
IOSUD - Universitatea Politehnica Timișoara
Școala Doctorală de Studii Inginerești

Improvement of Calibration Techniques and Data Quality for
Personal Space Air Monitoring using a Platform of Fixed and

Mobile Low-Cost Devices
Doctoral Thesis – Summary

for the attainment of the Doctor of Philosophy title at
Politehnica University of Timișoara

in the doctoral field of Computers and Information Technology

author eng. Marian-Emanuel IONAȘCU

scientific supervisor: Prof.dr.eng. Marius George MARCU

February 2025

Air quality monitoring (AQM) is essential for mitigating environmental pollution by measuring
and analyzing atmospheric pollutants. Traditional monitoring systems, while highly accurate, are
costly and require frequent maintenance, limiting their large-scale deployment [1]. In contrast,
low-cost air quality sensors provide a scalable and accessible alternative, offering improved
spatial and temporal resolution. However, these sensors face challenges related to measurement
accuracy, calibration complexity, and environmental influences, which requires further research
to enhance their reliability [2].

Real-time air quality data are crucial for public health, especially vulnerable groups such as
children, the elderly, and individuals with respiratory diseases [3]. Air quality indices simplify
complex pollutant measurements, enabling communities to make informed decisions, such as
reducing outdoor activities during periods of high pollution [4]. Despite their advantages, low-cost
sensors exhibit key limitations, including measurement errors, environmental interference, sensor
drift, and cross-sensitivity to multiple pollutants [5]. To address these issues, advanced calibration
techniques, machine learning models, and novel sensor materials are being explored to improve
precision and stability over time [2].

Currently, AQM in Europe is based on high-precision reference stations, which despite their
precision, suffer from sparse spatial coverage, high installation and maintenance costs, and data
availability delays [1]. Low-cost sensors can complement these systems by providing greater
coverage and real-time data availability.

This research focuses on improving the performance of low-cost air quality sensors by
addressing key sources of error and developing efficient calibration methodologies. The study
proposed three primary objectives:
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• O1 Enhance Personal AQM Confidence: Measure and display air quality accurately in
the immediate vicinity of individuals. Ensure data reliability is sufficient for meaningful
health assessments and actionable insights.

• O2 Optimizes Calibration Efficiency for Low-Cost Sensors: Streamline calibration processes
for low-cost air quality monitors, reducing both time and cost. Maintain or enhance the
accuracy of the data produced by these sensors while enabling scalable deployment.

• O3 Implement a standardized testing and measurement platform that integrates a rigorous
evaluation methodology to assess data quality with high accuracy and reliability.

To achieve the objectives of this thesis, we outline several contributions as output aligned
with each objective. The primary contributions are as follows.

• C1 Extensive state of the art of research initiatives in the direction of air quality, sensors
calibration and data visualization

• C2 Development of an iterative process for sensor selection, evaluate and conlude the final
sensors list using real low-cost sensor devices.

• C3 Development of an IoT and a wearable device with estimates/indicative data quality
objective (DQO) levels: These devices balance affordability with data reliability, making
them accessible for personal and widespread use.

• C4 Proposal and validation of calibration models for low-cost sensors, thus reducing the
cost of calibration and maintainability.

• C5 On-the-Fly Calibration Algorithm for Immediate Deployment: Design of a real-time
calibration algorithm to enable rapid and automated calibration of newly deployed low-cost
sensors. This minimizes setup time and enhances scalability, ensuring cost-effective and
efficient sensor integration.

• C6 Integrated mobile application for comprehensive air quality information: Development
of a mobile application that integrates the Air Quality Index (AQI) for standardized air
quality reporting. Body Pollution Index (BPI) for personalized health impact assessments.
The Data Fusion Algorithm for detailed spatial insights. These applications will provide
users with actionable and comprehensible data to make informed decisions about their
exposure and health.

• C7 Design, implement, and evaluate a series of three iterations of IoT prototypes and one
wearable prototype device.

