

IOSUD - Universitatea Politehnica Timişoara

Şcoala Doctorală de Studii Inginereşti

STATIC CONSTRUCTS: EVOLUTION AND

IMPACT ON SOFTWARE QUALITY ASPECT

PhD thesis – Summary

for obtaining the Scientific Title of PhD in Engineering from

Politehnica University Timișoara

in the Field of Computers and Information Technology

author eng. Cosmin MARȘAVINA

PhD Supervisor Prof.dr.habil.eng. Mihai V. MICEA

month January year 2022

The current thesis is comprised of 7 chapters, 173 pages, 56 tables, 79 figures and

diagrams, and 102 bibliographic references. Its goal is to study 1) the way in which static

construct are utilized in complex software project, 2) how they have evolved throughout the

lifespan of a system, and 3) the degree to which they affect a series of software quality aspects.

Chapter 1 introduces the concepts that will be presented in the thesis. First, we discuss

the problem that is going to be addressed. Then we specify the research questions that were

formulated and highlight their importance. Additionally, we explain the relevance of our work

and mention the contributions that we expect to bring. The main objectives that were set and

the way in which we planned to achieve them are also discussed. The last section of this chapter

describes how the rest of the thesis is structured and the content of each of the following

chapters.

We begin by explaining the importance of testing; it represents a vital part of the

software development life cycle. Studies have shown that more than half of the effort required

for implementing complex software systems is spent on testing [1]. In this thesis, we will focus

on unit testing in an object-oriented context as these tests are directly related to specific parts

of the production code. There are 3 software quality aspects that are closely related to the testing

process: testability, change-proneness, and defect-proneness. We start by defining them;

testability is “the capability of the software product to enable modified software to be validated”

[2]. Change- / defect-proneness are characteristics of software artifacts that represent their

susceptibility to modifications / errors.

Design flaws are violations of design practices and principles that make software

systems harder to understand, maintain, and evolve. Some of them have already been proven to

have a negative impact on specific software quality aspects. However, there are still numerous

other design flaws / quality aspects that have not been investigated thus far. Static constructs

are a category of source code entities in which the static keyword is used. We have already

managed to prove that some of these constructs have a detrimental effect on testability [3] and

defect-proneness [4]. In this thesis, we want to investigate each type of static construct both in

terms of presence / usage and regarding their impact on the 3 quality aspects presented above.

For studying their presence and usage, we will not concentrate solely on the latest version of a

system; the entire history of a project will be considered.

To investigate all these aspects, we formulated the following research questions:

 Are static constructs used in complex software systems? For this question, we try to

establish: 1) if instances of static constructs actually do appear in the production code;

2) how are these instances utilized by other classes; 3) whether or not their clients are

localized in a small number of packages or spread throughout the source code.

 How have static constructs evolved throughout the lifespan of a project? We are keen

to observe: 1) if instances of certain types are still being created even though they were

proven to be problematic; 2) whether or not the number of client classes increases as a

system is growing in size.

 Do static constructs have a negative impact on software quality aspects? We want to

study the effect of using static constructs on the software quality aspects of interest,

namely: 1) testability, 2) change-proneness, and 3) defect-proneness.

 By researching all these aspects and answering the 3 research questions, we expect to

bring the following contributions:

 a general methodology for studying different types of design flaws, their evolution, and

the impact they have on software quality;

 a model for quantifying class testability based on the quantity and the quality of its

corresponding unit tests;

 a process for determining: 1) the fine-grained source code changes that were performed

during a commit and 2) if errors were fixed in the respective commit;

 a tool that incorporates all these aspects;

 an empirical study through which we answer the proposed research questions.

In order to bring the contributions enumerated above, we have set a series of objectives

that must be achieved. The main objectives would be:

1. studying the state of the art for the topics of interest, namely: design flaw detection (with

an emphasis on static constructs) and evolution, models for quantifying software quality

aspects, and design flaws that have a negative impact on the investigated aspects;

2. categorizing the static constructs and defining detection strategies through which we

can identify instances of each type. Furthermore, analyzing the presence and usage of

these instances both for the latest version of a project and for a number of versions

throughout its entire lifespan;

3. developing procedures through which the investigated quality aspects (testability,

change- and defect-proneness) can be evaluated. Additionally, establishing whether or

not the static constructs from each category have an effect on them.

