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Analysis of the Swirling Flow
Downstream a Francis
Turbine Runner
An experimental and theoretical investigation of the flow at the outlet of a Francis
turbine runner is carried out in order to elucidate the causes of a sudden drop in the draft
tube pressure recovery coefficient at a discharge near the best efficiency operating point.
Laser Doppler anemometry velocity measurements were performed for both axial and
circumferential velocity components at the runner outlet. A suitable analytical represen-
tation of the swirling flow has been developed taking the discharge coefficient as inde-
pendent variable. It is found that the investigated mean swirling flow can be accurately
represented as a superposition of three distinct vortices. An eigenvalue analysis of the
linearized equation for steady, axisymmetric, and inviscid swirling flow reveals that the
swirl reaches a critical state precisely (within 1.3%) at the discharge where the sudden
variation in draft tube pressure recovery is observed. This is very useful for turbine
design and optimization, where a suitable runner geometry should avoid such critical
swirl configuration within the normal operating range. �DOI: 10.1115/1.2137341�
1 Introduction
Swirling flow behavior in various technical applications has

long been an intensive subject of research. Usually swirl effects
are seen as either the desired result of design or unavoidable,
possibly unforseen, side effects �1�. However, the hydraulic tur-
bine draft tube on one hand benefits from the swirl at the runner
outlet in order to mitigate flow detachment in the cone, but on the
other hand suffers from the flow instabilities leading to pressure
fluctuations and ultimately to the draft tube surge.

The draft tube of a hydraulic turbine is the machine component
where the flow exiting the runner is decelerated, thereby convert-
ing the excess of kinetic energy into static pressure. In the case of
machine rehabilitation of an existing power plant, mostly only the
runner and the guide vanes are currently modified. For economical
and safety reasons, the spiral casing and the draft tube are seldom
redesigned, even if these components present some undesirable
behavior. However, the installation of an upgraded runner requires
a reliable prediction of the flow in a compact draft tube in order to
avoid the peculiar and undesirable efficiency curve from Fig. 1.
The efficiency drop as the discharge is increased above the best
efficiency point value is found to be related to a corresponding
sudden variation in the draft tube pressure recovery coefficient at
the same discharge. It is this phenomenon we address in this pa-
per.

The obvious practical importance of predicting the complex
flow downstream the turbine runner, in the draft tube, led to the
FLINDT research project of Flow Investigation in Draft Tubes
�2�. The main objective of this project was to investigate the flow
in hydraulic turbines draft tubes, for a better understanding of the
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physics of these flows and to build up an extensive experimental
data base describing a wide range of operating points which can
provide a firm basis for the assessment of the CFD engineering
practice in this component. The extensive experimental investiga-
tion of the draft tube flow has been complemented with three-
dimensional numerical flow simulations �3,4� aimed at elucidating
the swirling flow evolution up to the turbine outlet as well as the
phenomena that led to the peculiar sudden drop in the turbine
efficiency.

Other investigations have been mainly focused on the ability of
the CFD tools to accurately reproduce the complex three-
dimensional velocity and pressure field in draft tubes for Kaplan
turbines �5,6�. One important issue addressed in these studies was
the sensitivity of numerical results to the boundary conditions,
particularly the inlet ones.

The present paper focuses on the structure of the swirl produced
by the constant pitch turbine runner and further ingested by the
draft tube. The corresponding hydrodynamic field is a direct out-
come of the runner design and the operating point. Since changing
the runner design, while keeping the same draft tube, may lead to
an unexpected sudden efficiency drop for a certain discharge, it
would be preferable that some design criteria be put forward as far
as the runner outlet swirl is concerned. The present analysis
shapes such criteria by using relative simple mathematical and
numerical tools. Of course, the complex three-dimensional and
unsteady flow in the draft tube cannot be quantitatively predicted
only by analyzing the draft tube inlet swirl. However, if the runner
outlet swirl structure displays a sudden change with respect to
appropriate criteria, and this change occurs at a discharge close to
the experimental one where the sudden drop in turbine efficiency
is observed, these criteria should be taken into account when de-
signing or redesigning the runner.

In analyzing a swirling flow one benefits from a large body of

literature on this subject. In laboratory investigations swirl was
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generated by adjustable guidevanes, by fixed vanes similar to
those employed in combustors, or by tangential inflow through a
long slit �1�. The closest setup to the hydraulic turbine case seems
to be the adjustable radial guidevane apparatus, which has been
largely used for more than 50 years to investigate, both experi-
mentally and numerically, the so-called vortex breakdown �VB�
phenomenon �7–10�. The formulas employed in these studies to fit
both axial and circumferential velocity component radial variation
are of particular relevance for our study.

Several theoretical developments have been devoted to explain
the VB. However, a general consensus over the definition of this
phenomenon has not been reached yet. For example, Benjamin
�11� considers the VB to be a finite transition between two dy-
namically conjugate states of axisymmetric flow, analogous to the
hydraulic jump in open-channel flow. A similar definition was
later adopted by Keller �12�, who argued that various authors or
even schools have conflicting views on the correct interpretation
of the physics of VB. Leibovich �13� relates VB to a disturbance
characterized by the formation of an internal stagnation point on
the vortex axis, followed by reversed flow in a region of limited
axial extent. Goldshtik and Hussain �14� consider that VB occurs
due to solution nonuniqueness in some range of inflow parameters
when the entire steady flow experiences a jump to another meta-
stable steady state with the same boundary conditions. They stress
that VB is a loss-free process and, hence, analogies with shocks or
hydraulic jumps are misleading and must be abandoned. All theo-
ries for confined swirling flows consider axisymmetric geometries
with constant or variable cross section �e.g., slowly diverging
pipes�. It is difficult to imagine that a simplified theory could be
elaborated for a swirling flow in an actual draft tube with both
cross-section shape and area variation, as well as changes in the
flow direction. However, at least for the draft tube cone where
most of the pressure recovery occurs, swirling flow theories might
provide valuable results for design evaluation and optimization.

