lfj > 0 are the Lipschitz constants, ∀j = 1, N .

Remark 6.4. Assumptions 6.3 and 6.4 are not equivalent, as it can be easily proved that Assump-
tion 6.3 implies Assumption 6.4, but Assumption 6.4 does not imply Assumption 6.3. Both are
useful, however, because there are situations in which the Lipschitz conditions for a function
cannot be written in the form given in Assumption 6.3, in which case Assumption 6.4 must be
used.



6. Dynamics of octonion-valued neural networks (OVNNs) 143

Now, the octonion-valued system (6.6.1) can be transformed into a complex-valued one. As
such, each equation in (6.6.1) can be split into the following four complex-valued equations:

[ẋ′i(t)]0 = −di[x′i(t− δ)]0

+
N∑
j=1

(
[a′ij]0[f ′j]0(xj(t))− [a′ij]1[f ′j]1(xj(t))− [a′ij]2[f ′j]2(xj(t))− [a′ij]3[f ′j]3(xj(t))

)
+

N∑
j=1

(
[b′ij]0[f ′j]0(xj(t− τij(t)))− [b′ij]1[f ′j]1(xj(t− τij(t)))

−[b′ij]2[f ′j]2(xj(t− τij(t)))− [b′ij]3[f ′j]3(xj(t− τij(t)))
)

+
N∑
j=1

(
[c′ij]0

∫ t

t−ηij(t)
[f ′j]0(xj(s))ds− [c′ij]1

∫ t

t−ηij(t)
[f ′j]1(xj(s))ds

−[c′ij]2

∫ t

t−ηij(t)
[f ′j]2(xj(s))ds− [c′ij]3

∫ t

t−ηij(t)
[f ′j]3(xj(s))ds

)
+[u′i]0, i = 1, N,

[ẋ′i(t)]1 = −di[x′i(t− δ)]1

+
N∑
j=1

(
[a′ij]0[f ′j]1(xj(t)) + [a′ij]1[f ′j]0(xj(t)) + [a′ij]2[f ′j]3(xj(t))− [a′ij]3[f ′j]2(xj(t))

)
+

N∑
j=1

(
[b′ij]0[f ′j]1(xj(t− τij(t))) + [b′ij]1[f ′j]0(xj(t− τij(t)))

+[b′ij]2[f ′j]3(xj(t− τij(t)))− [b′ij]3[f ′j]2(xj(t− τij(t)))
)

+
N∑
j=1

(
[c′ij]0

∫ t

t−ηij(t)
[f ′j]1(xj(s))ds+ [c′ij]1

∫ t

t−ηij(t)
[f ′j]0(xj(s))ds

+[c′ij]2

∫ t

t−ηij(t)
[f ′j]3(xj(s))ds− [c′ij]3

∫ t

t−ηij(t)
[f ′j]2(xj(s))ds

)
+[u′i]1, i = 1, N,

[ẋ′i(t)]2 = −di[x′i(t− δ)]2

+
N∑
j=1

(
[a′ij]0[f ′j]2(xj(t))− [a′ij]1[f ′j]3(xj(t)) + [a′ij]2[f ′j]0(xj(t)) + [a′ij]3[f ′j]1(xj(t))

)
+

N∑
j=1

(
[b′ij]0[f ′j]2(xj(t− τij(t)))− [b′ij]1[f ′j]3(xj(t− τij(t)))

+[b′ij]2[f ′j]0(xj(t− τij(t))) + [b′ij]3[f ′j]1(xj(t− τij(t)))
)

+
N∑
j=1

(
[c′ij]0

∫ t

t−ηij(t)
[f ′j]2(xj(s))ds− [c′ij]1

∫ t

t−ηij(t)
[f ′j]3(xj(s))ds

+[c′ij]2

∫ t

t−ηij(t)
[f ′j]0(xj(s))ds+ [c′ij]3

∫ t

t−ηij(t)
[f ′j]1(xj(s))ds

)



144 6. Dynamics of octonion-valued neural networks (OVNNs)

+[u′i]2, i = 1, N,

[ẋ′i(t)]3 = −di[x′i(t− δ)]3

+
N∑
j=1

(
[a′ij]0[f ′j]3(xj(t)) + [a′ij]1[f ′j]2(xj(t))− [a′ij]2[f ′j]1(xj(t)) + [a′ij]3[f ′j]0(xj(t))

)
+

N∑
j=1

(
[b′ij]0[f ′j]3(xj(t− τij(t))) + [b′ij]1[f ′j]2(xj(t− τij(t)))

−[b′ij]2[f ′j]1(xj(t− τij(t))) + [b′ij]3[f ′j]0(xj(t− τij(t)))
)

+
N∑
j=1

(
[c′ij]0

∫ t

t−ηij(t)
[f ′j]3(xj(s))ds+ [c′ij]1

∫ t

t−ηij(t)
[f ′j]2(xj(s))ds

−[c′ij]2

∫ t

t−ηij(t)
[f ′j]1(xj(s))ds+ [c′ij]3

∫ t

t−ηij(t)
[f ′j]0(xj(s))ds

)
+[u′i]3, i = 1, N. (6.6.2)

By shifting the equilibrium point x̂ of (6.6.2) to the origin, we have that

[ ˙̃x′(t)]0 = −D[x̃′(t− δ)]0
+
(

[A′]0[f̃ ′]0(x̃(t))− [A′]1[f̃ ′]1(x̃(t))− [A′]2[f̃ ′]2(x̃(t))− [A′]3[f̃ ′]3(x̃(t))
)

+
(

[B′]0[f̃ ′]0(x̃(t− τ(t)))− [B′]1[f̃ ′]1(x̃(t− τ(t)))

−[B′]2[f̃ ′]2(x̃(t− τ(t)))− [B′]3[f̃ ′]3(x̃(t− τ(t)))
)

+

(
[C ′]0

∫ t

t−η(t)

[f̃ ′]0(x̃(s))ds− [C ′]1

∫ t

t−η(t)

[f̃ ′]1(x̃(s))ds

−[C ′]2

∫ t

t−η(t)

[f̃ ′]2(x̃(s))ds− [C ′]3

∫ t

t−η(t)

[f̃ ′]3(x̃(s))ds

)
,

[ ˙̃x′(t)]1 = −D[x̃′(t− δ)]1
+
(

[A′]0[f̃ ′]1(x̃(t)) + [A′]1[f̃ ′]0(x̃(t)) + [A′]2[f̃ ′]3(x̃(t))− [A′]3[f̃ ′]2(x̃(t))
)

+
(

[B′]0[f̃ ′]1(x̃(t− τ(t))) + [B′]1[f̃ ′]0(x̃(t− τ(t)))

+[B′]2[f̃ ′]3(x̃(t− τ(t)))− [B′]3[f̃ ′]2(x̃(t− τ(t)))
)

+

(
[C ′]0

∫ t

t−η(t)

[f̃ ′]1(x̃(s))ds+ [C ′]1

∫ t

t−η(t)

[f̃ ′]0(x̃(s))ds

+[C ′]2

∫ t

t−η(t)

[f̃ ′]3(x̃(s))ds− [C ′]3

∫ t

t−η(t)

[f̃ ′]2(x̃(s))ds

)
,

[ ˙̃x′(t)]2 = −D[x̃′(t− δ)]2
+
(

[A′]0[f̃ ′]2(x̃(t))− [A′]1[f̃ ′]3(x̃(t)) + [A′]2[f̃ ′]0(x̃(t)) + [A′]3[f̃ ′]1(x̃(t))
)

+
(

[B′]0[f̃ ′]2(x̃(t− τ(t)))− [B′]1[f̃ ′]3(x̃(t− τ(t)))



6. Dynamics of octonion-valued neural networks (OVNNs) 145

+[B′]2[f̃ ′]0(x̃(t− τ(t))) + [B′]3[f̃ ′]1(x̃(t− τ(t)))
)

+

(
[C ′]0

∫ t

t−η(t)

[f̃ ′]2(x̃(s))ds− [C ′]1

∫ t

t−η(t)

[f̃ ′]3(x̃(s))ds

+[C ′]2

∫ t

t−η(t)

[f̃ ′]0(x̃(s))ds+ [C ′]3

∫ t

t−η(t)

[f̃ ′]1(x̃(s))ds

)
,

[ ˙̃x′(t)]3 = −D[x̃′(t− δ)]3
+
(

[A′]0[f̃ ′]3(x̃(t)) + [A′]1[f̃ ′]2(x̃(t))− [A′]2[f̃ ′]1(x̃(t)) + [A′]3[f̃ ′]0(x̃(t))
)

+
(

[B′]0[f̃ ′]3(x̃(t− τ(t))) + [B′]1[f̃ ′]2(x̃(t− τ(t)))

−[B′]2[f̃ ′]1(x̃(t− τ(t))) + [B′]3[f̃ ′]0(x̃(t− τ(t)))
)

+

(
[C ′]0

∫ t

t−η(t)

[f̃ ′]3(x̃(s))ds+ [C ′]1

∫ t

t−η(t)

[f̃ ′]2(x̃(s))ds

−[C ′]2

∫ t

t−η(t)

[f̃ ′]1(x̃(s))ds+ [C ′]3

∫ t

t−η(t)

[f̃ ′]0(x̃(s))ds

)
, (6.6.3)

where [x̃′(t)]p = [x′(t)]p − [x̂′]p, [f̃ ′]p(x̃(t)) = [f ′]p(x(t))− [f ′]p(x̂), ∀p ∈ {0, 1, 2, 3}.
By denoting

ỹ(t) =
(
[x̃′(t)]H0 , [x̃

′(t)]H1 , [x̃
′(t)]H2 , [x̃

′(t)]H3
)H ∈ C4N ,

D =


D 0 0 0
0 D 0 0
0 0 D 0
0 0 0 D

 ∈ R4N×4N ,

A =


[A′]0 −[A′]1 −[A′]2 −[A′]3
[A′]1 [A′]0 −[A′]3 [A′]2
[A′]2 [A′]3 [A′]0 −[A′]1
[A′]3 −[A′]2 [A′]1 [A′]0

 ∈ C4N×4N ,

B =


[B′]0 −[B′]1 −[B′]2 −[B′]3
[B′]1 [B′]0 −[B′]3 [B′]2
[B′]2 [B′]3 [B′]0 −[B′]1
[B′]3 −[B′]2 [B′]1 [B′]0

 ∈ C4N×4N ,

C =


[C ′]0 −[C ′]1 −[C ′]2 −[C ′]3
[C ′]1 [C ′]0 −[C ′]3 [C ′]2
[C ′]2 [C ′]3 [C ′]0 −[C ′]1
[C ′]3 −[C ′]2 [C ′]1 [C ′]0

 ∈ C4N×4N ,

f̃(ỹ(t)) =
(

[f̃ ′]H0 (x(t)), [f̃ ′]H1 (x(t)), [f̃ ′]H2 (x(t)), [f̃ ′]H3 (x(t))
)H
∈ C4N ,

system (6.6.3) becomes:

˙̃y(t) = −Dỹ(t− δ) + Af̃(ỹ(t)) +Bf̃(ỹ(t− τ(t))) + C

∫ t

t−η(t)

f̃(ỹ(s))ds. (6.6.4)



146 6. Dynamics of octonion-valued neural networks (OVNNs)

Remark 6.5. Systems (6.6.3), (6.6.4), and (6.6.1) are equivalent. This means that any property
of systems (6.6.3), (6.6.4) will also be true for system (6.6.1). Thus, the global exponential
stability of the origin of systems (6.6.3), (6.6.4) will imply the global exponential stability of
the equilibrium point of (6.6.1).

We will also need the following lemmas:

Lemma 6.4. ([36]) For any vector function x : [a, b] → C4N and any positive definite matrix
M ∈ C4N×4N , the following linear matrix inequality (LMI) holds:(∫ b

a

x(s)ds

)H
M

(∫ b

a

x(s)ds

)
≤ (b− a)

∫ b

a

xH(s)Mx(s)ds,

where the integrals are well defined.

Lemma 6.5. ([218]) For any vector function x : [a, b]→ C4N and any positive definite matrix
M ∈ C4N×4N , the following linear matrix inequality (LMI) holds:(∫ b

a

∫ b

θ

x(s)dsdθ

)H
M

(∫ b

a

∫ b

θ

x(s)dsdθ

)
≤ (b− a)2

2

∫ b

a

∫ b

θ

xH(s)Mx(s)dsdθ,

where the integrals are well defined.

We will first give an LMI-based sufficient condition for the exponential stability of the origin
of (6.6.3).

Theorem 6.4. If Assumptions 6.2 and 6.3 hold, then the origin of system (6.6.3) is globally
exponentially stable if there exist positive definite matrices Pp, Qp, Rp, Sp, T 1

p , T 2
p , Up, Wp,

Zp ∈ CN×N , any matrices N1
p , N2

p , N3
p , N4

p , N5
p ∈ CN×N , and positive definite diagonal

matrices G1
p, G

2
p ∈ RN×N , such that the following linear matrix inequalities (LMIs) hold

(Πp)19×19 < 0, (6.6.5)

∀p ∈ {0, 1, 2, 3}, where (Πp)1,2 = Qp, (Πp)1,3 = −PpD+QpD, (Πp)1,4 = e−2ετUp, (Πp)1,6:9 =

PpAp, (Πp)1,10:13 = PpBp, (Πp)1,14 = −2εQpD +DQpD, (Πp)1,15 = 4τe−2ετZp, (Πp)1,16:19 =

PpCp, (Πp)2,2 = τ 2Up + τ 4Zp−N1
p − (N1

p )H , (Πp)2,3 = −N1
pD− (N2

p )H , (Πp)2,6:9 = N1
pAp +

(N3
p )HEp, (Πp)2,10:13 = N1

pBp+(N4
p )HEp, (Πp)2,14 = −QpD, (Πp)2,16:19 = N1

pCp+(N5
p )HEp,

(Πp)3,3 = −e−2εδRp − N2
pD − D(N2

p )H , (Πp)3,6:9 = N2
pAp + D(N3

p )HEp, (Πp)3,10:13 =

N2
pBp + D(N4

p )HEp, (Πp)3,14 = −DQpD, (Πp)3,16:19 = N2
pCp + D(N5

p )HEp, (Πp)4,4 =

−e−2ετUp, (Πp)5,5 = −(1−τ ′)e−2ετT 1
p +L[f̃ ′]p

H
G2
pL[f̃ ′]p

,(Πp)6:9,6:9 = E
H

p T
2
pEp+η

2E
H

p WpEp−

E
H

p G
1
pEp−E

H

p N
3
p

(
Ap − ApE

H

p Ep

)
−
(
Ap − ApE

H

p Ep

)H
(N3

p )HEp−1
4

∑3
q=0 E

H

q

(
N3
qAqE

H

q +

EqA
H

q (N3
q )H
)
Eq, (Πp)6:9,10:13 = −EH

p N
3
pBp − A

H

p (N4
p )HEp, (Πp)6:9,16:19 = −EH

p N
3
pCp −

A
H

(N5)HEp, (Πp)10:13,10:13 = −(1−τ ′)e−2ετE
H

p T
2
pEp−E

H

p G
2
pEp−E

H

p N
4
p

(
Bp −BpE

H

p Ep

)
−(

Bp −BpE
H

p Ep

)H
(N4

p )HEp−1
4

∑3
q=0E

H

q

(
N4
qBqE

H

q + EqB
H

q (N4
q )H
)
Eq, (Πp)10:13,16:19 =

−EH

p N
4
pCp − B

H

p (N5
p )HEp, (Πp)14,14 = 2εDQpD − e−2εδSp, (Πp)15,15 = −4e−2ετZp,

(Πp)16:19,16:19 = −e−2εηE
H

p WpEp−E
H

p N
5
p

(
Cp − CpE

H

p Ep

)
−
(
Cp − CpE

H

p Ep

)H
(N5

p )HEp

−1
4

∑3
q=0 E

H

q

(
N5
qCqE

H

q + EqC
H

q (N5
q )H
)
Eq.



6. Dynamics of octonion-valued neural networks (OVNNs) 147

We denoted by Ap the (p + 1)-th row of A (and analogously for Bp and Cp) and by Ep the
(p+ 1)-th row of

E =


IN 0 0 0
0 IN 0 0
0 0 IN 0
0 0 0 IN

 ∈ R4N×4N ,

∀p ∈ {0, 1, 2, 3}.
Proof. Consider the Lyapunov–Krasovskii functional

V (t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t) + V6(t) + V7(t) + V8(t),

V1(t) =
3∑
p=0

e2εt[x̃′(t)]Hp Pp[x̃
′(t)]p,

V2(t) =
3∑
p=0

e2εt

(
[x̃′(t)]p −D

∫ t

t−δ
[x̃′(s)]pds

)H
Qp

(
[x̃′(t)]p −D

∫ t

t−δ
[x̃′(s)]pds

)
,

V3(t) =
3∑
p=0

∫ t

t−δ
e2εs[x̃′(s)]Hp Rp[x̃

′(s)]pds,

V4(t) = δ
3∑
p=0

∫ 0

−δ

∫ t

t+θ

e2εs[x̃′(s)]Hp Sp[x̃
′(s)]pdsdθ,

V5(t) =
3∑
p=0

∫ t

t−τ(t)

e2εsξHp (s)Tpξp(s)ds, Tp = diag(T 1
p , T

2
p ),

ξp(s) =
[
[x̃′(s)]Hp [f̃ ′]Hp (x̃(s))

]H
,

V6(t) = τ
3∑
p=0

∫ 0

−τ

∫ t

t+θ

e2εs[ ˙̃x′(s)]Hp Up[ ˙̃x′(s)]pdsdθ,

V7(t) = η
3∑
p=0

∫ 0

−η

∫ t

t+θ

e2εs[f̃ ′]Hp (x̃(s))Wp[f̃
′]p(x̃(s))dsdθ,

V8(t) = 2τ 2

3∑
p=0

∫ 0

−τ

∫ 0

λ

∫ t

t+θ

e2εs[ ˙̃x′(s)]Hp Zp[ ˙̃x′(s)]pdsdθdλ.

The derivative of V along the trajectories of system (6.6.3) is

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t) + V̇5(t) + V̇6(t) + V̇7(t) + V̇8(t),

V̇1(t) =
3∑
p=0

e2εt
(
2ε[x̃′(t)]Hp Pp[x̃

′(t)]p + [ ˙̃x′(t)]Hp Pp[x̃
′(t)]p + [x̃′(t)]Hp Pp[ ˙̃x′(t)]p

)
=

3∑
p=0

e2εt
(

2ε[x̃′(t)]Hp Pp[x̃
′(t)]p +

(
−D[x̃′(t− δ)]p +Apf̃(ỹ(t)) +Bpf̃(ỹ(t− τ(t)))

+Cp

∫ t

t−η(t)
f̃(ỹ(s))ds

)H
Pp[x̃

′(t)]p + [x̃′(t)]Hp Pp

(
−D[x̃′(t− δ)]p +Apf̃(ỹ(t))

+Bpf̃(ỹ(t− τ(t))) + Cp

∫ t

t−η(t)
f̃(ỹ(s))ds

))
, (6.6.6)



148 6. Dynamics of octonion-valued neural networks (OVNNs)

V̇2(t) =
3∑
p=0

e2εt

(
2ε

(
[x̃′(t)]p −D

∫ t

t−δ
[x̃′(s)]pds

)H
Qp

(
[x̃′(t)]p −D

∫ t

t−δ
[x̃′(s)]pds

)

+
(
[ ˙̃x′(t)]p −D[x̃′(t)]p +D[x̃′(t− δ)]p

)H
Qp

(
[x̃′(t)]p −D

∫ t

t−δ
[x̃′(s)]pds

)
+

(
[x̃′(t)]p −D

∫ t

t−δ
[x̃′(s)]pds

)H
Qp
(
[ ˙̃x′(t)]p −D[x̃′(t)]p +D[x̃′(t− δ)]p

))
,

(6.6.7)

V̇3(t) =
3∑
p=0

e2εt
(

[x̃′(t)]Hp Rp[x̃
′(t)]p − e−2εδ[x̃′(t− δ)]Hp Rp[x̃′(t− δ)]p

)
, (6.6.8)

V̇4(t) =
3∑
p=0

(
δ2e2εt[x̃′(t)]Hp Sp[x̃

′(t)]p − δ
∫ t

t−δ
e2εs[x̃′(s)]Hp Sp[x̃

′(s)]pds

)

≤
3∑
p=0

e2εt

(
δ2[x̃′(t)]Hp Sp[x̃

′(t)]p − e−2εδ

(∫ t

t−δ
[x̃′(s)]pds

)H
Sp

(∫ t

t−δ
[x̃′(s)]pds

))
,

(6.6.9)

V̇5(t) =

3∑
p=0

e2εt
(
ξHp (t)Tpξp(t)− (1− τ̇(t))e−2ετ(t)ξHp (t− τ(t))Tpξp(t− τ(t))

)

≤
3∑
p=0

e2εt
(
ξHp (t)Tpξp(t)− (1− τ ′)e−2ετξHp (t− τ(t))Tpξp(t− τ(t))

)
, (6.6.10)

V̇6(t) =

3∑
p=0

(
τ2e2εt[ ˙̃x′(t)]Hp Up[ ˙̃x′(t)]p − τ

∫ t

t−τ
e2εs[ ˙̃x′(s)]Hp Up[ ˙̃x′(s)]pds

)

≤ e2εt

(
τ2[ ˙̃x′(t)]Hp Up[ ˙̃x′(t)]p − e−2ετ

(∫ t

t−τ
[ ˙̃x′(s)]pds

)H
Up

(∫ t

t−τ
[ ˙̃x′(s)]pds

))
= e2εt

(
τ2[ ˙̃x′(t)]Hp Up[ ˙̃x′(t)]p

−e−2ετ
(
[x̃′(t)]p − [x̃′(t− τ)]p

)H
Up
(
[x̃′(t)]p − [x̃′(t− τ)]p

))
, (6.6.11)

V̇7(t) =

3∑
p=0

(
η2e2εt[f̃ ′]Hp (x̃(t))Wp[f̃

′]p(x̃(t))− η
∫ t

t−η
e2εs[f̃ ′]Hp (x̃(s))Wp[f̃

′]p(x̃(s))ds

)

≤
3∑
p=0

(
η2e2εt[f̃ ′]Hp (x̃(t))Wp[f̃

′]p(x̃(t))− η(t)

∫ t

t−η(t)
e2εs[f̃ ′]Hp (x̃(s))Wp[f̃

′]p(x̃(s))ds

)

≤
3∑
p=0

e2εt
(
η2[f̃ ′]Hp (x̃(t))Wp[f̃

′]p(x̃(t))

−e−2εη(t)

(∫ t

t−η(t)
[f̃ ′]p(x̃(s))ds

)H
Wp

(∫ t

t−η(t)
[f̃ ′]p(x̃(s))ds

)



6. Dynamics of octonion-valued neural networks (OVNNs) 149

≤
3∑
p=0

e2εt
(
η2[f̃ ′]Hp (x̃(t))Wp[f̃

′]p(x̃(t))

−e−2εη

(∫ t

t−η(t)
[f̃ ′]p(x̃(s))ds

)H
Wp

(∫ t

t−η(t)
[f̃ ′]p(x̃(s))ds

) , (6.6.12)

V̇8(t) =
3∑
p=0

(
τ4e2εt[ ˙̃x′(t)]Hp Zp[ ˙̃x′(t)]p − 2τ2

∫ 0

−τ

∫ t

t+θ
e2εs[ ˙̃x′(s)]Hp Zp[ ˙̃x′(s)]pdsdθ

)

≤
3∑
p=0

e2εt
(
τ4[ ˙̃x′(t)]Hp Zp[ ˙̃x′(t)]p

−4e−2ετ

(∫ 0

−τ

∫ t

t+θ
[ ˙̃x′(s)]pdsdθ

)H
Zp

(∫ 0

−τ

∫ t

t+θ
[ ˙̃x′(s)]pdsdθ

))

=
3∑
p=0

e2εt
(
τ4[ ˙̃x′(t)]Hp Zp[ ˙̃x′(t)]p

−4e−2ετ

(∫ 0

−τ

(
[x̃′(t)]p − [x̃′(t+ θ)]p

)
dθ

)H
Zp

(∫ 0

−τ

(
[x̃′(t)]p − [x̃′(t+ θ)]p

)
dθ

))

=
3∑
p=0

e2εt
(
τ4[ ˙̃x′(t)]Hp Zp[ ˙̃x′(t)]p

−4e−2ετ

(
τ [x̃′(t)]p −

∫ t

t−τ
[x̃′(s)]pds

)H
Zp

(
τ [x̃′(t)]p −

∫ t

t−τ
[x̃′(s)]pds

))
, (6.6.13)

where we have used Assumption 6.2 to obtain the inequalities in (6.6.10) and (6.6.12), Lemma
6.4 to obtain the inequalities in (6.6.9), (6.6.11), and (6.6.12), and Lemma 6.5 to obtain the
inequality in (6.6.13).

From Assumption 6.3 about the Lipschitz condition, we can deduce that there exist positive
definite diagonal matrices G1

p = diag
(
r1
j,p

)
1≤j≤N and G2

p = diag
(
r2
j,p

)
1≤j≤N , such that

0 ≤ [x̃′(t)]Hp L[f̃ ′]p

H
G1
pL[f̃ ′]p

[x̃′(t)]p − [f̃ ′]Hp (x̃(t))G1
p[f̃
′]p(x̃(t)), (6.6.14)

0 ≤ [x̃′(t− τ(t))]Hp L[f̃ ′]p

H
G2
pL[f̃ ′]p

[x̃′(t− τ(t))]p − [f̃ ′]Hp (x̃(t− τ(t)))G2
p[f̃
′]p(x̃(t− τ(t))),

(6.6.15)
where we denoted L[f̃ ′]p

= diag
(
l
[f ′]p
j

)
1≤j≤N

, and l[f
′]p

j are the Lipschitz constants of the func-

tions fj , ∀p ∈ {0, 1, 2, 3}, ∀j = 1, N .
Also, for any matrices N1

p , N2
p , N3

p , N4
p , N5

p ∈ C4N×4N we have that

0 =

[ ˙̃x′(t)]Hp N
1
p + [x̃′(t− δ)]Hp N2

p − [f̃ ′]Hp (x̃(t))N3
p − [f̃ ′]Hp (x̃(t− τ(t)))N4

p −

(∫ t

t−η(t)
[f̃ ′]p(x̃(s))ds

)H
N5
p


×

[
−[ ˙̃x′(t)]p −D[x̃′(t− δ)]p +Apf̃(ỹ(t)) +Bpf̃(ỹ(t− τ(t))) + Cp

∫ t

t−η(t)
f̃(ỹ(s))ds

]
= −[ ˙̃x′(t)]Hp N

1
p [ ˙̃x′(t)]p − [ ˙̃x′(t)]Hp N

1
pD[x̃′(t− δ)]p + [ ˙̃x′(t)]Hp N

1
pApf̃(ỹ(t)) + [ ˙̃x′(t)]Hp N

1
pBpf̃(ỹ(t− τ(t)))

+[ ˙̃x′(t)]Hp N
1
pCp

∫ t

t−η(t)
f̃(ỹ(s))ds− [x̃′(t− δ)]Hp N2

p [ ˙̃x′(t)]p − [x̃′(t− δ)]Hp N2
pD[x̃′(t− δ)]p



150 6. Dynamics of octonion-valued neural networks (OVNNs)

+[x̃′(t− δ)]Hp N2
pApf̃(ỹ(t)) + [x̃′(t− δ)]Hp N2

pBpf̃(ỹ(t− τ(t))) + [x̃′(t− δ)]Hp N2
pCp

∫ t

t−η(t)
f̃(ỹ(s))ds

+[f̃ ′]Hp (x̃(t))N3
p [ ˙̃x′(t)]p + [f̃ ′]Hp (x̃(t))N3

pD[x̃′(t− δ)]p − [f̃ ′]Hp (x̃(t))N3
pApf̃(ỹ(t))

−[f̃ ′]Hp (x̃(t))N3
pBpf̃(ỹ(t− τ(t)))− [f̃ ′]Hp (x̃(t))N3

pCp

∫ t

t−η(t)
f̃(ỹ(s))ds

+[f̃ ′]Hp (x̃(t− τ(t)))N4
p [ ˙̃x′(t)]p + [f̃ ′]Hp (x̃(t− τ(t)))N4

pD[x̃′(t− δ)]p − [f̃ ′]Hp (x̃(t− τ(t)))N4
pApf̃(ỹ(t))

−[f̃ ′]Hp (x̃(t− τ(t)))N4
pBpf̃(ỹ(t− τ(t)))− [f̃ ′]Hp (x̃(t− τ(t)))N4

pCp

∫ t

t−η(t)
f̃(ỹ(s))ds

+

(∫ t

t−η(t)
[f̃ ′]p(x̃(s))ds

)H
N5
p [ ˙̃x′(t)]p +

(∫ t

t−η(t)
[f̃ ′]p(x̃(s))ds

)H
N5
pD[x̃′(t− δ)]p

−

(∫ t

t−η(t)
[f̃ ′]p(x̃(s))ds

)H
N5
pApf̃(ỹ(t))−

(∫ t

t−η(t)
[f̃ ′]p(x̃(s))ds

)H
N5
pBpf̃(ỹ(t− τ(t)))

−

(∫ t

t−η(t)
[f̃ ′]p(x̃(s))ds

)H
N5
pCp

∫ t

t−η(t)
f̃(ỹ(s))ds. (6.6.16)

Now, taking the conjugate of (6.6.16), adding it to (6.6.16), and then multiplying the re-
sult by e2εt, then multiplying inequalities (6.6.14)–(6.6.15) by e2εt and adding them all to
(6.6.6)–(6.6.13), we obtain

V̇ (t) ≤
3∑
p=0

ζHp (t)Πpζp(t),

where Πp are defined by (6.6.5), and

ζp(t) =
[

[x̃′(t)]Hp [ ˙̃x′(t)]Hp [x̃′(t− δ)]Hp [x̃′(t− τ)]Hp [x̃′(t− τ(t))]Hp f̃H(ỹ(t))

f̃H(ỹ(t− τ(t)))
(∫ t

t−δ[x̃
′(s)]pds

)H (∫ t
t−τ [x̃

′(s)]pds
)H (∫ t

t−η(t)
f̃(ỹ(s))ds

)H ]H
,

∀p ∈ {0, 1, 2, 3}. From (6.6.5) we have that Πp < 0, ∀p ∈ {0, 1, 2, 3}, which implies that
V̇ (t) < 0, meaning that V (t) is strictly decreasing for t ≥ 0. It can be further deduced from the
definition of V (t) that

3∑
p=0

e2εtλmin(Pp)||[x̃′(t)]p||2 ≤
3∑
p=0

e2εt[x̃′(t)]Hp Pp[x̃
′(t)]p ≤ V (t) ≤ V0, ∀t ≥ T, T ≥ 0,

where V0 = max
0≤t≤T

V (t). Thus,

3∑
p=0

||[x̃′(t)]p||2 ≤
V0

minp∈{0,1,2,3} λmin(Pp)
e−2εt ⇔

√√√√ 3∑
p=0

||[x̃′(t)]p||2 ≤Me−εt, ∀t ≥ 0,

where M =
√

V0
minp∈{0,1,2,3} λmin(Pp)

. The above inequality proves the global exponential stability
of the origin of system (6.6.3), completing the proof of the theorem.

Remark 6.6. Although it seems complicated, the LMI sufficient criterion in (6.6.5) is very sim-
ilar to the ones obtained in the literature for real-valued networks [236]. The computing com-
plexity expressed as the total number of real scalar decision variables (NDV) is 76n2 + 44n.
For comparison, the NDV of Theorem 1 by [236] is 15n2 + 16n, which would yield and NDV



6. Dynamics of octonion-valued neural networks (OVNNs) 151

of 120n2 + 128n for OVNNs, because they have 8 times the number of real parameters. It can
be seen that our result has a lower computational complexity than the one given by [236], for
similar real-valued networks.

Now, we give an LMI-based sufficient condition for the exponential stability of the origin
of (6.6.4).

Theorem 6.5. If Assumptions 6.2 and 6.4 hold, then the origin of system (6.6.4) is globally
exponentially stable if there exist positive definite matrices P , Q, R, S, T 1, T 2, U , W , Z ∈
C4N×4N , any matrices N1, N2, N3, N4, N5 ∈ C4N×4N , and positive definite block-diagonal
matrices G1, G2 ∈ R4N×4N , such that the following linear matrix inequality (LMI) holds

(Π)10×10 < 0, (6.6.17)

where
Π1,1 = 2εP+2εQ−DQ−QD+R+δ2S+T 1−e−2ετU−4τ 2e−2ετZ+Lf̃

H
G1Lf̃ ,Π1,2 = Q,

Π1,3 = −PD + QD, Π1,4 = e−2ετU , Π1,6 = PA, Π1,7 = PB, Π1,8 = −2εQD + DQD,
Π1,9 = 4τe−2ετZ, Π1,10 = PC, Π2,2 = τ 2U + τ 4Z − N1 − (N1)H , Π2,3 = −N1D − (N2)H ,
Π2,6 = N1A + (N3)H , Π2,7 = N1B + (N4)H , Π2,8 = −QD, Π2,10 = N1C + (N5)H , Π3,3 =
−e−2εδR−N2D−D(N2)H ,Π3,6 = N2A+D(N3)H , Π3,7 = N2B+D(N4)H , Π3,8 = −DQD,
Π3,10 = N2C + D(N5)H , Π4,4 = −e−2ετU , Π5,5 = −(1 − τ ′)e−2ετT 1 + Lf̃

H
G2Lf̃ , Π6,6 =

T 2 +η2W −N3A−AH(N3)H−G1, Π6,7 = −N3B−AH(N4)H , Π6,10 = −N3C−AH(N5)H ,
Π7,7 = −(1 − τ ′)e−2ετT 2 − N4B − B

H
(N4)H − G2, Π7,10 = −N4C − B

H
(N5)H , Π8,8 =

2εDQD − e−2εδS, Π9,9 = −4e−2ετZ, Π10,10 = −e−2εηW −N5C − CH
(N5)H .

Proof. Consider the Lyapunov–Krasovskii functional

V (t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t) + V6(t) + V7(t) + V8(t),

V1(t) = e2εtỹH(t)P ỹ(t),

V2(t) = e2εt

(
ỹ(t)−D

∫ t

t−δ
ỹ(s)ds

)H
Q

(
ỹ(t)−D

∫ t

t−δ
ỹ(s)ds

)
,

V3(t) =

∫ t

t−δ
e2εsỹH(s)Rỹ(s)ds,

V4(t) = δ

∫ 0

−δ

∫ t

t+θ

e2εsỹH(s)Sỹ(s)dsdθ,

V5(t) =

∫ t

t−τ(t)

e2εsξH(s)Tξ(s)ds, T = diag(T 1, T 2),

ξ(s) =
[
[ỹ(s)]H [f̃ ]H(ỹ(s))

]H
,

V6(t) = τ

∫ 0

−τ

∫ t

t+θ

e2εs ˙̃yH(s)U ˙̃y(s)dsdθ,

V7(t) = η

∫ 0

−η

∫ t

t+θ

e2εsf̃H(ỹ(s))Wf̃(ỹ(s))dsdθ,

V8(t) = 2τ 2

∫ 0

−τ

∫ 0

θ

∫ t

t+λ

e2εs ˙̃yH(s)Z ˙̃y(s)dsdλdθ.