The last section of this chapter explains how the thesis is structured. For the remaining

chapters we briefly discuss what each section contains. Furthermore, at the end of each chapter

there is a fragment that summarizes all the things discussed in the respective chapter.

Chapter 2 presents a literature review on the state of the art in design flaw detection

and evolution, models for evaluating software quality aspects, and design flaws that affect these

aspects. In the first section, we discuss different detection strategies that have been proposed

and tools developed towards this end. We focus on metrics-based strategies, such as the ones

proposed in [5], because we will employ a similar approach to identify different types of static

constructs. Another article of interest is [6], where besides the strategies the authors also

mention repair techniques through which the detected design flaws can be removed. In the

second part of this section, we present a series of smells that might appear in test classes; they

represent deviations from the guidelines proposed to aid developers in creating adequate test

suites. Just as for design flaws, different categories of test smells were identified and detection

strategies have been proposed (e.g., in [7]). The presence of these problems in the test code has

been correlated with the existence of design flaws in the production classes [8]; we will take

this aspect into account when evaluating the quality of the testing performed on a particular

class.

 The second section addresses the way in which certain design flaws have evolved. There

are a considerable amount of articles that investigate this aspect (such as [9]), but none of them

have analyzed any kind of static construct. We will study the evolution of these constructs in a

similar manner to the one presented in [10], where we researched the co-evolution between

production and test code.

 In the next section, we discuss the models that have been proposed to evaluate the

software quality aspects of interest. The majority of models for testability (e.g., the one

described in [11]) start from the design of the classes / the entire system, not from the source

code. In an article that compares different models for evaluating this quality aspect it was

concluded 1) that there is no superior model and 2) that the model used should be selected based

on the particularities of the analysis that is going to be conducted [12]. For change- / defect-

proneness, most of the publications try to predict whether or not a certain class will be modified

/ repaired in the near future. There are very few articles that propose models for quantifying

these 2 quality aspects based on the history of a system. One such example would be [13],

where Java classes are categorized as defective / defect-free using 2 sets of metrics (product /

process related).

 The impact of certain design flaws on the 3 quality aspects mentioned above is discussed

in the last section of the chapter. We could not find any articles that investigate this for different

types of static constructs. One of the categories studied in [14] is mutable state (more

specifically, static non-final attributes and singletons); the authors concluded that it may have

an effect on the testability of software systems. In another paper [15], Hevery proposes a tool

that can be used to evaluate this quality aspect; however, that tool does not start from Java

source code, but rather from the bytecode.

 In Chapter 3 we explain the approach adopted in order to: 1) categorize and detect static

constructs, 2) study their evolution, 3) quantify the 3 quality aspects, and 4) implement the

entire data collection process. Considering the variable granularity of the constructs that use the

static keyword, we decided to perform a multilevel categorization. At class level, we distinguish

between 3 types of static constructs: singletons (both stateful and stateless), utility classes, and

the rest of the classes that contain smaller instances. For the latter category, the categorization

was done based on the types of the instances present, namely: static methods that access /

modify the state of the class in which they are declared, static methods that solely operate on

parameters, static non-final attributes, constants, and static initialization blocks. For each of the

aforementioned categories we proposed detection strategies through which the respective

instances can be identified. For example, 3 conditions have to be met in order for a class to be

categorized as a singleton:

1. there are no public constructors within the class;

2. the class has a private static attribute (the “singleton instance”) and a public static

accessor method that performs lazy instantiation on this attribute and returns it;

3. the aforementioned method is the only way in which the respective attribute can be

accessed.

This detection strategy corresponds to the general form of Singleton (Lazy

Instantiation); the strategy was extended so that it can detect a series of variations of the pattern

(the ones discussed in [16]). Furthermore, the singletons were divided into 2 categories, stateful

and stateless.

The second section of this chapter presents the process through which the evolution of

static constructs is studied. We relied on Git to obtain the data necessary for performing this

analysis. For each of the analyzed systems, the commits are sampled with a frequency of 1

commit per month. Then we iterate over the remaining commits and determine the differences

between each commit and the corresponding one from the previous month; the following

differences are recorded: the total number of instances from each category, the number of client

classes for each instance, and the average number of clients for the entire project. Additional

data regarding each static construct / all of its clients are also recorded along with other useful

information (such as a class being marked as Deprecated).