Mauri et al. �15,3� developed and applied original techniques to
analyze the three-dimensional flow in the FLINDT draft tube.
They explain the draft tube efficiency drop from Fig. 1 by a global
instability triggered by the flow rate increase. The topological
structure of the velocity field changes abruptly with the emergence
of a saddle point and a focus in the skin friction lines pattern on
the elbow wall, leading to a global Werlé-Legendre separation that
blocks the right channel. However, there is an important question
to be answered: is this phenomenon the primary cause of the draft
tube efficiency drop or it is one of the consequences of a corre-
sponding abrupt change in the swirling flow ingested by the draft

Fig. 1 Efficiency break off obtained by increasing the dis-
charge and keeping the specific energy constant. Model test of
a Francis turbine with specific speed 0.56.
tube as the discharge increases? It is this question we address in
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this paper, by investigating the swirling flow on the draft tube
inlet section within the general framework of vortex breakdown
theories.

In Sec. 2 we briefly present the experimental setup and measur-
ing techniques used to investigate the flow in a Francis turbine
draft tube. In this paper we examine the flow on a section at the
runner outlet/draft tube inlet. Laser Doppler anemometry has been
employed to investigate the velocity components, with particular
attention paid to the data error control.

Section 3 is devoted to the analytical representation of velocity
components radial variation. A critical analysis of swirling flow
models available in literature is followed by the development of a
model particularly suited to hydraulic turbines. It is shown that a
three-vortex system accurately represents the experimental data,
and a least squares technique is employed for computing the
model parameters. Finally, the velocity profiles are parametrized
only by the discharge coefficient, thus allowing a swirl behavior
analysis as the operating point changes continuously.

The nonlinear Long-Squire equation is used in Sec. 4 as a math-
ematical model for the swirling flow at the draft tube inlet. The
finite element method is employed to solve the corresponding
boundary value problem for the stream function.

The solution behavior is examined in Sec. 5 using the linearized
operator spectrum analysis. It was found that the critical state of
the swirl configuration, defined by Benjamin �11�, is in good
agreement with the abrupt change experimentally observed in the
draft tube pressure recovery coefficient.

The paper conclusions are summarized in Sec. 6.

2 Experimental Investigation of the Velocity Field on
the Draft Tube Inlet

The FLINDT project �2� experimental investigations were car-
ried out on a Francis turbine scaled model of specific speed 0.56
�Fig. 2�. The turbine model has a spiral casing of double curvature
type with a stay ring of 10 stay vanes, a distributor made of 20
guide vanes, a 17-blade runner of a 0.4 m outlet diameter, and a
symmetric elbow draft tube with one pier. The global measure-
ments for flow rate, head, and efficiency were performed accord-
ing to the IEC 60193 International Standard �16�.

The experimental data used in this paper were obtained with a
two-component probe Laser Doppler Anemometer �LDA�, using
back-scattered light and transmission by optical fiber, with a laser
of 5 W argon-ion source. The main characteristics of the optical

Fig. 2 Sketch of the Francis turbine model and LDA setup for
the flow survey section at runner outlet-draft tube inlet
system are laser wave lengths 488/514.5 nm, probe diameter
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60 mm, beam spacing probe with beam expander 73.3 mm, focal
length 1000 mm, fringe spacing �5.3 nm, and measuring volume
�x=�y �0.2 mm, �z�6 mm.

Spherical silver-coated glass particles are introduced in the test
rig flow. These particles are hollowed in order to match the water
density and are able to follow flow fluctuations frequency up to
5 kHz �17�. The mean diameter of these particles is 10 �m.

In order to control the position of the measurement volume, a
ray tracing technique is used for calculating direct and inverse
light paths of laser beams through the different media �air, win-
dow, water�. An optical window with plane and parallel faces is
used as an interface. The measuring point geometrical location is
controlled within a 0.05 mm accuracy. Both axial and circumfer-
ential components of the velocity are measured. The uncertainties
of the velocity measurements are estimated to be 2% of the mea-
sured value �18�.

The global “efficiency” of the draft tube is quantified using the
static pressure recovery coefficient, defined as

� =
�p/� + gz�out − �p/� + gz�ref

Q2/2Aref
2 . �1�

Figure 3 presents isolines of the pressure recovery coefficient in
discharge coefficient-energy coefficient coordinates. The operat-
ing points further referenced in this paper, where full velocity
measurements are performed on the survey section from Fig. 2,
are also marked. The turbine efficiency break-off, Fig. 1, is found
to be produced by a corresponding drop in the draft tube pressure
recovery. This phenomenon occurs practically at the same dis-
charge value for a specific energy coefficient lower than 1.30.

Throughout this paper the velocity is made dimensionless by
the runner angular speed�runner outlet radius, and lengths are
made dimensionless with respect to the runner outlet radius Rref
�Fig. 2�.