152 6. Dynamics of octonion-valued neural networks (OVNNs)

The derivative of V along the trajectories of system (6.6.4) is

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t) + V̇5(t) + V̇6(t) + V̇7(t) + V̇8(t),

V̇1(t) = e2εt
(
2εỹH(t)P ỹ(t) + ˙̃yH(t)P ỹ(t) + ỹH(t)P ˙̃y(t)

)
= e2εt

(
2εỹH(t)P ỹ(t) +

(
−Dỹ(t− δ) +Af̃(ỹ(t)) +Bf̃(ỹ(t− τ(t)))

+C

∫ t

t−η(t)
f̃(ỹ(s))ds

)H
P ỹ(t) + ỹH(t)P

(
−Dỹ(t− δ) +Af̃(ỹ(t))

+Bf̃(ỹ(t− τ(t))) + C

∫ t

t−η(t)
f̃(ỹ(s))ds

))
, (6.6.18)

V̇2(t) = e2εt

(
2ε

(
ỹ(t)−D

∫ t

t−δ
ỹ(s)ds

)H
Q

(
ỹ(t)−D

∫ t

t−δ
ỹ(s)ds

)
+
(

˙̃y(t)−Dỹ(t) +Dỹ(t− δ)
)H

Q

(
ỹ(t)−D

∫ t

t−δ
ỹ(s)ds

)
+

(
ỹ(t)−D

∫ t

t−δ
ỹ(s)ds

)H
Q
(

˙̃y(t)−Dỹ(t) +Dỹ(t− δ)
))

, (6.6.19)

V̇3(t) = e2εt
(
ỹH(t)Rỹ(t)− e−2εδỹH(t− δ)Rỹ(t− δ)

)
, (6.6.20)

V̇4(t) = δ2e2εtỹH(t)Sỹ(t)− δ
∫ t

t−δ
e2εsỹH(s)Sỹ(s)ds

≤ e2εt

(
δ2ỹH(t)Sỹ(t)− e−2εδ

(∫ t

t−δ
ỹ(s)ds

)H
S

(∫ t

t−δ
ỹ(s)ds

))
, (6.6.21)

V̇5(t) = e2εt
(
ξH(t)Tξ(t)− (1− τ̇(t))e−2ετ(t)ξH(t− τ(t))Tξ(t− τ(t))

)
≤ e2εt

(
ξH(t)Tξ(t)− (1− τ ′)e−2ετξH(t− τ(t))Tξ(t− τ(t))

)
, (6.6.22)

V̇6(t) = τ2e2εt ˙̃yH(t)U ˙̃y(t)− τ
∫ t

t−τ
e2εs ˙̃yH(s)U ˙̃y(s)ds

≤ e2εt

(
τ2 ˙̃yH(t)U ˙̃y(t)− e−2ετ

(∫ t

t−τ
˙̃y(s)ds

)H
U

(∫ t

t−τ
˙̃y(s)ds

))
= e2εt

(
τ2 ˙̃yH(t)U ˙̃y(t)− e−2ετ (ỹ(t)− ỹ(t− τ))H U (ỹ(t)− ỹ(t− τ))

)
, (6.6.23)

V̇7(t) = η2e2εtf̃H(ỹ(t))Wf̃(ỹ(t))− η
∫ t

t−η
e2εsf̃H(ỹ(s))Wf̃(ỹ(s))ds

≤ η2e2εtf̃H(ỹ(t))Wf̃(ỹ(t))− η(t)

∫ t

t−η(t)
e2εsf̃H(ỹ(s))Wf̃(ỹ(s))ds

≤ e2εt

η2f̃H(ỹ(t))Wf̃(ỹ(t))− e−2εη(t)

(∫ t

t−η(t)
f̃(ỹ(s))ds

)H
W

(∫ t

t−η(t)
f̃(ỹ(s))ds

)
≤ e2εt

η2f̃H(ỹ(t))Wf̃(ỹ(t))− e−2εη

(∫ t

t−η(t)
f̃(ỹ(s))ds

)H
W

(∫ t

t−η(t)
f̃(ỹ(s))ds

) ,

(6.6.24)



6. Dynamics of octonion-valued neural networks (OVNNs) 153

V̇8(t) = τ4e2εt ˙̃yH(t)Z ˙̃y(t)− 2τ2

∫ 0

−τ

∫ t

t+θ
e2εs ˙̃yH(s)Z ˙̃y(s)dsdθ

≤ e2εt

(
τ4 ˙̃yH(t)Z ˙̃y(t)− 4e−2ετ

(∫ 0

−τ

∫ t

t+θ

˙̃y(s)dsdθ

)H
Z

(∫ 0

−τ

∫ t

t+θ

˙̃y(s)dsdθ

))

= e2εt

(
τ4 ˙̃yH(t)Z ˙̃y(t)− 4e−2ετ

(∫ 0

−τ
(ỹ(t)− ỹ(t+ θ)) dθ

)H
Z

(∫ 0

−τ
(ỹ(t)− ỹ(t+ θ)) dθ

))

= e2εt

(
τ4 ˙̃yH(t)Z ˙̃y(t)− 4e−2ετ

(
τ ỹ(t)−

∫ t

t−τ
ỹ(s)ds

)H
Z

(
τ ỹ(t)−

∫ t

t−τ
ỹ(s)ds

))
,(6.6.25)

where we have used Assumption 6.2 to obtain the inequalities in (6.6.22) and (6.6.24), Lemma
6.4 to obtain the inequalities in (6.6.21), (6.6.23), and (6.6.24), and Lemma 6.5 to obtain the
inequality in (6.6.25).

From Assumption 6.4 about the Lipschitz condition, we can deduce that there exist positive
definite block-diagonal matrices G1 = diag

(
r1
j I4

)
1≤j≤N and G2 = diag

(
r2
j I4

)
1≤j≤N , such that

0 ≤ ỹH(t)Lf̃
H
G1Lf̃ ỹ(t)− f̃H(ỹ(t))G1f̃(ỹ(t)), (6.6.26)

0 ≤ ỹH(t− τ(t))Lf̃
H
G2Lf̃ ỹ(t− τ(t))− f̃H(ỹ(t− τ(t)))G2f̃(ỹ(t− τ(t))), (6.6.27)

where we denoted Lf̃ = diag
(
lfj I4

)
1≤j≤N

, and lfj are the Lipschitz constants of the functions

fj , ∀j = 1, N .
Also, for any matrices N1, N2, N3, N4, N5 ∈ C4N×4N we have that

0 =

 ˙̃yH(t)N1 + ỹH(t− δ)N2 − f̃H(ỹ(t))N3 − f̃(ỹ(t− τ(t)))N4 −

(∫ t

t−η(t)
f̃(ỹ(s))ds

)H
N5


×

[
− ˙̃y(t)−Dỹ(t− δ) +Af̃(ỹ(t)) +Bf̃(ỹ(t− τ(t))) + C

∫ t

t−η(t)
f̃(ỹ(s))ds

]
= − ˙̃yH(t)N1 ˙̃y(t)− ˙̃yH(t)N1Dỹ(t− δ) + ˙̃yH(t)N1Af̃(ỹ(t)) + ˙̃yH(t)N1Bf̃(ỹ(t− τ(t)))

+ ˙̃yH(t)N1C

∫ t

t−η(t)
f̃(ỹ(s))ds− ỹH(t− δ)N2 ˙̃y(t)− ỹH(t− δ)N2Dỹ(t− δ)

+ỹH(t− δ)N2Af̃(ỹ(t)) + ỹH(t− δ)N2Bf̃(ỹ(t− τ(t))) + ỹH(t− δ)N2C

∫ t

t−η(t)
f̃(ỹ(s))ds

+f̃H(ỹ(t))N3 ˙̃y(t) + f̃H(ỹ(t))N3Dỹ(t− δ)− f̃H(ỹ(t))N3Af̃(ỹ(t))− f̃H(ỹ(t))N3Bf̃(ỹ(t− τ(t)))

−f̃H(ỹ(t))N3C

∫ t

t−η(t)
f̃(ỹ(s))ds+ f̃(ỹ(t− τ(t)))N4 ˙̃y(t) + f̃(ỹ(t− τ(t)))N4Dỹ(t− δ)

−f̃(ỹ(t− τ(t)))N4Af̃(ỹ(t))− f̃(ỹ(t− τ(t)))N4Bf̃(ỹ(t− τ(t)))

−f̃(ỹ(t− τ(t)))N4C

∫ t

t−η(t)
f̃(ỹ(s))ds+

(∫ t

t−η(t)
f̃(ỹ(s))ds

)H
N5 ˙̃y(t)

+

(∫ t

t−η(t)
f̃(ỹ(s))ds

)H
N5Dỹ(t− δ)−

(∫ t

t−η(t)
f̃(ỹ(s))ds

)H
N5Af̃(ỹ(t))

−

(∫ t

t−η(t)
f̃(ỹ(s))ds

)H
N5Bf̃(ỹ(t− τ(t)))−

(∫ t

t−η(t)
f̃(ỹ(s))ds

)H
N5C

∫ t

t−η(t)
f̃(ỹ(s))ds.

(6.6.28)



154 6. Dynamics of octonion-valued neural networks (OVNNs)

Now, taking the conjugate of (6.6.28), adding it to (6.6.28), and then multiplying the re-
sult by e2εt, then multiplying inequalities (6.6.26)–(6.6.27) by e2εt and adding them all to
(6.6.18)–(6.6.25), we obtain

V̇ (t) ≤ ζH(t)Πζ(t),

where Π is defined by (6.6.17), and

ζ(t) =
[
ỹH(t) ˙̃yH(t) ỹH(t− δ) ỹH(t− τ) ỹH(t− τ(t)) f̃H(ỹ(t)) f̃H(ỹ(t− τ(t)))(∫ t
t−δ ỹ(s)ds

)H (∫ t
t−τ ỹ(s)ds

)H (∫ t
t−η(t)

f̃(ỹ(s))ds
)H ]H

.

From (6.6.17) we have that Π < 0, which implies that V̇ (t) < 0, meaning that V (t) is strictly
decreasing for t ≥ 0. It can be further deduced from the definition of V (t) that

e2εtλmin(P )||ỹ(t)||2 ≤ e2εtỹH(t)P ỹ(t) ≤ V (t) ≤ V0, ∀t ≥ T, T ≥ 0,

where V0 = max
0≤t≤T

V (t). Thus,

||ỹ(t)||2 ≤ V0

λmin(P )
e−2εt ⇔ ||ỹ(t)|| ≤Me−εt, ∀t ≥ 0,

where M =
√

V0
λmin(P )

. The above inequality proves the global exponential stability of the origin
of system (6.6.4), completing the proof of the theorem.

Remark 6.7. The computation complexity expressed in terms of real scalar decision variables
(NDV) for the LMI in (6.6.17) is 304n2 + 44n, which is a bigger than the NDV for the criteria
given in Theorem 6.4. However, taking into account Remark 6.4, it can be seen that Theorem
6.5 is more general, i.e., less conservative, than Theorem 6.4, which means that for any problem
for which Theorem 6.4 can be applied, Theorem 6.5 can be applied as well, but not the other
way around. This observation is consistent with the ones made by [236], where it is shown
that greater complexity amounts to lower conservativeness, and lower complexity translates
to greater conservativeness. Which one should be used is dependent on the problem at hand.
Nonetheless, both stability criteria can be easily and rapidly solved using the effective YALMIP
MATLAB tool.

6.6.2 Numerical examples
In order to prove the effectiveness of the theoretical results, we give two numerical examples.

Example 6.4. Consider the following two-neuron octonion-valued Hopfield neural network
with leakage delay and mixed delays:

ẋ1(t) = −d1x1(t− δ) +
∑2

j=1 a1jfj(xj(t)) +
∑2

j=1 b1jfj(xj(t− τ1j(t)))

+
∑2

j=1 c1j

∫ t
t−η1j(t) fj(xj(s))ds+ u1,

ẋ2(t) = −d2x2(t− δ) +
∑2

j=1 a2jfj(xj(t)) +
∑2

j=1 b2jfj(xj(t− τ2j(t)))

+
∑2

j=1 c2j

∫ t
t−η2j(t) fj(xj(s))ds+ u2,

(6.6.29)

where
d1 = 6, d2 = 3,
a11 = (0.2 + 0.1ı) + (0.5− 0.2ı)+ (0.4 + 0.3ı)`+ (0.3 + 0.1ı)`,



6. Dynamics of octonion-valued neural networks (OVNNs) 155

a12 = (−0.3 + 0.3ı) + (−0.4− 0.2ı)+ (0.3 + 0.1ı)`+ (0.2− 0.1ı)`,
a21 = (−0.4 + 0.3ı) + (−0.3− 0.2ı)+ (0.6 + 0.2ı)`+ (0.5 + 0.1ı)`,
a22 = (−0.5 + 0.2ı) + (−0.2− 0.4ı)+ (0.2 + 0.3ı)`+ (0.2− 0.3ı)`,
b11 = (0.6 + 0.4ı) + (0.9− 0.5ı)+ (0.7 + 0.6ı)`+ (0.4− 0.2ı)`,
b12 = (0.7 + 0.6ı) + (0.8− 0.4ı)+ (0.9 + 0.4ı)`+ (0.3− 0.2ı)`,
b21 = (0.8 + 0.3ı) + (0.7− 0.2ı)+ (0.6 + 0.1ı)`+ (0.1− 0.4ı)`,
b22 = (−0.9 + 0.2ı) + (−0.6− 0.3ı)+ (0.8 + 0.5ı)`+ (0.2− 0.4ı)`,
c11 = (−0.1 + 0.14ı) + (−0.13− 0.16ı)+ (0.12 + 0.15ı)`+ (0.15− 0.18ı)`,
c12 = (0.11 + 0.18ı) + (0.12− 0.15ı) + (0.14 + 0.19ı) + (0.12− 0.17ı),
c21 = (0.12 + 0.15ı) + (0.11− 0.14ı)+ (0.13 + 0.17ı)`+ (0.14− 0.12ı)`,
c22 = (0.13 + 0.12ı) + (0.14− 0.13ı)+ (0.11 + 0.12ı)`+ (0.13− 0.12ı)`,
u1 = 10((8− 7ı) + (6− 5ı)+ (4− 3ı)`+ (2− 1ı)`),
u2 = 10((1− 2ı) + (3− 4ı)+ (5− 6ı)`+ (7− 8ı)`),

fj

(∑7
q=0[x]qeq

)
=
∑7

q=0
0.1

1+e−[x]q
eq, from which we can deduce that l[f

′]p
j = 0.05√

2
, ∀p ∈

{0, 1, 2, 3}, ∀j = 1, 2, and thus Assumption 6.3 is satisfied. The leakage delay is δ = 0.02, the
time delays are τ1j(t) = τ2j(t) = 0.5| cos t|, and the distributed delays are η1j(t) = η2j(t) =
0.3| sin t

2
|, ∀j = 1, 2, and so τ = τ ′ = 0.5 and η = 0.3, which means that Assumption 6.2 is

also satisfied.
It can be verified that the LMIs in (6.6.5) are satisfied for G1

0 = diag(5.3358, 5.1977),
G1

1 = diag(5.3358, 5.1977), G1
2 = diag(5.3358, 5.1977), G1

3 = diag(5.3358, 5.1977), G2
0 =

diag(4.7016, 3.1730),G2
1 = diag(4.7015, 3.1730),G2

2 = diag(4.7015, 3.1730),G2
3 = diag(4.7016, 5.3.1730),

and ε = 0.1. (For brevity, the values of the other matrices are not given.) Thus, we can deduce
from Theorem 6.4 that the equilibrium point of neural network (6.6.29) is globally exponentially
stable.

Example 6.5. Consider the same two-neuron octonion-valued Hopfield neural network with
leakage delay and mixed delays in (6.6.29), but with the following parameters

d1 = 35, d2 = 25,
a11 = (1 + 3ı) + (2 + 2ı) + (3 − 1ı)` + (−4 + 1ı)`, a12 = (4 + 1ı) + (3 − 2ı) + (4 +

1ı)`+ (−2 + 3ı)`,
a21 = (2−3ı)+(2+1ı)+(4−2ı)`+(1+2ı)`, a22 = (1+2ı)+(3−2ı)+(2+1ı)`+(4−2ı)`,
b11 = (2 + 1ı) + (3 + 1ı) + (−2 + 3ı)` + (−1 + 4ı)`, b12 = (−4 + 2ı) + (−2 + 3ı) +

(1 + 2ı)`+ (−2 + 2ı)`,
b21 = (1− 4ı) + (2− 2ı)+ (1 + 2ı)`+ (3 + 2ı)`, b22 = (1 + 2ı) + (4 + 1ı)+ (2− 3ı)`+

(−2 + 4ı)`,
c11 = (1 + 0.5ı) + (0.5 − 0.5ı) + (1 − 1ı)` + (−1 + 0.5ı)`, c12 = (0.5 + 0.5ı) + (1 −

0.5ı)+ (1 + 1ı)`+ (−0.5 + 0.5ı)`,
c21 = (0.5 − 0.5ı) + (1 + 1ı) + (0.5 − 0.5ı)` + (1 + 0.5ı)`, c22 = (1 + 0.5ı) + (0.5 −

0.5ı)+ (1 + 1ı)`+ (0.5− 0.5ı)`,
u1 = 30((1− 2ı) + (3− 4ı)+ (5− 6ı)`+ (7− 8ı)`), u2 = 30((8− 7ı) + (6− 5ı)+ (4−

3ı)`+ (2− 1ı)`),

fj

(∑7
q=0[x]qeq

)
=
∑7

q=0 0.51−e−[x]q

1+e−[x]q
eq, from which we can deduce that lfj = 0.5

√
2, ∀j =

1, 2, and thus Assumption 6.4 is satisfied. The leakage delay is δ = 0.02, the time delays
are τ1j(t) = τ2j(t) = 0.4| sin t|, and the distributed delays are η1j(t) = η2j(t) = 0.2| cos t

2
|,

∀j = 1, 2, and so τ = τ ′ = 0.4 and η = 0.2, which means that Assumption 6.2 is also satisfied.
It can be verified that the LMI in (6.6.17) is satisfied forG1 = diag(0.0070217I4, 0.0068122I4),

G2 = diag(0.00079613I4, 0.00079836I4), and ε = 0.1. (For brevity, the values of the other ma-



156 6. Dynamics of octonion-valued neural networks (OVNNs)

trices are not given.) Thus, we can deduce from Theorem 6.5 that the equilibrium point of
neural network (6.6.29) with the above parameters is globally exponentially stable.

Remark 6.8. It can be easily verified that Theorem 6.4 cannot be applied for Example 6.5, but
Theorem 6.5 can be applied for both examples, which empirically confirms the correctness of
the claims made in Remark 6.4 and Remark 6.7.

6.7 Exponential stability of OVNNs with leakage delay and
mixed delays

As already mentioned in Section 6.6, time delays are known to appear in practical implementa-
tions of neural networks due to the finite switching speed of amplifiers, and can cause instability
or chaotic behavior. In neutral-type systems, past derivative information is also considered to
influence the present state. These systems more accurately describe the properties of neural re-
action processes that naturally occur in the real world. Due to the existence of the neutral-type
delays, the study of this type of systems is more complicated than that of the usual time-delayed
models. Taking all the above into consideration, we aim to formulate global exponential stabil-
ity criteria for neutral-type OVNNs with time-varying delays.

The presentation in this section follows that in the author’s paper [167].

6.7.1 Main results
We will consider the neutral-type octonion-valued Hopfield neural networks defined by the
following system of differential equations:

ẋi(t) = −dixi(t) +
N∑
j=1

aijfj(xj(t)) +
N∑
j=1

bijfj(xj(t− τij(t)))

+ciẋi(t− ηi(t)) + ui, i = 1, N, (6.7.1)

where the notations are the same as the ones in Section 6.6, and C = diag(c1, . . . , cN) ∈ ON×N

is the neutral-type delay connection weight matrix, and ηi : R→ R are the neutral-type delays,
∀i, j = 1, N .

In order to study the stability properties of (6.7.1), we also need the following assumption:

Assumption 6.5. The time-varying delays τij : R→ R and the neutral-type delays ηi : R→ R
are continuously differentiable functions and there exist τ, η > 0 and τ ′, η′ < 1, such that
τij(t) < τ , ηi(t) < η, τ̇ij(t) ≤ τ ′, η̇i(t) ≤ η′, ∀t > 0, ∀i, j = 1, N .

By the Cayley–Dickson construction, system (6.7.1) and by shifting its equilibrium point x̂
to the origin, system (6.7.1) can be written more compactly as:

[ ˙̃x′(t)]0 = −D[x̃′(t)]0

+
(

[A′]0[f̃ ′]0(x̃(t))− [A′]1[f̃ ′]1(x̃(t))− [A′]2[f̃ ′]2(x̃(t))− [A′]3[f̃ ′]3(x̃(t))
)

+
(

[B′]0[f̃ ′]0(x̃(t− τ(t)))− [B′]1[f̃ ′]1(x̃(t− τ(t)))

−[B′]2[f̃ ′]2(x̃(t− τ(t)))− [B′]3[f̃ ′]3(x̃(t− τ(t)))
)

+
(
[C ′]0[ ˙̃x′(t− η(t))]0 − [C ′]1[ ˙̃x′(t− η(t))]1

−[C ′]2[ ˙̃x′(t− η(t))]2 − [C ′]3[ ˙̃x′(t− η(t))]3
)
,



6. Dynamics of octonion-valued neural networks (OVNNs) 157

[ ˙̃x′(t)]1 = −D[x̃′(t)]1

+
(

[A′]0[f̃ ′]1(x̃(t)) + [A′]1[f̃ ′]0(x̃(t)) + [A′]2[f̃ ′]3(x̃(t))− [A′]3[f̃ ′]2(x̃(t))
)

+
(

[B′]0[f̃ ′]1(x̃(t− τ(t))) + [B′]1[f̃ ′]0(x̃(t− τ(t)))

+[B′]2[f̃ ′]3(x̃(t− τ(t)))− [B′]3[f̃ ′]2(x̃(t− τ(t)))
)

+
(
[C ′]0[ ˙̃x′(t− η(t))]1 + [C ′]1[ ˙̃x′(t− η(t))]0

+[C ′]2[ ˙̃x′(t− η(t))]3 − [C ′]3[ ˙̃x′(t− η(t))]2
)
,

[ ˙̃x′(t)]2 = −D[x̃′(t)]2

+
(

[A′]0[f̃ ′]2(x̃(t))− [A′]1[f̃ ′]3(x̃(t)) + [A′]2[f̃ ′]0(x̃(t)) + [A′]3[f̃ ′]1(x̃(t))
)

+
(

[B′]0[f̃ ′]2(x̃(t− τ(t)))− [B′]1[f̃ ′]3(x̃(t− τ(t)))

+[B′]2[f̃ ′]0(x̃(t− τ(t))) + [B′]3[f̃ ′]1(x̃(t− τ(t)))
)

+
(
[C ′]0[ ˙̃x′(t− η(t))]2 − [C ′]1[ ˙̃x′(t− η(t))]3

+[C ′]2[ ˙̃x′(t− η(t))]0 + [C ′]3[ ˙̃x′(t− η(t))]1
)
,

[ ˙̃x′(t)]3 = −D[x̃′(t)]3

+
(

[A′]0[f̃ ′]3(x̃(t)) + [A′]1[f̃ ′]2(x̃(t))− [A′]2[f̃ ′]1(x̃(t)) + [A′]3[f̃ ′]0(x̃(t))
)

+
(

[B′]0[f̃ ′]3(x̃(t− τ(t))) + [B′]1[f̃ ′]2(x̃(t− τ(t)))

−[B′]2[f̃ ′]1(x̃(t− τ(t))) + [B′]3[f̃ ′]0(x̃(t− τ(t)))
)

+
(
[C ′]0[ ˙̃x′(t− η(t))]3 + [C ′]1[ ˙̃x′(t− η(t))]2

−[C ′]2[ ˙̃x′(t− η(t))]1 + [C ′]3[ ˙̃x′(t− η(t))]0
)
, (6.7.2)

where [x̃′(t)]p = [x′(t)]p − [x̂′]p, [f̃ ′]p(x̃(t)) = [f ′]p(x(t))− [f ′]p(x̂), ∀p ∈ {0, 1, 2, 3}.
If we denote

ỹ(t) =
(
[x̃′(t)]H0 , [x̃

′(t)]H1 , [x̃
′(t)]H2 , [x̃

′(t)]H3
)H ∈ C4N ,

D =


D 0 0 0
0 D 0 0
0 0 D 0
0 0 0 D

 ∈ R4N×4N ,

A =


[A′]0 −[A′]1 −[A′]2 −[A′]3
[A′]1 [A′]0 −[A′]3 [A′]2
[A′]2 [A′]3 [A′]0 −[A′]1
[A′]3 −[A′]2 [A′]1 [A′]0

 ∈ C4N×4N ,

B =


[B′]0 −[B′]1 −[B′]2 −[B′]3
[B′]1 [B′]0 −[B′]3 [B′]2
[B′]2 [B′]3 [B′]0 −[B′]1
[B′]3 −[B′]2 [B′]1 [B′]0

 ∈ C4N×4N ,



158 6. Dynamics of octonion-valued neural networks (OVNNs)

C =


[C ′]0 −[C ′]1 −[C ′]2 −[C ′]3
[C ′]1 [C ′]0 −[C ′]3 [C ′]2
[C ′]2 [C ′]3 [C ′]0 −[C ′]1
[C ′]3 −[C ′]2 [C ′]1 [C ′]0

 ∈ C4N×4N ,

f̃(ỹ(t)) =
(

[f̃ ′]H0 (x(t)), [f̃ ′]H1 (x(t)), [f̃ ′]H2 (x(t)), [f̃ ′]H3 (x(t))
)H
∈ C4N ,

then system (6.7.2) becomes:

˙̃y(t) = −Dỹ(t) + Af̃(ỹ(t)) +Bf̃(ỹ(t− τ(t))) + C ˙̃y(t− η(t)). (6.7.3)

Remark 6.9. Systems (6.7.2), (6.7.3), and (6.7.1) are equivalent. This means that any property
of the origin of systems (6.7.2), (6.7.3) will also be true for the equilibrium point of system
(6.7.1). Thus, from now on, we will only study the stability properties of the origin of systems
(6.7.2), (6.7.3).

The following lemma will also be used to carry out the stability analysis:

Lemma 6.6. ([203]) For any vector function x : [a, b]→ C4N and any positive definite matrix
M ∈ C4N×4N , the following linear matrix inequality (LMI) holds:(∫ b

a

∫ b

θ

∫ b

λ
x(s)dsdλdθ

)H
M

(∫ b

a

∫ b

θ

∫ b

λ
x(s)dsdλdθ

)
≤ (b− a)3

6

∫ b

a

∫ b

θ

∫ b

λ
xH(s)Mx(s)dsdλdθ,

where the integrals are well defined.

Theorem 6.6. If Assumptions 6.5 and 6.3 hold, then the origin of system (6.7.2) is globally
exponentially stable if there exist positive definite matrices Pp, Q1

p, Q
2
p, Mp, Rp, Sp, Tp, Up, Wp,

Zp ∈ CN×N , any matrices N1
p , N2

p , N3
p , N4

p , N5
p ∈ CN×N , positive definite diagonal matrices

G1
p, G

2
p ∈ RN×N , and a constant ε > 0, such that the following linear matrix inequalities

(LMIs) hold
(Πp)20×20 < 0, (6.7.4)

∀p ∈ {0, 1, 2, 3}, where (Πp)1,1 = 2εPp−DPp−PpD+Q1
p+Rp−e−2ετTp+η

2Up−4τ 2e−2ετWp−
9τ 4e−2ετZp + L[f̃ ′]p

H
G1
pL[f̃ ′]p

− N2
pD − D(N2

p )H , (Πp)1,2 = −N2
p − D(N1

p )H , (Πp)1,4:7 =

PpCp + N2
pCp + D(N5

p )HEp, (Πp)1,8 = e−2ετTp, (Πp)1,10:13 = PpAp + N2
pAp + D(N3

p )HEp,
(Πp)1,14:17 = PpBp + N2

pBp + D(N4
p )HEp, (Πp)1,19 = 4τe−2ετWp, (Πp)1,20 = 18τ 2e−2ετZp,

(Πp)2,2 = Mp + Sp + τ 2Tp + τ 4Wp + τ 6Zp − N1
p − (N1

p )H , (Πp)2,4:7 = N1
pCp + (N5

p )HEp,
(Πp)2,10:13 = N1

pAp + (N3
p )HEp, (Πp)2,14:17 = N1

pBp + (N4
p )HEp, (Πp)3,3 = −e−2εηSp,

(Πp)4:7,4:7 = −(1−η′)e−2εηE
H

p MpEp−E
H

p N
5
p

(
Cp − CpE

H

p Ep

)
−
(
Cp − CpE

H

p Ep

)H
(N5

p )HEp

−1
4

∑3
q=0 E

H

q

(
N5
qCqE

H

q + EqC
H

q (N5
q )H
)
Eq, (Πp)4:7,10:13 = −EH

p N
5
pAp − C

H

p (N3
p )HEp,

(Πp)4:7,14:17 = −EH

p N
5
pBp − C

H

p (N4
p )HEp, (Πp)8,8 = −e−2ετRp − e−2ετTp, (Πp)9,9 = −(1 −

τ ′)e−2ετQ1
p+L[f̃ ′]p

H
G2
pL[f̃ ′]p

, (Πp)10:13,10:13 = E
H

p Q
2
pEp−E

H

p G
1
pEp−E

H

p N
3
p

(
Ap − ApE

H

p Ep

)
−
(
Ap − ApE

H

p Ep

)H
(N3

p )HEp−1
4

∑3
q=0 E

H

q

(
N3
qAqE

H

q + EqA
H

q (N3
q )H
)
Eq, (Πp)10:13,14:17 =

−EH

p N
3
pBp−A

H

p (N4
p )HEp, (Πp)14:17,14:17 = −(1−τ ′)e−2ετE

H

p Q
2
pEp−E

H

p G
2
pEp−E

H

p

(
N4
pBp

−BpE
H

p Ep

)
−
(
Bp −BpE

H

p Ep

)H
(N4)HEp − 1

4

∑3
q=0 E

H

q

(
N4
qBqE

H

q + EqB
H

q (N4
q )H
)
Eq,

(Πp)18,18 = −e−2εηUp, (Πp)19,19 = −4e−2ετWp, (Πp)20,20 = −36e−2ετZp.



6. Dynamics of octonion-valued neural networks (OVNNs) 159

We denoted by Ap the (p + 1)-th row of A (and analogously for Bp and Cp) and by Ep the
(p+ 1)-th row of

E =


IN 0 0 0
0 IN 0 0
0 0 IN 0
0 0 0 IN

 ∈ R4N×4N ,

∀p ∈ {0, 1, 2, 3}.

Proof. Consider the Lyapunov–Krasovskii functional

V (t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t) + V6(t) + V7(t) + V8(t) + V9(t),

V1(t) =
3∑
p=0

e2εt[x̃′(t)]Hp Pp[x̃
′(t)]p,

V2(t) =
3∑
p=0

∫ t

t−τ(t)

e2εsξHp (s)Qpξp(s)ds, Qp = diag(Q1
p, Q

2
p),

ξp(s) =
[
[x̃′(s)]Hp [f̃ ′]Hp (x̃(s))

]H
,

V3(t) =
3∑
p=0

∫ t

t−η(t)

e2εs[ ˙̃x′(s)]Hp Mp[ ˙̃x′(s)]pds,

V4(t) =
3∑
p=0

∫ t

t−τ
e2εs[x̃′(s)]Hp Rp[x̃

′(s)]pds,

V5(t) =
3∑
p=0

∫ t

t−η
e2εs[ ˙̃x′(s)]Hp Sp[ ˙̃x′(s)]pds,

V6(t) =
3∑
p=0

τ

∫ 0

−τ

∫ t

t+θ

e2εs[ ˙̃x′(s)]Hp Tp[ ˙̃x′(s)]pdsdθ,

V7(t) =
3∑
p=0

η

∫ 0

−η

∫ t

t+θ

e2εs[ ˙̃x′(s)]Hp Up[ ˙̃x′(s)]pdsdθ,

V8(t) =
3∑
p=0

2τ 2

∫ 0

−τ

∫ 0

θ

∫ t

t+λ

e2εs[ ˙̃x′(s)]Hp Wp[ ˙̃x′(s)]pdsdλdθ,

V9(t) =
3∑
p=0

6τ 3

∫ 0

−τ

∫ 0

θ

∫ 0

λ

∫ t

t+µ

e2εs[ ˙̃x′(s)]Hp Zp[ ˙̃x′(s)]pdsdµdλdθ.

The derivative of V along the trajectories of system (6.7.2) is

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t) + V̇5(t) + V̇6(t) + V̇7(t) + V̇8(t) + V̇9(t),



160 6. Dynamics of octonion-valued neural networks (OVNNs)

V̇1(t) =
3∑
p=0

e2εt
(
2ε[x̃′(t)]Hp Pp[x̃

′(t)]p + [ ˙̃x′(t)]Hp Pp[x̃
′(t)]p + [x̃′(t)]Hp Pp[ ˙̃x′(t)]p

)
=

3∑
p=0

e2εt
(

2ε[x̃′(t)]Hp Pp[x̃
′(t)]p +

(
−D[x̃′(t− δ)]p + Apf̃(ỹ(t)) +Bpf̃(ỹ(t− τ(t)))

+Cp
˙̃y(t− η(t))

)H
Pp[x̃

′(t)]p + [x̃′(t)]Hp Pp

(
−D[x̃′(t− δ)]p + Apf̃(ỹ(t))

+Bpf̃(ỹ(t− τ(t))) + Cp
˙̃y(t− η(t))

))
, (6.7.5)

V̇2(t) =
3∑
p=0

e2εt
(
ξHp (t)Qpξp(t)− (1− τ̇(t))e−2ετ(t)ξHp (t− τ(t))Qpξp(t− τ(t))

)
≤

3∑
p=0

e2εt
(
ξHp (t)Qpξp(t)− (1− τ ′)e−2ετξHp (t− τ(t))Qpξp(t− τ(t))

)
, (6.7.6)

V̇3(t) =
3∑
p=0

e2εt
(
[ ˙̃x′(t)]Hp Mp[ ˙̃x′(t)]p − (1− η̇(t))e−2εη(t)[ ˙̃x′(t− η(t))]Hp Mp[ ˙̃x′(t− η(t))]p

)
≤

3∑
p=0

e2εt
(
[ ˙̃x′(t)]Hp Mp[ ˙̃x′(t)]p − (1− η′)e−2εη[ ˙̃x′(t− η(t))]Hp Mp[ ˙̃x′(t− η(t))]p

)
,(6.7.7)

V̇4(t) =
3∑
p=0

e2εt
(
[x̃′(t)]Hp Rp[x̃

′(t)]p − e−2ετ [x̃′(t− τ)]Hp Rp[x̃
′(t− τ)]p

)
, (6.7.8)

V̇5(t) =
3∑
p=0

e2εt
(
[ ˙̃x′(t)]Hp Sp[ ˙̃x′(t)]p − e−2εη[ ˙̃x′(t− η)]Hp Sp[ ˙̃x′(t− η)]p

)
, (6.7.9)

V̇6(t) =
3∑
p=0

(
τ 2e2εt[ ˙̃x′(t)]Hp Tp[ ˙̃x′(t)]p − τ

∫ t

t−τ
e2εs[ ˙̃x′(s)]Hp Tp[ ˙̃x′(s)]pds

)

≤
3∑
p=0

e2εt

(
τ 2[ ˙̃x′(t)]Hp Tp[ ˙̃x′(t)]p − e−2ετ

(∫ t

t−τ
[ ˙̃x′(s)]pds

)H
Tp

(∫ t

t−τ
[ ˙̃x′(s)]pds

))
3∑
p=0

e2εt
(
τ 2[ ˙̃x′(t)]Hp Tp[ ˙̃x′(t)]p

= −e−2ετ ([x̃′(t)]p − [x̃′(t− τ)]p)
H
Tp ([x̃′(t)]p − [x̃′(t− τ)]p)

)
, (6.7.10)

V̇7(t) =
3∑
p=0

(
η2e2εt[ ˙̃x′(t)]Hp Up[ ˙̃x′(t)]p − η

∫ t

t−η
e2εs[ ˙̃x′(s)]Hp Up[ ˙̃x′(s)]pds

)

≤
3∑
p=0

e2εt

(
η2[ ˙̃x′(t)]Hp Up[ ˙̃x′(t)]p − e−2εη

(∫ t

t−η
[ ˙̃x′(s)]pds

)H
Up

(∫ t

t−η
[ ˙̃x′(s)]pds

))
,

(6.7.11)



6. Dynamics of octonion-valued neural networks (OVNNs) 161

V̇8(t) =
3∑
p=0

(
τ 4e2εt[ ˙̃x′(t)]Hp Wp[ ˙̃x′(t)]p − 2τ 2

∫ 0

−τ

∫ t

t+θ

e2εs[ ˙̃x′(s)]Hp Wp[ ˙̃x′(s)]pdsdθ

)

≤
3∑
p=0

e2εt
(
τ 4[ ˙̃x′(t)]Hp Wp[ ˙̃x′(t)]p

−4e−2ετ

(∫ 0

−τ

∫ t

t+θ

[ ˙̃x′(s)]pdsdθ

)H
Wp

(∫ 0

−τ

∫ t

t+θ

[ ˙̃x′(s)]pdsdθ

))

=
3∑
p=0

e2εt
(
τ 4[ ˙̃x′(t)]Hp Wp[ ˙̃x′(t)]p

−4e−2ετ

(∫ 0

−τ
([x̃′(t)]p − [x̃′(t+ θ)]p) dθ

)H
Wp

(∫ 0

−τ
([x̃′(t)]p − [x̃′(t+ θ)]p) dθ

))

=
3∑
p=0

e2εt
(
τ 4[ ˙̃x′(t)]Hp Wp[ ˙̃x′(t)]p

−4e−2ετ

(
τ [x̃′(t)]p −

∫ t

t−τ
[x̃′(s)]pds

)H
Wp

(
τ [x̃′(t)]p −

∫ t

t−τ
[x̃′(s)]pds

))
, (6.7.12)

V̇9(t) =
3∑
p=0

(
τ6e2εt[ ˙̃x′(t)]Hp Zp[ ˙̃x′(t)]p − 6τ3

∫ 0

−τ

∫ 0

θ

∫ t

t+λ
e2εs[ ˙̃x′(s)]Hp Zp[ ˙̃x′(s)]pdsdλdθ

)

≤
3∑
p=0

e2εt
(
τ6[ ˙̃x′(t)]Hp Zp[ ˙̃x′(t)]p

−36e−2ετ

(∫ 0

−τ

∫ 0

θ

∫ t

t+λ
[ ˙̃x′(s)]pdsdλdθ

)H
Zp

(∫ 0

−τ

∫ 0

θ

∫ t

t+λ
[ ˙̃x′(s)]pdsdλdθ

))

=
3∑
p=0

e2εt
(
τ6[ ˙̃x′(t)]Hp Zp[ ˙̃x′(t)]p

−36e−2ετ

(∫ 0

−τ

∫ 0

θ

(
[x̃′(t)]p − [x̃′(t+ λ)]p

)
dλdθ

)H
Zp

(∫ 0

−τ

∫ 0

θ

(
[x̃′(t)]p − [x̃′(t+ λ)]p

)
dλdθ

))

=
3∑
p=0

e2εt
(
τ6[ ˙̃x′(t)]Hp Zp[ ˙̃x′(t)]p

−9e−2ετ

(
τ2[x̃′(t)]p − 2

∫ 0

−τ

∫ t

t+θ
[x̃′(s)]pds

)H
Zp

(
τ2[x̃′(t)]p − 2

∫ 0

−τ

∫ t

t+θ
[x̃′(s)]pds

))
, (6.7.13)

where we have used Assumption 6.5 to obtain the inequalities in (6.7.6) and (6.7.7), Lemma
6.4 to obtain the inequalities in (6.7.10) and (6.7.11), Lemma 6.5 to obtain the inequality in
(6.7.12), and Lemma 6.6 to obtain the inequality in (6.7.13).