The next section describes the model for quantifying class testability. Unlike the models

that have been proposed until now, our model evaluates the testability of a production class

based on the quantity and the quality of the corresponding unit tests. Therefore, this aspect is

estimated both from a quantitative and from a qualitative perspective. The metrics used for

measuring quantity are 1) line coverage and 2) the percentage of production methods addressed

by unit tests. The coverage data are obtained through JaCoCo [17], a tool that can be utilized

on any type of project (Maven, Gradle, etc.) and provides a detailed report which also includes

a series of class / method complexity measurements. To evaluate the quality of the testing that

was performed on a class, we consider certain smells that might appear in the corresponding

test class. Test smells are identified using tsDetect [18]; this tool was extended so that it can

specify which of the 19 detectable smells are present in a particular unit test. Two metrics are

calculated once again: 1) the percentage of unit tests in which smells appear and 2) the number

of different types of smells that exist in a test class. Based on these 4 metrics we calculate 2

scores (quantitative and qualitative) which are then aggregated to obtain the overall testability

score. This score can be used to compare a production class to another (which is similar to it in

terms of size and complexity); if the first class has a higher overall score, then this means that

the class is easier to test. To determine the 2 scores mentioned before, we utilize a series of

intervals corresponding to threshold values (which are explained in detail in the respective

section).

To identify the classes that are susceptible to modifications / errors, we use the

procedures described in the fourth section of this chapter. The only difference between the two

is that in the procedure for defect-proneness we solely consider the commits that were

categorized as bug-fixes. For this categorization, we utilize 2 types of information: 1) the one

available in the commit message and 2) additional data collected from the Jira issue tracker

associated with the project. The proposed procedure is thoroughly explained in the thesis; with

it we can determine with high accuracy the commits in which defects were repaired. To evaluate

the 2 quality aspects we must be able to establish exactly which modifications were performed

during a commit. To this end we extract the fine-grained source code changes made to the

source code using ChangeDistiller [19]; these include: the entity that was modified (class,

method, or attribute), the type of the change (e.g., modifying a conditional statement in a

method), and other details related to it (such as severity). The entire commit history of a

particular class is analyzed and compared to the histories of similar classes. If that class 1) was

changed more frequently or 2) more modifications were performed on it, then it can be

considered as having a higher susceptibility to changes. As previously mentioned, error-

proneness is evaluated based on the same metrics, but only bug-fix commits are taken into

account when these metrics are calculated.

The last section presents the entire data collection process along with the tool that was

developed. This tool is called DFAnalized and is implemented as an extension to Patrools [20],

an eclipse plugin that is already capable of calculating some of the required metrics. We

designed the tool so that it has a modular structure; several modules can be combined in order

for it to perform the desired analysis. One of the modules contains the detection strategies for

the design flaws studied (e.g., singleton). Another module is responsible for quantifying the

quality aspect that is investigated. If we want to also analyse the evolution of the respective

flaw, then we just have to add the corresponding module. The modules are configurable and

can be easily extendable; for example, we could study another design flaw by creating a new

module with the appropriate detection strategies.

Chapter 4 explains how the empirical study was conducted. It starts by presenting the

main goal of the study together with the hypotheses that were formulated. Afterwards, we

describe the independent and dependent variables for each hypothesis along with the procedures

through which they can be measured. The criteria based on which we selected the projects

included in the study are also discussed. The last section of this chapter presents the analyses

that were conducted as part of the empirical study.

As was explained previously, the main goal of this thesis is to obtain a better

understanding of 1) static constructs, 2) their evolution, and 3) the quality aspects on which

they have a negative impact. To reach our goal, we formulated 3 research questions

corresponding to each of these aspects. The main objective of the empirical study is to obtain

answers to the research questions. This is why we analyzed the aspects in isolation. For each of

the research questions we formulated 2 hypotheses for the the null and alternative variants. As

an example, for the first research question the null variant would be “Static constructs rarely

appear in complex software systems.”, while the alternative one is “Static constructs are present

in the production code and there are other classes that utilize them.”.

