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Chapter 1 

CURRENT STATE OF RESEARCH ON WELDING BEHAVIOR OF STEEL 

FOR MAIN PIPELINES  

 

 

1.1. Introduction 

 

Currently worldwide, the demand for the transport of oil and natural gas products is 

constantly growing. For the transport of these products, new underground and submarine main 

pipeline networks are being developed. The costs of making these types of pipes are quite high, 

which is why, worldwide, extensive research is carried out in the following directions:   

- the use of steel pipes for main pipelines made of high-strength steels, which leads to a 

reduction in wall thickness, so to a lower consumption of welding consumables; 

-  development of high efficiency welding technologies; 

-  implementation of automatic control methods. 

For non-alloy steels, the increase in mechanical properties cannot be achieved by increasing the 

carbon concentration, as this results in a decrease in toughness, ductility and weldability. 

Therefore, the increase of the mechanical characteristics will be done by one of the following 

processes [1],[20],[33],[40],[51],[58],[84],[86],[104]: 

 -  fine grains; 

 -  hardening of the solid solution by microalloys;  

 -  hardening by dispersed precipitation;  

 -  increasing the density of dislocations. 

 

1.4. Elements of difficulty of the problematic addressed 

 

The main pipelines are designed to transport natural gas under pressure, products that 

are rich in hydrogen sulfide. Due to the high pressures and the toxic environment used to 

transport natural gas, these welding technologies and the control of welded joints require special 

attention from researchers.  

Traditional welding of main pipelines of high thickness and lengths of hundreds and 

thousands of kilometers using the manual welding process with coated electrodes is not 

recommended due to both low productivity and high cost compared to fully automatic welding 
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of pipelines. Also, the use of cellulosic electrodes (electrodes that introduce a large amount of 

hydrogen) in the manual welding of pipelines of medium and high thickness is not 

recommended by any manufacturer of welding materials due to the risk of cracking caused by 

the presence of hydrogen.  

MAG Welding (Metal Active Gas). The use of narrow gap MAG welding requires 

special precautions to ensure that the tip of the wire is precisely positioned to ensure proper 

melting of the faces of the welding joint [4],[36],[78],[103]. The narrow gap MAG welding 

using a single welding head is the dominant technique and has been optimized in the past to 

produce maximum productivity using this welding process. The continuous development of 

MAG welding using two welding heads and the use of MAG welding at the root leads to a 

significant increase in productivity [71],[80].  

Welding of main pipelines and non-destructive testing are governed by API 1104 [89]. 

The behavior at stress corrosion cracking will be done according to the NACE TM0177 

standard, Method B [88], and the preparation and bending of the samples for the corrosion test 

according to the ASTM G39 standard [102]. 

The paper aims to find a way to limit undesired microstructural transformations in the 

areas of welded joints, while increasing productivity by implementing a narrow gap MAG 

welding process of a thermo mechanically treated steel that is intended for the execution of 

pipelines for the oil and gas industry. It provides additional knowledge on the proper selection 

of welding materials, the homologation of welding technology in view of a substantial increase 

in productivity by using both automatic internal root welding and by using two welding heads 

to fill the joint at the same time with a reduction of the consumption of welding consumables 

due to the narrow joint.  

 

1.5. The objectives of the doctoral thesis  

 

Difficulties reported in narrow gap MAG welding require extensive experimental 

research to achieve the following objectives: 

1. Opportunity to make welded joints of pipes with a diameter of 42 '' (1066.8 mm) from high-

strength, low-carbon micro-alloy steels, thermomechanically treated (TTM), API 5LX65M, 

using the MAG process in arc spray for root pass and pulsed current to fill the joint. The 

welding equipment used will consist of a internal welding machine and two welding 

machines on the outside of the pipe, each with two welding torches for filling, at which the 

pipe is fixed and the equipment has a vertical orbital motion descent around the pipe. 

2. Establishment of the technological parameters of the thermal welding regime for the root and 

for the filling layers. 

3. Selection of filler materials compatible with the base metal leading to a deposited metal with 

favorable characteristics; thus, the option of using an ER 70S-G wire will be chosen for root 

welding, and for filling, the E70S-6 wire.  