From Assumption 6.3 about the Lipschitz condition we can deduce that there exist positive
definite diagonal matrices G1

p = diag
(
r1
j,p

)
1≤j≤N and G2

p = diag
(
r2
j,p

)
1≤j≤N , such that

0 ≤ [x̃′(t)]Hp L[f̃ ′]p

H
G1
pL[f̃ ′]p

[x̃′(t)]p − [f̃ ′]Hp (x̃(t))G1
p[f̃
′]p(x̃(t)), (6.7.14)

0 ≤ [x̃′(t− τ(t))]Hp L[f̃ ′]p

H
G2
pL[f̃ ′]p

[x̃′(t− τ(t))]p − [f̃ ′]Hp (x̃(t− τ(t)))G2
p[f̃
′]p(x̃(t− τ(t))),

(6.7.15)



162 6. Dynamics of octonion-valued neural networks (OVNNs)

where l[f
′]p

j are the Lipschitz constants of the functions fj , ∀j = 1, N , and we denoted L[f̃ ′]p
=

diag
(
l
[f ′]p
j

)
1≤j≤N

, ∀p ∈ {0, 1, 2, 3}.

For any matrices N1
p , N2

p , N3
p , N4

p , N5
p ∈ CN×N , we have that

0 =
[
[ ˙̃x′(t)]Hp N

1
p + [x̃′(t)]Hp N

2
p − [f̃ ′]Hp (x̃(t))N3

p − [f̃ ′]Hp (x̃(t− τ(t)))N4
p − [ ˙̃x′(t− η(t))]Hp N

5
p

]
×
[
−[ ˙̃x′(t)]p −D[x̃′(t)]p +Apf̃(ỹ(t)) +Bpf̃(ỹ(t− τ(t))) + Cp ˙̃y(t− η(t))

]
= −[ ˙̃x′(t)]Hp N

1
p [ ˙̃x′(t)]p − [ ˙̃x′(t)]Hp N

1
pD[x̃′(t)]p + [ ˙̃x′(t)]Hp N

1
pApf̃(ỹ(t)) + [ ˙̃x′(t)]Hp N

1
pBpf̃(ỹ(t− τ(t)))

+[ ˙̃x′(t)]Hp N
1
pCp ˙̃y(t− η(t))− [x̃′(t)]Hp N

2
p [ ˙̃x′(t)]p − [x̃′(t)]Hp N

2
pD[x̃′(t)]p

+[x̃′(t)]Hp N
2
pApf̃(ỹ(t)) + [x̃′(t)]Hp N

2
pBpf̃(ỹ(t− τ(t))) + [x̃′(t)]Hp N

2
pCp ˙̃y(t− η(t))

+[f̃ ′]Hp (x̃(t))N3
p [ ˙̃x′(t)]p + [f̃ ′]Hp (x̃(t))N3

pD[x̃′(t)]p − [f̃ ′]Hp (x̃(t))N3
pApf̃(ỹ(t))

−[f̃ ′]Hp (x̃(t))N3
pBpf̃(ỹ(t− τ(t)))− [f̃ ′]Hp (x̃(t))N3

pCp ˙̃y(t− η(t))

+[f̃ ′]Hp (x̃(t− τ(t)))N4
p [ ˙̃x′(t)]p + [f̃ ′]Hp (x̃(t− τ(t)))N4

pD[x̃′(t)]p − [f̃ ′]Hp (x̃(t− τ(t)))N4
pApf̃(ỹ(t))

−[f̃ ′]Hp (x̃(t− τ(t)))N4
pBpf̃(ỹ(t− τ(t)))− [f̃ ′]Hp (x̃(t− τ(t)))N4

pCp ˙̃y(t− η(t))

+[ ˙̃x′(t− η(t))]Hp N
5
p [ ˙̃x′(t)]p + [ ˙̃x′(t− η(t))]Hp N

5
pD[x̃′(t)]p

−[ ˙̃x′(t− η(t))]Hp N
5
pApf̃(ỹ(t))− [ ˙̃x′(t− η(t))]Hp N

5
pBpf̃(ỹ(t− τ(t)))

−[ ˙̃x′(t− η(t))]Hp N
5
pCp ˙̃y(t− η(t)). (6.7.16)

Now, taking the conjugate of (6.7.16), adding it to (6.7.16), and then multiplying the re-
sult by e2εt, then multiplying inequalities (6.7.14)–(6.7.15) by e2εt, and adding them all to
(6.7.5)–(6.7.13), we obtain

V̇ (t) ≤
3∑
p=0

ζHp (t)Πpζp(t),

where

ζp(t) =
[

[x̃′(t)]Hp [ ˙̃x′(t)]Hp [ ˙̃x′(t− η)]Hp ˙̃y(t− η(t)) [x̃′(t− τ)]Hp [x̃′(t− τ(t))]Hp f̃H(ỹ(t))

f̃H(ỹ(t− τ(t)))
(∫ t

t−η[
˙̃x′(s)]pds

)H (∫ t
t−τ [x̃

′(s)]pds
)H (∫ 0

−τ

∫ t
t+θ

[x̃′(s)]pds
)H ]H

,

and Πp are defined by (6.7.4), ∀p ∈ {0, 1, 2, 3}. From (6.7.4) we have that Πp < 0, ∀p ∈
{0, 1, 2, 3}, which implies that V̇ (t) < 0, meaning that V (t) is strictly decreasing for t ≥ 0.
From the definition of V (t), it can be further deduced that

3∑
p=0

e2εtλmin(Pp)||[x̃′(t)]p||2 ≤
3∑
p=0

e2εt[x̃′(t)]Hp Pp[x̃
′(t)]p ≤ V (t) ≤ V0, ∀t ≥ T, T ≥ 0,

where V0 = max
0≤t≤T

V (t). Thus,

3∑
p=0

||[x̃′(t)]p||2 ≤
V0

minp∈{0,1,2,3} λmin(Pp)
e−2εt ⇔

√√√√ 3∑
p=0

||[x̃′(t)]p||2 ≤Me−εt, ∀t ≥ 0,

where M =
√

V0
minp∈{0,1,2,3} λmin(Pp)

, which means that the origin of system (6.7.2) is globally
exponentially stable, completing the proof of the theorem.



6. Dynamics of octonion-valued neural networks (OVNNs) 163

Now, we give an LMI-based sufficient condition for the exponential stability of the origin
of (6.7.3).

Theorem 6.7. If Assumptions 6.5 and 6.4 hold, then the origin of system (6.7.3) is globally
exponentially stable if there exist positive definite matrices P , Q1, Q2, M , R, S, T , U , W ,
Z ∈ C4N×4N , any matrices N1, N2, N3, N4, N5 ∈ C4N×4N , positive definite block-diagonal
matrices G1, G2 ∈ R4N×4N , and a constant ε > 0, such that the following linear matrix
inequality (LMI) holds

(Π)11×11 < 0, (6.7.17)

where Π1,1 = 2εP−DP−PD+Q1+R−e−2ετT+η2U−4τ 2e−2ετW−9τ 4e−2ετZ+Lf̃
H
G1Lf̃−

N2D−D(N2)H ,Π1,2 = −N2−D(N1)H , Π1,4 = PC+N2C+D(N5)H , Π1,5 = e−2ετT , Π1,7 =
PA+N2A+D(N3)H , Π1,8 = PB+N2B+D(N4)H , Π1,10 = 4τe−2ετW , Π1,11 = 18τ 2e−2ετZ,
Π2,2 = M+S+τ 2T+τ 4W+τ 6Z−N1−(N1)H , Π2,4 = N1C+(N5)H , Π2,7 = N1A+(N3)H ,
Π2,8 = N1B + (N4)H , Π3,3 = −e−2εηS, Π4,4 = −(1 − η′)e−2εηM − N5C − C

H
(N5)H ,

Π4,7 = −N5A − CH
(N3)H , Π4,8 = −N5B − CH

(N4)H , Π5,5 = −e−2ετR − e−2ετT , Π6,6 =

−(1−τ ′)e−2ετQ1+Lf̃
H
G2Lf̃ , Π7,7 = Q2−G1−N3A−AH(N3)H , Π7,8 = −N3B−AH(N4)H ,

Π8,8 = −(1 − τ ′)e−2ετQ2 − G2 − N4B − BH
(N4)H , Π9,9 = −e−2εηU , Π10,10 = −4e−2ετW ,

Π11,11 = −36e−2ετZ.

Proof. Consider the Lyapunov–Krasovskii functional

V (t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t) + V6(t) + V7(t) + V8(t) + V9(t),

V1(t) = e2εtỹH(t)P ỹ(t),

V2(t) =

∫ t

t−τ(t)

e2εsξH(s)Qξ(s)ds, Q = diag(Q1, Q2),

ξ(s) =
[
[ỹ(s)]H [f̃ ]H(ỹ(s))

]H
,

V3(t) =

∫ t

t−η(t)

e2εs ˙̃yH(s)M ˙̃y(s)ds,

V4(t) =

∫ t

t−τ
e2εsỹH(s)Rỹ(s)ds,

V5(t) =

∫ t

t−η
e2εs ˙̃yH(s)S ˙̃y(s)ds,

V6(t) = τ

∫ 0

−τ

∫ t

t+θ

e2εs ˙̃yH(s)T ˙̃y(s)dsdθ,

V7(t) = η

∫ 0

−η

∫ t

t+θ

e2εs ˙̃yH(s)U ˙̃y(s)dsdθ,

V8(t) = 2τ 2

∫ 0

−τ

∫ 0

θ

∫ t

t+λ

e2εs ˙̃yH(s)W ˙̃y(s)dsdλdθ,

V9(t) = 6τ 3

∫ 0

−τ

∫ 0

θ

∫ 0

λ

∫ t

t+µ

e2εs ˙̃yH(s)Z ˙̃y(s)dsdµdλdθ.



164 6. Dynamics of octonion-valued neural networks (OVNNs)

The derivative of V along the trajectories of system (6.7.3) is

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t) + V̇5(t) + V̇6(t) + V̇7(t) + V̇8(t) + V̇9(t),

V̇1(t) = e2εt
(
2εỹH(t)P ỹ(t) + ˙̃yH(t)P ỹ(t) + ỹH(t)P ˙̃y(t)

)
= e2εt

(
2εỹH(t)P ỹ(t) +

(
−Dỹ(t) + Af̃(ỹ(t)) +Bf̃(ỹ(t− τ(t)))

+C ˙̃y(t− η(t))
)H

P ỹ(t) + ỹH(t)P
(
−Dỹ(t) + Af̃(ỹ(t))

+Bf̃(ỹ(t− τ(t))) + C ˙̃y(t− η(t))
))

, (6.7.18)

V̇2(t) = e2εt
(
ξH(t)Qξ(t)− (1− τ̇(t))e−2ετ(t)ξH(t− τ(t))Qξ(t− τ(t))

)
≤ e2εt

(
ξH(t)Qξ(t)− (1− τ ′)e−2ετξH(t− τ(t))Qξ(t− τ(t))

)
, (6.7.19)

V̇3(t) = e2εt
(

˙̃yH(t)M ˙̃y(t)− (1− η̇(t))e−2εη(t) ˙̃yH(t− η(t))M ˙̃y(t− η(t))
)

≤ e2εt
(

˙̃yH(t)M ˙̃y(t)− (1− η′)e−2εη ˙̃yH(t− η(t))M ˙̃y(t− η(t))
)
, (6.7.20)

V̇4(t) = e2εt
(
ỹH(t)Rỹ(t)− e−2ετ ỹH(t− τ)Rỹ(t− τ)

)
, (6.7.21)

V̇5(t) = e2εt
(

˙̃yH(t)S ˙̃y(t)− e−2εη ˙̃yH(t− η)S ˙̃y(t− η)
)
, (6.7.22)

V̇6(t) = τ 2e2εt ˙̃yH(t)T ˙̃y(t)− τ
∫ t

t−τ
e2εs ˙̃yH(s)T ˙̃y(s)ds

≤ e2εt

(
τ 2 ˙̃yH(t)T ˙̃y(t)− e−2ετ

(∫ t

t−τ
˙̃y(s)ds

)H
T

(∫ t

t−τ
˙̃y(s)ds

))
= e2εt

(
τ 2 ˙̃yH(t)T ˙̃y(t)− e−2ετ (ỹ(t)− ỹ(t− τ))H T (ỹ(t)− ỹ(t− τ))

)
,(6.7.23)

V̇7(t) = η2e2εt ˙̃yH(t)U ˙̃y(t)− η
∫ t

t−η
e2εs ˙̃yH(s)U ˙̃y(s)ds

≤ e2εt

(
η2 ˙̃yH(t)U ˙̃y(t)− e−2εη

(∫ t

t−η
˙̃y(s)ds

)H
U

(∫ t

t−η
˙̃y(s)ds

))
, (6.7.24)

V̇8(t) = τ4e2εt ˙̃yH(t)W ˙̃y(t)− 2τ2

∫ 0

−τ

∫ t

t+θ
e2εs ˙̃yH(s)W ˙̃y(s)dsdθ

≤ e2εt

(
τ4 ˙̃yH(t)W ˙̃y(t)− 4e−2ετ

(∫ 0

−τ

∫ t

t+θ

˙̃y(s)dsdθ

)H
W

(∫ 0

−τ

∫ t

t+θ

˙̃y(s)dsdθ

))

= e2εt

(
τ4 ˙̃yH(t)W ˙̃y(t)− 4e−2ετ

(∫ 0

−τ
(ỹ(t)− ỹ(t+ θ)) dθ

)H
W

(∫ 0

−τ
(ỹ(t)− ỹ(t+ θ)) dθ

))

= e2εt

(
τ4 ˙̃yH(t)W ˙̃y(t)− 4e−2ετ

(
τ ỹ(t)−

∫ t

t−τ
ỹ(s)ds

)H
W

(
τ ỹ(t)−

∫ t

t−τ
ỹ(s)ds

))
,(6.7.25)



6. Dynamics of octonion-valued neural networks (OVNNs) 165

V̇9(t) = τ6e2εt ˙̃yH(t)Z ˙̃y(t)− 6τ3

∫ 0

−τ

∫ 0

θ

∫ t

t+λ
e2εs ˙̃yH(s)Z ˙̃y(s)dsdλdθ

≤ e2εt

(
τ6 ˙̃yH(t)Z ˙̃y(t)− 36e−2ετ

(∫ 0

−τ

∫ 0

θ

∫ t

t+λ

˙̃y(s)dsdλdθ

)H
Z

(∫ 0

−τ

∫ 0

θ

∫ t

t+λ

˙̃y(s)dsdλdθ

))
= e2εt

(
τ6 ˙̃yH(t)Z ˙̃y(t)

−36e−2ετ

(∫ 0

−τ

∫ 0

θ
(ỹ(t)− ỹ(t+ λ)) dλdθ

)H
Z

(∫ 0

−τ

∫ 0

θ
(ỹ(t)− ỹ(t+ λ)) dλdθ

))
= e2εt

(
τ6 ˙̃yH(t)Z ˙̃y(t)

−9e−2ετ

(
τ2ỹ(t)− 2

∫ 0

−τ

∫ t

t+θ
ỹ(s)ds

)H
Z

(
τ2ỹ(t)− 2

∫ 0

−τ

∫ t

t+θ
ỹ(s)ds

))
, (6.7.26)

where we have used Assumption 6.5 to obtain the inequalities in (6.7.19) and (6.7.20), Lemma
6.4 to obtain the inequalities in (6.7.23) and (6.7.24), Lemma 6.5 to obtain the inequality in
(6.7.25), and Lemma 6.6 to obtain the inequality in (6.7.26).

From Assumption 6.4 about the Lipschitz condition, we can deduce that there exist positive
definite block-diagonal matrices G1 = diag

(
r1
j I4

)
1≤j≤N and G2 = diag

(
r2
j I4

)
1≤j≤N , such that

0 ≤ ỹH(t)Lf̃
H
G1Lf̃ ỹ(t)− f̃H(ỹ(t))G1f̃(ỹ(t)), (6.7.27)

0 ≤ ỹH(t− τ(t))Lf̃
H
G2Lf̃ ỹ(t− τ(t))− f̃H(ỹ(t− τ(t)))G2f̃(ỹ(t− τ(t))), (6.7.28)

where lfj are the Lipschitz constants of the functions fj , ∀j = 1, N , and we denoted Lf̃ =

diag
(
lfj I4

)
1≤j≤N

.

For any matrices N1, N2, N3, N4, N5 ∈ C4N×4N , we have that

0 =
[

˙̃yH(t)N1 + ỹH(t)N2 − f̃H(ỹ(t))N3 − f̃(ỹ(t− τ(t)))N4 − ˙̃yH(t− η(t))N5
]

×
[
− ˙̃y(t)−Dỹ(t) +Af̃(ỹ(t)) +Bf̃(ỹ(t− τ(t))) + C ˙̃y(t− η(t))

]
= − ˙̃yH(t)N1 ˙̃y(t)− ˙̃yH(t)N1Dỹ(t) + ˙̃yH(t)N1Af̃(ỹ(t)) + ˙̃yH(t)N1Bf̃(ỹ(t− τ(t)))

+ ˙̃yH(t)N1C ˙̃y(t− η(t))− ỹH(t)N2 ˙̃y(t)− ỹH(t)N2Dỹ(t)

+ỹH(t)N2Af̃(ỹ(t)) + ỹH(t)N2Bf̃(ỹ(t− τ(t))) + ỹH(t)N2C ˙̃y(t− η(t))

+f̃H(ỹ(t))N3 ˙̃y(t) + f̃H(ỹ(t))N3Dỹ(t)− f̃H(ỹ(t))N3Af̃(ỹ(t))− f̃H(ỹ(t))N3Bf̃(ỹ(t− τ(t)))

−f̃H(ỹ(t))N3C ˙̃y(t− η(t)) + f̃(ỹ(t− τ(t)))N4 ˙̃y(t) + f̃(ỹ(t− τ(t)))N4Dỹ(t)

−f̃(ỹ(t− τ(t)))N4Af̃(ỹ(t))− f̃(ỹ(t− τ(t)))N4Bf̃(ỹ(t− τ(t)))− f̃(ỹ(t− τ(t)))N4C ˙̃y(t− η(t))

+ ˙̃yH(t− η(t))N5 ˙̃y(t) + ˙̃yH(t− η(t))N5Dỹ(t)

− ˙̃yH(t− η(t))N5Af̃(ỹ(t))− ˙̃yH(t− η(t))N5Bf̃(ỹ(t− τ(t)))

− ˙̃yH(t− η(t))N5 ˙̃y(t− η(t)). (6.7.29)

Now, taking the conjugate of (6.7.29), adding it to (6.7.29), and then multiplying the re-
sult by e2εt, then multiplying inequalities (6.7.27)–(6.7.28) by e2εt, and adding them all to
(6.7.18)–(6.7.26), we obtain

V̇ (t) ≤ ζH(t)Πζ(t),

where

ζ(t) =
[
ỹH(t) ˙̃yH(t) ˙̃yH(t− η) ˙̃yH(t− η(t)) ỹH(t− τ) ỹH(t− τ(t)) f̃H(ỹ(t))

f̃H(ỹ(t− τ(t)))
(∫ t

t−η
˙̃y(s)ds

)H (∫ t
t−τ ỹ(s)ds

)H (∫ 0

−τ

∫ t
t+θ

ỹ(s)ds
)H ]H

,



166 6. Dynamics of octonion-valued neural networks (OVNNs)

and Π is defined by (6.7.17). From (6.7.17) we have that Π < 0, which implies that V̇ (t) < 0,
meaning that V (t) is strictly decreasing for t ≥ 0. From the definition of V (t) it can be further
deduced that

e2εtλmin(P )||ỹ(t)||2 ≤ e2εtỹH(t)P ỹ(t) ≤ V (t) ≤ V0, ∀t ≥ T, T ≥ 0,

where V0 = max
0≤t≤T

V (t). Thus,

||ỹ(t)||2 ≤ V0

λmin(P )
e−2εt ⇔ ||ỹ(t)|| ≤Me−εt, ∀t ≥ 0,

where M =
√

V0
λmin(P )

, which means that the origin of system (6.7.3) is globally exponentially
stable, completing the proof of the theorem.

Remark 6.10. Taking into account Remark 6.4, it can be seen that Theorem 6.6 is not equivalent
with Theorem 6.7. Because Assumption 6.3 implies Assumption 6.4, but not the other way
around, we can deduce that Theorem 6.7 is more general than Theorem 6.6, and for any example
for which Theorem 6.6 can be applied, Theorem 6.7 can be applied as well, but not the other
way around.

Remark 6.11. The stability of complex-valued neutral-type neural networks was only discussed
in [69] and [232]. The first paper discusses the exponential stability of the periodic solutions,
whereas this paper treats global solutions. The second one gives delay-independent criteria
for BAM neutral-type neural networks, which are more conservative than the delay-dependent
criteria given in this paper. As such, a direct comparison of our results with the ones already ex-
isting in the literature is not possible. The particularization of the obtained results for complex-
valued neural networks is another novel contribution of the paper. To the best of knowledge,
there are no established stability criteria for quaternion-valued neutral-type neural networks.

6.7.2 Numerical examples
In this section, two numerical examples are provided to demonstrate the effectiveness and cor-
rectness of the proposed stability criteria.

Example 6.6. Consider the following two-neuron neutral-type OVNN with time-varying de-
lays: 

ẋ1(t) = −d1x1(t) +
∑2

j=1 a1jfj(xj(t)) +
∑2

j=1 b1jfj(xj(t− τ1j(t)))

+c1ẋ1(t− η1(t)) + u1,

ẋ2(t) = −d2x2(t) +
∑2

j=1 a2jfj(xj(t)) +
∑2

j=1 b2jfj(xj(t− τ2j(t)))

+c2ẋ2(t− η2(t)) + u2,

(6.7.30)

where
d1 = 18, d2 = 15,
a11 = (0.1 + 0.3ı) + (0.2 + 0.2ı)+ (0.3− 0.1ı)`+ (−0.4 + 0.1ı)`,
a12 = (0.4 + 0.1ı) + (0.3− 0.2ı)+ (0.4 + 0.1ı)`+ (−0.2 + 0.3ı)`,
a21 = (0.2− 0.3ı) + (0.2 + 0.1ı)+ (0.4− 0.2ı)`+ (0.1 + 0.2ı)`,
a22 = (0.1 + 0.2ı) + (0.3− 0.2ı)+ (0.2 + 0.1ı)`+ (0.4− 0.2ı)`,
b11 = (0.2 + 0.1ı) + (0.3 + 0.1ı)+ (−0.2 + 0.3ı)`+ (−0.1 + 0.4ı)`,
b12 = (−0.4 + 0.2ı) + (−0.2 + 0.3ı)+ (0.1 + 0.2ı)`+ (−0.2 + 0.2ı)`,



6. Dynamics of octonion-valued neural networks (OVNNs) 167

b21 = (0.1− 0.4ı) + (0.2− 0.2ı)+ (0.1 + 0.2ı)`+ (0.3 + 0.2ı)`,
b22 = (0.1 + 0.2ı) + (0.4 + 0.1ı)+ (0.2− 0.3ı)`+ (−0.2 + 0.4ı)`,
c1 = (0.1 + 0.05ı) + (0.05− 0.05ı)+ (0.1− 0.1ı)`+ (−0.1 + 0.05ı)`,
c2 = (0.1 + 0.05ı) + (0.05− 0.05ı)+ (0.1 + 0.1ı)`+ (0.05− 0.05ı)`,
u1 = 20((1− 2ı) + (3− 4ı)+ (5− 6ı)`+ (7− 8ı)`),
u2 = 20((8− 7ı) + (6− 5ı)+ (4− 3ı)`+ (2− 1ı)`),
fj

(∑7
q=0[x]qeq

)
=
∑7

q=0 0.11−e−[x]q

1+e−[x]q
eq, from which we infer that l[f

′]p
j = 0.1√

2
, ∀p ∈ {0, 1, 2, 3},

∀j = 1, 2, and so Assumption 6.3 is fulfilled. If the time-varying delays are τ1j(t) = τ2j(t) =
0.3| sin t|, ∀j = 1, 2, and the neutral-type delays are η1(t) = η2(t) = 0.1| cos t|, so τ = τ ′ = 0.3
and η = η′ = 0.1, then Assumption 6.5 is also fulfilled.

By solving the LMI conditions in (6.7.4), we deduce from Theorem 6.6 that the equilib-
rium point of OVNN (6.7.30) is globally exponentially stable, for G1

0 = diag(8.1261, 10.1695),
G2

0 = diag(7.4576, 9.5724), G1
1 = diag(8.1261, 10.1694), G2

1 = diag(7.4577, 9.5726), G1
2 =

diag(8.1262, 10.1695),G2
2 = diag(7.4576, 9.5725),G1

3 = diag(8.1260, 10.1695),G2
3 = diag(7.4576, 9.5725),

and ε = 0.1. (For brevity, the values of the other matrices are not given.)

Example 6.7. In this example, consider the same neutral-type OVNN with time-varying delays
in (6.7.30), but with the following parameters:

d1 = 6, d2 = 3,
a11 = (0.2 + 0.1ı) + (0.5− 0.2ı)+ (0.4 + 0.3ı)`+ (0.3 + 0.1ı)`,
a12 = (−0.3 + 0.3ı) + (−0.4− 0.2ı)+ (0.3 + 0.1ı)`+ (0.2− 0.1ı)`,
a21 = (−0.4 + 0.3ı) + (−0.3− 0.2ı)+ (0.6 + 0.2ı)`+ (0.5 + 0.1ı)`,
a22 = (−0.5 + 0.2ı) + (−0.2− 0.4ı)+ (0.2 + 0.3ı)`+ (0.2− 0.3ı)`,
b11 = (0.6 + 0.4ı) + (0.9− 0.5ı)+ (0.7 + 0.6ı)`+ (0.4− 0.2ı)`,
b12 = (0.7 + 0.6ı) + (0.8− 0.4ı)+ (0.9 + 0.4ı)`+ (0.3− 0.2ı)`,
b21 = (0.8 + 0.3ı) + (0.7− 0.2ı)+ (0.6 + 0.1ı)`+ (0.1− 0.4ı)`,
b22 = (−0.9 + 0.2ı) + (−0.6− 0.3ı)+ (0.8 + 0.5ı)`+ (0.2− 0.4ı)`,
c1 = (−0.1 + 0.14ı) + (−0.13− 0.16ı)+ (0.12 + 0.15ı)`+ (0.15− 0.18ı)`,
c2 = (0.13 + 0.12ı) + (0.14− 0.13ı)+ (0.11 + 0.12ı)`+ (0.13− 0.12ı)`,
u1 = 5((8− 7ı) + (6− 5ı)+ (4− 3ı)`+ (2− 1ı)`),
u2 = 5((1− 2ı) + (3− 4ı)+ (5− 6ı)`+ (7− 8ı)`),
fj

(∑7
q=0[x]qeq

)
=
∑7

q=0
0.1

1+e−[x]q
eq, from which lfj = 0.1√

2
, ∀j = 1, 2, and so Assumption

6.4 is fulfilled. If the time-varying delays are τ1j(t) = τ2j(t) = 0.4| cos t|, ∀j = 1, 2, and the
neutral-type delays are η1(t) = η2(t) = 0.2| sin t|, so τ = τ ′ = 0.4 and η = η′ = 0.2, then
Assumption 6.5 is also fulfilled.

By solving the LMI conditions in (6.7.17), we deduce from Theorem 6.7 that the equilibrium
point of OVNN (6.7.30) with the above parameters is globally exponentially stable, for G1 =
diag(3.3205, 2.8483), G2 = diag(3.3736, 3.4405), and ε = 0.5. (For brevity, the values of the
other matrices are not given.)

Remark 6.12. It can be easily verified that Theorem 6.6 cannot be applied for Example 6.7, but
Theorem 6.7 can be applied for both examples, which empirically confirms the correctness of
the claims made in Remark 6.4 and Remark 6.10.





Chapter 7

Dynamics of matrix-valued neural
networks (MVNNs)

Multidimensional neural networks have caught the attention of researchers over the last few
years. Complex-valued neural networks (CVNNs), first introduced by [227], have numer-
ous applications, including radar imaging, antenna design, image processing, estimation of
direction of arrival and beamforming, communications signal processing, and many others
[77, 78]. Hyperbolic numbers, which also form a 2-dimensional algebra, represent the basis
for hyperbolic-valued neural networks (HVNNs), which are another type of multidimensional
networks [103, 134]. First introduced by [4], quaternion-valued neural networks (QVNNs)
were applied in color image compression [89], polarized signal classification [22], color night
vision [104], chaotic time-series prediction [7], and 3D wind forecasting [92, 213]. Proposed by
[139, 140], and later discussed by [24, 103], were Clifford-valued neural networks (ClVNNs),
which have potential applications in high-dimensional data processing. These networks rep-
resent a generalization of CVNNs, HVNNs, and QVNNs, because complex, hyperbolic, and
quaternion algebras are special cases of the 2n-dimensional Clifford algebras, where n ≥ 1.
Lastly, octonion-valued neural networks (OVNNs), which don’t fall into the Clifford neural
networks category, were proposed by [149].

On the other hand, the complex, hyperbolic, quaternion, octonion, and Clifford algebras
can all be seen as subalgebras of the square matrix algebra, which means that any number
belonging to these sets can be represented in matrix form. For instance, the complex number

a + ib, i =
√
−1, can be represented as

(
a −b
b a

)
, the hyperbolic number a + ub, u2 =

1, u 6= ±1, as
(
a b
b a

)
, and the quaternion a + ib + jc + kd, i2 = j2 = k2 = ijk =

−1, as


a b c d
−b a −d c
−c d a −b
−d −c b a

 . This observation means that the matrix algebra represents a

generalization of all the above-mentioned algebras, which gave rise to the idea of generalizing
CVNNs, HVNNs, QVNNs, OVNNs, and ClVNNs to matrix-valued neural networks (MVNNs),
first in their feedforward variant, in [144]. Their degree of generality offers a potential for these
neural networks to have many applications in the future at solving problems at which traditional
neural networks have failed or performed poorly.

169



170 7. Dynamics of matrix-valued neural networks (MVNNs)

7.1 Matrix-valued Hopfield neural networks
The idea of introducing an energy function in order to study the dynamics of fully connected
recurrent neural networks was first proposed by Hopfield at the beginning of the 1980’s, see
[80, 81, 82, 206]. He showed that combinatorial problems can be solved by using this type of
network. Since then, Hopfield neural networks have been applied to the synthesis of associative
memories, image processing, speech processing, control, signal processing, pattern matching,
etc. Because of the observations made in the beginning of this chapter, we consider an interest-
ing idea to introduce matrix-valued Hopfield neural networks. These networks can be applied to
the synthesis of matrix-valued associative memories, and also to image processing and pattern
matching, where the data can be treated in matrix form.

The presentation in this section follows that in the author’s paper [152].

7.1.1 Main results
Consider the algebraMn of square matrices of order n with real entries.

In what follows, we will define Hopfield neural networks for which the states, outputs,
weights and thresholds are all from Mn, which means that they are square matrices. The
network is described by the set of differential equations

τi
dVi(t)

dt
= −Vi(t) +

N∑
j=1

Wijf(Vj(t)) +Bi, i ∈ {1, . . . , N}, (7.1.1)

where τi ∈ R, τi > 0 is the time constant of neuron i, Vi(t) ∈Mn is the state of neuron i at time
t, Wij ∈ Mn is the weight connecting neuron j to neuron i, f : Mn → Mn is the nonlinear
matrix-valued activation function, and Bi is the threshold of neuron i, ∀i ∈ {1, . . . , N}. The
derivative is taken to be the matrix formed by the derivatives of each element [Vi(t)]ab of the
matrix Vi(t) with respect to t:

dVi(t)

dt
:=

(
d([Vi(t)]ab)

dt

)
1≤a,b≤n

.

If we denote byXj(t) := f(Vj(t)) the output of neuron j, the above set of differential equations
can be written as

τi
dVi(t)

dt
= −Vi(t) +

N∑
j=1

WijXj(t) +Bi, i ∈ {1, . . . , N}.

The activation function f is formed of n2 functions fab :Mn → R, 1 ≤ a, b ≤ n:

f(V ) =
(
fab(V )

)
1≤a,b≤n .

In order to study the stability of the above defined network, we need to make a series of
assumptions about the activation function.

The first assumption is that the functions fab are continuously differentiable with respect
to each [V ]cd, ∀1 ≤ c, d ≤ n, ∀1 ≤ a, b ≤ n, and the function f is bounded: ∃M > 0,
||f(V )|| ≤ M, ∀V ∈ Mn, where ||X|| is the Frobenius norm of matrix X , defined by ||X|| =√

Tr(XXT ), and Tr(X) represents the trace of matrix X . In this setting, the n2 × n2 Jacobian
matrix of the function f can be defined as



7. Dynamics of matrix-valued neural networks (MVNNs) 171

Jacf (V ) =

(
∂fab(V )

∂[V ]cd

)
1≤a,b≤n
1≤c,d≤n

.

The second assumption that we have to make is that f is injective and Jacf (V ) is sym-
metric and positive definite, ∀V ∈ Mn. This, together with the above assumption, assures
the existence of the inverse function of f , g : Mn → Mn, g = f−1. We can thus write
g(Xi(t)) = Vi(t), ∀i ∈ {1, . . . , N}. Now, we can define a function G :Mn → R,

G(X) =
n∑

a,b=1

∫ [X]ab

0

gab(Y ab)dy,

where gab :Mn → R are the component functions of g and the matrices Y ab have the following
form

[Y ab]cd =


[X]cd, (c, d) < (a, b)

y, (c, d) = (a, b)

0 (c, d) > (a, b)

, ∀1 ≤ a, b ≤ n.

For example, for 2× 2 matrices, we have that

G(X) =

∫ [X]11

0

g11

((
y 0
0 0

))
dy +

∫ [X]12

0

g12

((
[X]11 y

0 0

))
dy

+

∫ [X]21

0

g21

((
[X]11 [X]12

y 0

))
dy +

∫ [X]22

0

g22

((
[X]11 [X]12

[X]21 y

))
dy.

This function satisfies
∂G(X)

∂[X]ab
= gab(X), ∀1 ≤ a, b ≤ n.

The above condition can also be written in matrix form as

∂G(X)

∂X
= g(X). (7.1.2)

The last assumption concerns the weights of the network, which must satisfy:

Wji = W T
ij , ∀i, j ∈ {1, . . . , N}.

Having made all the above assumptions, we can define the energy function E : MN
n → R

of the Hopfield network (7.1.1) as:

E(X(t)) = −1

2

N∑
i=1

N∑
j=1

Tr(Xi(t)
TWijXj(t)) +

N∑
i=1

G(Xi(t))−
N∑
i=1

Tr(BT
i Xi(t)). (7.1.3)

A function E is an energy function for the Hopfield network (7.1.1) if the derivative of E
along the trajectories of network, denoted by dE(X(t))

dt
, satisfies the condition dE(X(t))

dt
≤ 0 and

dE(X(t))
dt

= 0 ⇔ dXi(t)
dt

= 0, ∀i ∈ {1, . . . , N}. We will show that the function E defined in
(7.1.3) is indeed an energy function for the network (7.1.1).

For this, we start by applying the chain rule:



172 7. Dynamics of matrix-valued neural networks (MVNNs)

dE(X(t))

dt
=

N∑
i=1

n∑
a,b=1

∂E(X(t))

∂[Xi(t)]ab

d[Xi(t)]ab
dt

=
N∑
i=1

Tr

((
∂E(X(t))

∂Xi(t)

)T
dXi(t)

dt

)
, (7.1.4)

where by ∂E(X(t))
∂[Xi(t)]ab

we denoted the partial derivative of the function E with respect to each
element [Xi(t)]ab of the matrix Xi(t), ∀1 ≤ a, b ≤ n, ∀i ∈ {1, . . . , N}. Taking (7.1.3) into
account, using the fact that

dTr(XTA)

dX
=
dTr(ATX)

dX
= A,

relation (7.1.2), the assumption Wji = W T
ij , and also the set of equations given by (7.1.1), the

expression of the partial derivative ∂E(X(t))
∂Xi(t)

=
(
∂E(X(t))
∂[Xi(t)]ab

)
1≤a,b≤n

is computed as:

∂E(X(t))

∂Xi(t)
= −

N∑
j=1

WijXj(t) + g(Xi(t))−Bi

= −

(
N∑
j=1

WijXj(t)− Vi(t) +Bi

)

= −τi
dVi(t)

dt
, ∀i ∈ {1, . . . , N},

If we denote by vec (X) the vectorization of matrix X , and use the identity Tr(ATB) =
vec(A)Tvec(B), ∀A,B ∈Mn, we can now write equation (7.1.4) as:

dE(X(t))

dt
=

N∑
i=1

Tr

((
−τi

dVi(t)

dt

)T
dXi(t)

dt

)

= −
N∑
i=1

τi

[
vec
(
dVi(t)

dt

)]T
vec
(
dXi(t)

dt

)

= −
N∑
i=1

τi

[
vec
(
dXi(t)

dt

)]T
[Jacg(Xi(t))]

Tvec
(
dXi(t)

dt

)
≤ 0, (7.1.5)

where, from g(Xi(t)) = Vi(t), we obtained that

vec
(
dg(Xi(t))

dt

)
= Jacg(Xi(t))vec

(
dXi(t)

dt

)
, ∀i ∈ {1, . . . , N}.