In order to assess the Reynolds number influence on the veloc-
ity field at the runner outlet, the same operating point �discharge
coefficient, specific energy coefficient� has been investigated for
two runner rotational speed values, 500 and 1000 rpm, respec-
tively. The data for dimensionless axial and circumferential veloc-
ity components corresponding to the same operating point in Fig.
3 but at two runner rotational speeds are plotted in Fig. 4. Accord-
ing to the IEC 60193 Standard �16�, the characteristic Reynolds

2

Fig. 3 Pressure recovery isolines „thick lines… for the draft
tube investigated in the FLINDT project. The turbine operating
points „discharge coefficient-specific energy coefficient… are
shown with filled circles.
number Re of the turbine is defined as Re=UD /�=�nD /60�.
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The corresponding Reynolds number of the reduced scale model
is changed from 4.2�106 �at n=500 rpm� to 8.4�106 �at n
=1000 rpm� without any significant variation in the dimensionless
velocity profiles. Moreover, the axial and circumferential velocity
profiles measured at the same discharge coefficient value are not
sensitive to specific energy coefficient changes within the investi-
gated range 1.0–1.3, as one can observe Fig. 5. This led us to the
conclusion that the only relevant parameter for the investigation
further presented in this paper is the turbine discharge coefficient.

3 Analytical Representation of Axial and Circumfer-
ential Velocity Profiles

Several swirling flow models have been considered in the lit-
erature to study either the vortex stability or the vortex break-
down. We briefly review these models in order to develop a suit-
able representation for the swirl at the Francis runner outlet.
Historically, vortex flow have been first studied in unbounded
media and as a result the velocity circulation at very large distance
from the vortex axis was naturally chosen as a vortex parameter.
Since we are dealing with confined vortices, it is convenient to use
the angular velocity at the vortex axis, �. A second parameter is a
characteristic vortex radius R which measures the vortex core ra-
dial extent. These two parameters define the Rankine vortex cir-
cumferential velocity,

w�r� = ��R2

r
for r 	 R ,

�r for r 
 R
� , �2�

where r is the radial distance from the vortex axis. This simplified
model provides a continuous function for w�r�, but the derivative
is discontinuous. A rigorous theoretical foundation is provided for
the Burgers vortex �also known as the Lamb vortex�, which gives

Fig. 4 Reynolds number influence on the dimensionless ve-
locity profiles at operating point with discharge coefficient
0.368 and energy coefficient 1.18
the circumferential velocity profile as
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w�r� =
�R2

r
�1 − exp	−

r2

R2
� . �3�

Formula �3� is an exact solution for a viscous vortex produced by
radial inflow and axial outflow where the conditions at large radial
distance are irrotational. The relationship between Rankine vortex
�2� and Burgers vortex �3� models can be easily seen from Fig. 6.
If we take the limit for r�R in �3� we get �r, while for r�R we
obtain �R2 /r. In conclusion, the Rankine vortex represents the
asymptotic behavior of the Burgers vortex for large and small
radius with respect to the vortex core extent R.

Fig. 5 Specific energy coefficient influence on the dimension-
less velocity profiles at operating points with discharge coeffi-
cient 0.368

Fig. 6 Circumferential velocity profile for Rankine and Bur-

gers vortex models, respectively
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Both the above models consider a uniform axial velocity. It was
Batchelor �19� who pointed out that a radial variation in circum-
ferential velocity must be accompanied by a variation in the axial
velocity. He showed that in the case of a trailing vortex from one
side of a wing in an infinite body of fluid all streamlines originate
in a region where the pressure is uniform and the fluid velocity is
uniform with only an axial component U0. When a Rankine vor-
tex circumferential velocity �2� is induced by viscous effects in
the boundary layer of the wing, the axial velocity inside the vortex
core increases as

u = �U0 for r 	 R ,

U0
2 + 2�2�R2 − r2� for r 
 R ,

� �4�

Applying the same considerations for the Burgers vortex �3�, we
obtain

u2 = U0
2 +�

r


1

r2

�K2

�r
dr = U0

2 + 2�2R2�Ei1	 r2

R2
 − Ei1	2
r2

R2
� ,

where K�rw is �2��−1 times the circulation around a symmetri-
cally placed circle and Ei1 is the exponential integral of order one.
On the axis the axial velocity is U0

2+2 ln�2��2R2, which is
smaller than the corresponding value for the Rankine vortex
U0

2+2�2R2.
Faller and Leibovich �8� have used the following axial velocity

functional form to fit their experimental data for a radial guide-
vane swirl generator,

u�r� = U0 + U1 exp	−
r2

R2
 , �5�

where U1 is the difference between the axial velocity on the axis
and the axial velocity far away from the axis, U0. Note that when
using �5� together with �3� the vortex core radius R is the same.
When R�r, Eq. �3� becomes u�r���r since limx→0�1
−exp�−x2�� /x2=1, and Eq. �5� becomes u�r��U0+U1=const.

It was specifically stated in �8� that no theoretical justification
for �5� is available. Indeed, in comparison with the axial velocity
profile obtained, according to Batchelor, within the constant total
head hypothesis

u�r�
U0

=1 + 2	�R

U0

2�Ei1	 r2

R2
 − Ei1	2
r2

R2
� , �6a�

the functional form �5� rewritten to have the same axial velocity

u�r�
U0

= 1 + �− 1 +1 + 2 ln�2�	�R

U0

2�exp	−

r2

R2
 , �6b�

seems to be completely different. However, one can easily con-
clude from Fig. 7 that �6b� is a rather good approximation for
�6a�. Obviously, �6b� or the more general form �5� is more con-
venient for analytical manipulation.

