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Nowadays smartphones have a staggering amount of processing and memory capabilities.
They are also equipped with various sensors, including loudspeakers, microphones, accelerom-
eters, magnetometers and radio frequency sensors (such as NFC, UWB and GPS). These are
generally referred to as transducers, components that convert one form of energy into another.
Due to the manufacturing process, each transducer has unique properties that have the potential
to be used as a fingerprint for the mobile device. Fingerprints based on software can also be
used, but in this thesis, the focus is on hardware-based fingerprints. This is because they rely
on the characteristics of transducers, which are embedded in the circuit board and are more
challenging to replace. This makes the fingerprint more difficult to falsify.

Fig. 1. A generic smartphone with sensors and transducers subject to fingerprinting
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In Figure 1 a generic smartphone is illustrated with the sensors and transducers that can
be subject to fingerprinting. Since the beginning of the 2000s, circuit identification using
physical characteristics has been studied [1]. Later, Physically Unclonable Functions (PUFs),
based on distinctive and erratic properties of the circuits, were proposed in [2] for security
applications such as device authentication. Device-to-device (D2D) authentication is common
in IoT scenarios. Using the characteristics of the device to ensure authentication is one way to
eliminate user interaction, which is especially beneficial for embedded devices that lack user
interfaces or inside vehicles where accessibility to the interface may be limited.

Research objectives. This thesis aims to fingerprint smartphones based on their sensors, i.e.,
accelerometers, loudspeakers, microphones and camera sensors and also briefly investigate such
fingerprinting techniques for in-vehicle ECU. More specifically, the main objectives of this
thesis can be summarized as follows:

1) Surveying the existing literature that addresses smartphone fingerprinting based on embed-
ded sensors;

2) Collecting data from accelerometers, loudspeakers, microphones and camera sensors of
different and identical smartphones to create comprehensive datasets;

3) Analyzing the collected data and finding the more reliable characteristics;
4) Fingerprinting smartphones based on accelerometer, loudspeakers, microphones and cam-

era sensor characteristics which are the main four transducers used inside modern smart-
phones;

5) Analyze distinct classification algorithms and show that traditional machine learning algo-
rithms may have better results than neural network algorithms;

6) Analyze and test how fingerprinting smartphone techniques can be extended to other
components, using in-vehicle ECUs as an example.

Major contributions. In this thesis, several smartphone transducers, i.e., accelerometers,
loudspeakers, microphones and camera sensors are fingerprinted. In addition to smartphone
sensors, ECU fingerprinting is also analyzed. The contributions of this thesis can be summarized
as follows:

1) Several comprehensive datasets were built containing:
• Accelerometer data collected in different transportation modes: tram, train, car, bike,

walk and shake [3];
• 3,000 samples collected with 28 smartphones loudspeakers [4];
• 19,200 samples collected with 32 smartphones microphones [5];
• 300 dark photos collected with 6 identical smartphone cameras [6];

2) Several classification algorithms were used and their performance was analyzed in various
scenarios, also using some signal processing techniques when needed [4], [5], [6], [7], [8];

3) Identification of smartphones from identical and different models of transducers (accelerom-
eters, loudspeakers, microphones and cameras) was performed [4], [5], [6], [7];

4) Sensor identification in the presence of different types and levels of noise (additive white
Gaussian noise or environmental noise) was performed [4], [5];