Because Jacf (V ) is symmetric and positive definite, we deduce that Jacg(X) is also symmetric
and positive definite, and thus[

vec
(
dXi(t)

dt

)]T
[Jacg(Xi(t))]

Tvec
(
dXi(t)

dt

)
≥ 0, ∀i ∈ {1, . . . , N},



7. Dynamics of matrix-valued neural networks (MVNNs) 173

which allowed us to write the last inequality in relation (7.1.5). Equality is attained when

dE(X(t))

dt
= 0⇔ vec

(
dXi(t)

dt

)
= 0⇔ dXi(t)

dt
= 0, ∀i ∈ {1, . . . , N},

thus ending the proof that E is indeed an energy function for the network (7.1.1).
We now give two examples of activation functions that satisfy the above assumptions, in-

spired by the ones used in real-valued and complex-valued neural networks:

f(V ) =
V

1 + ||V ||
, ∀V ∈Mn,

f
(

([V ]ab)1≤a,b≤n

)
= (tanh[V ]ab)1≤a,b≤n , ∀V ∈Mn.

The first one corresponds to the fully complex activation functions, while the second one corre-
sponds to the split complex activation functions from the complex-valued domain.

7.2 Matrix-valued bidirectional associative memories

First introduced by Kosko in [100], bidirectional associative memories, an extension of the uni-
directional Hopfield neural networks, were intensely studied, and have many applications in
pattern recognition and automatic control. Because of the fact that complex-valued bidirec-
tional associative memories were introduced in [110], quaternion-valued bidirectional associa-
tive memories in [102], and Clifford-valued bidirectional associative memories in [217], we
considered an interesting idea to introduce matrix-valued bidirectional associative memories.
These networks can be applied to store matrix patterns and to solve difficult matrix optimiza-
tion problems.

The presentation in this section follows that in the author’s paper [172].

7.2.1 Main results

In the following, we will define bidirectional associative memories for which the states, outputs,
and thresholds are all from Mn, which means that they are square matrices. The network is
described by the set of differential equations

τi
dXi(t)

dt
= −Xi(t) +

P∑
j=1

Wijf(Yj(t)) + Ai, ∀i ∈ {1, . . . , N},

υj
dYj(t)

dt
= −Yj(t) +

N∑
i=1

Wjif(Xi(t)) +Bj, ∀j ∈ {1, . . . , P},
(7.2.1)

where τi ∈ R, τi > 0 is the time constant of neuron Xi, υj ∈ R, υj > 0 is the time constant of
neuron Yj , Xi(t) ∈ Mn is the state of neuron Xi at time t, Yj(t) ∈ Mn is the state of neuron
Yj at time t, Wij ∈ Mn is the weight connecting neuron Xi to neuron Yj , f : Mn → Mn is
the nonlinear matrix-valued activation function, Ai is the threshold of neuron Xi, and Bj is the
threshold of neuron Yj , ∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , P}. By denoting Ui(t) := f(Xi(t)) the
output of neuron Xi and Vj(t) := f(Yj(t)) the output of neuron Yj , the above set of differential



174 7. Dynamics of matrix-valued neural networks (MVNNs)

equations becomes:
τi
dXi(t)

dt
= −Xi(t) +

P∑
j=1

WijVj(t) + Ai, ∀i ∈ {1, . . . , N},

υj
dYj(t)

dt
= −Yj(t) +

N∑
i=1

WjiUi(t) +Bj, ∀j ∈ {1, . . . , P}.

Studying the stability of the above defined network requires a series of assumptions about the
activation function, which we will detail below.

Just like in Section 7.1, in order to study the stability of the above defined network, we need
to make a series of assumptions about the activation function. The assumptions will be exactly
the same as the ones in Section 7.1.

Taking these assumptions into account, we can define the energy function E :MN+P
n → R

of the bidirectional associative memory (7.2.1) as:

E(U(t),V(t)) = −
N∑
i=1

P∑
j=1

Tr(Ui(t)TWijVj(t))

+
N∑
i=1

G(Ui(t))−
N∑
i=1

Tr(ATi Ui(t))

+
P∑
j=1

G(Vj(t))−
P∑
j=1

Tr(BT
j Vj(t)). (7.2.2)

A function E is an energy function for the network (7.2.1) if the derivative of E along the
trajectories of network, denoted by dE(U(t),V(t))

dt
, satisfies the condition dE(U(t),V(t))

dt
≤ 0 and

dE(U(t),V(t))
dt

= 0 ⇔ dUi(t)
dt

=
dVj(t)

dt
= 0, ∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , P}. In the following,

we will show that the function E defined in (7.2.2) is indeed an energy function for the network
(7.2.1).

For this, we start by applying the chain rule:

dE(U(t),V(t))

dt
=

N∑
i=1

n∑
a,b=1

∂E(U(t),V(t))

∂[Ui(t)]ab

d[Ui(t)]ab
dt

+
P∑
j=1

n∑
a,b=1

∂E(U(t),V(t))

∂[Vj(t)]ab

d[Vj(t)]ab
dt

=
N∑
i=1

Tr

((
∂E(U(t),V(t))

∂Ui(t)

)T
dUi(t)

dt

)

+
P∑
j=1

Tr

((
∂E(U(t),V(t))

∂Vj(t)

)T
dVj(t)

dt

)
, (7.2.3)

where by ∂E(U(t),V(t))
∂[Ui(t)]ab

we denoted the partial derivative of the function E with respect to each
element [Ui(t)]ab of the matrices Ui(t), ∀1 ≤ a, b ≤ n, ∀i ∈ {1, . . . , N}, and analogously for
∂E(U(t),V(t))
∂[Vj(t)]ab

, ∀j ∈ {1, . . . , P}.
For the partial derivatives

∂E(U(t),V(t))

∂Ui(t)
=

(
∂E(U(t),V(t))

∂[Ui(t)]ab

)
1≤a,b≤n



7. Dynamics of matrix-valued neural networks (MVNNs) 175

and
∂E(U(t),V(t))

∂Vj(t)
=

(
∂E(U(t),V(t))

∂[Vj(t)]ab

)
1≤a,b≤n

,

we have from (7.2.2) that

∂E(U(t),V(t))

∂Ui(t)
= −

P∑
j=1

WijVj(t) + g(Ui(t))− Ai

= −

(
P∑
j=1

WijVj(t)−Xi(t) + Ai

)

= −τi
dXi(t)

dt
, ∀i ∈ {1, . . . , N},

∂E(U(t),V(t))

∂Vj(t)
= −

N∑
i=1

WjiUi(t) + g(Vj(t))−Bj

= −

(
N∑
i=1

WjiUj(t)− Yj(t) +Bj

)

= −υj
dYj(t)

dt
, ∀j ∈ {1, . . . , P},

where we used the fact that

dTr(XTA)

dX
=
dTr(ATX)

dX
= A,

relation (7.1.2), the assumption Wji = W T
ij , and also the set of equations given by (7.2.1). Now,

equation (7.2.3) becomes:

dE(U(t),V(t))

dt
=

N∑
i=1

Tr

((
−τi

dXi(t)

dt

)T
dUi(t)

dt

)

+
P∑
j=1

Tr

((
−υj

dYj(t)

dt

)T
dVj(t)

dt

)

= −
N∑
i=1

τi

[
vec
(
dXi(t)

dt

)]T
vec
(
dUi(t)

dt

)

−
P∑
j=1

υj

[
vec
(
dYj(t)

dt

)]T
vec
(
dVj(t)

dt

)

= −
N∑
i=1

{
τi

[
vec
(
dUi(t)

dt

)]T
[Jacg(Ui(t))]Tvec

(
dUi(t)

dt

)}

−
P∑
j=1

{
υj

[
vec
(
dVj(t)

dt

)]T
[Jacg(Vj(t))]Tvec

(
dVj(t)

dt

)}
≤ 0, (7.2.4)



176 7. Dynamics of matrix-valued neural networks (MVNNs)

where we denoted by vec (X) the vectorization of matrix X . We also used the identity

Tr(ATB) = vec(A)Tvec(B), ∀A,B ∈Mn,

and, from g(Ui(t)) = Xi(t) and g(Vj(t)) = Yj(t), we obtained that

vec
(
dg(Ui(t))

dt

)
= Jacg(Ui(t))vec

(
dUi(t)

dt

)
,

vec
(
dg(Vj(t))

dt

)
= Jacg(Vj(t))vec

(
dVj(t)

dt

)
,

∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , P}. Because Jacf (X) is symmetric and positive definite, we
deduce that Jacg(U) is also symmetric and positive definite, and thus[

vec
(
dUi(t)

dt

)]T
[Jacg(Ui(t))]Tvec

(
dUi(t)

dt

)
≥ 0,

[
vec
(
dVj(t)

dt

)]T
[Jacg(Vj(t))]Tvec

(
dVj(t)

dt

)
≥ 0,

∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , P}, which allowed us to write the last inequality in relation
(7.2.4). Equality is attained when dE(U(t),V(t))

dt
= 0 ⇔ vec

(
dUi(t)
dt

)
= vec

(
dVj(t)

dt

)
= 0 ⇔

dUi(t)
dt

=
dVj(t)

dt
= 0, ∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , P}, thus ending the proof that E is indeed

an energy function for the network (7.2.1).

7.3 Asymptotic stability for MVNNs with delay
We considered an interesting idea to introduce matrix-valued Hopfield neural networks [152],
which, as stated earlier, generalize CVNNs, HVNNs, QVNNs, OVNNs, and ClVNNs. These
networks can be applied to the synthesis of matrix-valued associative memories, and also to
image processing and pattern matching, where the data can be treated in matrix form. Because
time delays inherently occur in real life implementations of neural networks, and they can lead
to unwanted behavior such as oscillations and chaos, we consider matrix-valued Hopfield neural
networks with time delay, and study their dynamics, more precisely the existence, uniqueness,
and global asymptotic stability of their equilibrium point.

In this and the following sections, the following notations will be used: with R we denote
the real number set and with Rn we denote the n dimensional Euclidean space. Mn denotes
the algebra of real square matrices of order n. AT represents the transpose of matrix A and
∗ denotes the symmetric terms in a matrix. A > 0 (A < 0) means that matrix A is positive
definite (negative definite). In represents the identity matrix of order n and 0n the empty matrix
of order n. The vector Euclidean norm or the matrix Frobenius norm are denoted by || · ||.
λmin(P ) represents the smallest eigenvalue of matrix P .

The presentation in this section follows that in the author’s paper [160].

7.3.1 Main results
In what follows, we will define Hopfield neural networks for which the states, outputs, and
weights are all fromMn, which means that they are square matrices. The network is described



7. Dynamics of matrix-valued neural networks (MVNNs) 177

by the system of differential equations

Ẋi(t) = −diXi(t) +
N∑
j=1

Aijfj(Xj(t)) +
N∑
j=1

Bijgj(Xj(t− τ)) + Ui, (7.3.1)

i ∈ {1, . . . , N}, where Xi(t) ∈ Mn is the state of neuron i at time t, di ∈ R, di > 0, is the
self-feedback connection weight of neuron i, Aij ∈ Mn is the weight connecting neuron j to
neuron i without time delay, Bij ∈Mn is the weight connecting neuron j to neuron i with time
delay, fj : Mn → Mn is the nonlinear matrix-valued activation function of neuron j without
time delay, gj :Mn →Mn is the nonlinear matrix-valued activation function of neuron j with
time delay, τ ∈ R is the time delay and we assume τ > 0, and Ui is the external input of neuron
i, ∀i, j ∈ {1, . . . , N}.

In order to study the stability of the above defined network, we need to make an assumption
about the activation functions.

Assumption 7.1. The matrix-valued activation functions fj and gj satisfy the following Lips-
chitz conditions:

||fj(X)− fj(X ′)|| ≤ lfj ||X −X ′||, ∀X,X ′ ∈Mn,

||gj(X)− gj(X ′)|| ≤ lgj ||X −X ′||, ∀X,X ′ ∈Mn,

where lfj > 0 and lgj > 0 are the Lipschitz constants, ∀j ∈ {1, . . . , N}. Furthermore, we denote
Lf = diag(lf1In2 , lf2In2 , . . . , lfNIn2), Lg = diag(lg1In2 , lg2In2 , . . . , lgNIn2).

We will first transform the matrix-valued set of differential equations (7.3.1) into a real-
valued one. For this, we will detail each equation in (7.3.1) into n2 real-valued equations:

[Ẋi(t)]pq = −di[Xi(t)]pq +
N∑
j=1

n∑
r=1

[Aij]prf
rq
j (Xj(t))

+
N∑
j=1

n∑
r=1

[Bij]prg
rq
j (Xj(t− τ)) + [Ui]pq, (7.3.2)

1 ≤ p, q ≤ n, i ∈ {1, . . . , N}. Now, using the vectorization operation, we can write

vec(Ẋi(t)) = −diIn2vec(Xi(t)) +
N∑
j=1

(In ⊗ Aij)vec(fj(Xj(t)))

+
N∑
j=1

(In ⊗Bij)vec(gj(Xj(t− τ))) + vec(Ui), (7.3.3)

i ∈ {1, . . . , N}. Finally, if we denote

W (t) = (vec(X1(t))T , vec(X2(t))T , . . . , vec(XN(t))T )T ,

D =


d1In2 0 · · · 0

0 d2In2 · · · 0
...

... . . . ...
0 0 0 dNIn2

 ,



178 7. Dynamics of matrix-valued neural networks (MVNNs)

A =


In ⊗ A11 In ⊗ A12 · · · In ⊗ A1N

In ⊗ A21 In ⊗ A22 · · · In ⊗ A2N
...

... . . . ...
In ⊗ AN1 In ⊗ AN2 · · · In ⊗ ANN

 ,

B =


In ⊗B11 In ⊗B12 · · · In ⊗B1N

In ⊗B21 In ⊗B22 · · · In ⊗B2N
...

... . . . ...
In ⊗BN1 In ⊗BN2 · · · In ⊗BNN

 ,
f(W (t)) = (vec(f1(X1(t)))T , vec(f2(X2(t)))T , . . . , vec(fN(XN(t)))T )T ,

g(W (t− τ)) = (vec(g1(X1(t− τ)))T , vec(g2(X2(t− τ)))T , . . . , vec(gN(XN(t− τ)))T )T ,

U = (vec(U1)T , vec(U2)T , . . . , vec(UN)T )T ,

with the simplifying notations W = W (t) and W τ = W (t− τ), system (7.3.1) becomes

Ẇ = −DW + Af(W ) +B g(W τ ) + U. (7.3.4)

Remark 7.1. The system (7.3.4) is equivalent with the system (7.3.1), which means that any
property proven about system (7.3.4) will also hold for system (7.3.1). For this reason, from
now on we will only study the existence, uniqueness and global asymptotic stability of the
equilibrium point of system (7.3.4).

Remark 7.2. It can be clearly seen from the above derivation that the matrix-valued recurrent
neural network defined in (7.3.1) is not equivalent with an nN -dimensional real-valued recur-
rent neural network, because, for such a network, the matrices A and B are general uncon-
strained matrices, and don’t have the particular form given above.

We will also need the following lemmas:

Lemma 7.1. ([55]). If H : Rn2N → Rn2N is a continuous map that satisfies the following
conditions:

(i) H is injective on Rn2N ,

(ii) ||H(W )|| → ∞ as ||W || → ∞, where || · || represents the Euclidean norm on Rn2N ,

then H is a homeomorphism of Rn2N onto itself.

Lemma 7.2. ([114]). For any vectors x, y ∈ Rn2N , positive definite matrix P ∈ Mn2N , and
real constant ε > 0, the following linear matrix inequality (LMI) holds:

2xTy ≤ εxTPx+
1

ε
yTP−1y.

Lemma 7.3. ([66]). For any positive definite matrix M ∈ Mn2N and vector function W :
[a, b] → Rn2N , such that the integrations concerned are well defined, the following inequality
holds: (∫ b

a

W (s)ds

)T
M

(∫ b

a

W (s)ds

)
≤ (b− a)

∫ b

a

W T (s)MW (s)ds.



7. Dynamics of matrix-valued neural networks (MVNNs) 179

7.3.2 Main results
We begin by giving an LMI-based sufficient condition for the existence, uniqueness, and global
asymptotic stability of the equilibrium point for (7.3.4).

Theorem 7.1. If Assumption 7.1 holds, then system (7.3.4) has a unique equilibrium point which
is globally asymptotically stable if there exist real numbers ε1 > 0 and ε2 > 0, and positive
definite matrix P ∈Mn2N , such that the following LMI holdsPD +DP − ε1Lf

T
Lf − ε2Lg

T
Lg PA PB

∗ ε1In2N 0
∗ ∗ ε2In2N

 > 0. (7.3.5)

Proof. Define the function H : Rn2N → Rn2N ,

H(W ) = −DW + Af(W ) +B g(W ) + U. (7.3.6)

First, we will prove that H is injective. We assume by contradiction that there are W ,
W ′ ∈ Rn2N , W 6= W ′, for which H(W ) = H(W ′). This equality can be written as

−D(W −W ′) + A(f(W )− f(W ′)) +B(g(W )− g(W ′)) = 0. (7.3.7)

If we left multiply this relation by 2(W −W ′)TP , we get that

2(W −W ′)TP (−D(W −W ′) + A(f(W )− f(W ′)) +B(g(W )− g(W ′))) = 0, (7.3.8)

which is equivalent with

(W −W ′)T (−PD −DP )(W −W ′) + 2(W −W ′)TPA(f(W )− f(W ′))

+2(W −W ′)TPB(g(W )− g(W ′)) = 0, (7.3.9)

From Assumption 7.1, we have that

||fj(X)− fj(X ′)|| ≤ lfj ||X −X ′||

⇔ ||vec(fj(X))− vec(fj(X
′))|| ≤ lfj ||vec(X)− vec(X ′)||,

for j ∈ {1, . . . N}. Taking into account the above notations, this can be written as

(f(W )− f(W ′))T (f(W )− f(W ′)) ≤ (W −W ′)TLf
T
Lf (W −W ′). (7.3.10)

In the same way, we can deduce that

(g(W )− g(W ′))T (g(W )− g(W ′)) ≤ (W −W ′)TLg
T
Lg(W −W ′). (7.3.11)

Now, we have from (7.3.9) that

(W −W ′)T (−PD −DP )(W −W ′) + 2(W −W ′)TPA(f(W )− f(W ′))

+2(W −W ′)TPB(g(W )− g(W ′))

≤ (W −W ′)T (−PD −DP )(W −W ′) + ε1(f(W )− f(W ′))T (f(W )− f(W ′))

+ε−1
1 (W −W ′)TPAA

T
P (W −W ′) + ε2(g(W )− g(W ′))T (g(W )− g(W ′))

+ε−1
2 (W −W ′)TPB B

T
P (W −W ′)

≤ (W −W ′)T (−PD −DP )(W −W ′) + ε1(W −W ′)TL(W −W ′)

+ε−1
1 (W −W ′)TPAA

T
P (W −W ′) + ε2(W −W ′)TM(W −W ′)

+ε−1
2 (W −W ′)TPB B

T
P (W −W ′)

= −(W −W ′)T (PD +DP − ε1Lf
T
Lf − ε2Lg

T
Lg − ε−1

1 PAA
T
P

−ε−1
2 PB B

T
P )(W −W ′), (7.3.12)



180 7. Dynamics of matrix-valued neural networks (MVNNs)

where we also took into account Lemma 7.2 and inequalities (7.3.10) and (7.3.11).
From the condition (7.3.5), using Schur’s complement, we get that

PD +DP − ε1Lf
T
Lf − ε2Lg

T
Lg − ε−1

1 PAA
T
P − ε−1

2 PB B
T
P > 0, (7.3.13)

which, plugged back into (7.3.12), finally yields

H(W )−H(W ′) < 0,

which is an obvious contradiction with our initial assumption. Thus, H is injective.
Next, we will prove that ||H(W )|| → ∞ as ||W || → ∞. For this, we deduce from (7.3.13)

that there exists a sufficiently small ε > 0, such that

−PD −DP + ε1Lf
T
Lf + ε2Lg

T
Lg + ε−1

1 PAA
T
P + ε−1

2 PB B
T
P < −εIn2N .

Taking W ′ = 0 in (7.3.12), gives

2W TP (H(W )−H(0)) ≤ W T (−PD −DP + ε1Lf
T
Lf + ε2Lg

T
Lg + ε−1

1 PAA
T
P

+ε−1
2 PB B

T
P )W

< −ε||W ||2. (7.3.14)

From the Cauchy-Schwarz inequality and relation (7.3.14), we obtain

2||W ||||P ||(||H(W )||+ ||H(0)||) > ε||W ||2,

which immediately yields that ||H(W )|| → ∞ when ||W || → ∞.
Applying Lemma 7.1, we get that H is a homeomorphism of Rn2N onto itself. This means

that the equation H(W ) = 0 has a unique solution, and so system (7.3.4) also has a unique
equilibrium point, which we will denote by Ŵ .

We now shift this equilibrium point to the origin, and the system (7.3.4) becomes

˙̃W = −DW̃ + A f̃(W̃ ) +B g̃(W̃ τ ), (7.3.15)

where f̃(W̃ ) = f(W̃+Ŵ )−f(Ŵ ) and g̃(W̃ τ ) = g(W̃ τ +Ŵ )−g(Ŵ ). Construct the following
Lyapunov-Krasovskii functional:

V (W̃ (t)) = W̃ T (t)PW̃ (t) +

∫ t

t−τ
W̃ (s)TQW̃ (s)ds,

where Q ∈Mn2N , Q > 0.
The derivative of V (W̃ (t)) with respect to t along the trajectories of system (7.3.15) can be

computed as

V̇ (W̃ ) = ˙̃W TPW̃ + W̃ TP ˙̃W + W̃ TQW̃ − W̃ τTQW̃ τ

= W̃ TP (−DW̃ + A f̃(W̃ ) +B g̃(W̃ τ )) + (−DW̃ + A f̃(W̃ ) +B g̃(W̃ τ ))TPW̃

+W̃ TQW̃ − W̃ τTQW̃ τ

= W̃ T (−PD −DP )W̃ + W̃ TPA f̃(W̃ ) + f̃T (W̃ )A
T
PW̃ + W̃ TPB g̃(W̃ τ )

+g̃T (W̃ τ )B
T
PW̃ + W̃ TQW̃ − W̃ τTQW̃ τ . (7.3.16)



7. Dynamics of matrix-valued neural networks (MVNNs) 181

Multiplying (7.3.10) and (7.3.11) by ε1 > 0 and ε2 > 0, respectively, yields

0 ≤ ε1(W̃ TLf
T
LfW̃ − f̃T (W̃ )f̃(W̃ )), (7.3.17)

0 ≤ ε2(W̃ τTLg
T
LgW̃

τ − g̃T (W̃ τ )g̃(W̃ τ )). (7.3.18)

Together with (7.3.16), inequalities (7.3.17) and (7.3.18) give

V̇ (W̃ ) ≤ ξTΩξ, (7.3.19)

where
ξ =

[
W̃ T W̃ τT f̃T (W̃ ) g̃T (W̃ τ )

]T
,

Ω =


Ω11 0 PA PB

∗ −Q+ ε2Lg
T
Lg 0 0

∗ ∗ −ε1In2N 0
∗ ∗ ∗ −ε2In2N

 ,
Ω11 = −PD −DP +Q+ ε1Lf

T
Lf .

Now, we have Ω < 0 if and only if Q > ε2Lg
T
Lg and−PD −DP +Q+ ε1Lf

T
Lf PA PB

∗ −ε1In2N 0
∗ ∗ −ε2In2N

 < 0. (7.3.20)

Inequality (7.3.20) together with Q > ε2Lg
T
Lg are equivalent with condition (7.3.5), which

means that (7.3.19) gives
V̇ (W̃ ) < 0,

from which we can deduce that the equilibrium point of (7.3.4) is globally asymptotically stable,
thus ending the proof of the theorem.

Theorem 7.2. If Assumption 7.1 holds, then the equilibrium point of system (7.3.4) is globally
asymptotically stable if there exist real numbers ε1 > 0 and ε2 > 0, and positive definite
matrices P,Q,R, S ∈Mn2N such that the following LMI holds

Π =


Π11 Π12 Π13 0 Π15

∗ Π22 0 0 0
∗ ∗ Π33 0 Π35

∗ ∗ ∗ Π44 0
∗ ∗ ∗ ∗ Π55

 < 0, (7.3.21)

where Π11 = −PD−DP+Q+ε1Lf
T
Lf +τDRD−τ−1R, Π12 = τ−1R, Π13 = PA−τDRA,

Π15 = PB − τDRB, Π22 = −Q + ε2Lg
T
Lg − τ−1R, Π33 = S − ε1In2N + τA

T
RA, Π35 =

τA
T
RB, Π44 = −S, Π55 = −ε2In2N + τB

T
RB.

Proof. Consider the following Lyapunov-Krasovskii functional

V (W̃ (t)) = W̃ T (t)PW̃ (t) +

∫ t

t−τ
W̃ (s)TQW̃ (s)ds+

∫ 0

−τ

∫ t

t+θ

˙̃W T (s)R ˙̃W (s)dsdθ

+

∫ t

t−τ
f̃T (W̃ (s))Sf̃(W̃ (s))ds.



182 7. Dynamics of matrix-valued neural networks (MVNNs)

Its derivative with respect to t along the trajectories of system (7.3.15) is

V̇ (W̃ ) = ˙̃W TPW̃ + W̃ TP ˙̃W + W̃ TQW̃ − W̃ τTQW̃ τ + τ ˙̃W TR ˙̃W

−
∫ t

t−τ

˙̃W T (s)R ˙̃W (s)ds+ f̃T (W̃ )Sf̃(W̃ )− f̃T (W̃ τ )Sf̃(W̃ τ )

≤ W̃ TP (−DW̃ + A f̃(W̃ ) +B g̃(W̃ τ )) + (−DW̃ + A f̃(W̃ ) +B g̃(W̃ τ ))TPW̃

+W̃ TQW̃ − W̃ τTQW̃ τ + τ ˙̃W TR ˙̃W − τ−1

(∫ t

t−τ

˙̃W (s)ds

)T
R

(∫ t

t−τ

˙̃W (s)ds

)
+f̃T (W̃ )Sf̃(W̃ )− f̃T (W̃ τ )Sf̃(W̃ τ ), (7.3.22)

where we used Lemma 7.3 to get the inequality(∫ t

t−τ

˙̃W (s)ds

)T
R

(∫ t

t−τ

˙̃W (s)ds

)
≤ τ

∫ t

t−τ

˙̃W T (s)R ˙̃W (s)ds.

There exist two real numbers ε1 > 0 and ε2 > 0 so that relations (7.3.17) and (7.3.18) hold,
and combining them with (7.3.22) yields

V̇ (W̃ ) ≤ ζTΠζ, (7.3.23)

where
ζ =

[
W̃ T W̃ τT f̃T (W̃ ) f̃T (W̃ τ ) g̃T (W̃ τ )

]T
,

and Π is given by (7.3.21). Also from condition (7.3.21) we have that Π < 0, so (7.3.23)
becomes

V̇ (W̃ ) < 0,

and thus the equilibrium point of system (7.3.4) is globally asymptotically stable.

7.3.3 Numerical examples
In this section, we give two numerical examples to prove the effectiveness of our results.

Example 7.1. Consider the following two-neuron matrix-valued recurrent neural network with
time delay:{

Ẋ1(t) =−d1X1(t) +
∑2

j=1 A1jfj(Xj(t)) +
∑2

j=1B1jgj(Xj(t− τ)) + U1,

Ẋ2(t) =−d2X2(t) +
∑2

j=1A2jfj(Xj(t)) +
∑2

j=1B1jgj(Xj(t− τ)) + U2,
(7.3.24)

where d1 = d2 = 20,

A11 =

[
1 1
2 2

]
, A12 =

[
1 1
1 1

]
, A21 =

[
1 1
2 2

]
, A22 =

[
1 2
2 1

]
,

B11 =

[
1 1
2 2

]
, B12 =

[
1 2
2 1

]
, B21 =

[
1 2
3 2

]
, B22 =

[
1 3
2 3

]
,

U1 =

[
−14 23
−45 34

]
, U2 =

[
−43 33
−23 13

]
,

f

([
[X]11 [X]12

[X]21 [X]22

])
=

[ 1
1+e−[X]11

1
1+e−[X]12

1
1+e−[X]21

1
1+e−[X]22

]
,



7. Dynamics of matrix-valued neural networks (MVNNs) 183

g

([
[X]11 [X]12

[X]21 [X]22

])
= 0.5

[
1−e−[X]11

1+e−[X]11

1−e−[X]12

1+e−[X]12

1−e−[X]21

1+e−[X]21

1−e−[X]22

1+e−[X]22

]
,

from which we get that l1 = l2 = 1
2

and m1 = m2 = 1. The time delay is τ = 0.5.
Solving the LMI condition (7.3.5) in Theorem 7.1, we obtain that system (7.3.24) has a

unique equilibrium point which is globally asymptotically stable for ε1 = 12.4719, ε2 =
12.1648 and

P =



0.6951 −0.0110 0 0 −0.0119 −0.0158 0 0
−0.0110 0.6854 0 0 −0.0141 −0.0222 0 0

0 0 0.6951 −0.0110 0 0 −0.0119 −0.0158
0 0 −0.0110 0.6854 0 0 −0.0141 −0.0222

−0.0119 −0.0141 0 0 0.6862 −0.0205 0 0
−0.0158 −0.0222 0 0 −0.0205 0.6729 0 0

0 0 −0.0119 −0.0141 0 0 0.6862 −0.0205
0 0 −0.0158 −0.0222 0 0 −0.0205 0.6729


.

Example 7.2. In this example, consider the same two-neuron matrix-valued recurrent neural
network in (7.3.24), but with the following parameters: d1 = 2.5, d2 = 0.7,

A11 =

[
0.05 0.04
0.09 0.2

]
, A12 =

[
0.02 0.03
0.09 0.18

]
, A21 =

[
0.01 0.03
0.07 0.24

]
, A22 =

[
0.07 0.09
0.09 0.13

]
,

B11 =

[
0.23 0.93
0.03 0.5

]
, B12 =

[
0.18 0.87
0.02 0.45

]
, B21 =

[
0.17 0.98
0.02 0.6

]
, B22 =

[
0.24 0.89
0.04 0.54

]
,

U1 =

[
−1 2
−4 3

]
, U2 =

[
−4 3
−2 1

]
,

f

([
[X]11 [X]12

[X]21 [X]22

])
= 0.3

[ 1
1+e−[X]11

1
1+e−[X]12

1
1+e−[X]21

1
1+e−[X]22

]
,

g

([
[X]11 [X]12

[X]21 [X]22

])
= 0.2

[
1−e−[X]11

1+e−[X]11

1−e−[X]12

1+e−[X]12

1−e−[X]21

1+e−[X]21

1−e−[X]22

1+e−[X]22

]
,

from which we now have that l1 = l2 = 0.15 and m1 = m2 = 0.4. In this case, the time delay
is τ = 2.

By solving the LMI in condition (7.3.21) in Theorem 7.2, we get that system (7.3.24) has
a unique equilibrium point which is globally asymptotically stable for ε1 = 65.8031, ε2 =
87.8717 and

P =



51.7045 −3.1676 0 0 −8.3266 −5.0198 0 0
−3.1676 55.0336 0 0 −3.9886 −3.9673 0 0

0 0 51.7045 −3.1676 0 0 −8.3266 −5.0198
0 0 −3.1676 55.0336 0 0 −3.9886 −3.9673

−8.3266 −3.9886 0 0 36.1497 −17.6836 0 0
−5.0198 −3.9673 0 0 −17.6836 53.5836 0 0

0 0 −8.3266 −3.9886 0 0 36.1497 −17.6836
0 0 −5.0198 −3.9673 0 0 −17.6836 53.5836


,



184 7. Dynamics of matrix-valued neural networks (MVNNs)

Q =



42.6488 −1.0556 0 0 −5.1061 −3.5766 0 0
−1.0556 43.8133 0 0 −2.9332 −1.9195 0 0

0 0 42.6488 −1.0556 0 0 −5.1061 −3.5766
0 0 −1.0556 43.8133 0 0 −2.9332 −1.9195

−5.1061 −2.9332 0 0 22.0132 −10.0197 0 0
−3.5766 −1.9195 0 0 −10.0197 31.9109 0 0

0 0 −5.1061 −2.9332 0 0 22.0132 −10.0197
0 0 −3.5766 −1.9195 0 0 −10.0197 31.9109


,

R =



14.7012 −1.0320 0 0 −5.2659 −3.0947 0 0
−1.0320 15.7960 0 0 −2.4228 −2.6857 0 0

0 0 14.7012 −1.0320 0 0 −5.2659 −3.0947
0 0 −1.0320 15.7960 0 0 −2.4228 −2.6857

−5.2659 −2.4228 0 0 17.3828 −5.6208 0 0
−3.0947 −2.6857 0 0 −5.6208 23.1786 0 0

0 0 −5.2659 −2.4228 0 0 17.3828 −5.6208
0 0 −3.0947 −2.6857 0 0 −5.6208 23.1786


,

S =



34.3922 −2.3264 0 0 −1.4004 −2.0082 0 0
−2.3264 27.8865 0 0 −4.4491 −6.2563 0 0

0 0 34.3922 −2.3264 0 0 −1.4004 −2.0082
0 0 −2.3264 27.8865 0 0 −4.4491 −6.2563

−1.4004 −4.4491 0 0 32.1886 −4.1373 0 0
−2.0082 −6.2563 0 0 −4.1373 29.4049 0 0

0 0 −1.4004 −4.4491 0 0 32.1886 −4.1373
0 0 −2.0082 −6.2563 0 0 −4.1373 29.4049


.

7.4 Exponential stability for MVNNs with delay
The presentation in this section follows that in the author’s paper [161].

7.4.1 Main results

By shifting to the origin the equilibrium point Ŷ of (7.3.4), the system (7.3.4) becomes

˙̃Y = −DỸ + A f̃(Ỹ ) +B g̃(Ỹ τ ), (7.4.1)

where f̃(Ỹ ) = f(Ỹ + Ŷ )− f(Ŷ ) and g̃(Ỹ τ ) = g(Ỹ τ + Ŷ )− g(Ŷ ).

Remark 7.3. The system (7.4.1) is equivalent with the system (7.3.1), which means that any
property proved about system (7.4.1) will also hold for system (7.3.1). For this reason, we will
only study stability properties for the origin of system (7.4.1).

We now give a sufficient condition that ensures the global exponential stability of the origin
of system (7.4.1).



7. Dynamics of matrix-valued neural networks (MVNNs) 185

Theorem 7.3. If Assumption 7.1 holds, then the origin of system (7.4.1) is globally exponen-
tially stable if there are positive definite matrices P , Q1, Q2, Q3, S1, S2, S3, S4, positive block-
diagonal matrices R1, R2, R3, R4, all from Mn2N , and ε > 0, so that the following linear
matrix inequality (LMI) is true

(Π)9×9 < 0, (7.4.2)

where Π1,1 = 2εP −PD−DP +Q1 + τS2− τ−1e−2ετS1 + τDS1D+Lf
T
R1Lf +Lg

T
R3Lg,

Π1,2 = τ−1e−2ετS1, Π1,3 = PA − τDS1A, Π1,6 = PB − τDS1B, Π2,2 = −e−2ετQ1 −
τ−1e−2ετS1 + Lf

T
R2Lf + Lg

T
R4Lg, Π3,3 = Q2 + τS3 − R1 + τA

T
S1A, Π3,6 = τA

T
S1B,

Π4,4 = −e−2ετQ2 − R2, Π5,5 = Q3 + τS4 − R3, Π6,6 = −e−2ετQ3 − R4 + τB
T
S1B, Π7,7 =

−τ−1e−2ετS2, Π8,8 = −τ−1e−2ετS3, Π9,9 = −τ−1e−2ετS4.

Proof. Consider the Lyapunov-Krasovskii functional

V (Ỹ (t)) = e2εtỸ T (t)PỸ (t) +

∫ t

t−τ
e2εuỸ T (u)Q1Ỹ (u)du+

∫ t

t−τ
e2εuf̃T (Ỹ (u))Q2f̃(Ỹ (u))du

+

∫ t

t−τ
e2εug̃T (Ỹ (u))Q3g(Ỹ (u))du+

∫ 0

−τ

∫ t

t+θ

e2εu ˙̃Y T (u)S1
˙̃Y (u)dudθ

+

∫ 0

−τ

∫ t

t+θ

e2εuỸ T (u)S2Ỹ (u)dudθ +

∫ 0

−τ

∫ t

t+θ

e2εuf̃T (Ỹ (u))S3f̃(Ỹ (u))dudθ

+

∫ 0

−τ

∫ t

t+θ

e2εug̃T (Ỹ (u))S4g(Ỹ (u))dudθ.