Each of the hypotheses is discussed in detail and then we present the independent and

dependent variables for them. For the pair of hypotheses corresponding to the first research

question the independent variables are the specific characteristics of the studied system, while

the dependent ones would be the different types of static constructs that appear / are utilized by

the production classes. Besides the general characteristics, such as size and complexity, we also

investigate several other characteristics (e.g., key functionalities or the fact that a project is

structured as a library).

When choosing the systems for the empirical study we took into account a number of

criteria, including the ones discussed in [21]. The projects needed to be:

1. relevant in terms of size and complexity;

2. available through Git and have a considerable number of versions;

3. extensively covered by unit tests;

4. associated with Jira issue trackers that contain the problems encountered during their

development.

Based on these criteria, we selected 11 open-source systems to include in the study. We

tried to choose projects that differ in terms of 1) size and complexity, 2) development practices,

and 3) the effort that was put into testing them, while still meeting the criteria enumerated

above. A preliminary analysis on these aspects is included in the respective section.

In the last section, we discuss the analyses performed on the systems presented before,

namely:

 a preliminary analysis on the size and structure of the systems, their history, and the

effort that was put into testing them;

 an analysis on the presence / usage of different types of static constructs;

 an analysis on the evolution of each of the respective types;

 3 analyses on the impact of static constructs on the quality aspects.

 In Chapter 5 we present the results obtained for the analyses mentioned. This chapter

only includes raw results; their interpretation is provided in the following chapter. In the first

section, we study the static constructs identified in the latest version of each of the 11 projects.

Besides the number of instances, we wanted to investigate the way in which they are utilized

and observe if the client classes are localized in a limited number of packages or spread

throughout the entire system. For each category of static constructs, we compared the clients

(and their localization) to those of the remaining entities of the same type; for example, static

methods that access the attributes of the classes in which they are declared / that solely operate

on parameters are compared to the non-static methods of the system with regard to these 2

aspects. For each of the 11 projects, we provided a table that contains all the data mentioned

above.

The second section of this chapter addresses the evolution of different types of static

constructs. Just as for the previous analysis, we did not solely focus on the number of instances

of a certain type that are present in a version of the system; we tried to determine the reasons

why particular instances (or their clients) were added / removed. Additionally, for the class-

level constructs (singletons and utility classes) we also investigated how they were used

throughout the lifespan of a project. For each type of static construct, we created a graph that

depicts the total number of instances / the percentage of production classes that utilize instances

of that type (y-axis) over time (x-axis). When unexpected situations occur, such as a significant

decrease in the number of instances of interest or a class losing most of its clients, we tried to

understand the reasoning behind such decisions.

 The next section analyzes the impact of static constructs on class testability. We rely on

the testability score to compare the classes that contain static constructs to other classes that are

similar to them in terms of size and complexity. As was explained in Chapter 3, this comparison

is made both from a quantitative and from a qualitative perspective. Quantity is evaluated based

on 1) line coverage and 2) the percentage of methods from a class that are tested. For quality

we determine 1) the percentage of unit tests in which smells exist and 2) the number of different

types of smells that appear in a test class. Using these metrics we calculate 2 scores (a

quantitative and a qualitative one) which are then aggregated into the overall testability score.

For each system, we provided a table that contains these 3 scores for the classes with different

types of static constructs / the similar classes.

 The last section of this chapter presents the results corresponding to their impact on

change- / error-proneness. In both evaluations we compare the average number of modifications

that were performed on the classes that contain a certain type of static construct / the classes

that were categorized as similar to them. We also calculated the average number of changes per

commit to determine whether or not the classes with instances of interest were modified in more

commits than other similar classes. Additionally, we wanted to observe what types of fine-

grained modifications occur most frequently (top 5 change types) and establish if the rankings

are different for the classes with various categories of static constructs / similar classes. For

each project we created 2 tables, one for change-proneness and another for defect-proneness.

As specified in Chapter 3, for the second quality aspect we take into account only the commits

that were categorized as bug-fixes.

 Chapter 6 discusses 1) the interpretation of the results with regard to the research

questions that were formulated and 2) the factors that could be considered threats to the validity

of the empirical study and the obtained results. We start by looking at the results as a whole,

thereby being able to draw meaningful conclusions. For the first research question we observed

that 1) static constructs are present in all 11 systems that were analyzed; 2) constants are by far

the most common type of static construct, followed by static methods (of both types) and utility

classes; static non-final attributes, singletons, and static initialization blocks appear less often,

especially in the smaller projects; 3) the number of clients of static constructs and their

localization are not much different when compared to other similar constructs (in most cases).