5) Device-to-device and in-vehicle authentication scenarios were addressed as applications
for smartphone identification [3].
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These major contributions are reflected by the following publications in relevant ISI journals
and conferences. In [3] the author explored smartphone pairing based on accelerometer data
collected from different transportation environments. For this, several accelerometer measure-
ments were collected using smartphones in a train, tram, car and bike and later analyzed for the
design of the protocol. Smartphone fingerprinting based on accelerometer data was analyzed in
[7]. Experiments with 5 identical and 5 different smartphones were done in order to fingerprint
them based on characteristics extracted from the accelerometer. In [4] smartphone fingerprinting
based on loudspeaker characteristics is addressed. A dataset was built, containing records from
16 identical and 12 different smartphones, that play a linear sweep signal and it publicly released
to serve for future works. Smartphones were identified based on the roll-off characteristics of
the emitted sounds. Also, recurrent neural networks were used for a more accurate classification.
In [5], microphone fingerprinting is addressed. A dataset was built, containing experiments with
16 identical smartphones that record locomotive, barrier, horn and tier sounds played by a high-
fidelity audio system. The dataset also contains live recordings of a car honk, hazard lights and
wiper sounds recorded with 16 different smartphones. The power spectrum of each signal was
extracted from the recorded sounds and used as input for several machine learning classifiers to
separate the smartphones. This dataset was also made public to serve for future investigations.
Smartphone fingerprinting based on camera characteristics was discussed by the author in [6].
The characteristics extracted from 50 images collected using 6 identical smartphones were
used as input for several classification algorithms in order to fingerprint the smartphones. The
machine learning algorithms used for smartphone identification in the previously mentioned
papers were also used in [9] to fingerprint in-vehicle ECUs based on an existing dataset. The
author also contributed to other research papers focused on vehicle-to-smartphone interaction
which, although they are not part of the main body of this work, provided a great opportunity
for the author to gain even more insights into the security of the smartphone-vehicle ecosystem.
These works discuss car to smartphone interaction [10], vehicle access rights based on cloud
services [11], smartphone based access to vehicles [12] and audio-visual key exchange between
smartphone and vehicle [13].

To sum up, the author has contributed to 11 papers on mobile system security and their
presence within the in-vehicle environment, out of which the first 7 form the main body of the
current thesis:

1) A. Berdich, B. Groza, R. Mayrhofer, E. Levy, A. Shabtai, and Y. Elovici, “Sweep-to-
unlock: Fingerprinting smartphones based on loudspeaker roll- off characteristics,” IEEE
Transactions on Mobile Computing, 2021.

2) B. Groza, A. Berdich, C. Jichici, and R. Mayrhofer, “Secure accelerometer based pairing
of mobile devices in multi-modal transport,” IEEE Access, vol. 8, pp. 9246–9259, 2020.

3) A. Berdich, B. Groza, E. Levy, A. Shabtai, Y. Elovici, and R. Mayrhofer, ”Fingerprinting
smartphones based on microphone characteristics from environment affected recordings,”
IEEE Access, vol. 10, pp. 122 399–122 413, 2022.

4) A. Berdich and B. Groza, ”Smartphone camera identification from low-mid frequency dct
coefficients of dark images,” Entropy, vol. 24, no. 8, p. 1158,x 2022.

5) S. Murvay, A. Berdich, and B. Groza, “Physical layer intrusion detection and localization
on CAN bus,” Machine Learning and Optimization Techniques for Automotive Cyber-
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Physical Systems, Springer, 2023, (accepted for publication).
6) A. Berdich, B. Groza, and R. Mayrhofer, “A survey on fingerprinting technologies for

smartphones based on embedded transducers,” (under submission).
7) A. Berdich, P. Iosif, C. Burlacu, A. Anistoroaei, and B. Groza, “Fingerprinting smartphone

accelerometers with traditional classifiers and deep learning networks,” IEEE 17th Inter-
national Symposium on Applied Computational Intelligence and Informatics (SACI), 2023,
(accepted for publication).

8) B. Groza, H. Gurban, L. Popa, A. Berdich, and S. Murvay, “Car-to- smartphone inter-
actions: Experimental setup, risk analysis and security technologies,” in 5th International
Workshop on Critical Automotive Applications: Robustness & Safety, 2019.

9) A. Berdich, A. Anistoroaei, B. Groza, H. Gurban, S. Murvay, and D. Iercan, “Antares-
anonymous transfer of vehicle access rights from external cloud services,” in 2020 IEEE
91st Vehicular Technology Conference (VTC2020-Spring), IEEE, 2020, pp. 1–5.

10) B. Groza, T. Andreica, A. Berdich, P. Murvay, and E. H. Gurban, “Prestvo: Privacy enabled
smartphone based access to vehicle on-board units,” IEEE Access, vol. 8, pp. 119 105–119
122, 2020.