Its derivative with respect to t for system (7.4.1) is

V̇ (Ỹ ) = e2εt
[
2εỸ TPỸ + ˙̃Y TPỸ + Ỹ TP ˙̃Y + Ỹ TQ1Ỹ − e−2ετ Ỹ τTQ1Ỹ

τ + f̃T (Ỹ )Q2f̃(Ỹ )

−e−2ετ f̃T (Ỹ τ )Q2f̃(Ỹ τ ) + g̃T (Ỹ )Q3g̃(Ỹ )− e−2ετ g̃T (Ỹ τ )Q3g̃(Ỹ τ ) + τ ˙̃Y TS1
˙̃Y

−
∫ t

t−τ
e2ε(u−t) ˙̃Y T (u)S1

˙̃Y (u)du+ τ Ỹ TS2Ỹ −
∫ t

t−τ
e2ε(u−t)Ỹ T (u)S2Ỹ (u)du

+τ f̃T (Ỹ )S3f̃(Ỹ )−
∫ t

t−τ
e2ε(u−t)f̃T (Ỹ (u))S3f̃(Ỹ (u))du+ τ g̃T (Ỹ )S4g̃(Ỹ )

−
∫ t

t−τ
e2ε(u−t)g̃T (Ỹ (u))S4g(Ỹ (u))du

]
≤ e2εt

[
2εỸ TPỸ + (−DỸ + A f̃(Ỹ ) +B g̃(Ỹ τ ))TPỸ + Ỹ TP (−DỸ + A f̃(Ỹ )

+B g̃(Ỹ τ )) + Ỹ TQ1Ỹ − e−2ετ Ỹ τTQ1Ỹ
τ + f̃T (Ỹ )Q2f̃(Ỹ )

−e−2ετ f̃T (Ỹ τ )Q2f̃(Ỹ τ ) + g̃T (Ỹ )Q3g̃(Ỹ )− e−2ετ g̃T (Ỹ τ )Q3g̃(Ỹ τ )

+τ ˙̃Y TS1
˙̃Y − τ−1e−2ετ

(∫ t

t−τ

˙̃Y (u)du

)T
S1

(∫ t

t−τ

˙̃Y (u)du

)
+τ Ỹ TS2Ỹ − τ−1e−2ετ

(∫ t

t−τ
Ỹ (u)du

)T
S2

(∫ t

t−τ
Ỹ (u)du

)
+τ f̃T (Ỹ )S3f̃(Ỹ )− τ−1e−2ετ

(∫ t

t−τ
f̃(Ỹ (u))du

)T
S3

(∫ t

t−τ
f̃(Ỹ (u))du

)
+τ g̃T (Ỹ )S4g̃(Ỹ )− τ−1e−2ετ

(∫ t

t−τ
g̃(Ỹ (u))du

)T
S4

(∫ t

t−τ
g̃(Ỹ (u))du

)]
, (7.4.3)



186 7. Dynamics of matrix-valued neural networks (MVNNs)

where we used Lemma 7.3 for the inequality.
Assumption 7.1 can be written as

||fj(X)− fj(X ′)|| ≤ lfj ||X −X ′||

⇔ ||vec(fj(X))− vec(fj(X
′))|| ≤ lfj ||vec(X)− vec(X ′)||,

for j ∈ {1, . . . N}. Taking into account this inequality (and the analogous one for the functions
gj), and the above notations, there exist positive block-diagonal matrices

R1 = diag(r1
1In2 , r1

2In2 , . . . , r1
NIn2), R2 = diag(r2

1In2 , r2
2In2 , . . . , r2

NIn2),

R3 = diag(r3
1In2 , r3

2In2 , . . . , r3
NIn2), R4 = diag(r4

1In2 , r4
2In2 , . . . , r4

NIn2),

such that

0 ≤ Ỹ TLf
T
R1Lf Ỹ − f̃T (Ỹ )R1f̃(Ỹ ), 0 ≤ Ỹ τTLf

T
R2Lf Ỹ

τ − f̃T (Ỹ τ )R2f̃(Ỹ τ ), (7.4.4)

0 ≤ Ỹ TLg
T
R3LgỸ − g̃T (Ỹ )R3g̃(Ỹ ), 0 ≤ Ỹ τTLg

T
R4LgỸ

τ − g̃T (Ỹ τ )R4g̃(Ỹ τ ). (7.4.5)

Combining (7.4.4) and (7.4.5) with (7.4.3), yields

V̇ (Ỹ ) ≤ e2εtζTΠζ, (7.4.6)

where

ζ =
[
Ỹ T Ỹ τT f̃T (Ỹ ) f̃T (Ỹ τ ) g̃T (Ỹ )g̃T (Ỹ τ )(∫ t
t−τ Ỹ (u)du

)T (∫ t
t−τ f̃(Ỹ (u))du

)T (∫ t
t−τ g̃(Ỹ (u))du

)T ]T
,

and Π is given by (7.4.2). Also from condition (7.4.2) we have that Π < 0, so (7.4.6) becomes
V̇ (Ỹ ) < 0, from which we infer that V (Ỹ (t)) is strictly decreasing for t ≥ 0. This fact, together
with the definition of V (Ỹ (t)), imply that

e2εtλmin(P )||Ỹ (t)||2 ≤ e2εtỸ T (t)PỸ (t) ≤ V (t) ≤ V0, ∀t ≥ T, T ≥ 0,

where V0 = max
0≤t≤T

V (t). Consequently, we have that

||Ỹ (t)||2 ≤ V0

e2εtλmin(P )
⇔ ||Ỹ (t)|| ≤Me−εt, ∀t ≥ 0,

for M =
√

V0
λmin(P )

. Thus, we obtained the global exponential stability for the origin of system
(7.4.1).

7.4.2 Numerical example
Next, we give a numerical example to prove the correctness of the above-derived criterion.

Example 7.3. Let us consider the following delayed matrix-valued Hopfield neural network
with two neurons:{

Ẋ1(t) =−d1X1(t) +
∑2

j=1 A1jfj(Xj(t)) +
∑2

j=1B1jgj(Xj(t− τ)) + U1,

Ẋ2(t) =−d2X2(t) +
∑2

j=1 A2jfj(Xj(t)) +
∑2

j=1B2jgj(Xj(t− τ)) + U2,
(7.4.7)



7. Dynamics of matrix-valued neural networks (MVNNs) 187

where d1 = d2 = 11,

A11 =

[
1 1
2 2

]
, A12 =

[
1 −1
−1 1

]
, A21 =

[
−1 1
2 −2

]
, A22 =

[
1 2
2 1

]
,

B11 =

[
−1 1
2 −2

]
, B12 =

[
1 −1
−1 1

]
, B21 =

[
1 1
2 2

]
, B22 =

[
1 2
2 1

]
,

U1 =

[
5 −10
15 10

]
, U2 =

[
5 15
−10 −15

]
,

f
(

([X]ab)1≤a,b≤2

)
=

(
1

1 + e−[X]ab

)
1≤a,b≤2

,

g
(

([X]ab)1≤a,b≤2

)
=

(
1− e−[X]ab

1 + e−[X]ab

)
1≤a,b≤2

,

from which we get that lf1 = lf2 = 1
2

and lg1 = lg2 = 1. The time delay is τ = 0.5.
Solving the LMI condition (7.4.2) in Theorem 7.3, we obtain that the equilibrium point

of system (7.4.7) is globally exponentially stable for ε = 0.2, R1 = diag(3.8444I4, 4.3276I4),
R2 = diag(0.4434I4, 0.3695I4),R3 = diag(1.8953I4, 1.1550I4),R4 = diag(0.3570I4, 0.2839I4),

P =



1.2130 0.0891 0 0 0.0534 −0.0414 0 0
0.0891 1.0538 0 0 −0.0239 0.0199 0 0

0 0 1.2130 0.0891 0 0 0.0534 −0.0415
0 0 0.0891 1.0538 0 0 −0.0239 0.0199

0.0534 −0.0239 0 0 0.8634 −0.1098 0 0
−0.0414 0.0199 0 0 −0.1098 0.7639 0 0

0 0 0.0534 −0.0239 0 0 0.8634 −0.1098
0 0 −0.0415 0.0199 0 0 −0.1098 0.7639


.

(For brevity, the values of the other matrices are not given.)

7.5 Exponential stability of BAM MVNNs with time-varying
delays

An extension of the unidirectional Hopfield neural networks, BAM neural networks [100]
have many applications in pattern recognition and automatic control. Time delays appear un-
avoidably in real life implementations of neural networks, which can lead to oscillations and
chaos. Complex-valued BAMs were introduced in [110], quaternion-valued BAMs in [102],
and Clifford-valued BAMs in [217]. These facts into account, we study the exponential stabil-
ity of the equilibrium point of matrix-valued BAM neural networks with time-varying delays.

The presentation in this section follows that in the author’s paper [162].

7.5.1 Main results

we consider matrix-valued BAM neural networks, for which the states, weights, and outputs are
square matrices from Rn×n. This type of network is defined by the following set of differential



188 7. Dynamics of matrix-valued neural networks (MVNNs)

equations:
Ẋi(t) = −d1

iXi(t) +
P∑
j=1

A1
ijf

1
j (Yj(t)) +

P∑
j=1

B1
ijg

1
j (Yj(t− τ(t))) + U1

i , ∀i ∈ {1, . . . , N},

Ẏj(t) = −d2
jYj(t) +

N∑
i=1

A2
jif

2
i (Xi(t)) +

N∑
i=1

B2
jig

2
i (Xi(t− τ(t))) + U2

j , ∀j ∈ {1, . . . , P},

(7.5.1)
where Xi(t), Yj(t) ∈ Rn×n represent the states of the neurons at time t, d1

i , d
2
j > 0 represent the

self-feedback weights, A1
ij , A

2
ji ∈ Rn×n represent the weights without delay, B1

ij , B
2
ji ∈ Rn×n

represent the weights with delay, f 1
j , f 2

i : Rn×n → Rn×n represent the nonlinear matrix-valued
activation functions without delay, g1

j , g2
i : Rn×n → Rn×n represent the nonlinear matrix-

valued activation functions with delay, τ(t) represents the time-varying delay and we assume
that 0 < τ(t) ≤ τ , and τ̇(t) ≤ τd < 1, ∀t ≥ 0, and U1

i , U2
j ∈ Rn×n represent the external

inputs, ∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , P}.
We need to make an assumption about the activation functions in order to study the stability

of the above defined network.

Assumption 7.2. The matrix-valued activation functions f 1
j , f 2

i , g1
j , g2

i satisfy the following
Lipschitz conditions, for any X , X ′ ∈ Rn×n:

||f 1
j (X)− f 1

j (X ′)|| ≤ lf
1

j ||X −X ′||, ||f 2
i (X)− f 2

i (X ′)|| ≤ lf
2

i ||X −X ′||,

||g1
j (X)− g1

j (X
′)|| ≤ lg

1

j ||X −X ′||, ||g2
i (X)− g2

i (X
′)|| ≤ lg

2

i ||X −X ′||,

where lf
1

j , lf
2

i , lg
1

j , lg
2

i > 0 are the Lipschitz constants, ∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , P}.
Moreover, we denoteLf1 = diag

(
lf

1

j In2

)
1≤j≤P

, Lf2 = diag
(
lf

2

i In2

)
1≤i≤N

, Lg1 = diag
(
lg

1

j In2

)
1≤j≤P

,

Lg2 = diag
(
lg

2

i In2

)
1≤i≤N

.

Now, we will transform the matrix-valued differential equations (7.5.1) into real-valued
differential equations. We start by expanding each equation in (7.5.1) into n2 real-valued equa-
tions, one corresponding to each entry in the original matrices:

[Ẋi(t)]ab = −d1
i [Xi(t)]ab +

P∑
j=1

n∑
c=1

[A1
ij]ac[f

1
j ]cb(Yj(t))

+
P∑
j=1

n∑
c=1

[B1
ij]ac[g

1
j ]cb(Yj(t− τ(t))) + [U1

i ]ab,

[Ẏj(t)]ab = −d2
j [Yj(t)]ab +

N∑
i=1

n∑
c=1

[A2
ji]ac[f

2
i ]cb(Xi(t))

+
N∑
i=1

n∑
c=1

[B2
ji]ac[g

2
i ]cb(Xi(t− τ(t))) + [U2

j ]ab, (7.5.2)

for 1 ≤ a, b ≤ n, i ∈ {1, . . . , N}, j ∈ {1, . . . , P}. By using the vectorization operation, the



7. Dynamics of matrix-valued neural networks (MVNNs) 189

above differential equations can be written more compactly as:

vec(Ẋi(t)) = −d1
i In2vec(Xi(t)) +

P∑
j=1

(In ⊗A1
ij)vec(f1

j (Yj(t)))

+

P∑
j=1

(In ⊗B1
ij)vec(g1

j (Yj(t− τ(t)))) + vec(U1
i ), ∀i ∈ {1, . . . , N},

vec(Ẏj(t)) = −d2
jIn2vec(Yj(t)) +

N∑
i=1

(In ⊗A2
ji)vec(f2

i (Xi(t)))

+

N∑
i=1

(In ⊗B2
ji)vec(g2

i (Xi(t− τ(t)))) + vec(U2
j ), ∀j ∈ {1, . . . , P}, (7.5.3)

where A ⊗ B denotes the Kronecker product of matrices A and B. If we denote Z(t) =(
vec(Xi(t))

T
)T

1≤i≤N , W (t) =
(
vec(Yj(t))

T
)T

1≤j≤P ,

D1 = diag
(
d1
i In2

)
1≤i≤N , A

1 =
(
In ⊗ A1

ij

)
1≤i≤N
1≤j≤P

, B1 =
(
In ⊗B1

ij

)
1≤i≤N
1≤j≤P

,

f 1(W (t)) =
(
vec(f 1

j (Yj(t)))
T
)T

1≤j≤P , g
1(W (t− τ(t))) =

(
vec(g1

j (Yj(t− τ(t))))T
)T

1≤j≤P ,

D2 = diag
(
d2
jIn2

)
1≤j≤P , A

2 =
(
In ⊗ A2

ji

)
1≤j≤P
1≤i≤N

, B2 =
(
In ⊗B2

ji

)
1≤j≤P
1≤i≤N

,

f 2(Z(t)) =
(
vec(f 2

i (Xi(t)))
T
)T

1≤i≤N , g
2(Z(t− τ(t))) =

(
vec(g2

i (Xi(t− τ(t))))T
)T

1≤i≤N ,

U1 =
(
vec(U1

i )T
)T

1≤i≤N , U
2 =

(
vec(U2

j )T
)T

1≤j≤P ,

system (7.5.1) becomes:{
Ż(t) = −D1Z(t) + A1 f 1(W (t)) +B1 g1(W (t− τ(t))) + U1

Ẇ (t) = −D2W (t) + A2 f 2(Z(t)) +B2 g2(Z(t− τ(t))) + U2.
(7.5.4)

If we assume that
(
ẐT , Ŵ T

)T
is the equilibrium point of (7.5.4), we can shift it to the origin,

to obtain {
˙̃Z(t) = −D1Z̃(t) + A1 f̃ 1(W̃ (t)) +B1 g̃1(W̃ (t− τ(t)))
˙̃W (t) = −D2W̃ (t) + A2 f̃ 2(Z̃(t)) +B2 g̃2(Z̃(t− τ(t))),

(7.5.5)

where Z̃(t) = Z(t) − Ẑ, W̃ (t) = W (t) − Ŵ , f̃ 1(W̃ (t)) = f 1(W (t)) − f 1(Ŵ ), g̃1(W̃ (t −
τ(t))) = g1(W (t−τ(t)))−g1(Ŵ ), f̃ 2(Z̃(t)) = f 2(Z(t))−f 2(Ẑ), g̃2(Z̃(t−τ(t))) = g2(Z(t−
τ(t)))− g2(Ẑ).

Remark 7.4. Because system (7.5.5) is equivalent with system (7.5.1), and so any property that
holds for system (7.5.5), will also be true for system (7.5.1), we will only study the exponential
stability of the origin of system (7.5.5).

Remark 7.5. A matrix-valued BAM neural network is not equivalent with a general nN × nP -
dimensional real-valued BAM neural network, because, for such a network, the matrices A1,
B1, A2, B2 would be general unconstrained matrices, and wouldn’t have the particular form
given above.

We give a sufficient criterion which assures the exponential stability of the origin of system
(7.5.5).



190 7. Dynamics of matrix-valued neural networks (MVNNs)

Theorem 7.4. If Assumption 7.2 holds, then the origin of system (7.5.5) is exponentially stable
if there exist positive definite matrices P 1

1 , P 1
2 , P 2

1 , . . . , P
2
6 , P 3

1 , P 3
2 of appropriate dimensions,

positive definite block-diagonal matrices R1, . . . , R8, and ε > 0, which satisfy the following
linear matrix inequality (LMI):

(Π)14×14 < 0, (7.5.6)

where Π1,1 = 2εP 1
1−2D1P 1

1 +P 2
1 +τD1P 3

1D
1−τ−1e−2ετP 3

1 +Lf2
T
R1Lf2+Lg2

T
R3Lg2 , Π1,2 =

τ−1e−2ετP 3
1 , Π1,11 = P 1

1A
1 − τD1P 3

1A
1, Π1,14 = P 1

1B
1 − τD1P 3

1B
1, Π2,2 = −τ−1e−2ετP 3

1 ,
Π3,3 = −e−2ετ (1− τd)P 2

1 + Lf2
T
R2Lf2 + Lg2

T
R4Lg2 , Π4,4 = P 2

2 + τA2
T
P 3

2A
2 − R1, Π4,7 =

τA2
T
P 3

2B
2, Π4,8 = A2

T
P 1

2 − τA2
T
P 3

2D
2, Π5,5 = −e−2ετ (1 − τd)P 2

2 − R2, Π6,6 = P 2
3 − R3,

Π7,7 = −e−2ετ (1 − τd)P 2
3 + τB2

T
P 3

2B
2 − R4, Π7,8 = B2

T
P 1

2 − τB2
T
P 3

2D
2, Π8,8 = 2εP 1

2 −
2D2P 1

2 + P 2
4 + τD2P 3

2D
2 − τ−1e−2ετP 3

2 + Lf1
T
R5Lf1 + Lg1

T
R7Lg1 , Π8,9 = τ−1e−2ετP 3

2 ,
Π9,9 = −τ−1e−2ετP 3

2 , Π10,10 = −e−2ετ (1 − τd)P
2
4 + Lf1

T
R6Lf1 + Lg1

T
R8Lg1 , Π11,11 =

P 2
5 +τA1

T
P 3

1A
1−R5, Π11,14 = τA1

T
P 3

1B
1, Π12,12 = −e−2ετ (1−τd)P 2

5−R6, Π13,13 = P 2
6−R7,

Π14,14 = −e−2ετ (1− τd)P 2
6 + τB1

T
P 3

1B
1 −R8.

Proof. Consider the following Lyapunov-Krasovskii functional

V (t) = V1(t) + V2(t) + V3(t),

where

V1(t) = e2εt

[
Z̃(t)

W̃ (t)

]T
P1

[
Z̃(t)

W̃ (t)

]
, P1 = diag(P 1

1 , P
1
2 ),

V2(t) =

∫ t

t−τ(t)

e2εsξT (s)P2ξ(s)ds, P2 = diag(P 2
1 , P

2
2 , P

2
3 , P

2
4 , P

2
5 , P

2
6 ),

ξ(s) =
[
Z̃T (s) f̃ 2

T
(Z̃(s)) g̃2

T
(Z̃(s)) W̃ T (s) f̃ 1

T
(W̃ (s)) g̃1

T
(W̃ (s))

]T
,

V3(t) =

∫ 0

−τ

∫ t

t+θ

e2εs

[
˙̃Z(s)
˙̃W (s)

]T
P3

[
˙̃Z(s)
˙̃W (s)

]
dsdθ, P3 = diag(P 3

1 , P
3
2 ).

The derivative of V (t) along the trajectories of system (7.5.5) is

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t),

where

V̇1(t) = 2e2εt
[
εZ̃T (t)P 1

1 Z̃(t) + εW̃ T (t)P 1
2 W̃ (t) + ˙̃ZT (t)P 1

1 Z̃(t) + ˙̃W T (t)P 1
2 W̃ (t)

]
,(7.5.7)

V̇2(t) = e2εt
[
ξT (t)P2ξ(t)− e−2ετ(t)(1− τ̇(t))ξT (t− τ(t))P2ξ(t− τ(t))

]
≤ e2εt

[
ξT (t)P2ξ(t)− e−2ετ (1− τd)ξT (t− τ(t))P2ξ(t− τ(t))

]
, (7.5.8)

V̇3(t) = e2εt

[
τ ˙̃ZT (t)P 3

1
˙̃Z(t)−

∫ t

t−τ
e2ε(s−t) ˙̃ZT (s)P 3

1
˙̃Z(s)ds

+τ ˙̃W T (t)P 3
2

˙̃W (t)−
∫ t

t−τ
e2ε(s−t) ˙̃W T (s)P 3

2
˙̃W (s)ds

]
≤ e2εt

[
τ ˙̃ZT (t)P 3

1
˙̃Z(t)− τ−1e−2ετ

(∫ t

t−τ

˙̃Z(s)ds

)T
P 3

1

(∫ t

t−τ

˙̃Z(s)ds

)

+τ ˙̃W T (t)P 3
2

˙̃W (t)− τ−1e−2ετ

(∫ t

t−τ

˙̃W (s)ds

)T
P 3

2

(∫ t

t−τ

˙̃W (s)ds

)]
, (7.5.9)



7. Dynamics of matrix-valued neural networks (MVNNs) 191

where, for the last inequality, we used Lemma 7.3.
From Assumption 7.2, we have that

||f 1
j (X)− f 1

j (X ′)|| ≤ lf
1

j ||X −X ′||

⇔ ||vec(f 1
j (X))− vec(f 1

j (X ′))|| ≤ lf
1

j ||vec(X)− vec(X ′)||,

and the analogous ones for f 2
i , g1

j , g2
i , ∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , P}, for any X , X ′ ∈

Rn×n, which allow us to deduce the existence of positive definite block-diagonal matrices
R1, . . . , R8, such that the following inequalities hold:

0 ≤ Z̃T (t)Lf2
T
R1Lf2Z̃(t)− f̃ 2

T
(Z̃(t))R1f̃ 2(Z̃(t)), (7.5.10)

0 ≤ Z̃T (t− τ(t))Lf2
T
R2Lf2Z̃(t− τ(t))− f̃ 2

T
(Z̃(t− τ(t)))R2f̃ 2(Z̃(t− τ(t))), (7.5.11)

0 ≤ Z̃T (t)Lg2
T
R3Lg2Z̃(t)− g̃2

T
(Z̃(t))R3g̃2(Z̃(t)), (7.5.12)

0 ≤ Z̃T (t− τ(t))Lg2
T
R4Lg2Z̃(t− τ(t))− g̃2

T
(Z̃(t− τ(t)))R4g̃2(Z̃(t− τ(t))), (7.5.13)

0 ≤ W̃ T (t)Lf1
T
R5Lf1W̃ (t)− f̃ 1

T
(W̃ (t))R5f̃ 1(W̃ (t)), (7.5.14)

0 ≤ W̃ T (t− τ(t))Lf1
T
R6Lf1W̃ (t− τ(t))− f̃ 1

T
(W̃ (t− τ(t)))R6f̃ 1(W̃ (t− τ(t))), (7.5.15)

0 ≤ W̃ T (t)Lg1
T
R7Lg1W̃ (t)− g̃1

T
(W̃ (t))R7g̃1(W̃ (t)), (7.5.16)

0 ≤ W̃ T (t− τ(t))Lg1
T
R8Lg1W̃ (t− τ(t))− g̃1

T
(W̃ (t− τ(t)))R8g̃1(W̃ (t− τ(t))). (7.5.17)

Multiplying inequalities (7.5.10)–(7.5.17) by e2εt, and adding them to (7.5.7)–(7.5.9), we
obtain that

V̇ (t) ≤ e2εtζT (t)Πζ(t),

where

ζ(t) =
[
Z̃T (t) Z̃T (t− τ) Z̃T (t− τ(t)) f2(Z̃(t)) f2(Z̃(t− τ(t))) g2(Z̃(t)) g2(Z̃(t− τ(t)))

W̃ T (t) W̃ T (t− τ) W̃ T (t− τ(t)) f1(W̃ (t)) f1(W̃ (t− τ(t))) g1(W̃ (t)) g1(W̃ (t− τ(t)))
]T
,

and Π is given in (7.5.6). Also from (7.5.6), we have that Π < 0, thus V̇ (t) < 0, showing that
V (t) is strictly decreasing for t ≥ 0. From the definition of V (t), we can write the following
inequalities:

e2εtλmin(P1)

∥∥∥∥[ Z̃(t)

W̃ (t)

]∥∥∥∥2

≤ e2εt

[
Z̃(t)

W̃ (t)

]T
P1

[
Z̃(t)

W̃ (t)

]
≤ V (t) ≤ V0, ∀t ≥ T, T ≥ 0,

where V0 = max
0≤t≤T

V (t). Consequently, we have that

∥∥∥∥[ Z̃(t)

W̃ (t)

]∥∥∥∥2

≤ V0

e2εtλmin(P1)
⇔
∥∥∥∥[ Z̃(t)

W̃ (t)

]∥∥∥∥ ≤Me−εt, ∀t ≥ 0,

where M =
√

V0
λmin(P1)

. Thus, we obtained the exponential stability for the origin of system
(7.5.5), ending the proof of the theorem.



192 7. Dynamics of matrix-valued neural networks (MVNNs)

7.5.2 Numerical example
In order to illustrate the correctness of the above result, we give a numerical example.

Example 7.4. Let us consider the following matrix-valued BAM neural network with time-
varying delays:

Ẋ1(t) = −d1
1X1(t) + A1

11f
1
1 (Y1(t)) +B1

11g
1
1(Y1(t− τ(t))) + U1

1 ,

Ẋ2(t) = −d1
2X2(t) + A1

21f
1
1 (Y1(t)) +B1

21g
1
1(Y1(t− τ(t))) + U1

2 ,

Ẏ1(t) = −d2
1Y1(t) +

2∑
i=1

A2
1if

2
i (Xi(t)) +

2∑
i=1

B2
1ig

2
i (Xi(t− τ(t))) + U2

1 ,

(7.5.18)

where N = 2, P = 1, d1
1 = d1

2 = d2
1 = 20,

A1
11 =

[
1 1
2 2

]
, A1

21 =

[
1 1
2 2

]
, A2

11 =

[
1 1
1 1

]
, A2

12 =

[
1 2
2 1

]
, B1

11 =

[
1 1
2 2

]
, B1

21 =

[
1 2
3 2

]
,

B2
11 =

[
1 2
2 1

]
, B2

12 =

[
1 3
2 3

]
, U1

1 =

[
−14 −35
23 44

]
, U1

2 =

[
−43 −23
33 13

]
, U2

1 =

[
−14 −45
23 34

]
,

f1
1

(
([X]ab)1≤a,b≤2

)
= f2

1

(
([X]ab)1≤a,b≤2

)
= f2

2

(
([X]ab)1≤a,b≤2

)
=

(
1

2(1 + e−[X]ab)

)
1≤a,b≤2

,

g1
1

(
([X]ab)1≤a,b≤2

)
= g2

1

(
([X]ab)1≤a,b≤2

)
= g2

2

(
([X]ab)1≤a,b≤2

)
=

(
1− e−[X]ab

1 + e−[X]ab

)
1≤a,b≤2

,

from which we get that lf
1

1 = lf
2

1 = lf
2

2 = 1
4

and lg
1

1 = lg
2

1 = lg
2

2 = 1. The time-varying delay is
taken to be τ(t) = 0.9| sin t|, which implies that τ = τd = 0.9.

From Theorem 7.4 we get that the equilibrium point of system (7.5.18) is exponentially
stable, if LMI condition (7.5.6) is satisfied. By solving (7.5.6), we obtain ε = 0.1, R1 =
diag(2.3413I4, 2.8806I4), R2 = diag(0.1380I4, 0.0783I4), R3 = diag(1.5670I4, 1.6963I4),
R4 = diag(0.1849I4, 0.2477I4), R5 = 3.5840I4, R6 = 0.0426I4, R7 = 1.4531I4, R8 =
0.2159I4. (The values of the other matrices are not given due to space limitations.)

7.6 Dissipativity of impulsive MVNNs with leakage delay and
mixed delays

Time delays are known to appear in practical implementations of neural networks due to the
finite switching speed of amplifiers, and can cause instability or chaotic behavior. For this rea-
son, we consider both leakage delay, and time-varying delays in our model. Also, the distribu-
tion propagation delays may appear as a consequence of a distribution of conduction velocities
along the pathways of a neural network implementation, which compelled us to add contin-
uously distributed delays to our model. On the other hand, impulsive effects express instan-
taneous changes that naturally occur in electronic networks, caused by switching phenomena,
frequency changes, or noise. Taking the above analysis into account, the impulsive matrix-
valued neural networks with leakage delay and mixed delays will be studied in this section, by
giving sufficient conditions for the dissipativity of such a model.

The presentation in this section follows that in the author’s paper [174].



7. Dynamics of matrix-valued neural networks (MVNNs) 193

7.6.1 Main results
Consider the following impulsive matrix-valued Hopfield neural network with leakage delay
and mixed delays:


Ẋi(t) = −diXi(t− δ) +

∑N
j=1Aijfj(Xj(t)) +

∑N
j=1 Bijfj(Xj(t− τ(t)))

+
∑N

j=1Cij
∫ t
t−σ(t)

fj(Xj(s))ds+ Ui(t), t 6= tk, t > 0,

∆Xi(tk) = Xi(tk)−Xi(t
−
k ) = Jki(Xi(t

−
k ), Xi,t−k

), k ∈ Z+,

Yi(t) = fi(Xi(t)),

(7.6.1)

for i = 1, . . . , N, where Xi(t) ∈ Mn is the state of the ith neuron at time t, di ∈ R, di > 0,
is the self-feedback weight of the ith neuron, Aij ∈ Mn is the weight without time delay
between the ith and jth neurons, Bij ∈ Mn is the weight with time delay between the ith
and jth neurons, Cij ∈ Mn is the distributed delay weight between the ith and jth neurons,
fj :Mn →Mn represent the nonlinear matrix-valued activation functions, Ui(t) ∈ Mn is the
external input for the ith neuron, Yi(t) is the output of the ith neuron, and Jki are the impulsive
functions, for i, j = 1, . . . , N . δ > 0 is the leakage delay, τ : R→ R is the time-varying delay,
and σ : R→ R is the distributed delay.

In order to study the dissipativity of the proposed model, we need to make the following
assumptions:

Assumption 7.3. The time-varying delays τ : R→ R and the distributed delays σ : R→ R are
continuously differentiable functions and there exist τ, σ > 0 and τ ′ < 1, such that τ(t) < τ ,
σ(t) < σ, τ̇(t) ≤ τ ′, ∀t > 0.

Assumption 7.4. The matrix-valued activation functions fj satisfy the following Lipschitz con-
ditions for any X, X ′ ∈Mn:

||fj(X)− fj(X ′)|| ≤ lfj ||X −X ′||,

where lfj > 0 are the Lipschitz constants, for j = 1, . . . , N . We will also denote Lf =

diag(lf1In2 , lf2In2 , . . . , lfNIn2).

Assumption 7.5. For the impulsive functions Jki, there exist Fki ∈Mn, such that

Jki(Xi(t
−
k ), Xi,t−k

) = Fki

(
Xi(t

−
k )− di

∫ tk

tk−δ
Xi(s)ds

)
,

for ∀k ∈ Z+.

We will now transform the matrix-valued system (7.6.1) into a real-valued system. To do
so, we expand each equation in (7.6.1) into n2 real-valued equations:

[Ẋi(t)]ab = −di[Xi(t− δ)]ab +
∑N

j=1

∑n
c=1[Aij]acf

cb
j (Xj(t))

+
∑N

j=1

∑n
c=1[Bij]acf

cb
j (Xj(t− τ(t))) +

∑N
j=1

∑n
c=1[Cij]ac

∫ t
t−σ(t)

f cbj (Xj(s))ds

+[Ui(t)]ab, t 6= tk, t > 0,

[∆Xi(tk)]ab = [Xi(tk)]ab − [Xi(t
−
k )]ab = [Jki(Xi(t

−
k ), Xi,t−k

)]ab, k ∈ Z+,

[Yi(t)]ab = fabi (Xi(t)),
(7.6.2)



194 7. Dynamics of matrix-valued neural networks (MVNNs)

for 1 ≤ a, b ≤ n, i = 1, . . . , N . Using the vectorization operation, the above system becomes

vec(Ẋi(t)) = −diIn2vec(Xi(t− δ)) +
∑N

j=1(In ⊗ Aij)vec(fj(Xj(t)))

+
∑N

j=1(In ⊗Bij)vec(fj(Xj(t− τ(t))))

+
∑N

j=1(In ⊗ Cij)
∫ t
t−σ(t)

vec(fj(Xj(s)))ds+ vec(Ui(t)), t 6= tk, t > 0,

vec(∆Xi(tk)) = vec(Xi(tk))− vec(Xi(t
−
k )) = vec(Jki(Xi(t

−
k ), Xi,t−k

)), k ∈ Z+,

vec(Yi(t)) = vec(fi(Xi(t))),
(7.6.3)

for i = 1, . . . , N . Lastly, by denoting

X(t) = (vec(X1(t))T , vec(X2(t))T , . . . , vec(XN(t))T )T ,

Y (t) = (vec(Y1(t))T , vec(Y2(t))T , . . . , vec(YN(t))T )T ,

U(t) = (vec(U1(t))T , vec(U2(t))T , . . . , vec(UN(t))T )T ,

Jk(X(t−k ), Xt−k
) = (vec(Jk1(X1(t−k ), X1,t−k

))T , . . . , vec(JkN(XN(t−k ), XN,t−k
))T )T ,

D = diag(d1In2 , d2In2 , . . . , dNIn2),

A =


In ⊗ A11 In ⊗ A12 · · · In ⊗ A1N

In ⊗ A21 In ⊗ A22 · · · In ⊗ A2N
...

... . . . ...
In ⊗ AN1 In ⊗ AN2 · · · In ⊗ ANN

 ,

B =


In ⊗B11 In ⊗B12 · · · In ⊗B1N

In ⊗B21 In ⊗B22 · · · In ⊗B2N
...

... . . . ...
In ⊗BN1 In ⊗BN2 · · · In ⊗BNN

 ,

C =


In ⊗ C11 In ⊗ C12 · · · In ⊗ C1N

In ⊗ C21 In ⊗ C22 · · · In ⊗ C2N
...

... . . . ...
In ⊗ CN1 In ⊗ CN2 · · · In ⊗ CNN

 ,
f(X(t)) = (vec(f1(X1(t)))T , vec(f2(X2(t)))T , . . . , vec(fN(XN(t)))T )T ,

system (7.6.1) becomes
Ẋ(t) = −DX(t− δ) + Af(X(t)) +Bf(X(t− τ(t)))

+C
∫ t
t−σ(t)

f(X(s))ds+ U(t), t 6= tk, t > 0,

∆X(tk) = X(tk)−X(t−k ) = Jk(X(t−k ), Xt−k
), k ∈ Z+,

Y (t) = f(X(t)).

(7.6.4)

Remark 7.6. Systems (7.6.4) and (7.6.1) are equivalent, which means that any property we
prove for system (7.6.4), will also hold for system (7.6.1). Thus, from now on, we will only
discuss system (7.6.4).

To introduce the dissipativity property, we define the energy supply function as follows:

G(U, Y, T ) = 〈Y,QY 〉T + 2〈Y,SU〉T + 〈U,RU〉T , ∀T ≥ 0,

where and Q, S, andR are real matrices, with Q,R symmetric, and 〈A,B〉T =
∫ T

0
ATBdt.



7. Dynamics of matrix-valued neural networks (MVNNs) 195

Definition 7.1. The neural network given in (7.6.4) is said to be strictly (Q,S,R)-γ-dissipative
if, for some γ > 0, the following inequality holds under zero initial condition:

G(U, Y, T ) ≥ γ〈U,U〉T , ∀T ≥ 0. (7.6.5)

We will also need the following lemmas:

Lemma 7.4. ([66]) The following inequality holds for any positive definite matrix M ∈Mn2N

and vector function X : [a, b]→ Rn2N :(∫ b

a

∫ b

θ

X(s)dsdθ

)T
M

(∫ b

a

∫ b

θ

X(s)dsdθ

)
≤ (b− a)2

2

∫ b

a

∫ b

θ

XT (s)MX(s)dsdθ,

where the integrals are well defined.

Lemma 7.5. ([239]) The following inequality holds for any positive definite matrixM ∈Mn2N

and vector function X : [a, b]→ Rn2N :(∫ b

a

∫ b

θ

∫ b

χ
X(s)dsdχdθ

)T
M

(∫ b

a

∫ b

θ

∫ b

χ
X(s)dsdχdθ

)
≤ (b− a)3

6

∫ b

a

∫ b

θ

∫ b

χ
XT (s)MX(s)dsdχdθ,

where the integrals are well defined.

Lemma 7.6. ([138]) For any vectors X1, X2 ∈ Rn2N , any positive definite matrix P ∈Mn2N ,

any matrix Q ∈ Mn2N , and any α ∈ (0, 1), such that
[
P Q
QT P

]
≥ 0, the following linear

matrix inequality (LMI) holds:

1

α
XT

1 PX1 +
1

1− α
XT

2 PX2 ≥
[
X1

X2

]T [
P Q
QT P

] [
X1

X2

]
.