 Regarding the second research question, the main observations would be: 1) that there

are certain categories of static constructs (such as static non-final attributes and singletons) for

which fewer and fewer instances appear in recent versions (compared to those from the

beginning / halfway through the development process) and 2) that we identified many cases in

which these instances lost most of their clients (or even all of them) before being removed

themselves.

 For the last research question we established that: 1) static non-final attributes, stateful

singletons, and static methods that access state have the highest negative impact on testability;

2) all static construct categories with the exception of constants and static methods that solely

operate on parameters affect change-proneness, although for stateless singletons and utility

classes the results are contradictory for different types of systems; 3) for error-proneness, the

impact of static constructs is not as significant as for change-proneness.

 In the second section of this chapter, we present the factors that threaten the validity of

the empirical study and the results; we also discuss ways in which we tried to mitigate them.

The factors are grouped into 3 categories (based on the categorization proposed in [21]):

construction, internal, and external threats. Those from the first category might appear due to

problems in the code that was developed to collect the data necessary for the analyses

performed. To avoid such problems, the proposed approach was carefully tested using several

small-scale systems created specifically for this purpose. As an example, for the detection

strategies we added instances from each category in various combinations to ensure that they

are identified correctly. Furthermore, we manually checked all the data obtained; to the best of

our knowledge, it is correct and complete. The threats from the second category (the internal

ones) appear when modifications in the dependent variables cannot be attributed to changes in

the independent ones. The main threats from this category are confounding factors, more

specifically other variables that could mask an actual association or falsely prove an apparent

association between the independent and dependent variables. It is very difficult to identify all

the factors that have an impact on these variables, but we tried to discuss as many as possible.

As an example, for the first hypothesis there might be other characteristics of a system that

affect the presence / usage of different types of static constructs.

 We identified a series of external threats that are related to the results of the empirical

study, more specifically that they are not generalizable to other settings. A first limitation of

this study is that all 11 systems are open-source. We hope to obtain access to at least 2

commercial projects in the near future, thereby being able to eliminate this threat. Another

limitation would be that all the systems are developed in Java by following an object-oriented

approach. We are planning to reimplement the tool so that we can analyses projects developed

in other object-oriented languages (e.g., C# and C++) or through different programming

paradigms (such as functional programming). Another factor that should be taken into account

is the high granularity of the analyses performed. The study could have been a lot more detailed

if we would have analyzed everything at method level; this represent one of the directions on

which we will be concentrating our efforts from now on.

 Chapter 7 contains the conclusions and future work directions. In the first section, we

reiterate the contributions brought, namely:

 the methodology for studying the evolution and the impact on software quality of any

design flaw;

 the model for quantifying class testability;

 the process for identifying commits in which bugs were fixed and determining the fine-

grained changes that occur between commits;

 the tool for investigating the aspects of interest;

 the empirical study through which we obtain answers to the research questions for

different types of static constructs.

 All in all, the main goal of the thesis was achieved; we managed to obtain a better

understanding of static construct presence / usage, the way in which instances of different types

have evolved, and the impact they have on the 3 software quality aspects studied (testability,

change- and defect-proneness).

 By analyzing all the aspects presented before, we were able to draw a series of relevant

conclusions. The main ones would be:

 that static constructs 1) are present all throughout the production code and 2) are

frequently utilized by other classes;

 that they are started to be used less once a project reaches maturity (compared to the

earlier stages of its development);

 that certain types of static constructs, such as mutable global state instances (stateful

singletons and static non-final attributes) or static methods that access / modify their

class’s state, have a negative impact on the 3 quality aspects investigated.

In the next section, we reflect on what we have accomplished and explain what could

have been done better. We end the chapter with some promising future work directions

that we are currently considering:

 extending the empirical study by adding new systems (commercial ones and projects

implemented in other programming languages / by following other paradigms / through

different development methodologies);

 investigating other design flaws, such as object instantiations in constructors / methods

or Law of Demeter violations;

 perfecting the models through which we quantify the 3 software quality aspects (e.g.,

adding more metrics to the testability score);

 studying all these aspects at a lower level of granularity;

 proposing repair techniques for the problematic parts of both production and test code.