4. Evaluation of the quality of welded joints by microscopic structure investigations, 

mechanical tests (hardness, static tensile, impact, cold bending) and by non-destructive 

testing (magnetic particles, x-rays) with the establishment of guidelines to be considered to 

avoid possible defects in a particular case of joining such steels.  
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Chapter 2 

EXPERIMENTAL RESEARCH ON THE PARAMETERS OF THE WELDING 

PROCESS 

 

 

2.1. Particularities of the narrow gap MAG welding process  
 

The MAG welding process uses an electric arc between a fusible electrode in the form 

of a wire and the metal bath, the protection being made by an external source of active gas or 

inert gas mixtures with active gases [10],[18],[103].  

It is used to join pipes, main pipelines, pressure vessels, shipyard constructions, etc. 

Narrow gap MAG welding is a multi-pass welding technique used to join especially high-

thickness metallic materials using I or V bevels with an angle below 10 ° and a joint opening of 

6-16 mm. 

The basic features of this process are: 

 - Narrow joint, the faces of the joint are parallel or slightly open; 

 - Reduced deformations due to the shape of the joint;  

 - Welding with multiple layers with one or two passes on the layer; 

 - In general, the heat affected zone (HAZ) is reduced due to welding with low linear energy;  

 

2.2. Leading the experimental program  

 

The main pipeline with a diameter of 42 '' (1066.8mm) and a wall thickness of 31.75mm, 

made of high-strength micro-alloy steel API5L X65M, thermo mechanically treated were 

welded by the MAG process in spray arc for the root  & hot pass and pulsed current for filling 

the joint using the welding equipment of CRC Evans. This consists of an internal welding     

machine, IWM and two externals welding machines, P625, each with two welding torches, at 

which the pipe is fixed and the welding equipment has a vertical downhill orbital motion around 

the pipe.  

Prior to assembly, the ends of the pipes are machined to obtain a narrow joint (fig.2.12). 
 

 

 

 

 

 

 

 

 

              
Fig.2.12 The shape and dimensions of the joint 
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2.3. Characterization of base metal and auxiliary material 

 

2.3.1 Characterization of the base metal  
 

There are numerous methods of thermo mechanical treatment, three of them being 

illustrated in fig.2.16. The first two (type I and II fig.2.16) do not contain an accelerated cooling 

from the deformation end temperature and differ from each other mainly by the temperature 

range in which this process takes place. The third method (type III fig.2.16) comprises an 

accelerated cooling after the controlled rolling process [68], [69], [104].  

Material structure Temperature[°C] 
Conventional 
Processing 

 
Thermomechanically Controlled Processing 

Recrystalliezed 
Austenite  Aprox.1200°C 

Normalizing 

 

 

Nonrecrystallized 
Austenite Ar3 

Austenite + ferrite 
Ferrite + Pearlite 
Ferrite + Bainite 

 
 

Ar1 

Note:  CR – Controlled Rolling 

 

 
Fig. 2.16. Comparison between the conventional process and the thermomechanically controlled process 

The chemical composition of the base metal used in the experiments is given in tab.2.1. 
Tab.2.1 Chemical composition of the base metal : API 5L X65M 

X65M C% Si% P% S% 
Cu

% 
Ti% 

Mn

% 

Ni

% 

Cr

% 

Al

% 

Mo

% 
V% Nb% B% 

Actual values 
0.04

3 
0.32 

0.0

07 

0.00

09 
0.02 

0.01

3 
1.53 

0.01

8 
0.19 

0.03

8 

0.00

8 

0.0

04 

0.04

4 

0.00

02 

Composition 

as per API 5L 
0.1 0.4 

0.0

16 

0.00

2 
0.35 0.04 1.6 0.3 0.3 0.06 0.15 

0.0

8 
0.05 

0.00

05 

Obs. API Specification 5L: Specification for Pipe Line (API 2018) – American Petroleum Institute [90]. 