A more rigorous justification for �5� is attempted by Alekseenko
et al. �20� who consider swirling flows with helical symmetry, i.e.,
the flow characteristics conserve their values along helical lines of
pitch 2�l. For axisymmetrical �columnar� helical vortices with a
circumferential velocity as in �3� they obtain the axial velocity
profile of the form

u�r� = Uaxis −
�R2

l
�1 − exp	−

r2

R2
� , �7�

where Uaxis�U0+U1. One can identify from �7� the characteristic
velocity U1=�R2 / l, and eventually use the length l= �2��−1

�pitch instead of U1 as a free parameter.
So far we have considered only an elementary vortex represen-

tation. However, the experimental data display a more complex
structure which should be modeled by a combination of simple
vortices. There are two possibilities to consider such combina-

tions. One idea put forward by Alekseenko et al. �20� is to con-
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sider nonoverlapping regions along the radius, with piecewise
continuous vorticity distribution. The resulting velocity profiles
�both axial and circumferential� are made continuous by a proper
choice of the integration constants. Another idea was put forward
by Mattner et al. �9� who considered a sum of elementary velocity
profiles for both axial and circumferential components. Essentially
this second approach becomes equivalent to the first one if the
vortices are well separated, i.e., the characteristic radii are well
distinct one from each other.

In order to build a suitable vortex combination we should first
consider a base flow. Using the dimensionless velocity compo-
nents u and w, as well as the dimensionless runner tangential
velocity, which coincides with the dimensionless radius r accord-
ing to Sec. 2, the relative flow angle is

� = arctan
u

r − w
. �8�

Since the swirling flow examined in this paper is produced by a
constant pitch Francis turbine runner, the relative flow angle
should be consistent with an approximation corresponding to a
solid body rotation, w=�0r and u=U0. Indeed, the relative flow
angle computed from the experimental data for circumferential
and axial velocity can be reasonably fitted with �
=arctan�const/r�, as shown in Fig. 8. However, a solid body ro-
tation is a rather crude approximation of the actual velocity pro-
files. Figures 4 and 5 suggest that two Batchelor vortices, one
co-rotating and the other counter-rotating with respect to w=�0r,
and co-flowing/counter-flowing with respect to u=U0, respec-
tively, should be superimposed for consistency with experimental
data for circumferential and axial velocity profiles:

w�r� = �0r + �1
R1

2

r
�1 − exp	−

r2

R1
2
� + �2

R2
2

r
�1 − exp	−

r2

R2
2
� ,

�9a�

u�r� = U0 + U1 exp	−
r2

R1
2
 + U2 exp	−

r2

R2
2
 . �9b�

If R0 is the dimensionless survey section radius, then the discharge
coefficient can be obtained by integrating the axial velocity profile

Fig. 7 Axial velocity profiles computed with „6a…—solid lines
and „6b…—dashed lines, respectively, for several values of the
dimensionless parameter aÆ�R /U0
�9b�,
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� = U0R0
2 + U1R1

2�1 − exp	−
R0

2

R1
2
� + U2R2

2�1 − exp	−
R0

2

R2
2
� .

�10�

The functional forms �9� have an eight-parameter set �
��R1 ,R2 ,�0 ,�1 ,�2 ,U0 ,U1 ,U2� to be determined by fitting the
experimental data. For each operating point under consideration,
with a set of experimental data �rj ,uj ,wj�j=1, . . . ,N, the error
vector e���= �ek����, k=1,2 , . . . ,2N is defined as

ek��� = �u�rk,�� − uk for k = 1,2, . . . ,N ,

w�rk−N,�� − wk−N for k = N + 1, . . . ,2N .
� . �11�

The error vector includes both axial and circumferential velocity
data since the vortex core radii R1 and R2 correspond to both
velocity components. The parameter set is found by minimizing
�k=1

2N �ek����2, leading to a least squares estimate of �. Let �c be
the current estimate of �. A new estimate is given by �c+�c

*,
where �c

* is a solution to

�JT��c�J��c� + �cI��c
* = JT��c�e��c� . �12�

Here J��c� is the Jacobian �2N��8 matrix evaluated analytically
at �c. The iterative algorithm uses a “trust region” approach with
a step bound of �c. A solution of Eqs. �12� is first obtained for
�c=0. If ��c

*�2
�c this update is accepted. Otherwise, �c is set to
a positive value and another solution is obtained.

Swirl parameters found by fitting formulas �9� to experimental
data for 17 operating points are listed in Table 1. The last two
columns contain the values of the discharge coefficient � com-
puted with �10�, and the corresponding relative error with respect
to the measured value shown in the first column. This error is a
good indicator for the accuracy of the fit, as well as for the mea-
surements overall accuracy. We conclude that �9b� is a very good
representation for the axial velocity at the runner outlet and the
superposition of three vortices in �9a� accurately represents the
experimental data for the circumferential velocity over the whole
discharge range under investigation.

Figures 9–14 display the data as well as the curves fitted with
�9� for the first six points in Table 1. These operating points cover
the investigated discharge domain at a constant head correspond-
ing to the turbine best efficiency operating point. The quality of
the fit can be assessed by observing that most of the time the

Fig. 8 Relative flow angle computed from the experimental
data for axial and circumferential velocity components on the
survey section. The solid curve is a least squares fit consider-
ing a rigid body rotation for the circumferential velocity and a
constant axial velocity.
curves approach the experimental points within the measurement
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errors of 2%. The wall boundary layer is not correctly reproduced
since the swirling flow model �9� was specifically built for an
inviscid flow analysis.