11) A. Anistoroaei, A. Berdich, P. Iosif, and B. Groza, “Secure audio-visual data exchange for
android in-vehicle ecosystems,” Applied Sciences, vol. 11, no. 19, p. 9276, 2021.

Chapter II briefly presented the principles of operation behind smartphone transducers, i.e.,
accelerometers, loudspeakers, microphones and camera sensors. The most popular feature ex-
traction methods, popular classification algorithms and an overview of evaluation metrics were
presented. This chapter also illustrated some application scenarios and preventive measures
against the exploitation of smartphone fingerprinting as a privacy leak. Regarding each sensor
presented in the thesis, the related works showed the following. Accelerometers were widely
used for device authentication (pairing) and it is surprising that only a few works discussed
smartphone fingerprinting based on accelerometers. Loudspeakers were employed much less
frequently in research than microphones were. It is possible that less research was done on de-
vice fingerprinting based on audio signals from loudspeakers because, while such data is simple
to evaluate, it is more challenging to collect. There are several publicly available datasets for
microphones (the majority of them focusing on speech recognition and criminal investigations),
which are also utilized for device identification based on microphone characteristics. To the best
of the author’s knowledge, the only public dataset available for loudspeaker identification is the
result of the research done for this thesis. The topic of camera fingerprinting was addressed by
the largest body of research works compared to all other sensors, based on the works surveyed in
this thesis. This is expected given that consumers frequently submit images to several websites,
making such data relatively easy to gather and likely leading to privacy concerns. Additionally,
photos can be used to extract a wide variety of samples and attributes and numerous public
datasets were available.

Chapter III discussed smartphone pairing in several transportation modes based on accelerom-
eter data and also smartphone fingerprinting based on accelerometers. Accelerometer data was
collected using three smartphones in different transportation modes, i.e., tram, train, car, riding a
bike, with the smartphones in the pocket, while walking with the smartphones in the pocket and
by shaking the smartphones in the hand. Accelerometer signals differ substantially depending on
the mode of mobility. The findings from this thesis demonstrated that acquiring enough entropy



5

from the accelerometer data was possible in order to create a session key in all transportation
environments. Low-entropy extractions can also lead to secure session keys by relying on
guessing-resilient protocols (that allow matching such values without exposing them to a brute-
force adversarial search). Several signal processing methods were used, i.e., simple scaling,
sigma-delta modulation, high-pass filtering, and smoothing. Most of the filtering methods
employed gave comparable results. However, simple scaling of the accelerometer measurements
was the most suitable choice due to its simplicity. The entropy was increased by extending the
feature vectors with sigma-delta modulation, but this required more computations because more
features had to be traded. Given the variations in transportation modes, specific parameters
may be advantageous depending on the case and the trade-off between the level of security
and pairing probability. By addressing the adversarial advantage and the pairing success rate,
a more precise image of this approach was provided. The key exchange protocol starts with
temporal synchronization between the smartphones, followed by data collection, processing,
and splitting of the data into multiple windows. These windows are then used to generate
the keys, which are transferred between the smartphones via Bluetooth connection using the
EKE-DH and SPEKE protocols. SPEKE is a guessing-resistant protocol that was proposed
in [14]. The key-exchange between two smartphones is described in outline in Figure 2. The
computational time for the pairing operation using EKE-DH is between 25ms and 230ms
for share calculation and between 39ms and 411ms for key recovery for both the 1024-bit
and 2048-bit modules. In the case of SPEKE, the computational time is between 20ms and
145ms for share calculation and between 7ms and 70ms for key recovery. The computational
time also depends on the smartphone’s performance. This chapter also discussed smartphone
fingerprinting based on accelerometer sensors. Data was collected using 5 identical and 5
different smartphones. Over 40 minutes of data were collected with each smartphone at a
sampling rate of 10ms. Seven time-domain features, i.e., Kurtosis, Skewness, SNR, STD, RMS,
peak value, and SINAD were extracted from the accelerometer data. These features were then
used as input for five classification algorithms, i.e., NN, KNN, SVM, Ensemble, and Decision
Trees. The Ensemble classifier provided maximum recognition accuracy of 100% for the dataset,
which includes instances from five separate and identical phones. The results demonstrated that
classical machine learning algorithms can produce good results for fingerprinting smartphones
based on accelerometer sensors. Using more sophisticated deep learning architectures seem
unnecessary, especially when training data is limited.