 

2.3.2 Characterization of the auxiliary material  

Tab.2.2 Chemical composition of the welding wire for the root pass, ER70S-G 

ER 70S-G C% Si% Mn% P% S% Cr% Mo% Ni% Cu% V% Ti% 

Actual 

values 
0.07 0.74 1.57 0.013 0.008 0.04 0.01 0.04 0.11 0.01 0.05 

Note: ASME Sect.II Part C does not specify the chemical composition [92] 

 

Tab.2.3 Chemical composition of the welding wire for the filling layers, ER70S-6 

ER 70S-6 C% Si% Mn% P% S% Cr% Mo% Ni% Cu% V% Ti% 

Actual 

values 
0.07 0.95 1.69 0.011 0.010 0.03 0.01 0.05 0.10 0.01 <0.01 

Composition 

prescriptions  

0.06-

0.15 

0.8-

1.15 

1.4-

1.85 
0.025 0.035 0.15 0.15 0.15 0.50 0.03 - 

Note: Chemical composition  as per ASME Sect.II Part C [92] 

General Note: The singular values represent the maximum values of each component element 

 

For the narrow gap MAG welding of the API 5L X65 material, the gas mixture used for both 

internal and external pipeline welding was: 80% Ar + 20% CO2. 
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Chapter 3 

STRUCTURE AND MECHANICAL PROPERTIES OF NARROW GAP MAG 

WELDED JOINTS  

 

 

3.1. Macrography of welded joints  

 

Fig.3.3 shows the macroscopic image of a cross section through the welded joint, noting 

that both the seam and the ZIT have a proper geometry and are free of defects such as porosity, 

cracks, lack of fusion, etc. The width of the ZIT is uniform over the entire section, and the 

direction of crystallization in the weld is the natural one, that is, it coincides with the direction 

of heat dissipation.   

Fig.3.3 Macroscopic image of the cross section through the welded joint. Chemical reagent: NITAL (10 cm3 

HNO3, 100 cm3 ethyl alcohol) 

 

3.2. Micrographic examinations  

 

Microscopic investigations on the areas of the welded joint show that a dendritic 

structure is formed in the weld, the growth of the grains occurring in a columnar manner fig.3.6, 

and in ZIT appears a ferrito-bainitic structure with fine precipitation of secondary phases, 

fig.3.7. The base metal has a ferrito-bainitic microstructure, fig.3.8. 

 

3.3. Încercări de duritate 

 

Vickers hardness measurements on the cross section of the welded joint were performed 

at a distance of 2 mm from the inner part, fig.3.13, respectively the upper part, fig.3.14 of the 

pipe. Their degree of scattering confirms the structural heterogeneities of welding and HAZ. 

Slightly higher weld hardness values are explained by the slightly higher carbon equivalent 

content of the deposited metal compared to the base metal.  

Fig.3.6 Welding microstructure, x 200   

 
Fig.3.7 HAZ microstructure, x 200 Fig.3.8 Base metal microstructure, x 200 
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3.4. Charpy Impact testing 

 

At least 3 specimens were used for each test temperature and each notch location. The 

obtained results are presented in tab.3.1 and 3.2 and represented graphically in fig.3.21 and 3.22  
Tab. 3.1 The values of absorbed energy KV in welding joint 

Notch location 
Specimen size, 

mm 
Temp.°C 

Absorbed Energy, Joules 

A B C Average 

WCL, Upper area 10 x 10 x 55 +20° 178 176 190 181 

WCL, Lower area 10 x 10 x 55 +20° 220 220 208 216 

WCL, Upper area 10 x 10 x 55 0° 150 138 150 146 

WCL, Lower area 10 x 10 x 55 0° 198 188 226 204 

WCL, Upper area 10 x 10 x 55 -30° 102 110 116 109 

WCL, Lower area 10 x 10 x 55 -30° 130 150 138 139 

WCL, Upper area 10 x 10 x 55 -50° 80 50 62 64 

WCL, Lower area 10 x 10 x 55 -50° 44 56 50 50 

 

 
 

Fig.3.21 Absorbed energy variation KV with the test temperature T [°C] in welding joint 

 

 

Fig.3.13 Hardness variation on the welded joint 

section in the internal area of the pipe  
Fig.3.14 Hardness variation on the welded joint 

section in the outside area of the pipe  
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Tab. 3.2 The values of absorbed energy KV in HAZ 