By advancing calibration techniques, data fusion methodologies, and machine learning-based
corrections, this study aims to bridge the gap between traditional and low-cost AQM systems.
Enhancing sensor accuracy, scalability, and accessibility will facilitate widespread adoption of
AQM solutions. The findings contribute to the decentralization of air quality information, the
support of public health initiatives, and the improvement of environmental decision making,
laying the foundation for future innovations in AQM on a global scale [2].

To support the work presented in this thesis, several papers were published during the
research period, the first three of which are published in ISI journals.

• Petruc, S.-I.; Bogdan, R.; Ionascu, M.-E.; Nimara, S.; Marcu, M. An IoT Framework
for Assessing the Correlation Between Sentiment-Analyzed Texts and Facial Emotional
Expressions. Electronics 2025, 14, 118. (WOS:001393618000001)

• Ionascu, M.-E.; Marcu, M.; Bogdan, R.; Darie, M. Calibration of NO, SO2, and PM using
Airify: A low-cost sensor cluster for air quality monitoring, Atmospheric Environment,
Volume 339, 2024, 120841. (WOS:001343585000001)
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• Ionascu, M. E.; Castell, N.; Boncalo, O.; Schneider, P.; Darie, M.; Marcu, M. Calibration
of CO, NO2, and O3 Using Airify: A Low-Cost Sensor Cluster for Air Quality Monitoring,
Sensors, 21(23), 7977, 2021. (WOS:000743308100001)

• Gruicin, I.; Ionascu, M. E.; Popa, M. Evaluation of air quality variability in Timișoara,
Romania, SACI 2020 - IEEE 14th Int. Symp. Appl. Comput. Intell. Informatics, Proc.,
pp 179-182, 2020. (WOS:000610510000029)

• Ionascu, M. E.; Gruicin, I.; Marcu, M. Variance Analysis of Signals from Four Electrode
Electrochemical Sensors, 2019 29th Telecommun. Forum, TELFOR 2019 - Proc., 2019.
(WOS:000568618700081)

• Blagoiev, M.; Gruicin, I.; Ionascu, M. E.; Marcu, M. A Study on Correlation between Air
Pollution and Traffic, 2018 26th Telecommun. Forum, TELFOR 2018 - Proc., pp. 2–5,
2018. (WOS:000459714200175)

• Ionascu, M. E.; Gruicin, I.; Marcu, M. Towards Wearable Air Quality Monitoring Systems -
Initial Assessments on Newly Developed Sensors, 2018 26th Telecommun. Forum, TELFOR
2018 - Proc., pp. 1–4, 2018. (WOS:000459714200129)

• Ionascu, M. E.; Gruicin, I.; Marcu, M. Laboratory evaluation and calibration of low-cost
sensors for air quality measurement, SACI 2018 - IEEE 12th Int. Symp. Appl. Comput.
Intell. Informatics, Proc., pp. 395–400, 2018. (WOS:000448144200068)

• Gruicin, I.; Ionascu, M. E.; Popa, M. A solution for air quality monitoring and forecasting,
SACI 2018 - IEEE 12th Int. Symp. Appl. Comput. Intell. Informatics, Proc., pp.
503–507, 2018. (WOS:000448144200087)

• Ionascu, M. E.; Marcu, M. Energy Profiling for Different Bluetooth Low Energy Designs,
in IDAACS’2017, 2017, pp. 1032–1036. (WOS:000425870400084)

Next, we present the summary of each chapter of the thesis highlighting the main contributions
to each of them. Thus, Chapter 1 provides a comprehensive foundation for this study,
beginning with the importance of AQM and its vital role in protecting public health, mitigating
environmental impacts, and informing policy decisions. Reviews the evolution of AQM technologies,
transitioning from traditional high-cost, limited-coverage systems to low-cost sensors that offer
improved spatial and temporal resolution. The chapter then identifies key challenges and
limitations associated with these sensors, such as environmental sensitivity, cross-sensitivity,
sensor drift, and calibration complexity. Building on this, the research questions are framed to
address these challenges, focusing on improving sensor accuracy, reliability, and integration into
scalable networks.