Lemma 7.7. ([194]) For any differentiable function X : [a, b] → Rn2N and positive definite
matrix P ∈Mn2N , the following linear matrix inequality (LMI) holds:

(b− a)

∫ b

a

ẊT (s)PẊ(s)ds ≥ ξT1 Pξ1 + 3ξT2 Pξ2,

where ξ1 = X(b)−X(a), ξ2 = X(b) +X(a)− 2
b−a

∫ b
a
X(s)ds.

We now give a sufficient condition which assures the strict (Q,S,R)-γ-dissipativity of
neural network (7.6.4).

Theorem 7.5. If Assumptions 7.3–7.5 hold, then system (7.6.4) is strictly (Q,S,R)-γ-dissipative
if there exist positive definite matrices P1, P2, P3, P4, P 1

5 , P 2
5 , P6, P7, P8, P9, P 1

10, P 2
10, any ma-

trices M1, M2, M3, N1, N2, N3, N4, positive definite diagonal matrices R1, R2, and some
constant γ > 0, such that the following linear matrix inequalities (LMIs) hold:

Π− ζTΦζ < 0, Φ > 0, (7.6.6)

ΨTΘΨ < Θ, (7.6.7)

where Π1,1 = −DP2−P2D+P3 + δ2P4 +P 1
5 +P6− 4τ 2P8− 9τ 4P9 +M1 +MT

1 +Lf
T
R1Lf ,

Π1,2 = P1 + P2, Π1,3 = P2D, Π1,6 = M2 − MT
1 , Π1,9 = DP2D, Π1,10 = 4τP8, Π1,11 =



196 7. Dynamics of matrix-valued neural networks (MVNNs)

M3−MT
1 , Π1,15 = 18τ 2P9, Π2,2 = τ 2P7 + τ 4P8 + τ 6P9 + σ2P 1

10−N1−NT
1 , Π2,3 = −N1D−

NT
2 , Π2,7 = N1A + NT

3 , Π2,8 = N1B + NT
4 , Π2,9 = −P2D, Π2,12 = N1C, Π2,16 = N1,

Π3,3 = −P3 − N2D − DNT
2 , Π3,7 = N2A + DNT

3 , Π3,8 = N2B + DNT
4 , Π3,9 = −DP2D,

Π3,12 = N2C, Π3,16 = N2, Π4,4 = −P6, Π5,5 = −(1− τ ′)P 1
5 +Lf

T
R2Lf , Π6,6 = −M2−MT

2 ,
Π6,11 = −M3−MT

2 , Π7,7 = P 2
5 + σ2P 2

10−R1−N3A−A
T
NT

3 −Q, Π7,8 = −N3B −A
T
NT

4 ,
Π7,11 = −N3C, Π7,16 = −N3−S, Π8,8 = −(1− τ ′)P 2

5 −R2−N4B−B
T
NT

4 , Π8,11 = −N4C,
Π8,16 = −N4, Π9,9 = −P4, Π10,10 = −4P8, Π11,11 = −P 1

10 − M3 − MT
3 , Π12,12 = −P 2

10,
Π15,15 = −36P9, Π16,16 = −(R− γIn2N),

ζ =


e1 − e5

e1 + e5 − 2e13

e5 − e4

e5 + e4 − 2e14

,

ei =
[
0n2N×(i−1)n2N In2N 0n2N×(16−i)n2N

]
, i = 1, . . . , 16,

Φ =

[
P7 H
HT P7

]
,

P7 =

[
P7 0
0 3P7

]
,

Ψ =

[
In2N + Fk −FkD

0 In2N

]
, Θ =

[
P1 + P2 −P2D
−DP2 DP2D

]
.

Proof. Consider the following Lyapunov–Krasovskii functional

V (t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t) + V6(t) + V7(t) + V8(t) + V9(t) + V10(t),

where
V1(t) = XT (t)P1X(t),

V2(t) =

(
X(t)−D

∫ t

t−δ
X(s)ds

)T
P2

(
X(t)−D

∫ t

t−δ
X(s)ds

)
,

V3(t) =

∫ t

t−δ
XT (s)P3X(s)ds,

V4(t) = δ

∫ 0

−δ

∫ t

t+θ

XT (s)P4X(s)ds,

V5(t) =

∫ t

t−τ(t)

ξT (s)P5ξ(s)ds, P5 = diag(P 1
5 , P

2
5 ),

ξ(s) =
[
XT (s) fT (X(s))

]T
,

V6(t) =

∫ t

t−τ
XT (s)P6X(s)ds,

V7(t) = τ

∫ 0

−τ

∫ t

t+θ

ẊT (s)P7Ẋ(s)dsdθ,

V8(t) = 2τ 2

∫ 0

−τ

∫ 0

θ

∫ t

t+λ

ẊT (s)P8Ẋ(s)dsdλdθ,

V9(t) = 6τ 3

∫ 0

−τ

∫ 0

θ

∫ 0

χ

∫ t

t+λ

ẊT (s)P9Ẋ(s)dsdλdχdθ,



7. Dynamics of matrix-valued neural networks (MVNNs) 197

V10(t) = σ

∫ 0

−σ

∫ t

t+θ

νT (s)P10ν(s)dsdθ, P10 = diag(P 1
10, P

2
10),

ν(s) =
[
ẊT (s) fT (X(s))

]T
.

By taking the derivative of V along the trajectories of system (7.6.4), we have:

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t) + V̇5(t) + V̇6(t) + V̇7(t) + V̇8(t) + V̇9(t) + V̇10(t),

where

V̇1(t) = ẊT (t)P1X(t) +XT (t)P1Ẋ(t), (7.6.8)

V̇2(t) =
(
Ẋ(t)−DX(t) +DX(t− δ)

)T
P2

(
X(t)−D

∫ t

t−δ
X(s)ds

)
+

(
X(t)−D

∫ t

t−δ
X(s)ds

)T
P2

(
Ẋ(t)−DX(t) +DX(t− δ)

)
, (7.6.9)

V̇3(t) = XT (t)P3X(t)−XT (t− δ)P3X(t− δ), (7.6.10)

V̇4(t) = δ2XT (t)P4X(t)− δ
∫ t

t−δ
XT (s)P4X(s)ds

≤ δ2XT (t)P4X(t)−
(∫ t

t−δ
X(s)ds

)T
P4

(∫ t

t−δ
X(s)ds

)
, (7.6.11)

V̇5(t) = ξT (t)P5ξ(t)− (1− τ̇(t))ξT (t− τ(t))P5ξ(t− τ(t))

≤ ξT (t)P5ξ(t)− (1− τ ′)ξT (t− τ(t))P5ξ(t− τ(t)), (7.6.12)

V̇6(t) = XT (t)P6X(t)−XT (t− τ)P6X(t− τ), (7.6.13)

V̇7(t) = τ 2ẊT (t)P7Ẋ(t)− τ
∫ t

t−τ
ẊT (s)P7Ẋ(s)ds, (7.6.14)

V̇8(t) = τ 4ẊT (t)P8Ẋ(t)− 2τ 2

∫ 0

−τ

∫ t

t+θ

ẊT (s)P8Ẋ(s)dsdθ

≤ τ 4ẊT (t)P8Ẋ(t)− 4

(∫ 0

−τ

∫ t

t+θ

Ẋ(s)dsdθ

)T
P8

(∫ 0

−τ

∫ t

t+θ

Ẋ(s)dsdθ

)
= τ 4ẊT (t)P8Ẋ(t)− 4

(∫ 0

−τ
(X(t)−X(t+ θ)) dθ

)T
P8

(∫ 0

−τ
(X(t)−X(t+ θ)) dθ

)
= τ 4ẊT (t)P8Ẋ(t)− 4

(
τX(t)−

∫ t

t−τ
X(s)ds

)T
P8

(
τX(t)−

∫ t

t−τ
X(s)ds

)
,(7.6.15)

V̇9(t) = τ 6ẊT (t)P9Ẋ(t)− 6τ 3

∫ 0

−τ

∫ 0

θ

∫ t

t+χ

ẊT (s)P9Ẋ(s)dsdχdθ



198 7. Dynamics of matrix-valued neural networks (MVNNs)

≤ τ 6ẊT (t)P9Ẋ(t)− 36

(∫ 0

−τ

∫ 0

θ

∫ t

t+χ

Ẋ(s)dsdχdθ

)T
P9

(∫ 0

−τ

∫ 0

θ

∫ t

t+χ

Ẋ(s)dsdχdθ

)
= τ 6ẊT (t)P9Ẋ(t)

−36

(∫ 0

−τ

∫ 0

θ

(X(t)−X(t+ χ)) dχdθ

)T
P9

(∫ 0

−τ

∫ 0

θ

(X(t)−X(t+ χ)) dχdθ

)
= τ 6ẊT (t)P9Ẋ(t)− 9

(
τ 2X(t)− 2

∫ 0

−τ

∫ t

t+θ

X(s)ds

)T
P9

(
τ 2X(t)− 2

∫ 0

−τ

∫ t

t+θ

X(s)ds

)
,

(7.6.16)

V̇10(t) = σ2νT (t)P10ν(t)− σ
∫ t

t−σ
νT (s)P10ν(s)ds

≤ σ2νT (t)P10ν(t)− σ(t)

∫ t

t−σ(t)

νT (s)P10ν(s)ds

≤

(
σ2νT (t)P10ν(t)−

(∫ t

t−σ(t)

ν(s)ds

)T
P10

(∫ t

t−σ(t)

ν(s)ds

))

≤

(
σ2νT (t)P10ν(t)−

(∫ t

t−σ(t)

ν(s)ds

)T
P10

(∫ t

t−σ(t)

ν(s)ds

))
, (7.6.17)

where we used Assumption 7.3 to deduce the inequalities in (7.6.12) and (7.6.17), Lemma 7.3
to deduce the inequalities in (7.6.11) and (7.6.17), Lemma 7.4 for the inequality in (7.6.15), and
Lemma 7.5 for the inequality in (7.6.16).

Using Lemmas 7.6–7.7, we have that

−τ
∫ t

t−τ
ẊT (s)P7Ẋ(s)ds = −τ

∫ t

t−τ(t)
ẊT (s)P7Ẋ(s)ds− τ

∫ t−τ(t)

t−τ
ẊT (s)P7Ẋ(s)ds

≤ − τ

τ(t)

[
X(t)−X(t− τ(t))

X(t) +X(t− τ(t))− 2
τ(t)

∫ t
t−τ(t)X(s)ds

]T [
P7 0
0 3P7

]

×

[
X(t)−X(t− τ(t))

X(t) +X(t− τ(t))− 2
τ(t)

∫ t
t−τ(t)X(s)ds

]

− τ

τ − τ(t)

[
X(t− τ(t))−X(t− τ)

X(t− τ(t)) +X(t− τ)− 2
τ−τ(t)

∫ t−τ(t)
t−τ X(s)ds

]T [
P7 0
0 3P7

]

×

[
X(t− τ(t))−X(t− τ)

X(t− τ(t)) +X(t− τ)− 2
τ−τ(t)

∫ t−τ(t)
t−τ X(s)ds

]

= −µT (t)

[
τ

τ(t)

[
e1 − e5

e1 + e5 − 2e13

]T [
P7 0
0 3P7

] [
e1 − e5

e1 + e5 − 2e13

]

+
τ

τ − τ(t)

[
e5 − e4

e5 + e4 − 2e14

]T [
P7 0
0 3P7

] [
e5 − e4

e5 + e4 − 2e14

]]
µ(t)

≤ −µT (t)


e1 − e5

e1 + e5 − 2e13

e5 − e4

e5 + e4 − 2e14


T [

P7 H

HT P7

]
e1 − e5

e1 + e5 − 2e13

e5 − e4

e5 + e4 − 2e14

µ(t),

= −µT (t)ζTΦζµ(t),



7. Dynamics of matrix-valued neural networks (MVNNs) 199

with the condition that Φ =

[
P7 H
HT P7

]
> 0, which is true by (7.6.7).

Assumption 7.4 can be rewritten as

||fj(X)− fj(X ′)|| ≤ lfj ||X −X ′|| ⇔ ||vec(fj(X))− vec(fj(X
′))|| ≤ lfj ||vec(X)− vec(X ′)||,

for j = 1, . . . N . From this inequality, we can deduce that there exist positive block-diagonal
matrices R1 = diag(r1

1In2 , r1
2In2 , . . . , r1

NIn2), R2 = diag(r2
1In2 , r2

2In2 , . . . , r2
NIn2), such that

0 ≤ XT (t)Lf
T
R1LfX(t)− fT (X(t))R1f(X(t)), (7.6.18)

0 ≤ XT (t− τ(t))Lf
T
R2LfX(t− τ(t))− fT (X(t− τ(t)))R2f(X(t− τ(t))). (7.6.19)

For any matrices M1, M2, M3, from the Leibniz–Newton formula X(t) − X(t − σ(t)) =∫ t
t−σ(t)

Ẋ(s)ds, we have that

0 =

[
X(t)−X(t− σ(t))−

∫ t

t−σ(t)

Ẋ(s)ds

]T [
M1X(t) +M2X(t− σ(t)) +M3

∫ t

t−σ(t)

Ẋ(s)ds

]
= XT (t)M1X(t) +XT (t)M2X(t− σ(t)) +XT (t)M3

∫ t

t−σ(t)

Ẋ(s)ds

−XT (t− σ(t))M1X(t)−XT (t− σ(t))M2X(t− σ(t))−XT (t− σ(t))M3

∫ t

t−σ(t)

Ẋ(s)ds

−
(∫ t

t−σ(t)

Ẋ(s)ds

)T
M1X(t)−

(∫ t

t−σ(t)

Ẋ(s)ds

)T
M2X(t− σ(t))

−
(∫ t

t−σ(t)

Ẋ(s)ds

)T
M3

∫ t

t−σ(t)

Ẋ(s)ds. (7.6.20)

Also, for any matrices N1, N2, N3, N4, we have that

0 =
[
ẊT (t)N1 +XT (t− δ)N2 − fT (X(t))N3 − fT (X(t− τ(t)))N4

] [
−Ẋ(t)−DX(t− δ)

+Af(X(t)) +Bf(X(t− τ(t))) + C

∫ t

t−σ(t)

f(X(s))ds+ U(t)

]
= −ẊT (t)N1Ẋ(t)− ẊT (t)N1DX(t− δ) + ẊT (t)N1Af(X(t)) + ẊT (t)N1Bf(X(t− τ(t)))

+ẊT (t)N1C

∫ t

t−σ(t)

f(X(s))ds+ ẊT (t)N1U(t)

−XT (t− δ)N2Ẋ(t)−XT (t− δ)N2DX(t− δ) +XT (t− δ)N2Af(X(t))

+XT (t− δ)N2Bf(X(t− τ(t))) +XT (t− δ)N2C

∫ t

t−σ(t)

f(X(s))ds+XT (t− δ)N2U(t)

+fT (X(t))N3Ẋ(t) + fT (X(t))N3DX(t− δ)− fT (X(t))N3Af(X(t))

−fT (X(t))N3Bf(X(t− τ(t)))− fT (X(t))N3C

∫ t

t−σ(t)

f(X(s))ds− fT (X(t))N3U(t)

+fT (X(t− τ(t)))N4Ẋ(t) + fT (X(t− τ(t)))N4DX(t− δ)− fT (X(t− τ(t)))N4Af(X(t))

−fT (X(t− τ(t)))N4Bf(X(t− τ(t)))− fT (X(t− τ(t)))N4C

∫ t

t−σ(t)

f(X(s))ds

−fT (X(t− τ(t)))N4U(t). (7.6.21)



200 7. Dynamics of matrix-valued neural networks (MVNNs)

Finally, by combining (7.6.8)–(7.6.17), (7.6.18)–(7.6.19), and the transpose of (7.6.20)–(7.6.21)
added to the initial relations, we get that

V̇ (t)− Y T (t)QY (t)− 2Y T (t)SU(t)− UT (t)(R− γIn2N)U(t) ≤ µT (t)
(
Π− ζTΦζ

)
µ(t),

(7.6.22)
for t 6= tk, k ∈ Z+, where Π is defined by (7.6.6), and

µ(t) =
[
XT (t) ẊT (t) XT (t− δ) XT (t− τ) XT (t− τ(t)) XT (t− σ(t)) fT (X(t))

fT (X(t− τ(t)))
(∫ t

t−δX(s)ds
)T (∫ t

t−τ X(s)ds
)T (∫ t

t−σ(t)
Ẋ(s)ds

)T
(∫ t

t−σ(t)
f(X(s))ds

)T
1
τ(t)

(∫ t
t−τ(t)

X(s)ds
)T

1
τ−τ(t)

(∫ t−τ(t)

t−τ X(s)ds
)T

(∫ 0

−τ

∫ t
t+θ

X(s)ds
)T

UT (t)
]T
.

From (7.6.6) we have that Π− ζTΦζ < 0, and thus inequality (7.6.22) yields

V̇ (t)− Y T (t)QY (t)− 2Y T (t)SU(t)− UT (t)(R− γIn2N)U(t) < 0, ∀t ∈ [tk−1, tk), k ∈ Z+.
(7.6.23)

On the other hand, we have that

V1(tk) =

[
X(t)∫ tk

tk−δ
X(s)ds

]T [
P1 0
0 0

] [
X(t)∫ tk

tk−δ
X(s)ds

]
,

V2(tk) =

[
X(t)∫ tk

tk−δ
X(s)ds

]T [
P2 −P2D
−DP2 DP2D

] [
X(t)∫ tk

tk−δ
X(s)ds

]
,

which, together with Assumption 7.5 vectorized in the form

X(tk) = (In2N + Fk)X(t−k )− FkD
∫ tk

tk−δ
X(s)ds,

where

Fk =


In ⊗ Fk1 0 · · · 0

0 In ⊗ Fk2 · · · 0
...

... . . . ...
0 0 · · · In ⊗ FkN

 ,

yield



7. Dynamics of matrix-valued neural networks (MVNNs) 201

V1(tk) + V2(tk) =

[
X(tk)∫ tk

tk−δ
X(s)ds

]T [
P1 + P2 −P2D
−DP2 DP2D

] [
X(tk)∫ tk

tk−δ
X(s)ds

]

=

[
(In2N + Fk)X(t−k )− FkD

∫ tk
tk−δ

X(s)ds∫ tk
tk−δ

X(s)ds

]T

×
[
P1 + P2 −P2D
−DP2 DP2D

][
(In2N + Fk)X(t−k )− FkD

∫ tk
tk−δ

X(s)ds∫ tk
tk−δ

X(s)ds

]

=

[
X(t−k )∫ tk

tk−δ
X(s)ds

]T [
In2N + Fk

T
0

−DFk
T

In2N

][
P1 + P2 −P2D
−DP2 DP2D

]
×
[
In2N + Fk −FkD

0 In2N

] [
X(t−k )∫ tk

tk−δ
X(s)ds

]

≤

[
X(t−k )∫ t−k

t−k −δ
X(s)ds

]T [
P1 + P2 −P2D
−DP2 DP2D

][ X(t−k )∫ t−k
t−k −δ

X(s)ds

]
= V1(t−k ) + V2(t−k ),

where we used condition (7.6.6) for the inequality. We also observe that V3(tk) = V3(t−k ),
V4(tk) = V4(t−k ), V5(tk) = V5(t−k ), V6(tk) = V6(t−k ), V7(tk) = V7(t−k ), V8(tk) = V8(t−k ),
V9(tk) = V9(t−k ), and V10(tk) = V10(t−k ). Hence, we have that

V (tk) ≤ V (t−k ), k ∈ Z+. (7.6.24)

Now, integrating (7.6.23) from 0 to T ≥ 0, and also taking (7.6.24) into account, we obtain
that

V (T )− V (0) ≤
∫ T

0

(
Y T (t)QY (t)− 2Y T (t)SU(t)− UT (t)(R− γIn2N)U(t)

)
dt,

which means that inequality (7.6.5) holds under zero initial condition, which implies that neural
network (7.6.4) is strictly (Q,S,R)-γ-dissipative, thus ending the proof of the theorem.

7.6.2 Numerical examples
Next, we give two numerical examples to prove the correctness of the obtained theoretical
results.

Example 7.5. Consider the following matrix-valued neural network with two neurons:
Ẋi(t) = −diXi(t) +

∑2
j=1Aijfj(Xj(t)) +

∑2
j=1 Bijfj(Xj(t− τ(t)))

+
∑2

j=1Cij
∫ t
t−σ(t)

fj(Xj(s))ds+ Ui(t),

∆Xi(tk) = Xi(tk)−Xi(t
−
k ) = Fki

(
Xi(t

−
k )− di

∫ tk
tk−δ

Xi(s)ds
)
, k ∈ Z+,

Yi(t) = fi(Xi(t)),

(7.6.25)

for i = 1, 2, where d1 = d2 = 20,

A11 =

[
1 1
2 2

]
, A12 =

[
1 1
1 1

]
, A21 =

[
1 1
2 2

]
, A22 =

[
1 2
2 1

]
,



202 7. Dynamics of matrix-valued neural networks (MVNNs)

B11 =

[
1 1
2 2

]
, B12 =

[
1 2
2 1

]
, B21 =

[
1 2
3 2

]
, B22 =

[
1 3
2 3

]
,

C11 =

[
1 1
2 2

]
, C12 =

[
1 2
2 1

]
, C21 =

[
1 2
3 2

]
, C22 =

[
1 2
2 1

]
,

Fk1 =

[
−0.1 −0.2
0.2 −0.1

]
, Fk2 =

[
−0.1 −0.1
−0.1 −0.1

]
, tk = k, k ∈ Z+,

U1(t) =

[
−14 23
−45 34

]
, U2(t) =

[
−43 33
−23 13

]
, ∀t > 0,

f
(

([X]ab)1≤a,b≤n

)
=

(
1

1 + e−[X]ab

)
1≤a,b≤n

,

from which we have that lf1 = lf2 = 1
2
, meaning that Assumption 7.4 is fulfilled. If the leakage

delay is δ = 0.04, the time-varying delays are τ(t) = 0.1| cos t|, and the distributed delays
are σ(t) = 0.05| sin t|, so τ = τ ′ = 0.1 and σ = 0.05, then Assumption 7.3 is also fulfilled.
Assumption 7.5 is clearly fulfilled, from the definition of the network given in (7.6.25).

By taking γ = 0.1,

Q =



−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1


,

S =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1


,

R =



3 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 3


,

and solving the LMI conditions (7.6.6) and (7.6.7) in Theorem 7.5, we obtain that neural net-
work (7.6.25) is strictly (Q,S,R)-γ-dissipative, for R1 = diag(10.3013I4, 9.3434I4), R2 =
diag(4.6464I4, 4.3934I4). (For brevity, the values of the other matrices are not given.)



7. Dynamics of matrix-valued neural networks (MVNNs) 203

Example 7.6. Now, we consider the matrix-valued neural network with two neurons in (7.6.25),
where d1 = d2 = 5,

A11 =

[
1 1
2 2

]
, A12 =

[
1 −1
−1 1

]
, A21 =

[
−1 1
2 −2

]
, A22 =

[
1 2
2 1

]
,

B11 =

[
−1 1
2 −2

]
, B12 =

[
1 −1
−1 1

]
, B21 =

[
1 1
2 2

]
, B22 =

[
1 3
2 3

]
,

C11 =

[
1 1
2 −2

]
, C12 =

[
1 1
1 1

]
, C21 =

[
1 −1
−2 2

]
, C22 =

[
1 2
2 1

]
,

Fk1 =

[
−0.1 −0.1
0.2 −0.2

]
, Fk2 =

[
−0.1 0.1
−0.1 −0.1

]
, tk = k, k ∈ Z+,

U1(t) =

[
5 −10
15 10

]
, U2(t) =

[
5 15
−10 −15

]
, ∀t > 0,

f
(

([X]ab)1≤a,b≤n

)
=

(
1

1 + e−[X]ab

)
1≤a,b≤n

,

from which we get that lf1 = lf2 = 1
2
, and so Assumption 7.4 is fulfilled. If the leakage delay is

δ = 0.03, the time-varying delays are τ(t) = 0.2| sin t|, and the distributed delays are σ(t) =
0.1| cos t|, so τ = τ ′ = 0.2 and σ = 0.1, then Assumption 7.3 is also fulfilled. Assumption 7.5
is fulfilled by the definition of the network given in (7.6.25).

Now, taking γ = 0.1,

Q =



−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1


,

S =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1


,

R =



3 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 3


,



204 7. Dynamics of matrix-valued neural networks (MVNNs)

and solving the LMI conditions (7.6.6) and (7.6.7) in Theorem 7.5, we get that neural net-
work (7.6.25) is strictly (Q,S,R)-γ-dissipative for R1 = diag(19.3159I4, 13.5703I4), R2 =
diag(6.6740I4, 3.5330I4). (For brevity, the values of the other matrices are not given.)

7.7 Lie algebra-valued neural networks
A somewhat different approach of neural networks with values in multidimensional domains,
which has no direct connection with Clifford algebras, are vector-valued neural networks, see
[128, 129, 130, 131]. These networks process three dimensional input vectors in two ways: one
based on the vector product, which has three dimensional vectors as weights, and one which
has orthogonal matrices as weights (i.e. matrices that satisfy AAT = ATA = I). This last
variant was further generalized to N -dimensional vectors, and thus the N -dimensional neural
networks (see [132, 133]), haveN -dimensional vector inputs and outputs, but orthogonal matrix
weights. Both three-dimensional andN -dimensional neural networks were used successfully in
applications, the first in geometric transformations, and the second in the N -bit parity problem,
which was solved using a single N -dimensional neuron.

We proposed a different generalization of real-valued neural networks in multidimensional
domains, namely neural networks that have Lie algebraic inputs, outputs, weights and biases,
first in the form of feedforward networks, see [146]. Because Lie algebras can have any di-
mension n, they also represent an alternative to the N -dimensional neural networks that we
mentioned earlier. Taking into account the fact that their definition comes from geometry, and
that they have numerous applications in physics and engineering (see [87, 46, 189]), and also
the fact that they have been successfully used in computer vision over the last few years (for a
survey, see [233], and the references thereof), we considered a promising idea to define Hop-
field neural networks and bidirectional associative memories with values in Lie algebras. Lie
algebra-valued Hopfield neural networks can be applied to image processing and computer vi-
sion, where the data can be treated in the form of geometric transformations. Lie algebra-valued
bidirectional associative memories can be applied to store Lie-algebraic patterns and to solve
difficult optimization problems defined on a Lie group or a Lie algebra.

The presentation in the following two sections in inspired from that in the author’s papers
[148] and [163], respectively.

7.7.1 Lie algebra-valued Hopfield neural networks

A Lie algebra is a vector space g over a field F together with an operation [·, ·] : g × g→ g
called the Lie bracket, which satisfies the following axioms:

• It is bilinear: [ax + by, z] = a[x, z] + b[y, z], [x, ay + bz] = a[x, y] + b[x, z], ∀a, b ∈ F ,
∀x, y ∈ g.

• It is skew symmetric: [x, x] = 0, which implies [x, y] = −[y, x], ∀x, y ∈ g.

• It satisfies the Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, ∀x, y, z ∈ g.

Consider the vector space so(n) of skew-symmetric square matrices of order n, i.e. square
matrices with real components for which AT = −A,∀A ∈ so(n). It is easy to verify that the
operation given by

[A,B] := AB −BA, ∀A,B ∈ so(n),



7. Dynamics of matrix-valued neural networks (MVNNs) 205

satisfies the above axioms, meaning that so(n) is a Lie algebra, the operation defined above
being its Lie bracket. For the easiness of the exposition, we will work only with this Lie algebra,
but the generalization to an arbitrary Lie algebra can be done in a simple way.

In what follows, we will define Hopfield neural networks for which the states, outputs,
weights and thresholds are all from so(n), which means that they are skew-symmetric square
matrices. The network is described by the set of differential equations

τi
dVi(t)

dt
= −Vi(t) +

N∑
j=1

W T
ij f(Vj(t))Wij +Bi, i ∈ {1, . . . , N}, (7.7.1)

where τi ∈ R, τi > 0 is the time constant of neuron i, Vi(t) ∈ so(n) is the state of neuron
i at time t, Wij ∈ SO(n) is the weight connecting neuron j to neuron i, f : so(n) → so(n)
is the nonlinear Lie algebra-valued activation function, and Bi is the threshold of neuron i,
∀i ∈ {1, . . . , N}. SO(n) represents the Lie group associated with the Lie algebra so(n), and
it is known that W TXW ∈ so(n), ∀W ∈ SO(n), ∀X ∈ so(n), and so the above expression
is well defined. SO(n) is the group of orthogonal square matrices, i.e. square matrices with
real components for which ATA = AAT = In and detA = 1,∀A ∈ SO(n). The derivative is
considered to be the matrix formed by the derivatives of each component [Vi(t)]ab of the matrix
Vi(t) with respect to t:

dVi(t)

dt
:=

(
d([Vi]ab)

dt

)
1≤a,b≤n

.

If we denote byXj(t) := f(Vj(t)) the output of neuron j, the above set of differential equations
can be written as:

τi
dVi(t)

dt
= −Vi(t) +

N∑
j=1

W T
ijXj(t)Wij +Bi, i ∈ {1, . . . , N}.

The activation function is formed of n2 functions fab : so(n)→ R, 1 ≤ a, b ≤ n:

f(V ) =
(
fab(V )

)
1≤a,b≤n .

In order to study the stability of the above defined network, we need to make a series of
assumptions about the activation function. First of all, we need to assume that the functions fab

are continuously differentiable with respect to each [V ]cd, ∀1 ≤ c, d ≤ n, ∀1 ≤ a, b ≤ n, and
the function f is bounded: ∃M > 0, ||f(V )|| ≤ M , ∀V ∈ so(n), where ||X|| is the Frobenius
norm of matrix X , defined by ||X|| =

√
Tr(XXT ). Now, the n2 × n2 Jacobian matrix of the

function f can be defined as

Jacf (V ) =

(
∂fab(V )

∂[V ]cd

)
1≤a,b≤n
1≤c,d≤n

.

Another assumption that we have to make about the activation function is that f is injective
and Jacf (V ) is symmetric and positive definite, ∀V ∈ so(n). This, together with the above
assumption, assures the existence of the inverse function of f , g : so(n) → so(n), g = f−1.
We can thus write g(Xi(t)) = Vi(t), ∀i ∈ {1, . . . , N}. From the existence of g, we infer the
existence of a function G : so(n)→ R, which satisfies

∂G(X)

∂[X]ab
= gab(X), ∀1 ≤ a, b ≤ n,



206 7. Dynamics of matrix-valued neural networks (MVNNs)

where gab : so(n) → R are the component functions of g. The above condition can also be
written in matrix form as

∂G(X)

∂X
= g(X). (7.7.2)

The function G is defined by

G(X) =
n∑

a,b=1

∫ [X]ab

0

gab(Y ab)dy,

where the matrix Y ab has the following form

[Y ab]cd =


[X]cd, (c, d) < (a, b)

y, (c, d) = (a, b)

0 (c, d) > (a, b)

, ∀1 ≤ a, b ≤ n.

For example, for 2× 2 matrices, we have that

G(X) =

∫ [X]11

0

g11

((
y 0
0 0

))
dy +

∫ [X]12

0

g12

((
[X]11 y

0 0

))
dy

+

∫ [X]21

0

g21

((
[X]11 [X]12

y 0

))
dy +

∫ [X]22

0

g22

((
[X]11 [X]12

[X]21 y

))
dy.

The last assumption concerns the weights of the network, which must satisfy:

Wji = W T
ij , ∀i, j ∈ {1, . . . , N}.

The network may or may not have self connections, i.e. it is not necessary to assume that
Wii = On, but only that Wii = W T

ii ,∀i ∈ {1, . . . , N}, as the above assumption shows.
In this point, we can define the energy function E : so(n)N → R of the Hopfield network

(7.7.1) as:

E(X(t)) = −1

2

N∑
i=1

N∑
j=1

Tr(Xi(t)
TW T

ijXj(t)Wij)

+
N∑
i=1

G(Xi(t))−
N∑
i=1

Tr(BT
i Xi(t)), (7.7.3)

where Tr(X) represents the trace of matrix X .
We will show that E is indeed an energy function, i.e. the derivative of the function E along

the trajectories of network (7.7.1), denoted by dE(X(t))
dt

, satisfies the condition dE(X(t))
dt

≤ 0 and
dE(X(t))

dt
= 0⇔ dXi(t)

dt
= 0,∀i ∈ {1, . . . , N}.

For this, we start by applying the chain rule:

dE(X(t))

dt
=

N∑
i=1

n∑
a,b=1

∂E(X(t))

∂[Xi(t)]ab

d[Xi(t)]ab
dt

=
N∑
i=1

Tr

((
∂E(X(t))

∂Xi(t)

)T
dXi(t)

dt

)
, (7.7.4)



7. Dynamics of matrix-valued neural networks (MVNNs) 207

where by ∂E(X(t))
∂[Xi(t)]ab

we denoted the partial derivative of the function E with respect to each
component [Xi(t)]ab of the matrices Xi(t), ∀1 ≤ a, b ≤ n, ∀i ∈ {1, . . . , N}. For the partial
derivative ∂E(X(t))

∂Xi(t)
=
(
∂E(X(t))
∂[Xi(t)]ab

)
1≤a,b≤n

, we have from (7.7.3) that

∂E(X(t))

∂Xi(t)
= −

N∑
j=1

W T
ijXj(t)Wij + g(Xi(t))−Bi

= −

(
N∑
j=1

W T
ijXj(t)Wij − Vi(t) +Bi

)

= −τi
dVi(t)

dt
,∀i ∈ {1, . . . , N},

where we used the fact that

dTr(XTA)

dX
=
dTr(AXT )

dX
= A,

relation (7.7.2), the assumption Wji = W T
ij , and also the set of equations given by (7.7.1). Now,

equation (7.7.4) becomes:

dE(X(t))

dt
=

N∑
i=1

Tr

((
−τi

dVi(t)

dt

)T
dXi(t)

dt

)

= −
N∑
i=1

τi

[
vec
(
dVi(t)

dt

)]T
vec
(
dXi(t)

dt

)

= −
N∑
i=1

{
τi

[
vec
(
dXi(t)

dt

)]T
[Jacg(Xi(t))]

Tvec
(
dXi(t)

dt

)}
≤ 0, (7.7.5)

where we denoted by vec (X) the vectorization of matrix X . We also used the identity

Tr(ATB) = vec(A)Tvec(B),∀A,B ∈ so(n),

and, from g(Xi(t)) = Vi(t), we obtained that

vec
(
dg(Xi(t))

dt

)
= Jacg(Xi(t))vec

(
dXi(t)

dt

)
,

∀i ∈ {1, . . . , N}. Because Jacf (V ) is symmetric and positive definite, we deduce that Jacg(X)
is also symmetric and positive definite, and thus[

vec
(
dXi(t)

dt

)]T
[Jacg(Xi(t))]

Tvec
(
dXi(t)

dt

)
≥ 0,

∀i ∈ {1, . . . , N}, which allowed us to write the last inequality in relation (7.7.5). Equality is
attained when

dE(X(t))

dt
= 0⇔ vec

(
dXi(t)

dt

)
= 0⇔ dXi(t)

dt
= 0,

∀i ∈ {1, . . . , N}, thus ending the proof that E is indeed an energy function for the network
(7.7.1).



208 7. Dynamics of matrix-valued neural networks (MVNNs)

We now give two examples of activation functions, inspired by the ones used in real-valued
and complex-valued neural networks:

f(V ) =
V

1 + ||V ||
,∀V ∈ so(n),

f
(

([V ]ab)1≤a,b≤n

)
= (tanh[V ]ab)1≤a,b≤n ,∀V ∈ so(n).

The first one corresponds to the fully complex activation functions, and the second one corre-
sponds to the split complex activation functions from the complex-valued domain. It can be
easily verified that these functions satisfy the above assumptions.

7.7.2 Lie algebra-valued bidirectional associative memories
Now, we will define bidirectional associative memories for which the states, outputs, and thresh-
olds are all from so(n), which means that they are skew-symmetric square matrices. The net-
work is described by the set of differential equations

τi
dXi(t)

dt
= −Xi(t) +

P∑
j=1

W T
ij f(Yj(t))Wij + Ai, ∀i ∈ {1, . . . , N},

υj
dYj(t)

dt
= −Yj(t) +

N∑
i=1

W T
jif(Xi(t))Wji +Bj, ∀j ∈ {1, . . . , P}

(7.7.6)

where τi ∈ R, τi > 0 is the time constant of neuron Xi, υj ∈ R, υj > 0 is the time constant of
neuron Yj , Xi(t) ∈ so(n) is the state of neuron Xi at time t, Yj(t) ∈ so(n) is the state of neuron
Yj at time t, Wij ∈ SO(n) is the weight connecting neuron Xi to neuron Yj , f : so(n)→ so(n)
is the nonlinear Lie algebra-valued activation function, Ai is the threshold of neuron Xi, and
Bj is the threshold of neuron Yj , ∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , P}. If we denote by Ui(t) :=
f(Xi(t)) the output of neuron Xi and by Vj(t) := f(Yj(t)) the output of neuron Yj , the above
set of differential equations can be written as:

τi
dXi(t)

dt
= −Xi(t) +

P∑
j=1

W T
ijVj(t)Wij + Ai, ∀i ∈ {1, . . . , N},

υj
dYj(t)

dt
= −Yj(t) +

N∑
i=1

W T
jiUi(t)Wji +Bj, ∀j ∈ {1, . . . , P}.

Just like in Section 7.7.1, in order to study the stability of the above defined network, we
need to make a series of assumptions about the activation function. The assumptions will be
exactly the same as the ones in Section 7.7.1.