Notch location  
Specimen size , 

mm 
Temp.°C 

Absorbed Energy , Joules 

A B C Average 

HAZ, Upper area 10 x 10 x 55 +20° N N N >300 

HAZ, Lower area 10 x 10 x 55 +20° N N N >300 

HAZ, Upper area 10 x 10 x 55 0° N N N >300 

HAZ, Lower area 10 x 10 x 55 0° N N N >300 

HAZ, Upper area 10 x 10 x 55 -30° N N N >300 

HAZ, Lower area 10 x 10 x 55 -30° N N N >300 

HAZ, Upper area 10 x 10 x 55 -50° 162 185 175 174 

HAZ, Lower area 10 x 10 x 55 -50° 144 180 210 178 

Note: N – Specimen did not break 

 

 
Fig.3.22 Absorbed energy variation KV with the test temperature T [°C] in HAZ 

 

Analyzing the variation of the absorbed energy KV depending on the test temperature fig.3.21 

and 3.22, it can be seen that the welded joint and HAZ have a high resistance to brittle rupture, 

their behavior being ductile in a wide range of temperatures (- 50 ° C - + 20 ° C). 

 

3.5. Tensile strength test 

 

The results of the tensile tests are presented in table 3.3, and the appearance of a tested 

specimen is shown in fig.3.28. 
Tab.3.3 Experimental results  

Specimen ID So (mm²) Fmax (N) Rm (N/mm²) Fracture location 

TT1 800.87 476226 595 Base metal 

TT2 796.45 476126 598 Base metal 

TT3 801.24 469729 586 Base metal 

TT4 799.22 460440 576 Base metal 

 

 

 

 

 

 

 

 
 Fig.3.28 Fracture location of the tensile strength test specimen  
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The analysis of the obtained data demonstrates that, each time, the fracture occurred in the 

base material (MB) and that the values of tensile strength for all 4 sets of welded specimens 

are higher than the minimum required for the base material (according to API 104, 2013), 

which is 535 N/mm2 . 

 

3.6. Side bend test 

 

The results of the side bend test are presented in tab.3.4, noting that until the 180° no 

cracks have been observed. 
Tab. 3.4 Test conditions and results  

Specimen ID Mandrel diameter (mm) Bend angle (°) Results  

SB1 90 180 Acceptable  

SB2 90 180 Acceptable 

SB3 90 180 Acceptable 

SB4 90 180 Acceptable 

SB5 90 180 Acceptable 

SB6 90 180 Acceptable 

SB7 90 180 Acceptable 

SB8 90 180 Acceptable 

 

The appearance of the welded specimen and side bend tested  is shown in fig. 3.34. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.7. Bending test of specimens with notch  

 

Macroscopic appearance of the test specimens with notch after cold bending are 

exemplified in fig. 3.38. 

It is noted that specimens rupture is preceded by significant plastic deformation and that no 

metallic continuity defects have been observed. 

 

 

 

 
 

 

 

 

 

 

Fig.3.34 The image of side bend test specimen  

Fig.3.38 Macrographic specimens with notch, API 5L X65M, 42 "(1066.8mm) x31.75mm 

after testing 
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3.8. Fracture toughness of welding joints 

 

Prediction of an unstable fracture or increase of a pre-existing crack is the fundamental 

problem in the mechanics of fracture (fractures) [2], [7], [12], [31], [47], [49], [54], [57], [85]. 

Experimental measurement of the propagation force (conduction) of a pre-existing crack 

obtained by fatigue plays an important role in this prediction. Stress intensity factor at the crack 

tip (KIC), crack tip opening displacement (CTOD) and the crack tip opening angle (CTOA) are 

the most recognized parameters used in fracture mechanics [17], [29], [ 65], [75], [99], [100] 

[105], [106], [107], [108], [113]. 

The critical values of the crack tip opening displacement  (δm) or CTOD are presented 

in tab.3.11, they demonstrate that the MAG welded joints of thermo mechanically treated X65M 

steel have a high resistance to brittle rupture. The microfractographic images of fig. 3.56 

highlights the presence of more or less rectilinear parallel streaks, next to the ductile cleavage 

areas corresponding to the sliding planes.  