A main goal of this paper is to find a suitable parametric rep-
resentation for the swirling flow at the Francis runner outlet. Fig-
ure 15 shows the variation of vortex characteristic angular veloci-
ties with respect to �. Linear least squares fits accurately represent
�0��� and �1���, while for �2��� a parabolic fit seems to be
quite satisfactory. Moreover, one should note that �0 is almost
constant over the investigated operating range. The variation of
vortex characteristic axial velocities with respect to � is shown in

Table 1 Swirl parameters from Eq

Operating point Sw

Discharge
coefficient

Energy
coefficient

Speed
�rpm� �0 �1 �2

0.340 1.18 1000 0.31765 −0.62888 2.2545 0.3
0.360 1.18 1000 0.26675 −0.79994 3.3512 0.3
0.368 1.18 1000 0.27113 −0.80310 3.4960 0.3
0.380 1.18 1000 0.27536 −0.81730 3.5187 0.3
0.390 1.18 1000 0.27419 −0.86579 3.2687 0.3
0.410 1.18 1000 0.28802 −0.96687 1.4590 0.3
0.368 1.00 1000 0.27710 −0.77440 3.3913 0.3
0.380 1.00 1000 0.26726 −0.83772 3.1082 0.3
0.370 1.11 1000 0.28119 −0.77668 3.5520 0.3
0.368 1.30 1000 0.29078 −0.79348 3.4239 0.3
0.380 1.30 1000 0.27618 −0.85846 3.2696 0.3
0.410 1.30 1000 0.27670 −0.96571 2.2165 0.3
0.370 1.11 500 0.27854 −0.77371 3.4491 0.3
0.340 1.18 500 0.29630 −0.67299 2.7487 0.3
0.368 1.18 500 0.27151 −0.78970 3.5902 0.3
0.380 1.18 500 0.27659 −0.79568 3.3111 0.3
0.410 1.18 500 0.28624 −0.93559 0.76010 0.3

Fig. 9 Axial and circumferential velocity profiles at discharge

�=0.340
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Fig. 16, together with the corresponding linear fits. Finally, Fig.
17 displays the dependence of the vortex core radii on �. A first
conclusion from Figs. 15–17 is that swirl parameters in �9� have a
smooth, generally linear, variation in � over the investigated
range. As a result, one obtains the velocity components as C

functionals w�r ,�� and u�r ,��, further employed in a parametric
study of the flow stability or other properties.

According to the qualitative picture of the three vortex system
presented in Table 2, Vortex 0 is a rigid body rotation with angular
speed �0 and we can associate with it a constant axial velocity
U0. Vortex 1, which has a vortex core extent about half the wall
radius, is counter-rotating and co-flowing with respect to vortex 0.
The strength of this vortex, both in �1 as well as in U1 is growing

„9… for 17 turbine operating points

parameters Discharge coefficient

U1 U2 R1 R2

Computed
Eq. �10� Error

7 0.01056 −0.31889 0.46643 0.13051 0.344 +1.1%
1 0.07324 −0.29672 0.36339 0.09304 0.363 +0.8%
1 0.08710 −0.27350 0.37291 0.08305 0.372 +1.0%
7 0.10618 −0.23545 0.38125 0.07188 0.381 +0.2%
6 0.12677 −0.19061 0.37819 0.06502 0.389 −0.2%
3 0.19121 −0.09215 0.39108 0.05012 0.409 −0.3%
4 0.08107 −0.24619 0.38128 0.08289 0.368 +0.1%
2 0.11387 −0.19284 0.35948 0.07312 0.380 +0.1%
1 0.08308 −0.25254 0.38947 0.07904 0.369 −0.1%
9 0.10086 −0.25499 0.39536 0.07939 0.371 +0.8%
1 0.12280 −0.19933 0.37413 0.06734 0.386 +1.5%
6 0.17829 −0.10984 0.37930 0.05021 0.407 −0.6%
5 0.09058 −0.21118 0.38535 0.07827 0.370 +0.1%
9 0.02987 −0.32612 0.41942 0.11679 0.345 +1.6%
7 0.09131 −0.22465 0.37450 0.07914 0.369 +0.2%
5 0.11063 −0.17502 0.38765 0.07002 0.379 −0.3%
3 0.19587 −0.06119 0.39588 0.05147 0.406 −0.9%

Fig. 10 Axial and circumferential velocity profiles at discharge
s.
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as the flow rate increases. Vortex 2 has a core at least four times
smaller than vortex 1, is co-rotating and counter-flowing with re-
spect to vortex 0, and its strength increases as the flow rate de-
creases. Note that as the flow rate increases �eventually beyond
the upper limit in our investigation� vortex 2 will vanish. These
two Batchelor vortices are mainly responsible for the swirling

Fig. 11 Axial and circumferential velocity profiles at discharge
�=0.368

Fig. 12 Axial and circumferential velocity profiles at discharge

�=0.380
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flow behavior. For � smaller than the design value a wake-like
axial velocity is developed �Fig. 9� while for larger � the axial
velocity has a jetlike profile �Fig. 14�.

4 Swirling Flow Mathematical Model and Numerical
Approach

Theoretical analysis of swirling flows can employ tools ranging
from simplified axisymmetric, inviscid steady �11� or unsteady

Fig. 13 Axial and circumferential velocity profiles at discharge
�=0.390

Fig. 14 Axial and circumferential velocity profiles at discharge

�=0.410
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�21� flow models to full 3D laminar �10� or turbulent �22� numeri-
cal simulation. However, it is useful to first examine the swirling
flow at the draft tube inlet before performing an analysis of the
flow in the straight cone or even in the whole 3D geometry. Such
results may be quite useful if there is a correlation �even qualita-
tive� with the overall draft tube behavior over a certain range of
discharge variation.