Fig. 2. Data collection and key-exchange between two smartphones

Chapter IV approached smartphone fingerprinting based on loudspeaker characteristics. Smart-
phones can be fingerprinted using the methods summarized in this thesis, possibly making them
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useful as smart keys identifiable based on physical characteristics. In this thesis, an effective
fingerprinting technique was investigated that can be quickly applied to identify smartphones
based on loudspeaker roll-off characteristics. An in-vehicle infotainment system was used for
the experiments, which recorded the sounds emitted by 28 loudspeakers (16 identical and 12
different). Each loudspeaker emitted a linear sweep signal with a duration of about 10s. The
distance between the infotainment system and the loudspeakers was 1 meter. In this setup, 3,000
measurements were taken. A suggestive depiction of the setup is shown in Figure 3 The power
spectrum was extracted from each signal recorded by the infotainment unit and it was then used
to either determine the slopes of the low and high roll-offs or to do more complicated machine
learning techniques. Also, using 4 smartphones, measurements at different volume levels, i.e.,
50%, 75%, 100% and orientation angles, i.e., 0◦, 45◦ and 90◦, were done. According to the
findings, loudspeaker roll-offs offer a reliable fingerprint that is more resistant to variations in
volume levels. In contrast, for some techniques, the volume level may be deceptive. While the
slope of the roll-offs alone was adequate to identify different smartphone models, deep-learning
methods were required for a more thorough analysis of loudspeakers coming from the same
smartphone models. The discrimination between such identical loudspeakers can be done with
an accuracy of 90–99% using the LSTM and BiLSTM neural network designs. The impact of
noise was also analyzed, keeping in mind that in a real-world scenario, background noises are
present and can affect the fingerprinting mechanism of the loudspeakers. Two significant types
of noise were taken into account: additive white Gaussian noise (AWGN), which imitates the
impacts of several random processes seen in nature and may also account for noise inside cars,
and street noise, which is unique to the situation involving cars. In [15], the attenuation of the
sound from the loudspeaker to the microphone was also simulated using the additive white
Gaussian noise. The separation between loudspeakers was still visible after identical noise was
introduced to the recordings. Repeated measurements taken inside the vehicle with the left
window opened revealed a less distinctive separation. One specific application scenario was
the use of smartphones inside vehicles, which is why most of the experiments conducted in
this chapter employed a car’s head unit to record the smartphone sounds. Regardless of the
recorder, the identification had a high success rate, indicating that in-vehicle infotainment units
are usable in such scenarios.

Chapter V investigated smartphone microphone fingerprinting employing the signal power
spectrum and various supervised machine learning methods (including Linear Discriminant
(LD), Ensemble-Subspace Discriminant, Fine Tree, Fine KNN and Linear SVM). The analysis
was concentrated on three separate scenarios, as shown in Figure 4: scenario A, fingerprinting
smartphones from different brands and models based on human speech, scenario B, fingerprint-
ing identical smartphones based on environmental sound using prerecorded sounds and scenario
C, fingerprinting smartphones from different brands and models based on live recordings. For
scenario the already-existing MOBIPHONE dataset [16] was used. This dataset contains a
human voice recorded with 21 smartphones from various manufacturers and models. The dataset
for each smartphone includes 24 audio samples from 12 male and 12 female speakers. For
scenario B, special recordings were done using 16 microphones from the same smartphone (a
Samsung Galaxy S6) that were utilized to capture road and vehicle noise (locomotive, barrier,
car honk and car tiers) that was then played by a high-fidelity audio system. For scenario C a
special dataset was created by recording the sound on 16 smartphones both outside and inside
a car. Each smartphone records three different sounds: can honk, hazard lights and car wipers.
Additional noise was introduced to all scenarios to make classification more difficult. The LD
classifier acted perfectly in the first two cases. The final scenario was the more challenging.
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Fig. 3. Suggestive depiction of the setup: an Android infotainment unit or microphone records sound emitted by a
smartphone