Having made these assumptions, we can define the energy function E : so(n)N+P → R of
the bidirectional associative memory (7.7.6) as:

E(U(t),V(t)) = −
N∑
i=1

P∑
j=1

Tr(Ui(t)TW T
ijVj(t)Wij)

+
N∑
i=1

G(Ui(t))−
N∑
i=1

Tr(ATi Ui(t))

+
P∑
j=1

G(Vj(t))−
P∑
j=1

Tr(BT
j Vj(t)). (7.7.7)



7. Dynamics of matrix-valued neural networks (MVNNs) 209

A function E is an energy function for the network (7.7.6) if the derivative of E along the
trajectories of network, denoted by dE(U(t),V(t))

dt
, satisfies the condition dE(U(t),V(t))

dt
≤ 0 and

dE(U(t),V(t))
dt

= 0⇔ dUi(t)
dt

=
dVj(t)

dt
= 0, ∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , P}. We will show that

the function E defined in (7.7.7) is indeed an energy function for the network (7.7.6).
For this, we start by applying the chain rule:

dE(U(t),V(t))

dt
=

N∑
i=1

n∑
a,b=1

∂E(U(t),V(t))

∂[Ui(t)]ab

d[Ui(t)]ab
dt

+
P∑
j=1

n∑
a,b=1

∂E(U(t),V(t))

∂[Vj(t)]ab

d[Vj(t)]ab
dt

=
N∑
i=1

Tr

((
∂E(U(t),V(t))

∂Ui(t)

)T
dUi(t)

dt

)

+
P∑
j=1

Tr

((
∂E(U(t),V(t))

∂Vj(t)

)T
dVj(t)

dt

)
, (7.7.8)

where by ∂E(U(t),V(t))
∂[Ui(t)]ab

we denoted the partial derivative of the function E with respect to each
element [Ui(t)]ab of the matrices Ui(t), ∀1 ≤ a, b ≤ n, ∀i ∈ {1, . . . , N}, and analogously for
∂E(U(t),V(t))
∂[Vj(t)]ab

.
For the partial derivatives

∂E(U(t),V(t))

∂Ui(t)
=

(
∂E(U(t),V(t))

∂[Ui(t)]ab

)
1≤a,b≤n

and
∂E(U(t),V(t))

∂Vj(t)
=

(
∂E(U(t),V(t))

∂[Vj(t)]ab

)
1≤a,b≤n

,

we have from (7.7.7) that

∂E(U(t),V(t))

∂Ui(t)
= −

P∑
j=1

W T
ijVj(t)Wij + g(Ui(t))− Ai

= −

(
P∑
j=1

W T
ijVj(t)Wij −Xi(t) + Ai

)

= −τi
dXi(t)

dt
, ∀i ∈ {1, . . . , N},

∂E(U(t),V(t))

∂Vj(t)
= −

N∑
i=1

W T
jiUi(t)Wji + g(Vj(t))−Bj

= −

(
N∑
i=1

W T
jiUj(t)Wji − Yj(t) +Bj

)

= −υj
dYj(t)

dt
, ∀j ∈ {1, . . . , P},



210 7. Dynamics of matrix-valued neural networks (MVNNs)

where we used the facts that
dTr(XTA)

dX
= A,

dTr(AXB)

dX
= ATBT ,

relation (7.7.2), the assumption Wji = W T
ij , and also the set of equations given by (7.7.6). Now,

equation (7.7.8) becomes:

dE(U(t),V(t))

dt
=

N∑
i=1

Tr

((
−τi

dXi(t)

dt

)T
dUi(t)

dt

)

+
P∑
j=1

Tr

((
−υj

dYj(t)

dt

)T
dVj(t)

dt

)

= −
N∑
i=1

τi

[
vec
(
dXi(t)

dt

)]T
vec
(
dUi(t)

dt

)

−
P∑
j=1

υj

[
vec
(
dYj(t)

dt

)]T
vec
(
dVj(t)

dt

)

= −
N∑
i=1

{
τi

[
vec
(
dUi(t)

dt

)]T
[Jacg(Ui(t))]Tvec

(
dUi(t)

dt

)}

−
P∑
j=1

{
υj

[
vec
(
dVj(t)

dt

)]T
[Jacg(Vj(t))]Tvec

(
dVj(t)

dt

)}
≤ 0, (7.7.9)

We also used the identity

Tr(ATB) = vec(A)Tvec(B), ∀A,B ∈ so(n),

and, from g(Ui(t)) = Xi(t) and g(Vj(t)) = Yj(t), we obtained that

vec
(
dg(Ui(t))

dt

)
= Jacg(Ui(t))vec

(
dUi(t)

dt

)
,

vec
(
dg(Vj(t))

dt

)
= Jacg(Vj(t))vec

(
dVj(t)

dt

)
,

∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , P}. Because Jacf (X) is symmetric and positive definite, we
deduce that Jacg(U) is also symmetric and positive definite, and thus[

vec
(
dUi(t)

dt

)]T
[Jacg(Ui(t))]Tvec

(
dUi(t)

dt

)
≥ 0,[

vec
(
dVj(t)

dt

)]T
[Jacg(Vj(t))]Tvec

(
dVj(t)

dt

)
≥ 0,

∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , P}, which allowed us to write the last inequality in relation
(7.7.9). Equality is attained when dE(U(t),V(t))

dt
= 0 ⇔ vec

(
dUi(t)
dt

)
= vec

(
dVj(t)

dt

)
= 0 ⇔

dUi(t)
dt

=
dVj(t)

dt
= 0, ∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , P}, thus ending the proof that E is indeed

an energy function for the network (7.7.6).



Chapter 8

Scientific, professional, and academic
development plan

8.1 Scientific and professional development plan

The scientific career of the author will continue on the directions opened with the PhD thesis,
and continued with the research presented in the current thesis.

The domain of complex-valued neural networks saw an increase in interest over the last
few years, even more so that when the author began his research in the field. The deep learning
paradigm is very popular nowadays, and more algorithms belonging to this paradigm can be
extended from the real-valued domain to the complex-valued domain, especially in areas where
the data is inherently complex-valued, like signal processing, or image processing in the Fourier
domain.

On the other hand, a very active area of research is that dedicated to the study of dynamic
properties of recurrent neural networks, specifically Hopfield networks and bidirectional asso-
ciative memories, with different types of delays, with reaction-diffusion terms, with Markovian
jumping parameters, etc. The dynamic properties can be stability, synchronization, dissipativity,
passivity, periodicity, etc.

Then comes the domain of quaternion-valued neural networks, which also saw an in-
creased interest from researchers in the last few years. These types of networks were used for
image processing and recognition with deep learning-type models. The very recent papers leave
many open problems and possible future work directions. The experience of the author in work-
ing with quaternions, and in adapting neural network models to the quaternion domain is very
significant, as there are not many researchers that have this type of experience.

As for complex-valued neural networks, there is a growing corpus of papers dedicated to
studying the dynamic properties of Hopfield neural networks and bidirectional associative mem-
ories with values in the quaternion domain. The author already has one paper dedicated to this
subject, and many ideas of extending results from the real- and complex-valued domains exist,
and can be explored in future works.

The octonion-valued neural networks were introduced by the author, for the first time
in the literature. Some applications are beginning to emerge, which gives hope that in the
future, the domain of octonion-valued neural networks can develop similarly with the domains
of complex- and quaternion-valued neural networks. Recurrent neural networks with octonion
values can also be formulated, and the same dynamic properties can be studied regarding these
networks.

The domain of matrix-valued neural networks has also been introduced by the author, for

211



212 8. Scientific, professional, and academic development plan

the first time in the literature. The relation with the domain of tensor networks must be further
explored, as the two domains are similar, and ideas from the tensor networks domain can be
also used in the domain of matrix-valued neural networks for processing higher-dimensional
data, and to solve real-world problems, like the ones solved by deep learning models. Again,
because they generalize complex-, quaternion-, and octonion-valued neural networks, the same
dynamic properties of stability, synchronization, dissipativity, passivity, periodicity, etc. can be
studied for models with different types of delays, with reaction-diffusion terms, with Markovian
jumping parameters, etc.

On a rather different note, starting very recently, the interest of the author has shifted more
to the direction of mainstream computer vision done using deep learning models. The author
has began exploring with students developing their Bachelor’s and Master’s degrees, different
areas related to 3D computer vision, with applications in the domain of autonomous driving.

Currently, autonomous driving is one of the most interesting and important applications
of artificial intelligence, and it is expected that in the not too distant future, companies will
be interested in developing artificial intelligence systems for autonomous driving, but also for
meeting the future NCAP vehicle safety requirements. Due to the fact that the automotive
industry is very present in Timis, oara and Timis, County, it is expected that partnerships will
be created between academia and industry, and students who will work in this field for the
preparation of their Bachelor’s/Master’s/Doctoral theses, will be able to be employed as experts
by these companies.

As such, developing knowledge and doing research in this domain is of high interest for the
automotive industry.

Vehicle environment recognition can be done using cameras, with the specific problems:
lane detection, traffic lights detection, semantic segmentation of exterior scenes, depth percep-
tion in exterior scenes, 3D traffic participants’ detection and tracking (cars, pedestrians, etc.),
traffic participants’ motion prediction, etc., or using radars/lidars, with the specific problems:
semantic segmentation of radar/lidar point clouds, 3D traffic participants’ detection and track-
ing using only radar/lidar point clouds, etc. All these areas were explored by the students of the
author, and papers are in development with the most important novel results that were obtain in
these ares.

Store theft detection, self-checkout systems, and the complete elimination of checkout in
‘grab and go’ stores are, in addition to autonomous driving, the other interesting and important
current applications of artificial intelligence in the retail industry, with a very high potential
impact.

The specific problems in this area are: human action recognition, 2D and 3D human pose
estimation, 3D hand pose estimation, human-object interaction recognition, 6D object pose esti-
mation, person re-identification in images from multiple cameras, 3D human tracking, semantic
segmentation of interior scenes, depth perception in interior scenes, etc. Novel results in these
directions were also obtained by the author in collaboration with Bachelor’s/Master’s/Doctoral
students, and the papers presenting them are currently under development.

A very interesting domain, which has captured the interest of the author long ago is that of
reinforcement learning. This is the subdomain of machine learning which most closely re-
sembles the desiderata of artificial general intelligence, i.e., intelligent agents that interact with
an environment, receive feedback from the environment, and take actions based on maximizing
a certain reward, which is very similar to the way humans begin to perceive the world as chil-
dren. Two directions can be followed in this domain: collaborating with colleagues from the
Computers and Information Technology Department for applications in robotics, and applying
reinforcement learning to the domain of autonomous driving.



8. Scientific, professional, and academic development plan 213

The goal of the author in the before-mentioned domains is to build a strong research team
in the domain of deep learning, which is extremely popular nowadays in both academia and in-
dustry, which will increase the visibility of the Politehnica University of Timis, oara among very
prestigious and important universities around the world, which already have strong research
teams. This goal will certainly be facilitated by the existence of the Master of Machine Learn-
ing at the Politehnica University of Timis, oara, and the students who graduate could continue
their studies at the PhD program, under the supervision of the author, thus gradually building a
research team in deep learning.

8.2 Academic development plan

The academic activity of the author started with introducing the Modeling and Simulation
course at the 4th year Bachelor’s Computers – in English. Then came the modernizing of
the laboratory at the Modeling and Simulation course for both the Computers – in English and
Computers – in Romanian specializations. The same modernization followed for the laboratory
at the Graphics and Human-Computer Interaction course for both the Computers – in English
and Computers – in Romanian specializations.

After that, the author completely changed the Image Processing and Recognition course
and laboratory, which was initially offered as optional to the 1st year Master’s of Computer
Engineering students. Then, after that master was discontinued, the Image Processing and
Recognition course replaced the Modeling and Simulation course at the 4th year Bachelor’s
Computers – in English, which was an idea of the author to familiarize the students with the
basics of image processing and recognition at the Bachelor’s studies.

The most important course of the author is the Computer Assisted Mathematics course at the
1st year Bachelor’s Computers – in Romanian, which is in the core curriculum of the special-
ization, and is attended by all the students in the specialization. The course and laboratory were
developed by taking into account the latest trends in teaching numerical analysis to computer
science and engineering students, with applications specific to their fields. The course and lab-
oratory were very well received by the students, as they had the opportunity to study MATLAB
for the first time, which is necessary for late courses involving signal processing.

At the newly introduced Master’s of Machine Learning, the author proposed 4 courses:
Deep Learning, Reinforcement Learning, Autonomous Driving and the general research course
Research Topics in Machine Learning. All the courses were developed from scratch by the
author, and are for the first time offered to students of the Politehnica University of Timis, oara.
The aim is to build knowledge in the respective domains for the students in Timis, oara at the
highest possible international level, thus preparing them for doing competitive research in these
domain and working in the industry in these areas. It is expected that the Master’s of Machine
Learning, for which the author is the program coordinator, will spark the interest of students
in the domain of machine learning, and will facilitate the building of a strong deep learning
research team at the Politehnica University of Timis, oara.

This Master’s is also expected to spark a more close relation with the industry players in
Timis, oara and the Timis, County. Bachelor’s and Master’s and even Doctoral theses can be
developed together with and at the proposal of different companies in the area.

The main academic goal of the author is to continue to develop the courses that he teaches,
maintaining them at a competitive level internationally, taking also into account the feedback
from the students. Especially for the courses at the Master’s of Machine Learning, every year
or every few years, the courses must be changed more or less radically, because the respective



214 8. Scientific, professional, and academic development plan

domains evolve so fast, that what was state-of-the-art last year or a few years ago, rapidly
becomes obsolete, and has to be changed to reflect the most important trends in these domains.

The increasing number of students that seek guidance from the author to develop their Bach-
elor’s and Master’s theses shows the increased interest of students in the popular deep learning
domain, and gives hope that the goal of building a strong deep learning community in Timis, oara
is not such a far fetched one, and could put Timis, oara and the Politehnica University on the in-
ternational map of deep learning, both in academic research and in industrial development, and
could attract companies to come to Timis, oara to establish offices here.

8.3 Research infrastructure
The author contributed in attracting two sponsorships from the company VISMA Software for
the upgrade of the Artificial Intelligence and Computer Graphics laboratories, in which the
laboratories of the courses taught by the author take place.

The upgrade of the Artificial Intelligence laboratory started with a new, simple, and mini-
malist room design and furniture, with Scandinavian influences. New equipment has also been
provided, including 18 powerful workstations with Intel® Core™ i5 processors and video-
projection system. The Artificial Intelligence laboratory was ready to receive students with the
new look in September 2016.

The following year, in September 2017, the upgraded Computer Graphics laboratory was
ready to receive students. The same type of room design and furniture were used for this
laboratory, also. The Computer Graphics laboratory was equipped with 18 newly acquired
workstations, having Intel® Core™ i5 processors.

The preoccupation for attracting these sponsorships proves the author’s willingness to pro-
vide students with the best conditions to make the first steps in the domain of Artificial Intel-
ligence, and also to lay the foundation of the deep learning research team, the long-standing
ambition of the author.

The deep learning domain is a software domain by excellence, and all the needed software
tools in order to conduct high-quality research in the field are freely available. The only other
resource that is needed to conduct research in the domain is computational power, especially
represented by high-performance GPUs. In this direction, the author has a constant preoc-
cupation to increase the computational power available in the Department of Computers and
Information Technology, and especially to increase the number of available GPUs for doing
research in the deep learning domain. This preoccupation materialized in that the author used
the financing in the PCD-TC-2017 project to acquire two high-performance computers, each
having Intel® Core™ i9-7920X X-series Processor, 32 GB of RAM, 1 TB SSD, and 1600 W
PSU. Between them, they share 3 NVIDIA GTX 1080Ti and 4 NVIDIA RTX 2080Ti GPUs,
which were acquired from the project and also from the ISI grants of the author, which are
provided by the Politehnica University of Timişoara for each ISI journal article written by the
author. Currently, there are available funds for buying at least 2 new NVIDIA RTX 3090 GPUs,
with plans of increasing this number in the future. The ISI grants will be the most important
source of financing the computational infrastructure needed for research, and the author has
full commitment to receive as many such grants as possible in the future. The future doctoral
students will also receive a desk with a personal computer in the office of the author, which will
motivate them to be in the same physical space, and will drive the collaboration between them,
leading to the creation of a strong and united deep learning research team.

There is also a long-standing commitment of the author to search for financing opportuni-
ties in the form of National Research Grants, and also in the form of research grants provided



8. Scientific, professional, and academic development plan 215

by the companies in Timişoara and the Timiş county interested in the machine learning domain.
These will offer the necessary funds for further increasing the computational power available,
and also for augmenting the scholarships of the doctoral students provided by the Politehnica
University of Timişoara.





Bibliography

[1] N.N. Aizenberg, Y.L. Ivaskiv, and D.A. Pospelov. A certain generalization of threshould
functions. Dokrady Akademii Nauk SSSR, 196:1287 – 1290, 1971.

[2] M.F. Amin, M. Amin, A.Y.H. Al-Nuaimi, and K. Murase. Wirtinger calculus based
gradient descent and levenberg-marquardt learning algorithms in complex-valued neural
networks. In B.-L. Lu, L. Zhang, and J. Kwok, editors, Neural Information Processing,
volume 7062 of Lecture Notes in Computer Science, pages 550 – 559. Springer Berlin
Heidelberg, 2011. doi: 10.1007/978-3-642-24955-6_66.

[3] E. Angiuli, F. Del Frate, B. Polsinelli, and D. Solimini. Towards complex-valued neural
algorithms for forest parameters estimation from PolInSAR data. In IEEE International
Geoscience and Remote Sensing Symposium, IGARSS, volume II, pages 641 – 644. IEEE,
July 2008. doi: 10.1109/IGARSS.2008.4779074.

[4] P. Arena, L. Fortuna, L. Occhipinti, and M.G. Xibilia. Neural networks for quaternion-
valued function approximation. In International Symposium on Circuits and Systems
(ISCAS), volume 6, pages 307 – 310. IEEE, 1994. doi: 10.1109/ISCAS.1994.409587.

[5] P. Arena, S. Baglio, L. Fortuna, and M.G. Xibilia. Chaotic time series prediction via
quaternionic multilayer perceptrons. In International Conference on Systems, Man and
Cybernetics, volume 2, pages 1790 – 1794. IEEE, 1995. doi: 10.1109/ICSMC.1995.
538035.

[6] P. Arena, L. Fortuna, G. Muscato, and M.G. Xibilia. Multilayer perceptrons to approxi-
mate quaternion valued functions. Neural Networks, 10(2):335 – 342, March 1997. doi:
10.1016/S0893-6080(96)00048-2.

[7] P. Arena, L. Fortuna, G. Muscato, and M.G. Xibilia. Neural Networks in Multidimen-
sional Domains Fundamentals and New Trends in Modelling and Control, volume 234
of Lecture Notes in Control and Information Sciences. Springer London, 1998. doi:
10.1007/BFb0047683.

[8] M. Arjovsky, A. Shah, and Y. Bengio. Unitary evolution recurrent neural networks. In
International Conference on Learning Representations, 2016.

[9] D.D. Bainov and P.S. Simeonov. Impulsive differential equations. World Scientific,
Singapore, 1995.

[10] P. Baldi and Z. Lu. Complex-valued autoencoders. Neural Networks, 33:136 – 147,
2012. doi: doi:10.1016/j.neunet.2012.04.011.

[11] E. Barnard. Optimization for training neural nets. IEEE Transactions on Neural Net-
works, 3(2):232 – 240, March 1992. doi: 10.1109/72.125864.

217



218 Bibliography

[12] R. Battiti. First and second-order methods for learning between steepest descent and
newton’s method. Neural Computation, 4(2):141 – 166, March 1992. doi: 10.1162/
neco.1992.4.2.141.

[13] S. Bauer and F.P. Leon. Hyperspectral fluorescence data fusion using quaternion and
octonion phase. In 2016 IEEE International Conference on Multisensor Fusion and In-
tegration for Intelligent Systems (MFI). IEEE, sep 2016. doi: 10.1109/mfi.2016.7849555.

[14] E.M.L. Beale. A derivation of conjugate gradients. In F. A. Lootsma, editor, Numerical
Methods for Nonlinear Optimization, pages 39–43. Academic Press, London, 1972.

[15] Y. Bengio. Learning deep architectures for AI. Foundations and Trends in Machine
Learning, 2(1):1 – 127, 2009. doi: 10.1561/2200000006.

[16] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of
deep networks. In NIPS 2006, pages 153–160, 2006.

[17] Y. Bengio, Y. LeCun, and G. Hinton. Deep learning. Nature, 521:436 – 444, 2015. doi:
doi:10.1038/nature14539.

[18] C.M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, Inc.,
New York, NY, USA, 1995.

[19] Ł. Błaszczyk and K.‘M. Snopek. Octonion fourier transform of real-valued functions
of three variables - selected properties and examples. Signal Processing, 136:29–37, jul
2017. doi: 10.1016/j.sigpro.2016.11.021.

[20] J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35(8):1872 – 1886, 2013. doi: 10.1109/
TPAMI.2012.230.

[21] S. Buchholz and N. Le Bihan. Optimal separation of polarized signals by quaternionic
neural networks. In 2006 14th European Signal Processing Conference, pages 1–5. IEEE,
2006.

[22] S. Buchholz and N. Le Bihan. Polarized signal classification by complex and quater-
nionic multi-layer perceptrons. International Journal of Neural Systems, 18(2):75 – 85,
April 2008. doi: 10.1142/S0129065708001403.

[23] S. Buchholz and G. Sommer. Quaternionic spinor MLP. In European Symposium on
Artificial Neural Networks, pages 377 – 382, April 2000.

[24] S. Buchholz and G. Sommer. On Clifford neurons and Clifford multi-layer perceptrons.
Neural Networks, 21(7):925 – 935, 2008. doi: 10.1016/j.neunet.2008.03.004.

[25] B. C. Chanyal, P. S. Bisht, and O. P. S. Negi. Generalized octonion electrodynamics.
International Journal of Theoretical Physics, 49(6):1333–1343, apr 2010. doi: 10.1007/
s10773-010-0314-5.

[26] B. C. Chanyal, P. S. Bisht, and O. P. S. Negi. Generalized split-octonion electrodynamics.
International Journal of Theoretical Physics, 50(6):1919–1926, feb 2011. doi: 10.1007/
s10773-011-0706-1.



Bibliography 219

[27] B. C. Chanyal, P. S. Bisht, Tianjun Li, and O. P. S. Negi. Octonion quantum chromody-
namics. International Journal of Theoretical Physics, 51(11):3410–3422, jun 2012. doi:
10.1007/s10773-012-1222-7.

[28] B.C. Chanyal. Octonion massive electrodynamics. General Relativity and Gravitation,
46(1), dec 2013. doi: 10.1007/s10714-013-1646-2.

[29] C. Charalambous. Conjugate gradient algorithm for efficient training of artificial neural
networks. IEE Proceedings G Circuits, Devices and Systems, 139(3):301 – 310, June
1992.

[30] A. Chaturvedi, R. Sharma, D. Wadekar, A. Bhandwalkar, and S. Shitole. Adaptive para-
metric estimator for complex valued images. In International Conference on Technolo-
gies for Sustainable Development (ICTSD), 2015. doi: 10.1109/ICTSD.2015.7095865.

[31] B. Che Ujang, C.C. Took, and D.P. Mandic. Split quaternion nonlinear adaptive filtering.
Neural Networks, 23(3):426 – 434, April 2010. doi: 10.1016/j.neunet.2009.10.006.

[32] B. Che Ujang, C.C. Took, and D.P. Mandic. Quaternion-valued nonlinear adaptive fil-
tering. IEEE Transactions on Neural Networks, 22(8):1193 – 1206, August 2011. doi:
10.1109/TNN.2011.2157358.

[33] B. Che Ujang, C.C. Took, and D.P. Mandic. On quaternion analyticity: Enabling
quaternion-valued nonlinear adaptive filtering. In International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages 2117 – 2120. IEEE, March 2012.
doi: 10.1109/ICASSP.2012.6288329.

[34] Tianping Chen and Lili Wang. Global µ-stability of delayed neural networks with un-
bounded time-varying delays. IEEE Transactions on Neural Networks, 18(6):1836–1840,
nov 2007. doi: 10.1109/TNN.2007.902716. URL http://dx.doi.org/10.1109/TNN.
2007.902716.

[35] X. Chen, Q. Song, and Z. Li. Design and analysis of quaternion-valued neural networks
for associative memories. IEEE Transactions on Systems, Man, and Cybernetics: Sys-
tems, 48(12):2305–2314, 2018. doi: 10.1109/TSMC.2017.2717866.

[36] Xiaofeng Chen and Qiankun Song. Global stability of complex-valued neural networks
with both leakage time delay and discrete time delay on time scales. Neurocomputing,
121:254–264, dec 2013. doi: 10.1016/j.neucom.2013.04.040.

[37] Xiaofeng Chen and Qiankun Song. Global stability of complex-valued neural networks
with both leakage time delay and discrete time delay on time scales. Neurocomputing,
121:254–264, dec 2013. doi: 10.1016/j.neucom.2013.04.040. URL http://dx.doi.
org/10.1016/j.neucom.2013.04.040.

[38] Xiaofeng Chen, Qiankun Song, Xiaohui Liu, and Zhenjiang Zhao. Global µ-stability
of complex-valued neural networks with unbounded time-varying delays. Abstract and
Applied Analysis, 2014:1–9, 2014. doi: 10.1155/2014/263847.

[39] Xiaofeng Chen, Qiankun Song, Yurong Liu, and Zhenjiang Zhao. Global µ-stability of
impulsive complex-valued neural networks with leakage delay and mixed delays. Ab-
stract and Applied Analysis, 2014:1–14, 2014. doi: 10.1155/2014/397532.

http://dx.doi.org/10.1109/TNN.2007.902716
http://dx.doi.org/10.1109/TNN.2007.902716
http://dx.doi.org/10.1016/j.neucom.2013.04.040
http://dx.doi.org/10.1016/j.neucom.2013.04.040


220 Bibliography

[40] Xiaofeng Chen, Qiankun Song, Yurong Liu, and Zhenjiang Zhao. Global µ-stability
of impulsive complex-valued neural networks with leakage delay and mixed delays.
Abstract and Applied Analysis, 2014:1–14, 2014. doi: 10.1155/2014/397532. URL
http://dx.doi.org/10.1155/2014/397532.

[41] C.-Y. Cheng and Z. Huang. Non-typical multistability in neural networks with distributed
delays. Neurocomputing, 121:207–217, 2013. doi: 10.1016/j.neucom.2013.04.022.

[42] L.O. Chua and L. Yang. Cellular neural networks: Theory. IEEE Transactions on Circuits
and Systems, 35(10):1257–1272, 1988. doi: 10.1109/31.7600. URL http://dx.doi.
org/10.1109/31.7600.

[43] L.O. Chua and L. Yang. Cellular neural networks: Applications. IEEE Transactions
on Circuits and Systems, 35(10):1273–1290, 1988. doi: 10.1109/31.7601. URL http:
//dx.doi.org/10.1109/31.7601.

[44] Michael A. Cohen and Stephen Grossberg. Absolute stability of global pattern formation
and parallel memory storage by competitive neural networks. IEEE Transactions on
Systems, Man, and Cybernetics, SMC-13(5):815–826, sep 1983. doi: 10.1109/TSMC.
1983.6313075. URL http://dx.doi.org/10.1109/TSMC.1983.6313075.

[45] J. M. Cushing. Integrodifferential equations and delay models in population dynamics,
volume 20. Springer Science & Business Media, 2013.

[46] E.A. de Kerf, G.G.A. Bauerle, and A.P.E. ten Kroode. Lie Algebras: Finite and Infinite
Dimensional Lie Algebras and Applications in Physics. North Holland, 1997.

[47] S. Demir. Hyperbolic octonion formulation of gravitational field equations. Inter-
national Journal of Theoretical Physics, 52(1):105–116, aug 2012. doi: 10.1007/
s10773-012-1307-3.

[48] S. Demir and M. Tanişli. Hyperbolic octonion formulation of the fluid maxwell
equations. Journal of the Korean Physical Society, 68(5):616–623, mar 2016. doi:
10.3938/jkps.68.616.

[49] T. Dray and C.A. Manogue. The Geometry of the Octonions. World Scientific, 2015.
doi: 10.1142/8456.

[50] Y. Du and R. Xu. Multistability and multiperiodicity for a class of cohen–grossberg
BAM neural networks with discontinuous activation functions and time delays. Neural
Processing Letters, 42(2):417–435, 2015. doi: 10.1007/s11063-014-9364-7.

[51] P. Eichel and R.W. Ives. Compression of complex-valued SAR images. IEEE Transac-
tions on Image Processing, 8(10):1483 – 1487, 1999. doi: 10.1109/83.791978.

[52] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio. Why does
unsupervised pre-training help deep learning? In Journal of Machine Learning Research,
volume 11, pages 625–660, 2010.

[53] S.E. Fahlman. An empirical study of learning speed in backpropagation networks.
Technical Report 1800, Carnegie Mellon University, January 1988. URL http://
repository.cmu.edu/compsci/1800.

http://dx.doi.org/10.1155/2014/397532
http://dx.doi.org/10.1109/31.7600
http://dx.doi.org/10.1109/31.7600
http://dx.doi.org/10.1109/31.7601
http://dx.doi.org/10.1109/31.7601
http://dx.doi.org/10.1109/TSMC.1983.6313075
http://repository.cmu.edu/compsci/1800
http://repository.cmu.edu/compsci/1800


Bibliography 221

[54] R. Fletcher and M.J.D. Powell. A rapidly convergent descent method for minimization.
The Computer Journal, 6(2):163 – 168, August 1963. doi: 10.1093/comjnl/6.2.163.

[55] M. Forti and A. Tesi. New conditions for global stability of neural networks with ap-
plication to linear and quadratic programming problems. IEEE Transactions on Cir-
cuits and Systems I: Fundamental Theory and Applications, 42(7):354 – 366, 1995. doi:
10.1109/81.401145.

[56] H.-Y. Gao and K.-M. Lam. From quaternion to octonion: Feature-based image saliency
detection. In 2014 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, may 2014. doi: 10.1109/icassp.2014.6854112.

[57] H.-Y. Gao and K.-M. Lam. Salient object detection using octonion with bayesian infer-
ence. In 2014 IEEE International Conference on Image Processing (ICIP). IEEE, oct
2014. doi: 10.1109/icip.2014.7025666.

[58] S.L. Goh and D.P. Mandic. A complex-valued RTRL algorithm for recurrent neural
networks. Neural Computation, 16(12):2699 – 2713, December 2004. doi: 10.1162/
0899766042321779.

[59] S.L. Goh and D.P. Mandic. Nonlinear adaptive prediction of complex-valued signals by
complex-valued PRNN. IEEE Transactions on Signal Processing, 53(5):1827 – 1836,
May 2005. doi: 10.1109/TSP.2005.845462.

[60] S.L. Goh and D.P. Mandic. Stochastic gradient-adaptive complex-valued nonlinear neu-
ral adaptive filters with a gradient-adaptive step size. IEEE Transactions on Neural Net-
works, 18(5):1511 – 1516, September 2007. doi: 10.1109/TNN.2007.895828.

[61] S.L. Goh and D.P. Mandic. An augmented CRTRL for complex-valued recurrent neural
networks. Neural Networks, 20(10):1061 – 1066, December 2007. doi: 10.1016/j.neunet.
2007.09.015.

[62] Weiqiang Gong, Jinling Liang, and Jinde Cao. Global µ-stability of complex-valued
delayed neural networks with leakage delay. Neurocomputing, 168:135–144, nov 2015.
doi: 10.1016/j.neucom.2015.06.006.

[63] R.C. Gonzalez and R.E. Woods. Digital Image Processing. Pearson Prentice Hall, 2008.

[64] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[65] I.J. Goodfellow, M. Mirza, A. Courville, and Y. Bengio. Multi-prediction deep boltzmann
machines. In NIPS 2013, 2013.

[66] K. Gu. An integral inequality in the stability problem of time-delay systems. In Proceed-
ings of the 39th IEEE Conference on Decision and Control, pages 2805 – 2810, 2000.
doi: 10.1109/CDC.2000.914233.

[67] N. Guberman. On complex valued convolutional neural networks. Master’s thesis,
School of Computer Science and Engineering, The Hebrew University of Jerusalem,
2016. URL https://arxiv.org/abs/1602.09046.

https://arxiv.org/abs/1602.09046


222 Bibliography

[68] Runan Guo, Ziye Zhang, Xiaoping Liu, and Chong Lin. Existence, uniqueness, and ex-
ponential stability analysis for complex-valued memristor-based BAM neural networks
with time delays. Applied Mathematics and Computation, 311:100–117, oct 2017. doi:
10.1016/j.amc.2017.05.021.

[69] Song Guo and Bo Du. Global exponential stability of periodic solution for neutral-type
complex-valued neural networks. Discrete Dynamics in Nature and Society, 2016:1–10,
2016. doi: 10.1155/2016/1267954.

[70] M.T. Hagan and M.B. Menhaj. Training feedforward networks with the marquardt algo-
rithm. IEEE Transactions on Neural Networks, 5(6):989 – 993, November 1994. doi:
10.1109/72.329697.

[71] R. Hansch and O. Hellwich. Classification of polarimetric SAR data by complex valued
neural networks. In ISPRS Workshop, 2009.

[72] R. Hansch and O. Hellwich. Complex-valued convolutional neural networks for object
detection in PolSAR data. In European Conference on Synthetic Aperture Radar (EU-
SAR), 2010.

[73] L. Hernandez-Garcia, A.L. Vazquez, and D.B. Rowe. Complex-valued analysis of arterial
spin labeling based FMRI signals. Magnetic Resonance in Medicine, 62(6):1597 – 1608,
2009. doi: 10.1002/mrm.22106.

[74] M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
Journal of Research of the National Bureau of Standards, 49(6):409 – 436, December
1952.

[75] G.E. Hinton and R.R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313(5786):504–507, jul 2006. doi: 10.1126/science.1127647.

[76] G.E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets.
Neural Computation, 18(7):1527–1554, July 2006. doi: 10.1162/neco.2006.18.7.1527.

[77] A. Hirose. Complex-Valued Neural Networks, volume 400 of Studies in Computational
Intelligence. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-27631-6. doi: 10.1007/
978-3-642-27632-3.

[78] A. Hirose. Complex-Valued Neural Networks: Advances and Applications. John Wiley
& Sons, Inc., 2013. doi: 10.1002/9781118590072.

[79] Akira Hirose. Complex-valued neural networks: the merits and their origins. In 2009
International Joint Conference on Neural Networks, pages 1237–1244. IEEE, 2009.

[80] J. J. Hopfield. Neural networks and physical systems with emergent collective computa-
tional abilities. Proceedings of the National Academy of Sciences of the United States of
America, 79(8):2554–2558, Apr 1982. doi: 10.1073/pnas.79.8.2554.

[81] J. J. Hopfield. Neurons with graded response have collective computational properties
like those of two-state neurons. Proceedings of the National Academy of Sciences of the
United States of America, 81(10):3088–3092, May 1984. doi: 10.1073/pnas.81.10.3088.



Bibliography 223

[82] J.J. Hopfield and D.W. Tank. "Neural" computation of decisions in optimization prob-
lems. Biological Cybernetics, 52(3):141 – 152, July 1985. doi: 10.1007/BF00339943.

[83] J. Hu and J. Wang. Multistability and multiperiodicity analysis of complex-valued neu-
ral networks. In Advances in Neural Networks – ISNN 2014, pages 59–68. Springer
International Publishing, 2014. doi: 10.1007/978-3-319-12436-0_8.

[84] Yujiao Huang, Huaguang Zhang, and Zhanshan Wang. Multistability of complex-valued
recurrent neural networks with real-imaginary-type activation functions. Applied Math-
ematics and Computation, 229:187–200, 2014. doi: 10.1016/j.amc.2013.12.027.

[85] Z. Huang, S. Mohamad, and H. Bin. Multistability of HNNs with almost periodic stimuli
and continuously distributed delays. International Journal of Systems Science, 40(6):
615–625, 2009. doi: 10.1080/00207720902755754.

[86] Y. Hui and M.R. Smith. MRI reconstruction from truncated data using a complex domain
backpropagation neural network. In Pacific Rim Conference on Communications, Com-
puters, and Signal Processing (PACRIM), 1995. doi: 10.1109/PACRIM.1995.519582.

[87] F. Iachello. Lie Algebras and Applications, volume 891 of Lecture Notes in Physics.
Springer Berlin Heidelberg, 2015. doi: 10.1007/978-3-662-44494-8.

[88] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML 2015, 2015. URL https://arxiv.org/
abs/1502.03167.

[89] T. Isokawa, T. Kusakabe, N. Matsui, and F. Peper. Quaternion neural network and its
application. In V. Palade, R.J. Howlett, and Jai, editors, Knowledge-Based Intelligent In-
formation and Engineering Systems, volume 2774 of Lecture Notes in Computer Science,
pages 318 – 324, 2003. doi: 10.1007/978-3-540-45226-3_44.

[90] T. Isokawa, H. Nishimura, N. Kamiura, and N. Matsui. Associative memory in quater-
nionic Hopfield neural network. International Journal of Neural Systems, 18(02):135–
145, 2008. doi: 10.1142/S0129065708001440.

[91] R.A. Jacobs. Increased rates of convergence through learning rate adaptation. Neural
Networks, 1(4):295 – 307, 1988. doi: 10.1016/0893-6080(88)90003-2.