If we restrict for now our analysis only for the runner outlet
section, several simplifications must be admitted, and the results
must be interpreted accordingly. We consider a steady mean flow
with axial and circumferential velocity profiles derived from ex-
perimental data in Sec. 3. An inviscid incompressible fluid is con-
sidered, since our swirling flow representation does not account
for the boundary layer near the wall.

The cylindrical flow assumption may not seem appropriate for
the flow in the draft tube cone shown in Fig. 2, since it is known
that the diverging pipe geometry precipitates the formation of
breakdown by creating an adverse pressure gradient along the
vortex axis. Shtern and Hussain �23� show that the nonparallel
character of jets strongly affects their stability. Flow deceleration
significantly enhances the shear-layer instability for both swirl-
free and swirling jets. Buntine and Saffman �24� study a diverging
flow using the steady axisymmetric Euler flow model. They show

Fig. 15 Characteristic angular velocities �0, �1, and �2 ver-
sus discharge coefficient �

Fig. 16 Characteristic axial velocities U0, U1, and U2 versus

discharge coefficient �
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that solutions fail to exist or, alternatively, that flow ceases to be
unidirectional, so that the breakdown can be inferred, when a
parameter measuring the relative magnitude of rotation and axial
flow exceeds critical values depending upon geometry and inlet
profiles. However, for slightly diverging duct of angles less than
2°, Tsai �25� shows that the flow can be considered locally parallel
for the flow stability analysis. This parallel flow assumption is not
quite restrictive even for the 8.5° cone angle considered in this
study. The diffusion process takes place only close to the wall,
leading to a thin 3D boundary layer, as it can be seen from the
measured velocity distribution �Figs. 4 and 5�. Therefore, by ne-
glecting the retarding influence of the wall, we can assume that
the bulk flow is parallel. As far as the mean flow is concerned, the
radial velocity is one order of magnitude smaller than the axial
velocity since v /u
 tan 8.5° �0.15.

Within these assumptions, the mathematical model to be con-
sidered here corresponds to the theory of finite transitions between
frictionless cylindrical flows originally developed by Benjamin
�11�. The equation of continuity for axisymmetric incompressible
flows is automatically satisfied by introducing the streamfunction
��z ,r� such that the axial and radial velocity components can be
written as

u =
1

r

��

�r
and v = −

1

r

��

�z
. �13�

When applied to a circuit around a particular stream-surface �
=const Kelvin’s theorem shows rw to be a constant. Thus in gen-
eral rw�K���, where K is a function of � alone. Also, on a
streamsurface the total specific energy H= p /�+ �u2+v2+w2� /2 is
constant by Bernoulli’s theorem, thus H is a function of � alone.
The momentum equation for the steady, axisymmetric swirling
flow becomes

1

r2	 �2�

�z2 +
�2�

�r2 −
1

r

��

�r

 = H���� −

K���K����
r2 , �14�

which is known in literature as the Long-Squire or Bragg-
Hawthorne equation. Goldshtik and Hussain �14� noted that, in
fact, Eq. �14� was derived much earlier by Meissel �in 1873�. The
prime denotes differentiation with respect to �. By introducing the
new variable y=r2 /2 Eq. �14� can be rewritten as

�2�

�y2 +
1

2y

�2�

�z2 = H���� −
K���K����

2y
. �15�

If we substitute Y1=R1
2 /2 and Y2=R2

2 /2 the axial velocity profile

Fig. 17 Vortex core radii R1 and R2 versus discharge coeffi-
cient �
�9b� can be written as
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u�y� = U0 + U1 exp�− y/Y1� + U2 exp�− y/Y2� . �16�

Since from �13� u=�� /�y, the streamfunction for the above ve-
locity profile is

��y� = U0y + U1Y1�1 − exp�− y/Y1�� + U2Y2�1 − exp�− y/Y2�� ,

�17�

where without loss of generality we have considered �=0 on the
symmetry axis.

The discharge coefficient � from Eq. �10� can be rewritten as

� = 2U0Y0 + 2U1Y1�1 − exp�− Y0/Y1�� + 2U2Y2�1 − exp�− Y0/Y2�� ,

�18�

where Y0=R0
2 /2. As a result, at the wall we have �wall���Y0�

=� /2.
For a mean flow with negligible radial velocity, the right-hand

side in Eq. �15� is simply du /dy,

H���� −
K���K����

2y
ª � ——→

Eq. 17

y → −
U1

Y1
exp	−

y

Y1



−
U2

Y2
exp	−

y

Y2

 .

The map �→y has to be computed numerically, for example
using the Newton iterative method,

y�m+1� = y�m� +
� − ��y�m��

u�y�m��
, with initial guess y�0� = Y0

�

�/2
,

where m denotes the iteration index. Note that due to the nonlin-
earity of this map, the solution of Eq. �15� with boundary condi-
tions ��0�=0 and ��Y0�=� /2 may be nonunique. To investigate
this feature let us consider the streamfunction in �15� of the form

��z,r� = ��y� + ��̃�y�exp�i�z� , �19�

where ��y� is the base flow given by �17�, �̃�y� is a perturbation
of the base flow �Fig. 18�, and � is the axial wave number of this
perturbation.

Introducing �19� in Eq. �15� one obtains the linearized equation

d2�̃

dy2 − 	H���� −
K�2��� + K���K����

2y

�̃ =

�2

2y
�̃ . �20a�

Of course, in order to preserve the flow rate the perturbation must
satisfy homogeneous boundary conditions

�̃�0� = �̃�Y0� = 0. �20b�

Equations �20� define a generalized eigenvalue problem. The ei-
genvalues �2 can be computed numerically once the problem is
discretized. The expression inside square brackets on the left-hand
side can be easily evaluated once an analytical swirl representa-
tion is available:

C�y� � H���� −
K�2��� + K���K����

2y
=

1

u

d2u

dy2 −
K

2y2u2

dK

dy
.