Chapter 2 is the main state-of-the-art part and presents the evolution of AQM platforms,
focusing on the challenges and advances in the deployment of low-cost sensors for environmental
monitoring. The state-of-the-art study has been divided into the identified research projects, but
also presenting other independent studies that are not grouped into any larger project. These
projects include CitiSense [6], OpenSense [7], ENEA, [8], AirSenseEur [9], SNAQ Heathrow [10],
and US-based projects [11], highlighting their strategies for calibration, sensor integration, and
addressing environmental interferences. The analysis underscores the transformative potential of
low-cost sensors in democratizing AQM while emphasizing the need for standardized protocols
and interdisciplinary collaboration to achieve reliable and scalable solutions.

Chapter 3 presents the methodology used to select low-cost air quality sensors for integration
into IoT and wearable devices. The selection process is guided primarily by user specifications
and the intended application scenarios. Two use cases are considered: monitoring city-level air
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quality with fixed or mobile IoT devices and monitoring personal exposure using wearable units.
Each use case introduces distinct challenges that influence sensor choice and system design.

An iterative approach was adopted for sensor selection, beginning with a comprehensive
review of datasheets from multiple manufacturers. Several test devices were developed, each
incorporating different sensor types. An important observation was that many electrochemical
sensors share similar characteristics, in particular those with three and four electrodes. This
allowed for a standardized circuit design capable of accommodating sensors from multiple
manufacturers. In the end, all IoT prototypes were designed to support electrochemical sensors
of four electrons. In contrast, for wearable devices, priority was given to sensors with a smaller
form factor and lower power consumption, even at the expense of accuracy drop.

Table 1: Proposed sensor specifications of IoT and Wearable devices. (* as of august 2022)
Device type Sensor Type Manufacturer Sensitivity Estimation cost*
Iot CO-A4 Alphasense 220 to 410

nA/ppm
$68

NO-A4 Alphasense 350 to 550
nA/ppm

$68

NO2-A43F
003I

Alphasense -175 to -500
nA/ppm

$68

SO2-A4 Alphasense 320 to 500
nA/ppm

$68

Ox-A431 Alphasense -200 to -650
nA/ppm

$68

IRC-A1 Alphasense 1 ppm $80
Wearable BME680 MEMS ppb/ °C/ %/

mBar
$15

10Dx-SO2-1000 Spec-Sensors 6 ± 4 nA/
ppm

$30

10Dx-O3-1000 Spec-Sensors 6 ± 4 nA/
ppm

$30

10Dx-NO2-1000 Spec-Sensors 6 ± 4 nA/
ppm

$30

PMSA 003I Plantower 1 µg/m3 $30
Both PMSA 003I Plantower 1 µg/m3 $30

BME680 Bosch ppb/ °C/ %/
mBar

$10

To ensure reliability, selected sensors were integrated into test platforms and deployed
in various environmental conditions. Sensor performance was assessed through calibration
procedures, comparing collected data with reference stations where available. Metrics such as
mean absolute error (MAE) and coefficient of determination (r2) were employed to quantify
accuracy. The process involved multiple iterations of devices, with successive improvements
made to sensor selection and system design. The final step consisted of developing wearable and
IoT prototypes, which underwent laboratory and colocation validation, followed by real-world
deployment.
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Table 1 outlines the final sensor configuration for the latest IoT and wearable devices. Based
on this set-up, five IoT devices and more than twenty wearable units were assembled. These
devices serve as the foundation for the calibration strategies presented in the following chapters.

Chapter 4 presents the evaluation and calibration of a low-cost air monitoring platform
designed to measure a wide range of air pollutants, including CO, NO2, NO, O3, SO2, CO2,
PM10, PM2.5, and PM1, along with temperature, relative humidity, and atmospheric pressure.
The study explores the challenges associated with calibrating the platform, developed based on a
review of existing methodologies and advances in low-cost AQM. Previous research [12], [13] has
analyzed the sensors integrated into our system, demonstrating their feasibility for real-world
applications. Our contribution focuses on the development and validation of calibration models
using multivariate linear regression (MLR) and random forest (RF) techniques [11], [12], [14]–[16],
ensuring that the sensor platform meets Data Quality Objectives (DQO).