 
Tab. 3.11 Critical values of CTOD parameter in weld and at interface FL/HAZ     

Location  
12 O’clock 3 O’clock 6 O’clock 

WCL FL/HAZ WCL FL/HAZ WCL FL/HAZ 

Critical CTOD value 𝛿(mm) 0.56 1.08 0.67 1.06 0.59 1.07 

 

 

 

 

The experimental results showed that the tested areas of the welded joint (welding and the 

interface between the fusion line and ZIT), present a significant reserve of plasticity, their 

fracture being ductile, and the stable extension of the crack occurs beyond the maximum loading 

(Fm). No brittle fracture or abrupt discontinuities (pop-in) were observed. 

 

 

 

Fig. 3.56 Fractography of fracture surfaces: a – in the vicinity of artificial fatigue crack initiation;    

b –in the vicinity of the crack tip opening displacement  
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Chapter 4 

RESISTANCE TO STRESS CORROSION CRACKING OF WELDED JOINTS  

 

 

4.1. The experimental stand  
 

Stress corrosion cracking occurs through the simultaneous action of a chemical 

environment and a static stress regime with at least a tensile effort and which leads to the 

intergranular or transgranular cracking of the material subjected simultaneously to the two types 

of actions [11],[39],[46],[48],[50],[60],[72],[101]. The onset of this phenomenon in hydrogen 

sulfide environment causes the metal material to be brittle by hydrogen atoms produced by acid 

corrosion in the surface area. The absorbed hydrogen is accelerated by the presence of sulfides, 

hence the fact that the sulfur content of the materials must be strictly controlled [44],[76],[83]. 

Hydrogen atoms can diffuse into the metallic material, reducing the ductility and toughness 

characteristics and increasing the susceptibility to cracking [3],[9],[13],[16],[21],[28],[32],[43], 

[45]. The corrosive medium used is hydrogen sulfide (H2S) being the most common corrosive 

medium found in the transport of petroleum products and natural gas. 

Stress corrosion cracking tests were performed under conditions of constant strain, 

materialized by means of bending pre-stressing devices under a certain angle. The specimens 

are of a flat strip type with welding perpendicular to the forces acting on them. The stress-strain 

combination is in the elastic field. 

 

4.2. Experimental results 
 

The dimensions of the specimen are shown in fig.4.4, and in fig.4.5 is shown the 

appearance of the specimen before the deformation. 

 
 

 

 

 

 

 

 

 
Fig.4.4 The shape and dimensions of the specimen  

 

 

 
 

Fig.4.5 The image of the specimen before deformation  
 
 

The values recorded at the end of the test are presented in tab.1 
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Tab.1 Values recorded  

pH/H2S End of test values  

pH 3.62 

H2S 3202 ppm 

 

According to NACE TM 0177: 2016, the maximum pH value at the end of the test is 4. The test 

duration was 720 hours, and the temperature was maintained constant at 24°C ±3°C.  
 

4.3. Metallographic examinations  
 

In Figure 4.9 a, b and c are shown images of specimens (root, the middle and the top) at 

the end of the corrosion test.  

       
-a- 

 

-b- 

-c- 

 

 

 

The specimens subjected to stress corrosion cracking in hydrogen sulfide medium have a pH 

value of 3.62 with a H2S concentration equal to 3202 ppm and no cracks were observed in the 

three welded joint areas. 

Fig.4.9 The appearance of the specimens at the completion of the corrosion test: a 

– weld root; b – weld middle; c- weld cap 
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Capitolul 5 

NONDESTRUCTIVE EXAMINATION OF NARROW GAP MAG WELDING OF API 

5L X65M THERMOMECHANICAL TREATED STEEL 

 

 

5.1. Introduction 
 

The nondestructive examination is one of the essential phases of pipeline welding. 

Determining the nature of the defects is particularly useful for identifying the causes and 

defining the measures to correct the execution or the technology. 

Nondestructive control does not lead to deterioration of welded joints and does not negatively 

influence their behavior in service.  

On the other hand, the destructive testing of welded joints is based on tests carried out with the 

destruction of the samples, respectively of the especially test pieces prepared. If by 

nondestructive control certain categories of defects can be determined, the values of the 

mechanical characteristics can be established only by destructive tests [22],[59],[81]. 