Table 2 Swirli

Vortex 0

Circumferential
velocity

rigid body rotation

Axial velocity constant
Vortex core
radius

—

�21�
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If we consider a grid y0=0,y1 , . . . ,y1 , . . . ,yN ,yN+1=Y0 and a

piecewise linear approximation of the solution �̃�y��� j�̃ jNj�y�,
the finite element discretization of problem �20� can be written in
matrix form as

A�̃ = �2B�̃ , �22a�

where �̃ is the nodal values vector, and

Aij = −� dNi�y�
dy

dNj�y�
dy

dy −� Ni�y�C�y�Nj�y�dy ,

�22b�

Bij =� Ni�y�Nj�y�
2y

dy

are N�N tridiagonal symmetric matrices. Obviously the matrix
entries in �22b� are evaluated only for the N interior nodes, due to
the homogeneous Dirichlet conditions �20b�. The GVCSP proce-
dure from the International Math and Statistics Libraries �IMSL�
�26� is used here to compute all of the eigenvalues and eigenvec-
tors of the generalized real symmetric eigenvalue problem �22a�,
with B symmetric and positive definite.

Let us summarize now the swirling flow model according to the
synoptic Fig. 18. Once the analytical representation for axial and
circumferential velocity components has been established, the
mean flow streamfunction can be computed. A streamtube �

=const may be subject to axisymmetric perturbations ��̃, which
are the eigenfunctions of problem �20�. Such a perturbation can be

flow structure

Vortex 1 Vortex 2

counter-rotating co-rotating

co-flowing counter-flowing
�0.4R0 �0.1R0

Fig. 18 Synoptic view of the model for swirling flow down-
ng
stream of a Francis turbine runner
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sustained or not depending on the sign of the corresponding ei-
genvalue �2, according to the analysis to be presented in the next
section.

5 Analysis of the Swirling Flow
An important property of the swirling flows downstream a con-

stant pitch hydraulic turbine runner is that the relative flow angle
depends only on the blade exit angle provided that the flow re-
mains attached. This is certainly the case for a turbine runner
operating in the neighborhood of the best efficiency point, there-
fore we can expect that the relative flow angle remains practically
independent for the operating points of interest in this study.
Moreover, due to negligible retarding forces, the global moment
of momentum of the flow at the runner outlet should remain con-
stant in the cone. Therefore, the relative flow angle �8� should
depend only on the streamtube, i.e., on the normalized stream-
function � / �� /2� �Fig. 19�. In other words, the relative flow angle
on the survey section at runner outlet is practically constant on a
streamtube originating at the same radius on the blade trailing
edge, being determined by the blade exit angle irrespective of the
discharge. This shows the direct correlation between the runner
blade design and the kinematics of the swirl on the draft tube
inlet. Moreover, the significant changes in the circumferential and
axial velocity profiles can be associated only with the stream-
tube’s cross-section variation downstream the blade trailing edge,
as the discharge is modified.

The above considerations on the relative flow angle �8� help us
understand the striking feature that the flow rotates in some radius
range in the opposite direction to that at smaller and larger radii.
Since the relative flow angle remains constant on a streamtube, an
increase in the dimensionless axial velocity u must be accompa-
nied by an increase in the dimensionless relative circumferential
velocity r-w. In consequence, as the axial flow accelerates, i.e., a
jetlike axial velocity profile is developed when the discharge in-
creases, the corresponding absolute circumferential velocity w be-
comes negative in order to increase r-w, thus keeping u / �r-w�
practically constant in Eq. �8�.

A global quantitative description of the swirling flow is pro-
vided by the swirl number S defined as the axial flux of swirl
momentum divided by the axial flux of axial momentum ��27�,

Fig. 19 Relative flow angle on streamtubes
p. 2�,
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S =

�
0

R0

�u�rw�rdr

R0�
0

R0

��u2 + p − pR0
�rdr

, �23a�

where pR0
is the pressure at the wall. The pressure term in �23a�

can be evaluated using the equation of radial equilibrium,

�p

�r
=

�w2

r
⇒ p − pR0

= −�
r

R0 �w2

r
dr . �23b�

The swirl number computed for the swirling flow given by �9�,
with parameters from Figs. 15–17, is plotted versus the discharge
coefficient in Fig. 20. One can see that for the investigated range
of � the swirl number decreases as the discharge increases, but
nevertheless the variation is smooth.

More interesting and useful conclusions can be drawn from the
analysis of eigenvalues �2 and the corresponding eigenvectors in
�20�. If �2
0, then � is imaginary and the exponential factor in
�19� will be exp�±���z�. As we move downstream the current sec-
tion, z�0, the only physically acceptable solution corresponds to

exp�−���z�, showing an exponential damping of �̃. A swirl con-
figuration for which all eigenvalues are negative is unable to sus-
tain axisymmetric small-disturbance standing waves and it was
termed supercritical by Benjamin �11�. On the other hand, if at
least one eigenvalue �2 is positive, then the perturbation will take
the form of a standing wave exp�±i�z�, and the corresponding
flow is termed subcritical. All physical interpretations attempted
for the distinction between supercritical and subcritical states were
mainly focused at the vortex breakdown phenomena. Benjamin’s
original interpretation was that for a given distribution of H���
and K��� one possible state of flow is subcritical and the conju-
gate state is supercritical. A deduction of this theory is that, com-
pared with their conjugates, supercritical flows possess a defi-
ciency of total momentum defined as the integral of axial
momentum flux plus pressure over a cross section. This property
would imply that supercritical flows are liable to undergo sponta-
neous transitions to subcritical state. Later, this theory came under
quite heavy criticism, mostly because of its lack of explaining the
axial flow reversal associated with the vortex breakdown. For ex-
ample, Hall �28� particularly disagrees with the hydraulic jump
analogy. Leibovich �29� considers that the most serious weakness
of Benjamin’s theory is that there is no clear way to relate it to
experiments which, at high Reynolds numbers, always have un-