[92] C. Jahanchahi, C.C. Took, and D.P. Mandic. On hr calculus, quaternion valued
stochastic gradient, and adaptive three dimensional wind forecasting. In International
Joint Conference on Neural Networks (IJCNN), pages 1 – 5. IEEE, July 2010. doi:
10.1109/IJCNN.2010.5596629.

[93] Y. Ji and F. Ding. Multiperiodicity and exponential attractivity of neural networks with
mixed delays. Circuits, Systems, and Signal Processing, 36(6):2558–2573, 2017. doi:
10.1007/s00034-016-0420-6.

[94] E.M. Johansson, F.U. Dowla, and D.M. Goodman. Backpropagation learning for multi-
layer feed-forward neural networks using the conjugate gradient method. International
Journal of Neural Systems, 2(4):291 – 301, 1991. doi: 10.1142/S0129065791000261.

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167


224 Bibliography

[95] E. Kaslik and S. Sivasundaram. Multiple periodic solutions in impulsive hybrid neu-
ral networks with delays. Applied Mathematics and Computation, 217(10):4890–4899,
2011. doi: 10.1016/j.amc.2010.11.025.

[96] E. Kaslik and S. Sivasundaram. Impulsive hybrid discrete-time hopfield neural networks
with delays and multistability analysis. Neural Networks, 24(4):370–377, 2011. doi:
10.1016/j.neunet.2010.12.008.

[97] E. Kaslik and S. Sivasundaram. Multistability in impulsive hybrid hopfield neural net-
works with distributed delays. Nonlinear Analysis: Real World Applications, 12(3):
1640–1649, 2011. doi: 10.1016/j.nonrwa.2010.10.018.

[98] D.P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR 2015,
2015. doi: https://arxiv.org/abs/1412.6980.

[99] J. Koplinger. Dirac equation on hyperbolic octonions. Applied Mathematics and Com-
putation, 182(1):443–446, nov 2006. doi: 10.1016/j.amc.2006.04.005.

[100] B. Kosko. Bidirectional associative memories. IEEE Transactions on Systems, Man, and
Cybernetics, 18(1):49–60, January / February 1988. doi: 10.1109/21.87054.

[101] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
2009.

[102] Y. Kuroe. Models of Clifford recurrent neural networks and their dynamics. In Interna-
tional Joint Conference on Neural Networks (IJCNN), pages 1035 – 1041. IEEE, 2011.
doi: 10.1109/IJCNN.2011.6033336.

[103] Y. Kuroe, S. Tanigawa, and H. Iima. Models of Hopfield-type Clifford neural networks
and their energy functions – hyperbolic and dual valued networks –. In International
Conference on Neural Information Processing, number 7062 in Lecture Notes in Com-
puter Science, pages 560 – 569, 2011. doi: 10.1007/978-3-642-24955-6_67.

[104] H. Kusamichi, T. Isokawa, N. Matsui, Y. Ogawa, and K. Maeda. A new scheme for color
night vision by quaternion neural network. In International Conference on Autonomous
Robots and Agents, pages 101 – 106, December 2004.

[105] V. Laparra, M.U. Gutmann, J. Malo, and A. Hyvarinen. Complex-valued independent
component analysis of natural images. In International Conference on Artificial Neural
Networks (ICANN), 2011.

[106] Y. LeCun and Y. Bengio. Convolutional networks for images, speech, and time series,
pages 255 – 258. MIT Press, 1995.

[107] Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, and L.D.
Jackel. Handwritten digit recognition with a back-propagation network. In Advances in
Neural Information Processing Systems (NIPS), 1989.

[108] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278 – 2324, 1998. doi: 10.
1109/5.726791.



Bibliography 225

[109] Y. LeCun, K. Kavukcuoglu, and C. Farabet. Convolutional networks and applications
in vision. In International Symposium on Circuits and Systems (ISCAS), 2010. doi:
10.1109/ISCAS.2010.5537907.

[110] D.L. Lee and W.J. Wang. A multivalued bidirectional associative memory operating
on a complex domain. Neural Networks, 11(9):1623 – 1635, December 1998. doi:
10.1016/S0893-6080(98)00078-1.

[111] H. Li, N.M. Correa, P.A. Rodriguez, V.D. Calhoun, and T. Adali. Application of in-
dependent component analysis with adaptive density model to complex-valued fMRI
data. IEEE Transactions on Biomedical Engineering, 58(10):2794 – 2803, 2011. doi:
10.1109/TBME.2011.2159841.

[112] J. Liang, W. Gong, and T. Huang. Multistability of complex-valued neural networks with
discontinuous activation functions. Neural Networks, 84:125–142, 2016. doi: 10.1016/j.
neunet.2016.08.008.

[113] Jing Liang, Kelin Li, Qiankun Song, Zhenjiang Zhao, Yurong Liu, and Fuad E. Alsaadi.
State estimation of complex-valued neural networks with two additive time-varying de-
lays. Neurocomputing, 309:54–61, oct 2018. doi: 10.1016/j.neucom.2018.05.003.

[114] X. Liao, G. Chen, and E.N. Sanchez. LMI-based approach for asymptotically stability
analysis of delayed neural networks. IEEE Transactions on Circuits and Systems I: Fun-
damental Theory and Applications, 49(7):1033 – 1039, 2002. doi: 10.1109/TCSI.2002.
800842.

[115] X. Liu and T. Chen. Global exponential stability for complex-valued recurrent neural
networks with asynchronous time delays. IEEE Transactions on Neural Networks and
Learning Systems, 27(3):593 – 606, 2016. doi: 10.1109/TNNLS.2015.2415496.

[116] Y. Liu, P. Xu, J. Lu, and J. Liang. Global stability of Clifford-valued recurrent neural
networks with time delays. Nonlinear Dynamics, 84(2):767 – 777, 2016. doi: 10.1007/
s11071-015-2526-y.

[117] Y. Liu, D. Zhang, J. Lu, and J. Cao. Global µ-stability criteria for quaternion-valued
neural networks with unbounded time-varying delays. Information Sciences, 2016. doi:
10.1016/j.ins.2016.04.033.

[118] D.G. Luenberger and Y. Ye. Linear and Nonlinear Programming, volume 116 of Inter-
national Series in Operations Research & Management Science. Springer, 2008. doi:
10.1007/978-0-387-74503-9.

[119] Danilo P. Mandic and Vanessa Su Lee Goh. Complex Valued Nonlinear Adaptive Filters:
Noncircularity, Widely Linear and Neural Models. Wiley-Blackwell, apr 2009. doi:
10.1002/9780470742624.

[120] D.P. Mandic and J. Chambers. Recurrent Neural Networks for Prediction: Learning
Algorithms, Architectures and Stability. John Wiley & Sons, Inc., New York, NY, USA,
2001. doi: 10.1002/047084535X.

[121] D.W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters.
Journal of the Society for Industrial and Applied Mathematics, 11(2):431 – 441, June
1963. doi: 10.1137/0111030.



226 Bibliography

[122] M.F. Møller. A scaled conjugate gradient algorithm for fast supervised learning. Neural
Networks, 6(4):525 – 533, 1993. doi: 10.1016/S0893-6080(05)80056-5.

[123] G. Montavon and K.-R. Müller. Deep boltzmann machines and the centering trick. In
G. Montavon, G.B. Orr, and K.-R. Müller, editors, Neural Networks: Tricks of the Trade,
pages 621–637. Springer, 2012. doi: 10.1007/978-3-642-35289-8_33.

[124] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A.Y. Ng. Reading digits in
natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

[125] X. Nie and J. Cao. Multistability of competitive neural networks with time-varying and
distributed delays. Nonlinear Analysis: Real World Applications, 10(2):928–942, 2009.
doi: 10.1016/j.nonrwa.2007.11.014.

[126] X. Nie and W. X. Zheng. Multistability of neural networks with discontinuous non-
monotonic piecewise linear activation functions and time-varying delays. Neural Net-
works, 65:65–79, 2015. doi: 10.1016/j.neunet.2015.01.007.

[127] X. Nie, W. X. Zheng, and J. Cao. Multistability of memristive cohen–grossberg neu-
ral networks with non-monotonic piecewise linear activation functions and time-varying
delays. Neural Networks, 71:27–36, 2015. doi: 10.1016/j.neunet.2015.07.009.

[128] T. Nitta. A back-propagation algorithm for neural networks based on 3d vector product.
In International Joint Conference on Neural Netwoks (IJCNN), volume 1, pages 589 –
592. IEEE, 1993. doi: 10.1109/IJCNN.1993.713984.

[129] T. Nitta. An extension of the back-propagation algorithm to three dimensions by vector
product. In International Conference on Tools with Artificial Intelligence (TAI), pages
460 – 461. IEEE, 1993. doi: 10.1109/TAI.1993.634002.

[130] T. Nitta. Generalization ability of the three-dimensional back-propagation network. In
International Conference on Neural Networks, volume 5, pages 2895 – 2900. IEEE,
1994. doi: 10.1109/ICNN.1994.374691.

[131] T. Nitta. Three-dimensional vector valued neural network and its generalization ability.
Neural Information Processing - Letters and Reviews, 10(10):237 – 242, 2006.

[132] T. Nitta. N-dimensional vector neuron. In IJCAI Workshop on Complex-Valued Neural
Networks and Neuro-Computing: Novel Methods, Applications and Implementations,
pages 2 – 7, 2007.

[133] T. Nitta. Complex-Valued Neural Networks: Advances and Applications, chapter N-
Dimensional Vector Neuron and its Application to the N-Bit Parity Problem, pages 59 –
74. John Wiley & Sons, Inc., 2013. doi: 10.1002/9781118590072.ch3.

[134] T. Nitta and S. Buchholz. On the decision boundaries of hyperbolic neurons. In Interna-
tional Joint Conference on Neural Networks (IJCNN), pages 2974 – 2980. IEEE, 2008.
doi: 10.1109/IJCNN.2008.4634216.

[135] J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in Operations
Research. Springer New York, 1999. doi: 10.1007/978-0-387-40065-5.



Bibliography 227

[136] S. Okubo. Introduction to Octonion and Other Non-Associative Algebras in Physics.
Cambridge University Press, 1995. doi: 10.1017/CBO9780511524479.

[137] A. Pande and V. Goel. Complex-valued neural network in image recognition a study on
the effectiveness of radial basis function. World Academy of Science, Engineering and
Technology, 20:220 – 225, 2007.

[138] PooGyeon Park, Jeong Wan Ko, and Changki Jeong. Reciprocally convex approach to
stability of systems with time-varying delays. Automatica, 47(1):235–238, jan 2011. doi:
10.1016/j.automatica.2010.10.014.

[139] J.K. Pearson and D.L. Bisset. Back propagation in a Clifford algebra. In International
Conference on Artificial Neural Networks, volume 2, pages 413 – 416, 1992.

[140] J.K. Pearson and D.L. Bisset. Neural networks in the Clifford domain. In International
Conference on Neural Networks, volume 3, pages 1465 – 1469. IEEE, 1994. doi: 10.
1109/ICNN.1994.374502.

[141] E. Polak and G. Ribiere. Note sur la convergence de méthodes de directions conjuguées.
Revue Française d’Informatique et de Recherche Opérationnelle, 3(16):35 – 43, 1969.

[142] C.-A. Popa. Enhanced gradient descent algorithms for complex-valued neural networks.
In International Symposium on Symbolic and Numeric Algorithms for Scientific Comput-
ing (SYNASC), pages 272 – 279. IEEE, September 2014. doi: 10.1109/SYNASC.2014.
44.

[143] C.-A. Popa. Scaled conjugate gradient learning for complex-valued neural networks.
In R. Matoušek, editor, Mendel 2015, volume 378 of Advances in Intelligent Systems
and Computing, pages 221 – 233. Springer International Publishing, June 2015. doi:
10.1007/978-3-319-19824-8_18.

[144] C.-A. Popa. Matrix-valued neural networks. In R. Matoušek, editor, Mendel 2015, vol-
ume 378 of Advances in Intelligent Systems and Computing, pages 245 – 255, 2015. doi:
10.1007/978-3-319-19824-8_20.

[145] C.-A. Popa. Quasi-newton learning methods for complex-valued neural networks. In
International Joint Conference on Neural Networks (IJCNN). IEEE, July 2015. doi:
10.1109/IJCNN.2015.7280450.

[146] C.-A. Popa. Lie algebra-valued neural networks. In International Joint Conference on
Neural Networks (IJCNN), pages 1 – 6. IEEE, July 2015. doi: 10.1109/IJCNN.2015.
7280787.

[147] C.-A. Popa. Conjugate gradient algorithms for complex-valued neural networks. In
Neural Information Processing – ICONIP 2015, pages 412 – 422, 2015. doi: 10.1007/
978-3-319-26535-3_47.

[148] C.-A. Popa. Lie algebra-valued hopfield neural networks. In 2015 17th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC).
IEEE, 2015. doi: 10.1109/SYNASC.2015.41.



228 Bibliography

[149] C.-A. Popa. Octonion-valued neural networks. In Artificial Neural Networks
and Machine Learning – ICANN 2016, pages 435 – 443, 2016. doi: 10.1007/
978-3-319-44778-0_51.

[150] C.-A. Popa. Levenberg-marquardt learning algorithm for quaternion-valued neural net-
works. In 18th International Symposium on Symbolic and Numeric Algorithms for Sci-
entific Computing (SYNASC), pages 272 – 278, 2016. doi: 10.1109/SYNASC.2016.050.

[151] C.-A. Popa. Scaled conjugate gradient learning for quaternion-valued neural networks.
In Neural Information Processing. ICONIP 2016, pages 243 – 252, 2016. doi: 10.1007/
978-3-319-46675-0_27.

[152] C.-A. Popa. Matrix-valued hopfield neural networks. In Advances in Neural Networks
– ISNN 2016, pages 127–134. Springer International Publishing, 2016. doi: 10.1007/
978-3-319-40663-3_15.

[153] C.-A. Popa. Complex-valued convolutional neural networks for real-valued image clas-
sification. In 2017 International Joint Conference on Neural Networks (IJCNN), pages
816 – 822. IEEE, may 2017. doi: 10.1109/IJCNN.2017.7965936.

[154] C.-A. Popa. Conjugate gradient algorithms for quaternion-valued neural networks. In
R. Matoušek, editor, Recent Advances in Soft Computing. ICSC-MENDEL 2016, volume
576 of Advances in Intelligent Systems and Computing, pages 176 – 185, 2017. doi:
10.1007/978-3-319-58088-3_17.

[155] C.-A. Popa. Quasi-newton learning methods for quaternion-valued neural networks. In
Advances in Computational Intelligence. IWANN 2017, pages 362 – 374, 2017. doi:
10.1007/978-3-319-59153-7_32.

[156] C.-A. Popa. Octonion-valued bidirectional associative memories. In 2017 International
Joint Conference on Neural Networks (IJCNN). IEEE, 2017. doi: 10.1109/IJCNN.2017.
7965931.

[157] C.-A. Popa. Global asymptotic stability for octonion-valued neural networks with delay.
In Advances in Neural Networks - ISNN 2017, pages 439–448. Springer International
Publishing, 2017. doi: 10.1007/978-3-319-59072-1_52.

[158] C.-A. Popa. Exponential stability for delayed octonion-valued recurrent neural networks.
In Advances in Computational Intelligence, pages 375–385. Springer International Pub-
lishing, 2017. doi: 10.1007/978-3-319-59153-7_33.

[159] C.-A. Popa. Asymptotic stability of delayed octonion-valued neural networks with leak-
age delay. In Neural Information Processing (ICONIP 2017), pages 728–736. Springer
International Publishing, 2017. doi: 10.1007/978-3-319-70090-8_73.

[160] C.-A. Popa. Global asymptotic stability for matrix-valued recurrent neural networks with
time delays. In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE,
2017. doi: 10.1109/IJCNN.2017.7966423.

[161] C.-A. Popa. Global exponential stability for matrix-valued neural networks with time de-
lay. In Advances in Neural Networks - ISNN 2017, pages 429–438. Springer International
Publishing, 2017. doi: 10.1007/978-3-319-59072-1_51.



Bibliography 229

[162] C.-A. Popa. Exponential stability of matrix-valued BAM neural networks with time-
varying delays. In Neural Information Processing (ICONIP 2017), pages 718–727.
Springer International Publishing, 2017. doi: 10.1007/978-3-319-70090-8_72.

[163] C.-A. Popa. Lie algebra-valued bidirectional associative memories. In Recent Advances
in Soft Computing (ICSC-MENDEL 2016, pages 127–135. Springer International Pub-
lishing, 2017. doi: 10.1007/978-3-319-58088-3_12.

[164] C.-A. Popa. Learning algorithms for quaternion-valued neural networks. Neural Pro-
cessing Letters, 47(3):949–973, 2018. doi: 10.1007/s11063-017-9716-1.

[165] C.-A. Popa. Enhanced gradient descent algorithms for quaternion-valued neural net-
works. In V.E. Balas, L.C. Jain, and M.M. Balas, editors, Soft Computing Applications.
SOFA 2016, volume 634 of Advances in Intelligent Systems and Computing, 2018. doi:
10.1007/978-3-319-62524-9_5.

[166] C.-A. Popa. Global exponential stability of neutral-type octonion-valued neural networks
with time-varying delays. Neurocomputing, 309:117–133, 2018. doi: 10.1016/j.neucom.
2018.05.004.

[167] C.-A. Popa. Global exponential stability of octonion-valued neural networks with leak-
age delay and mixed delays. Neural Networks, 105:277–293, 2018. doi: 10.1016/j.
neunet.2018.05.006.

[168] C.-A. Popa. Deep hybrid real-complex-valued convolutional neural networks for image
classification. In 2018 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2018. doi: 10.1109/IJCNN.2018.8489274.

[169] C.-A. Popa. Complex-valued stacked denoising autoencoders. In Advances in Neural
Networks – ISNN 2018, pages 64–71. Springer International Publishing, 2018. doi: 10.
1007/978-3-319-92537-0_8.

[170] C.-A. Popa. Complex-valued deep belief networks. In Advances in Neural Networks
– ISNN 2018, pages 72–78. Springer International Publishing, 2018. doi: 10.1007/
978-3-319-92537-0_9.

[171] C.-A. Popa. Complex-valued deep boltzmann machines. In 2018 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2018. doi: 10.1109/IJCNN.2018.
8489359.

[172] C.-A. Popa. Matrix-valued bidirectional associative memories. In Soft Computing Ap-
plications (SOFA 2016), pages 36–44. Springer International Publishing, 2018. doi:
10.1007/978-3-319-62524-9_4.

[173] C.-A. Popa. Global µ-stability of neutral-type impulsive complex-valued BAM neural
networks with leakage delay and unbounded time-varying delays. Neurocomputing, 376:
73–94, 2020. doi: 10.1016/j.neucom.2019.09.008.

[174] C.-A. Popa. Dissipativity of impulsive matrix-valued neural networks with leakage delay
and mixed delays. Neurocomputing, 405:85–95, 2020. doi: 10.1016/j.neucom.2020.03.
042.



230 Bibliography

[175] C.-A. Popa and C. Cernăzanu-Glăvan. Fourier transform-based image classification
using complex-valued convolutional neural networks. In Advances in Neural Net-
works – ISNN 2018, pages 300–309. Springer International Publishing, 2018. doi:
10.1007/978-3-319-92537-0_35.

[176] C.-A. Popa and E. Kaslik. Multistability and multiperiodicity in impulsive hybrid
quaternion-valued neural networks with mixed delays. Neural Networks, 99:1–18, 2018.
doi: 10.1016/j.neunet.2017.12.006.

[177] M.J.D. Powell. Restart procedures for the conjugate gradient method. Mathematical
Programming, 12(1):241 – 254, 1977. doi: 10.1007/BF01593790.

[178] C.M. Reeves and R. Fletcher. Function minimization by conjugate gradients. The Com-
puter Journal, 7(2):149 – 154, 1964. doi: 10.1093/comjnl/7.2.149.

[179] D.P. Reichert and T. Serre. Neuronal synchrony in complex-valued deep networks. In
International Conference on Learning Representations, 2014.

[180] M. Riedmiller. Advanced supervised learning in multi-layer perceptrons - from back-
propagation to adaptive learning algorithms. Computer Standards & Interfaces, 16(3):
265 – 278, July 1994. doi: 10.1016/0920-5489(94)90017-5.

[181] M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learn-
ing: The rprop algorithm. In IEEE International Conference on Neural Networks, vol-
ume 1, pages 586 – 591. IEEE, March 1993. doi: 10.1109/ICNN.1993.298623.

[182] P.A. Rodriguez, N.M. Correa, T. Adali, and V.D. Calhoun. Quality map thresholding
for de-noising of complex-valued FMRI data and its application to ICA of FMRI. In
International Workshop on Machine Learning for Signal Processing, 2009. doi: 10.
1109/MLSP.2009.5306263.

[183] R. Salakhutdinov and G. Hinton. Deep boltzmann machines. In AISTATS 2009, 2009.

[184] R. Salakhutdinov and H. Larochelle. Efficient learning of deep boltzmann machines. In
AISTATS 2010, 2010.

[185] R. Salakhutdinov and I. Murray. On the quantitative analysis of deep belief networks. In
ICML 2008, 2008.

[186] R. Salakhutdinov, J. B. Tenenbaum, and A. Torralba. Learning with hierarchical-deep
models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1958–
1971, aug 2013. doi: 10.1109/tpami.2012.269.

[187] S. Samadi, M. Cetin, and M.A. Masnadi-Shirazi. Sparse signal representation for
complex-valued imaging. In Digital Signal Processing Workshop and Signal Process-
ing Education Workshop (DSP/SPE), pages 365 – 370, 2009. doi: 10.1109/DSP.2009.
4785950.

[188] A.M. Sarroff, V. Shepardson, and M.A. Casey. Learning representations using complex-
valued nets. In International Conference on Learning Representations, 2016.

[189] D.H. Sattinger and O.L. Weaver. Lie Groups and Algebras with Applications to Physics,
Geometry, and Mechanics, volume 61 of Applied Mathematical Sciences. Springer-
Verlag New York, 1986. doi: 10.1007/978-1-4757-1910-9.



Bibliography 231

[190] R. Savitha, S. Suresh, and N. Sundararajan. A fully complex-valued radial basis function
network and its learning algorithm. International Journal of Neural Systems, 19(4):253
– 267, August 2009. doi: 10.1142/S0129065709002026.

[191] R. Savitha, S. Suresh, N. Sundararajan, and P. Saratchandran. A new learning algorithm
with logarithmic performance index for complex-valued neural networks. Neurocomput-
ing, 72(16 - 18):3771 – 3781, October 2009. doi: 10.1016/j.neucom.2009.06.004.

[192] R. Savitha, S. Suresh, and N. Sundararajan. A meta-cognitive learning algorithm for a
fully complex-valued relaxation network. Neural Networks, 32:209 – 218, August 2012.
doi: 10.1016/j.neunet.2012.02.015.

[193] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:
85 – 117, 2015. doi: doi:10.1016/j.neunet.2014.09.003.

[194] A. Seuret and F. Gouaisbaut. Wirtinger-based integral inequality: Application to time-
delay systems. Automatica, 49(9):2860–2866, sep 2013. doi: 10.1016/j.automatica.2013.
05.030.

[195] D.F. Shanno. Conditioning of quasi-newton methods for function minimization.
Mathematics of Computation, 24(111):647 – 656, July 1970. doi: 10.1090/
S0025-5718-1970-0274029-X.

[196] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR 2015, 2015. URL https://arxiv.org/abs/1409.1556.

[197] K. M. Snopek. Quaternions and octonions in signal processing – fundamentals and some
new results. Przeglad Telekomunikacyjny + Wiadomosci Telekomunikacyjne, 6:618 –
622, 2015.

[198] Q. Song and Z. Zhao. Stability criterion of complex-valued neural networks with both
leakage delay and time-varying delays on time scales. Neurocomputing, 171:179 – 184,
2016. doi: 10.1016/j.neucom.2015.06.032.

[199] Q. Song, H. Yan, Z. Zhao, and Y. Liu. Global exponential stability of complex-valued
neural networks with both time-varying delays and impulsive effects. Neural Networks,
79:108 – 116, 2016. doi: 10.1016/j.neunet.2016.03.007.

[200] N. Srivastava and R. Salakhutdinov. Multimodal learning with deep boltzmann machines.
In NIPS 2012, 2012.

[201] N. Srivastava, R. Salakhutdinov, and G. Hinton. Modeling documents with a deep boltz-
mann machine. In UAI 2013, 2013.

[202] K. Subramanian and P. Muthukumar. Existence, uniqueness, and global asymp-
totic stability analysis for delayed complex-valued cohen–grossberg BAM neural net-
works. Neural Computing and Applications, 29(9):565–584, sep 2016. doi: 10.1007/
s00521-016-2539-6.

[203] K. Subramanian and P. Muthukumar. Global asymptotic stability of complex-valued
neural networks with additive time-varying delays. Cognitive Neurodynamics, 11(3):
293–306, mar 2017. doi: 10.1007/s11571-017-9429-1.

https://arxiv.org/abs/1409.1556


232 Bibliography

[204] A.B. Suksmono and A. Hirose. Interferometric SAR image restoration using Monte
Carlo Metropolis method. IEEE Transactions on Signal Processing, 50(2):290 – 298,
2002. doi: 10.1109/78.978384.

[205] S. Suresh, R. Savitha, and N. Sundararajan. A sequential learning algorithm for complex-
valued self-regulating resource allocation network-csran. IEEE Transactions on Neural
Networks, 22(7):1061 – 1072, July 2011. doi: 10.1109/TNN.2011.2144618.

[206] D.W. Tank and J.J. Hopfield. Simple "neural" optimization networks: An A/D converter,
signal decision circuit, and a linear programming circuit. IEEE Transactions on Circuits
and Systems, 33(5):533 – 541, May 1986. doi: 10.1109/TCS.1986.1085953.

[207] T. Tieleman. Training restricted boltzmann machines using approximations to the likeli-
hood and gradient. In ICML 2008, 2008.

[208] T. Tollenaere. Supersab: Fast adaptive back propagation with good scaling properties.
Neural Networks, 3(5):561 – 573, 1990. ISSN 0893-6080. doi: 10.1016/0893-6080(90)
90006-7.

[209] C.C. Took and D.P. Mandic. The quaternion lms algorithm for adaptive filtering of hyper-
complex processes. IEEE Transactions on Signal Processing, 57(4):1316 – 1327, April
2009. doi: 10.1109/TSP.2008.2010600.

[210] C.C. Took and D.P. Mandic. A quaternion widely linear adaptive filter. IEEE Transac-
tions on Signal Processing, 58(8):4427 – 4431, August 2010. doi: 10.1109/TSP.2010.
2048323.

[211] C.C. Took and D.P. Mandic. Quaternion-valued stochastic gradient-based adaptive iir
filtering. IEEE Transactions on Signal Processing, 58(7):3895 – 3901, July 2010. doi:
10.1109/TSP.2010.2047719.

[212] C.C. Took, D.P. Mandic, and J. Benesty. Study of the quaternion lms and four-channel
lms algorithms. In International Conference on Acoustics, Speech and Signal Processing,
pages 3109 – 3112. IEEE, April 2009. doi: 10.1109/ICASSP.2009.4960282.

[213] C.C. Took, D.P. Mandic, and K. Aihara. Quaternion-valued short term forecasting of
wind profile. In International Joint Conference on Neural Networks (IJCNN), pages 1 –
6. IEEE, July 2010. doi: 10.1109/IJCNN.2010.5596690.

[214] C.C. Took, G. Strbac, K. Aihara, and D.P. Mandic. Quaternion-valued short-term joint
forecasting of three-dimensional wind and atmospheric parameters. Renewable Energy,
36(6):1754 – 1760, June 2011. doi: 10.1016/j.renene.2010.12.013.

[215] M. Tygert, J. Bruna, S. Chintala, Y. LeCun, S. Piantino, and A. Szlam. A mathematical
motivation for complex-valued convolutional networks. Neural Computation, 28(5):815
– 825, May 2016. doi: 10.1162/NECO_a_00824.

[216] M.E. Valle. A novel continuous-valued quaternionic Hopfield neural network. In Brazil-
ian Conference on Intelligent Systems (BRACIS), pages 97 – 102. IEEE, October 2014.
doi: 10.1109/BRACIS.2014.28.



Bibliography 233

[217] J.R. Vallejo and E. Bayro-Corrochano. Clifford Hopfield neural networks. In Interna-
tional Joint Conference on Neural Networks (IJCNN), pages 3609 – 3612. IEEE, June
2008. doi: 10.1109/IJCNN.2008.4634314.

[218] G. Velmurugan, R. Rakkiyappan, and S. Lakshmanan. Passivity analysis of memristor-
based complex-valued neural networks with time-varying delays. Neural Processing
Letters, 42(3):517–540, aug 2014. doi: 10.1007/s11063-014-9371-8.

[219] G. Velmurugan, R. Rakkiyappan, and Jinde Cao. Further analysis of global µ-stability of
complex-valued neural networks with unbounded time-varying delays. Neural Networks,
67:14–27, jul 2015. doi: 10.1016/j.neunet.2015.03.007.

[220] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing
robust features with denoising autoencoders. In ICML 2008, 2008.

[221] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising
criterion. Journal of Machine Learning Research, 11:3371–3408, 2010.

[222] Jinling Wang, Haijun Jiang, Tianlong Ma, and Cheng Hu. Delay-dependent dynamical
analysis of complex-valued memristive neural networks: Continuous-time and discrete-
time cases. Neural Networks, 101:33–46, may 2018. doi: 10.1016/j.neunet.2018.01.015.

[223] M. Wang, C.C. Took, and D.P. Mandic. A class of fast quaternion valued variable stepsize
stochastic gradient learning algorithms for vector sensor processes. In International Joint
Conference on Neural Networks (IJCNN), pages 2783 – 2786. IEEE, August 2011. doi:
10.1109/IJCNN.2011.6033585.

[224] R. Wang, G. Xiang, and F. Zhang. L1-norm minimization for octonion signals. In 2016
International Conference on Audio, Language and Image Processing (ICALIP). IEEE,
jul 2016. doi: 10.1109/icalip.2016.7846602.

[225] Zengyun Wang and Lihong Huang. Global stability analysis for delayed complex-valued
BAM neural networks. Neurocomputing, 173:2083–2089, jan 2016. doi: 10.1016/j.
neucom.2015.09.086.

[226] R.L. Watrous. Learning algorithms for connectionist networks: Applied gradient meth-
ods of nonlinear optimization. Technical Reports (CIS) MS-CIS-88-62, University of
Pennsylvania, July 1988.

[227] B. Widrow, J. McCool, and M. Ball. The complex LMS algorithm. Proceedings of the
IEEE, 63(4):719 – 720, April 1975. doi: 10.1109/PROC.1975.9807.

[228] Y. Xia, B. Jelfs, M.M. Van Hulle, J.C. Principe, and D.P. Mandic. An augmented echo
state network for nonlinear adaptive filtering of complex noncircular signals. IEEE
Transactions on Neural Networks, 22(1):74 – 83, January 2011. doi: 10.1109/TNN.
2010.2085444.

[229] Y. Xia, C. Jahanchahi, and D.P. Mandic. Quaternion-valued echo state networks. IEEE
Transactions on Neural Networks and Learning Systems, 26(4):663 – 673, April 2015.
doi: 10.1109/TNNLS.2014.2320715.



234 Bibliography

[230] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a Novel Image Dataset for Bench-
marking Machine and Learning Algorithms. https://arxiv.org/abs/1708.07747, 2017.

[231] D. Xu, Y. Xia, and D.P. Mandic. Optimization in quaternion dynamic systems: Gradient,
hessian, and learning algorithms. IEEE Transactions on Neural Networks and Learning
Systems, 27(2):249 – 261, February 2016. doi: 10.1109/TNNLS.2015.2440473.

[232] Desheng Xu and Manchun Tan. Delay-independent stability criteria for complex-valued
BAM neutral-type neural networks with time delays. Nonlinear Dynamics, 89(2):819–
832, mar 2017. doi: 10.1007/s11071-017-3486-1.

[233] Q. Xu and D. Ma. Applications of lie groups and lie algebra to computer vision a brief
survey. In International Conference on Systems and Informatics (ICSAI), pages 2024 –
2029. IEEE, May 2012. doi: 10.1109/ICSAI.2012.6223449.

[234] M.-C. Yu, Q.-H. Lina, L.-D. Kuang, X.-F. Gong, F. Cong, and V.D. Calhoun. ICA of
full complex-valued fMRI data using phase information of spatial maps. Journal of
Neuroscience Methods, 249:75 – 91, 2015. doi: 10.1016/j.jneumeth.2015.03.036.

[235] Z. Zeng and W. X. Zheng. Multistability of neural networks with time-varying delays and
concave-convex characteristics. IEEE Transactions on Neural Networks and Learning
Systems, 23(2):293–305, 2012. doi: 10.1109/TNNLS.2011.2179311.

[236] Chuan-Ke Zhang, Yong He, Lin Jiang, and Min Wu. Stability analysis for delayed
neural networks considering both conservativeness and complexity. IEEE Transac-
tions on Neural Networks and Learning Systems, 27(7):1486–1501, jul 2016. doi:
10.1109/tnnls.2015.2449898.

[237] F. Zhang, editor. The Schur Complement and Its Applications. Springer US, 2005. doi:
10.1007/b105056.

[238] Huaguang Zhang, Zhanshan Wang, and Derong Liu. A comprehensive review of stability
analysis of continuous-time recurrent neural networks. IEEE Transactions on Neural
Networks and Learning Systems, 25(7):1229–1262, jul 2014. doi: 10.1109/TNNLS.
2014.2317880. URL http://dx.doi.org/10.1109/TNNLS.2014.2317880.

[239] Cheng-De Zheng, Yun Gu, Wenlong Liang, and Zhanshan Wang. Novel delay-dependent
stability criteria for switched hopfield neural networks of neutral type. Neurocomputing,
158:117–126, jun 2015. doi: 10.1016/j.neucom.2015.01.061.

[240] J. Zhu and J. Sun. Global exponential stability of Clifford-valued recurrent neural net-
works. Neurocomputing, 173, Part 3:685 – 689, 2016. doi: 10.1016/j.neucom.2015.08.
016.

http://dx.doi.org/10.1109/TNNLS.2014.2317880

	Abstract
	Rezumat
	An overview of scientific, professional, and academic results
	Scientific and professional results
	Academic results

	Learning algorithms for quaternion-valued neural networks
	The HR calculus
	Enhanced gradient descent algorithms
	Quickprop
	Resilient backpropagation
	Delta-bar-delta
	SuperSAB

	Conjugate gradient algorithms
	Scaled conjugate gradient method
	Quasi-Newton learning methods
	Levenberg-Marquardt learning algorithm
	Experimental results
	Linear autoregressive process with circular noise
	3D Lorenz system
	4D Saito chaotic circuit
	Discussion


	Complex-valued deep learning
	Complex-valued convolutional neural networks
	Model formulation
	Experimental results
	MNIST
	CIFAR-10


	Fourier transform-based complex-valued convolutional neural networks
	The Fourier transform
	Experimental results
	MNIST
	SVHN
	CIFAR-10


	Deep hybrid real–complex-valued convolutional neural networks
	Model formulation
	Experimental results
	SVHN
	CIFAR-10
	CIFAR-100


	Complex-valued stacked denoising autoencoders
	Model formulation
	Experimental results
	MNIST
	FashionMNIST


	Complex-valued deep belief networks
	Model formulation
	Experimental results

	Complex-valued deep Boltzmann machines
	Model formulation
	Experimental results
	MNIST
	FashionMNIST



	Dynamics of complex-valued neural networks (CVNNs)
	-Stability of neutral-type impulsive BAM CVNNs with leakage delay and unbounded time-varying delays
	Main results
	Numerical examples


	Dynamics of quaternion-valued neural networks (QVNNs)
	Multistability and multiperiodicity in impulsive hybrid QVNNs with mixed delays
	Main results
	Multistability analysis
	Multiperiodicity analysis

	Numerical examples


	Dynamics of octonion-valued neural networks (OVNNs)
	Octonion-valued feedforward neural networks
	Model formulation
	Experimental results
	Synthetic function approximation problem I
	Synthetic function approximation problem II
	Linear time series prediction


	Octonion-valued bidirectional associative memories
	Main results

	Asymptotic stability for OVNNs with delay
	Main results
	Numerical example

	Exponential stability for OVNNs with delay
	Main results
	Numerical example

	Asymptotic stability of delayed OVNNs with leakage delay
	Main results
	Numerical example

	Exponential stability of neutral-type OVNNs with time-varying delays
	Main results
	Numerical examples

	Exponential stability of OVNNs with leakage delay and mixed delays
	Main results
	Numerical examples


	Dynamics of matrix-valued neural networks (MVNNs)
	Matrix-valued Hopfield neural networks
	Main results

	Matrix-valued bidirectional associative memories 
	Main results

	Asymptotic stability for MVNNs with delay
	Main results
	Main results
	Numerical examples

	Exponential stability for MVNNs with delay
	Main results
	Numerical example

	Exponential stability of BAM MVNNs with time-varying delays
	Main results
	Numerical example

	Dissipativity of impulsive MVNNs with leakage delay and mixed delays
	Main results
	Numerical examples

	Lie algebra-valued neural networks
	Lie algebra-valued Hopfield neural networks
	Lie algebra-valued bidirectional associative memories


	Scientific, professional, and academic development plan
	Scientific and professional development plan
	Academic development plan
	Research infrastructure

	Bibliography