The nondestructive examination methods used in welded joints of API 5L X65M thermo 

mechanical treated steel, intended for the execution of underground and submarine pipelines 

having a diameter of 42 ”(1066.8 mm) and a wall thickness of 31.75 mm were: 

- visual examination; 

- magnetic particle examination; 

- radiographic examination (x-ray). 
 

5.2. Visual examination  
 

The external appearance of the welded joints using the technological parameters 

indicated in the papers [68],[69],[70] is presented in fig.5.4, and the aspect of the welded joint 

root, in fig.5.5. 

 

 

 

Fig. 5.4 External appearance of the welded joint  
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5.3. Magnetic particle examination  

 

Magnetic particle control is a method of locating surface discontinuities or those that 

are in the immediate vicinity of the surface and can be applied only to ferromagnetic materials. 

In principle, this method of nondestructive control consists in the magnetization of the piece 

subject to control and the deposition on its surface of a fine ferromagnetic powder. In the areas 

where there are discontinuities, a magnetic field of dispersion or leakage will be formed due to 

the fact that the magnetic field lines will bypass the discontinuity, being forced to go outside 

the material of the piece [93].The physical phenomenon that is disclosing the defect is the 

appearance of the dispersion field in the discontinuity area. 

Examination with magnetic powders, the wet method, using the magnetic yoke of the external 

pipeline welding is shown in fig.5.14. 

 

 

Fig. 5.5 Root welded joint 

 

Fig. 5.14 Magnetic powder examination of pipes with 
42”diameter and 31.75mm wall thickness 
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5.4. Radiographic examination (X-Ray) 

 

 The portable X-ray generator, C3003, is transported and controlled inside the pipes by 

the IRIS 10 X-Ray Crawler. The carrier assembly and the X-ray generator are shown in fig. 

5.19.  

 

 

 

Table 5.2 shows the technical data of the radiography performed and in fig. 5.24 shows a 

radiographic film of the X-ray examination of the 42 ”x 31.75 mm pipe.  
Tab. 5.2 Radiography technique sheet 

Technical data 

Source X - Rays 

X-ray generator ICM, type Sitex  C3003 

Focal spot Ø5mm x 0.8mm 

Material radiographed API 5L X65M 

Thickness 31.75mm 

Diameter 42” (1066,8 mm) 

Technique SWSI 

Source –film distance 533mm 

Exposure time 3min. 

KV 300KV 

Cathodic current 3mA 

Density 2.2 – 2.6 

Film type Kodak AA400 

Sensitivity 1% 

IQI Type 6 ISO 12 

IQI position Film side 

Geometric unsharpness 0.31mm 

Exposure Panoramic 

Acceptance standard API 1104:2018 

 

Fig. 5.19 The carrier assembly and X-ray generator IRIS 10  

 

Fig. 5.24 X-ray film of the 42”x 31.75 mm pipeline  
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Chapter 6 

GENERAL CONCLUSIONS AND ORIGINAL CONTRIBUTIONS. NEW RESEARCH 

DIRECTIONS 

 

The doctoral thesis “Contributions on the narrow gap MAG welding process of 

steels intended to gas pipelines execution” aims to find a way to limit undesirable 

microstructural transformations in the areas of welded joints, while increasing productivity by 

implementing a special welding process of a thermo mechanically treated steel. The root pass 

& hot pass were made in the MAG version with spray arc, and the filling layers, in pulsed 

current, achieving a substantial increase in productivity by using both automatic internal root 

welding and by using two heads of welding to fill the joint. At the same time, a reduction in the 

consumption of filler materials is obtained, due to the narrow joint. 

 The main conclusions and original contributions of the paper can be summarized as 

follows: 

 

1.The technological variant of MAG welding with narrow gap using an automatic welding 

equipment allows the use of a reduced heat input energy (2.97 - 5.67 kJ/cm) and welding speeds 

that reach values of 48 - 128 cm / min. 