Figure 1: Main calibration methodology

The calibration process, described in Figure 1, involves colocating our devices with reference
instruments in a controlled environment to collect parallel datasets. These datasets are stored
separately and later used to develop and apply calibration models. This methodology enables the
generation of device-specific models for each pollutant, which are used to adjust the measurements
in real time.

The evaluation used multiple performance metrics, including mean absolute error (MAE),
mean square error (MSE), root mean square error (RMSE), normalized mean bias (NMB),
and normalized mean error (NME). In addition, the uncertainty of the measurement was
assessed using orthogonal regression [17], and the reliability of the model was quantified using
the coefficient of determination (r2). These metrics provide a comprehensive assessment of
calibration accuracy, allowing performance comparisons across different models.

The results indicate substantial improvements in the calibration techniques for low-cost
air sensors. Our models outperformed previous work, achieving 60% improvement in r2 for
SO2, a 10% higher determination coefficient for CO and O3, and accuracy comparable to the
state-of-the-art methods for PMx and NO2. However, the NO models performed poorly due to
the low concentration levels present during the tests. Despite this, the introduction of custom
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equations and RF models with additional predictors significantly enhanced the calibration
accuracy.

The evaluation confirmed that the proposed calibration models meet the DQO estimative
level for all measured parameters, and the RF model achieved this threshold more rapidly than
the MLR approach. Although both techniques achieved indicative level accuracy for PMx and
CO, RF models proved more effective for O3, NO, NO2, and SO2. The models for NO2, NO,
and SO2 did not reach indicative levels during validation, but their accuracy improved at higher
pollutant concentrations, suggesting their suitability for monitoring industrial environments.

To further validate the platform, a colocation study was conducted in which five units
were deployed alongside a reference station in Petrosani for a one-month period (6 January
2021 - 2 February 2021). The results confirmed that the platform functions as a reliable
indicative monitoring tool for PM and CO, particularly in urban settings. For other pollutants,
its accuracy is enhanced in industrial regions with higher concentrations of pollutants, where
reduced uncertainty improves measurement reliability.

In Chapter 5, we evaluate the feasibility of transferring calibration models to newly deployed
AQM units. The primary objective is to determine whether it is possible to bypass traditional
calibration procedures while preserving measurement accuracy, thus reducing the time and cost
of individual unit calibration.

To validate this approach, two additional colocation campaigns were conducted in collaboration
with the Norwegian Institute for Air Research (NILU). These campaigns included laboratory
and field measurements in different seasons. Laboratory calibration presents new challenges, as
it requires controlled environmental chambers and precisely prepared gas mixtures, increasing
complexity and costs. In contrast, colocation calibration provides a more practical and scalable
alternative by colocating low-cost devices with reference monitoring stations. These stations,
equipped with high-precision sensors, offer a reliable benchmark for calibrating low-cost AQM
devices, ensuring consistency of performance in diverse environmental conditions.

Recalibration on new datasets collected in laboratory experiments confirmed the effectiveness
of this calibration for the proposed devices. However, while the results met the indicative DQO
level, laboratory calibration did not fully account for environmental variability. In particular,
colocation based calibration exhibited reduced accuracy at lower concentration levels typically
observed in outdoor environments, highlighting the limitations of in-lab calibration when applied
to real-world conditions.

Model transferability plays a crucial role in reducing the costs and effort required to calibrate
newly deployed devices. Although the initial deployment of an AQM network requires a critical
mass of calibrated units, the transfer of models between devices improves long-term scalability
and operational efficiency. Two transfer scenarios were examined:

• Scenario 1: Transfer of calibration models trained in a controlled laboratory environment.
• Scenario 2: Transfer of models trained on collocation data under real-world conditions.
These scenarios provide a comprehensive framework for assessing model transferability

under both controlled and real-world conditions. The first scenario explores the potential of
using laboratory-trained models for device calibration, while the second scenario demonstrates
the effectiveness of leveraging collocation-trained models for improved accuracy in real-world
applications.