References
[1] Brooks Jr, Frederick P. The Mythical Man-Month: Essays on Software Engineering,

Anniversary Edition, 2/E. Pearson Education India, 1995.

[2] IEEE Standards Coordinating Committee. "IEEE Standard Glossary of Software

Engineering Terminology (IEEE Std 610.12-1990). Los Alamitos." CA: IEEE Computer

Society 169 (1990).

[3] Marsavina, Cosmin. "Studying the Evolution of Static Methods and their Effect on Class

Testability." 2020 IEEE 20th International Symposium on Computational Intelligence and

Informatics (CINTI). IEEE, 2020.

[4] Marsavina, Cosmin. "Understanding the Impact of Mutable Global State on the Defect

Proneness of Object-Oriented Systems." 2020 IEEE 14th International Symposium on Applied

Computational Intelligence and Informatics (SACI). IEEE, 2020.

[5] Marinescu, Radu. "Detection strategies: Metrics-based rules for detecting design flaws."

Software Maintenance, 2004. Proceedings. 20th IEEE International Conference on. IEEE,

2004.

[6] Kessentini, Marouane, et al. "Design defects detection and correction by example." Program

Comprehension (ICPC), 2011 IEEE 19th International Conference on. IEEE, 2011.

[7] Van Rompaey, Bart, et al. "On the detection of test smells: A metrics-based approach for

general fixture and eager test." IEEE Transactions on Software Engineering 33.12 (2007): 800-

817.

[8] Tahir, Amjed. A Study on Software Testability and the Quality of Testing In Object-Oriented

Systems. Diss. University of Otago, 2016.

[9] S. Vaucher, F. Khomh, N. Moha, and Y. G. Guéhéneuc, “Tracking design smells: Lessons

from a study of god classes.” 2009 16th Working Conference on Reverse Engineering. IEEE,

2009.

[10] Marsavina, Cosmin, Daniele Romano, and Andy Zaidman. "Studying fine-grained co-

evolution patterns of production and test code." 2014 IEEE 14th International Working

Conference on Source Code Analysis and Manipulation. IEEE, 2014.

[11] Mouchawrab, Samar, Lionel C. Briand, and Yvan Labiche. "A measurement framework

for object-oriented software testability." Information and software technology 47.15 (2005):

979-997.

[12] Nikfard, Pourya, et al. "An Empirical Analysis of a Testability Model." Informatics and

Creative Multimedia (ICICM), 2013 International Conference on. IEEE, 2013.

[13] Moser, Raimund, Witold Pedrycz, and Giancarlo Succi. ”A comparative analysis of the

efficiency of change metrics and static code attributes for defect prediction.” Proceedings of the

30th international conference on Software engineering. 2008.

[14] Wolter, Jonathan, Russ Ruffer, and Miško Hevery. "Guide: Writing testable code." (2009):

1-38.

[15] Hevery, Misko. "Testability explorer: using byte-code analysis to engineer lasting social

changes in an organization's software development process." Companion to the 23rd ACM

SIGPLAN conference on Object-oriented programming systems languages and applications.

ACM, 2008.

[16] K. Stencel and P. Węgrzynowicz, “Implementation variants of the singleton design

pattern.” OTM Confederated International Conferences “On the Move to Meaningful Internet

Systems.” Springer, Berlin, Heidelberg, 2008.

[17] M. R. Hoffmann, B. Janiczak, and E. Mandrikov, “Eclemma-jacoco java code coverage

library.” (2011).

[18] A. Peruma, et al. “tsDetect: an open source test smells detection tool.” Proceedings of the

28th ACM Joint Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering. 2020.

[19] H. C. Gall, B. Fluri, and M. Pinzger, “Change analysis with evolizer and changedistiller.”

IEEE software 26.1 (2009): 26-33.

[20] P. F. Mihancea, “Patrools: Visualizing the Polymorphic Usage of Class Hierarchies.” 2010

IEEE 18th International Conference on Program Comprehension. IEEE, 2010.

[21] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths and realities of test-suite

evolution,” in Symposium on the Foundations of Software Engineering (FSE). ACM, 2012, p.

33.