  

2.The execution of the root and hot passes in spray arc is opportune because due to the high 

melting power of the electric arc, defects such as lack of fusing at the root pass and between 

root and hot pass are avoided, defects that could occur due to the configuration of the welding 

joint(a shoulder of 1.27 mm with the gap of the joint ,, 0,, mm).   

 

3.The use of synergic pulsed current for the filling layers allows welding in difficult positions 

(vertically descending, overhead) as an effect of controlling the metal bath, by reducing its 

volume. 

 

4.The selected base material, API 5L X65, is a thermo mechanically treated steel with high 

mechanical strength, with a lower degree of alloy compared to other steels in the normalized 

state, having the same mechanical strength characteristics. This is extremely beneficial for the 

metallurgical and technological behavior of this steel when welding. 

 

5.The selected welding wires have a good compatibility with the basic material considered (API 

5LX65) and to meet the condition of mechanical strength, they have a higher concentration in 

elements with hardening effect (C, Mn). 

 

6.The experimental establishment of the optimal parameters of the narrow gap MAG welding 

process, led to the obtaining of welded joints without metal continuity defects (such as cracks, 

shrinkage cuts, slag inclusions and porosity) and a heat affected zone (HAZ) slightly extended. 

 

7.The microstructure of the welded seam has a dendritic appearance with columnar orientation 

of the crystalline grains, and the HAZ consists of a ferritic matrix with small amounts of bainite 

and carbonitrides of the alloying elements. 

 

8.The hardness gradient on the cross section of the welded joints demonstrates that the 

experimentally established thermal regime parameters prevent the softening of the heat affected 

zone (HAZ) and ensure good mechanical properties. 

 

9. The results of the charpy impact test show that at the lowest test temperature, (-50ºC), the 
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absorbed energy KV of the upper and lower part of the deposited metal exceeds the minimum 

value, of 38 J, imposed by the norm specific to this basic material. 

 

10.The fracture surface of the toughness measuring specimens has a matte-fibrous appearance, 

and its character is ductile, characterized by a low speed of movement of the crack, respectively 

by high values of the energy absorbed for its propagation. 

 

11.For the experimental conditions used, the tensile strength of welded joints values, Rm = 576 

.... 598 N/mm2, are higher than those required for the base material, Rm ≥ 535 N/mm2 . 

 

12.Narrow gap MAG welded joints in pulsed current  and multiple layers, made of thermo 

mechanically treated steel, X65M, have a high capacity of plastic deformation, proven by the 

absence of cracks in the seam until the bending angle of 180º is reached. 

 

13.The results of the fracture mechanics tests showed that the tested areas of the welded joint 

(welding and the interface between the fusion line and ZIT), show a significant reserve of 

plasticity, their fracture being ductile and the stable expansion of the crack takes place beyond 

the maximum load (Fm).No fragile fracture or abrupt discontinuities were observed, and the 

displacement values at the opening of the crack tip are much higher than those specified in the 

rules used in the manufacture of underground and submarine oil and gas pipelines. 

 

14.The stress corrosion cracking in hydrogen sulfide medium revealed a pH value of 3.62, an 

H2S concentration equal to 3202 ppm and the absence of cracks in the three areas of the welded 

joints. 

 

15.Visual and magnetic particle inspection, together with X-ray examinations, on the entire 

thickness of the welded joints did not identify any defects specified in the internationally 

imposed standards for these products. 

 

In conclusion, it can be shown that the approach and solution within the proposed limits of the 

research topic that is the subject of the doctoral thesis, by systematic follow-up, highlighting 

and scientific substantiation of the transformations that occur in narrow gap MAG welding, 

where the root pass & hot pass were executed in the MAG version with spray arc, and the filling 

layers, in pulsed current, represent an original contribution. 

Combining the research of the applied side of these investigations in terms of the level of 

mechanical properties obtained with the phenomenological side, the determination and 

scientific explanation of the features that define the metallurgical and technological welding 

behavior of thermomechanically treated steels and justifies the improvement of welded joints, 

makes the thesis to be in line with modern trends and methodology used in scientific research. 

 

Future research directions: 

         ● the opportunity of laser welding of thermomechanically treated steels; 

         ● laser brazing, which will minimize the mixing of materials, the process being based on 

the diffusion of interfaces between the molten filler material and the base material. 
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