As expected, model transferability results in a trade-off between accuracy and error. The
direct application of laboratory-trained models produced unreliable results, with negative r2
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values and high errors, highlighting the need for greater environmental variability in training
datasets. In contrast, models transferred from the colocation based calibration exhibited
significantly better performance.

In general, the findings indicate that the calibration models trained and validated on the
same device consistently outperform the transferred models. Although certain pollutants, such
as PM10 and PM2.5, retain acceptable accuracy after model transfer, volatile gases such as NO
and SO2 experience substantial performance degradation. This highlights the sensitivity of
calibration models to changes in environmental conditions and sensor-specific factors, reinforcing
the necessity of recalibration or domain-specific adaptation for effective deployment in large-scale
AQM networks.

In Chapter 6, we introduce an algorithm for calibrating low-cost sensors using an on-the-fly
approach. Our methodology categorizes the monitoring stations into three levels:

• Reference stations: High-precision monitoring stations used for calibration.
• IoT devices: Fixed or mobile units equipped with more accurate sensors, deployed in

public transportation or stationary locations.
• Wearable devices: Portable air quality monitors carried by individuals, which dynamically

interact with IoT devices and reference stations.
We evaluated this framework at the city level, demonstrating its potential to enhance

large-scale AQM. To support this approach, we developed compact and energy efficient wearable
devices capable of continuous monitoring for up to 16 hours. These devices balance accuracy and
power efficiency, making them suitable for real-world deployment and integration with proposed
calibration models.

Given that only an initial calibration is insufficient to maintain measurement accuracy over
time, we implemented an autocalibration mechanism. This mechanism ensures that wearable
devices adapt to changing environmental conditions, while maintaining dynamic calibration
performance. Our on-the-fly calibration method follows a three-step process designed for
flexibility and adaptability. The key contributions of this work include improving calibration
models for low-cost sensors and testing a mechanism for real-time model updates. By enabling
the transfer of calibration models between devices, this approach aims to provide consistent and
reliable air quality measurements in various deployment scenarios.

One of the main challenges in model transfer is the accumulation of noise over time, which
requires frequent recalibration. To mitigate this, our methodology strictly enforces the calibration
hierarchy rules.

• Wearable devices (Level 3) are not calibrated in colocation with other wearable devices,
even if they have recently been calibrated.

• IoT devices (Level 2) are calibrated using data from reference stations or other calibrated
IoT devices with a high trustworthiness factor.

To assess the feasibility of this methodology, we conducted experiments using one wearable
device equipped with the smallest electrochemical sensors available. To our knowledge, we are
the first to successfully propose calibration models for these sensors. The calibration models
introduced in Chapter 4 were applied to the datasets collected with this wearable device, and
the performance of the algorithm was evaluated. The initial results demonstrated that our
approach could achieve an estimative DQO level, validating the effectiveness of the training
phase. Subsequently, we proposed an autocalibration algorithm incorporating vicinity principles,
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device hierarchy, and a newly introduced trustworthiness factor. A real-world test scenario was
designed to evaluate the feasibility of this method.

The results highlight both the potential and challenges of autocalibration for low-cost air
quality sensors. RF models significantly outperformed traditional MLR models, improving the
accuracy of the calibration. For CO and PMx, autocalibration algorithms demonstrated high r2

values and low error metrics in controlled testing scenarios. However, performance degradation
was observed when applied to unseen data, as indicated by decreasing r2 values and increased
RMSE in the new results of the RF model. These findings suggest that, while autocalibration can
achieve reasonable accuracy under controlled conditions, real-world reliability remains influenced
by environmental variability.

A conclusive assessment of autocalibration algorithms suggests that they offer estimation
measurements and reduce the dependence on manual calibration. However, achieving reliable
and scalable solutions for AQM remains a challenge. For pollutants such as SO2 and O3,
where the accuracy of the calibration was consistently low, improved training datasets and
pollutant-specific calibration strategies are required. Additionally, while machine learning models
enhance calibration performance, hybrid approaches that integrate ML with physics-based
models or contextual data (e.g., meteorology, traffic patterns) could further improve robustness.