When noise was added, the LD produces poor identification results for two specific phones (the
LG and Nexus 7). The LD classifier may still be preferred because it utilizes little memory
and has a short runtime. Other conventional machine learning classifiers performed worse than
LD in terms of accuracy. These fingerprints have a wide range of potential uses. For example,
verifying ownership of a specific phone to serve as a second authentication token with physical
characteristics that cannot be cloned. However, such fingerprinting could also be abused by
mobile applications to fingerprint devices without access to device-unique identifiers. Malicious
apps (or libraries hidden within) with high-fidelity access to microphone samples already have
a more significant impact on security and privacy [17] than the additional device fingerprint.

In Chapter VI, smartphone fingerprinting based on their camera sensors was also investigated
using the low and mid-frequency AC coefficients obtained from the DCT of dark photos.
The investigation showed that the blue channel is more effective at recognizing the camera.
A dark picture needs to be taken for this purpose, by holding the smartphone against the
user’s palm. Six machine learning algorithms were employed to identify the devices, i.e.,
Nearest Neighbor (KNN), Ensemble-Subspace Discriminant, Support Vector Machines, Linear
Discriminant, Naive Bayes and a wide neural network. For the classification, 50 photos were
taken using six identical cameras from Samsung Galaxy J5 smartphones. The 2-D adaptive
noise-removal filter from Matlab called the wiener2 filter was employed to process the original
image. With 10x10 local neighborhoods, this filter calculates the variance and the local mean
surrounding each pixel. To recover the pixel variations, the residual noise was computed as
the difference between the original picture and the filtered image. The residual noise was
divided into 8x8 non-overleaping blocks. The 2-D DCT was computed for each block and the
low and mid-frequency AC coefficients were extracted. Each 8x8 block was converted into an
array of 35 elements using the zigzag sequence, which was then concatenated to produce the
fingerprint. The data processing steps are described in Figure 5. Due to prediction time and
memory requirements, samples of 100 or 1000 rows of 35 columns were used from each image
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Fig. 4. Overview of the methodology and scenarios used in this chapter

and device as input for the classifiers. The wide neural network, which had an accuracy of 97%
for 1000 samples and roughly 70% for 100 samples, had the best results. The conventional
KNN algorithm also gave promising outcomes, with an accuracy of about 80% for both 100
and 1000 samples. In order to prove the security level, the Shannon and minimum entropy
values were computed on the original image and on the retrieved AC coefficients. The security
level is good enough since the lowest entropy is still often in the region of 2-3 bits for each
byte from the coefficients, which is twice as much as in the case of the unprocessed photos.

Last but not least, in Chapter VII, due to the interest of the author in the area of auto-
motive security, a side objective of the current reasearch was the application of fingerprinting
technologies on Electronic Control Units. Since a dataset containing physical fingerprints was
already public [18], the application of the previous machine learning toolset from Matlab was
immediate. This chapter presents the results of the author in this direction, and it is no surprise
that these techniques that yield good results for smartphones, perform well in this area too. Five
machine learning algorithms: Linear Discriminant (LD), Decision Trees (Tree), SVM, KNN and
a wide neural network (NN), which were also used for smartphones, were also used here to
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Fig. 5. Process of extracting fingerprints: from picture capture to AC coefficients

fingerprint 51 ECUs based on a publicly available dataset. The classifiers were tested on all
features from the dataset. When all features were used, NN reached an accuracy of 99.9%,
while when only two features were used, the ECUs performance of the KNN was not so good.
Suggesting, as already known in the literature, that a reduced number of features is not sufficient
for accurate classification.

Chapter VIII concludes this thesis. To sum up, this thesis provided positive results for the
classification of smartphones based on four transducers: accelerometers, loudspeakers, micro-
phones and cameras. One of the main findings of this research was that traditional machine
learning algorithms can give even better results than more complicated deep neural network
architectures for sensor fingerprinting. Comprehensive datasets were also publicly released for
loudspeaker and microphone data evolving more than 60 smartphones. The results of this PhD
work have been submitted and accepted for publication in relevant ISI journals and conferences.
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