In Chapter 7 we explore four potential applications of the proposed AQM platform, which
integrates public AQM stations, fixed and mobile calibrated IoT devices, and wearable sensors.
The platform is designed to deliver air quality measurements at different levels of DQO, allowing
comprehensive environmental mapping within personal and urban spaces. The combination of
these devices, along with tailored calibration models and an on-the-fly calibration algorithm,
enhances the ability to dynamically monitor air pollution.

• Calibration Scheme Integration: The initial calibration models are updated in real
time based on the colocation of multiple devices over a specific period. This approach
improves the accuracy and adaptability of deployed sensors.

• Mobile Application for Air Quality Mapping: A dedicated mobile application allows
users to visualize their personal exposure to air pollution. This application can function
with or without a wearable device, aggregating data from multiple sources, including public
reference stations, meteorological data, and traffic conditions.

• Body Pollution Index (BPI): A novel index designed to quantify the health impact
of air pollution on individuals. By correlating air quality exposure with potential health
risks, BPI provides actionable insights for users to minimize exposure.

• Data Fusion for Large-Scale Air Quality Estimation: A predictive model that uses
localized sensor data to extrapolate air quality trends across urban areas. This method
integrates real-time sensor readings with external datasets to enhance spatial coverage and
prediction accuracy.

In Chapter 8, we conclude the thesis by summarizing the key contributions and outlining
potential future research directions. This research has significantly advanced AQM by improving
low-cost sensors, developing calibration techniques, and proposing innovative data visualization
methods. The results of this work pave the way for reliable, scalable, and cost-effective AQM
networks.

• Investigation of Existing Research: A thorough analysis of current AQM initiatives, sensor
calibration techniques, and data visualization strategies laid the foundation for this study.
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By consolidating insights from various research efforts, this work bridges the gap between
theoretical advances and practical implementation.

• Sensor Selection Empirical Analysis: An iterative approach was adopted to select and
evaluate sensors, ensuring a balance between cost and reliability of the data. This process
involved prototyping and testing three IoT devices and one wearable device before finalizing
the sensor list.

• Calibration Models for IoT Devices: A major challenge in the deployment of low-cost air
quality sensors is their need for frequent calibration. To address this, calibration models
were developed and validated specifically for these sensors, ensuring reliable data accuracy
across deployments.

• Reduction of Calibration Time and Cost: The transferability of proposed calibration models
significantly reduces the cost and complexity of sensor calibration, facilitating large-scale
deployment without the logistical constraints of traditional calibration methods.

• On-the-Fly Calibration for Wearable Devices: A novel real-time calibration algorithm
was developed to enable automated calibration of new sensors, reducing setup time and
improving scalability. This dynamic calibration approach improves sensor integration into
urban and rural monitoring networks.

• Application and Enhancement Proposals: To complement sensor and calibration advancements,
a mobile application was developed to present air quality data in an accessible format.
This application integrates multiple features, including: Air Quality Index (AQI) for
standardized reporting, Body Pollution Index (BPI) for personalized health assessments,
and Data Fusion algorithms for enhanced spatial insight.

In addition, several promising areas for further exploration have been identified.
• Body Pollution Index: Further refinement of the BPI metric could involve integrating

physiological data such as heart rate variability and respiratory patterns of wearable
devices. In addition, correlating BPI values with long-term health outcomes may establish
its use as a predictive tool.

• Data Fusion Techniques: Advanced data fusion methods can improve spatial and temporal
AQM. Future efforts may explore the integration of diverse datasets, such as traffic
patterns, meteorological data, and satellite imagery. Methods such as federated learning
and graph-based models could be employed for robust data fusion.

• Sensor Degradation Over Time: Predictive maintenance models using machine learning
could detect early signs of sensor drift or failure. Research on environmental impacts on
sensor longevity, automatic recalibration mechanisms, and material advancements could
enhance sensor durability and reduce operational costs.

• Edge-Based Sensor Calibration: Implementing real-time calibration directly on IoT and
wearable devices using edge computing could reduce the reliance on centralized models.
Future work could explore lightweight machine learning algorithms for device calibration,
distributed edge architectures for collaborative model refinement, and security measures
to prevent data manipulation.
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