Fig. 20 The swirlnumber S from „23a… versus the discharge
coefficient �
steady, non-axisymmetric wakes. A decade ago Keller �12�
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pointed that various authors or even schools have conflicting
views on the correct interpretation of the physics of vortex break-
down. Moreover, in his opinion, Benjamin’s theory already con-
tained most ideas for a successful theory of axisymmetric vortex
breakdown but it was missing the definition of the total head
circulation in regions with flow reversal, i.e., beyond the upstream
interval of streamfunction values. The stagnation model emerged,
where the total head is uniform and circulation vanishes in the
domain of flow reversal, and was lately employed by Rusak et al.
�30� to examine axisymmetric vortex breakdown in a finite length
pipe. They present a comprehensive study of the Burgers vortex
behavior, using both steady and unsteady axisymmetric inviscid
flow models. Using essentially the same linearized eigenvalue
problem, they determined the critical swirl level above which the
base solution will evolve downstream to a solution that is a global
�not local� minimizer of a certain functional. The flow in the pipe
is computed explicitly, thus supporting the conclusions. However,
no attempt has been made to directly correlate the computational
results with any experimental data.

The approach we take in this paper is to examine the transition
of the swirling flow downstream a Francis turbine runner from
subcritical to supercritical as the discharge coefficient increases
and to correlate the critical state with the experimentally observed
sudden drop in the draft tube pressure recovery coefficient. A
similar approach was advocated by Goldshtik and Hussain �14�
who consider that vortex breakdown necessarily occurs when so-
lution nonuniqueness is achieved by a continuous change in flow
parameters. Moreover, we consider that valuable insight might be

gained also by examining the eigenmodes �̃ corresponding to
positive eigenvalues.

Let us examine first the main result of this paper, inferred from
Fig. 21. For ��0.365, and correspondingly smaller swirl num-
bers, all eigenvalues from �20� are negative, thus the flow is su-
percritical and cannot sustain axisymmetric standing waves. How-
ever, for �
0.365 the largest eigenvalue becomes positive,
followed by the next eigenvalues as � decreases, and the flow is
subcritical with standing waves described by the corresponding

eigenvectors �̃. The critical state occurs according to our compu-
tations at �=0.365. This discharge value is quite close �only 1.3%
smaller� to the value of �=0.37 where the sudden drop in draft
tube pressure recovery coefficient is observed. It seems reasonable
to assume that the critical state is directly related to this experi-
mentally observed phenomenon, since by trying several draft tube
geometries while keeping the same runner �and the swirling flow�
the same behavior has been observed practically at the same dis-

Fig. 21 The first four eigenvalues and the pressure recovery
coefficient function of the discharge coefficient
charge. While reaching the critical swirl configuration seems to be
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the cause, the actual physical mechanism by which the pressure
recovery suffers an abrupt change cannot be inferred from the
present analysis. Experimental �2� as well as numerical �3,4� in-
vestigations offer a comprehensive analysis of the Francis turbine
draft tube flow.

Several eigenmodes �̃�r� corresponding to the largest eigen-
value for subcritical flows are shown in Fig. 22. Since the eigen-
modes are defined up to a multiplicative constant, it makes no
sense to have marks on the vertical axis. One can easily see that as
the discharge coefficient decreases the support of the eigenmode
shrinks toward the axis neighborhood. It means that the induced
velocity perturbations, for example their real part

ũ =
d�̃

dy
cos��z� and ṽ =

��̃

2y
sin��z� ,

are confined closer to the axis as � decreases. Moreover, the rela-
tive amplitude of the perturbation increases since � gets larger
�leading to larger ṽ� and also the slope at the origin increases
�leading to larger ũ� on the axis. Although no vortex breakdown
bubble is observed in the draft tube cone, the above velocity per-
turbations can be related to the axial velocity deficit reduction
further downstream. This mechanism of reducing the “wakelike”
axial velocity nonuniformity might be responsible for the im-
provement in the draft tube overall performance as the discharge
gets smaller than the critical value. For even smaller discharge,
more eigenmodes are successively present. For example, Fig. 23
presents the first two eigenmodes at �=0.348, corresponding to
the two positive eigenvalues. While the first eigenmode is con-
fined near the axis, the second one is not, but its behavior will
follow the same pattern when further decreasing the discharge.

6 Conclusions
The present work started from the idea that the swirling flow

configuration at the outlet of a Francis turbine runner has a major
influence on the overall behavior of the flow downstream in the
draft tube.

We have investigated experimentally the velocity axial and cir-
cumferential components at the runner outlet for 17 operating
points within the turbine normal operating range. Then, a suitable
analytical representation of the velocity profiles is developed, with
the turbine discharge as an independent parameter. It is shown that
the swirling flow in the survey section can be accurately repre-
sented using a superposition of three distinct vortices: a rigid body
rotation motion, a counter-rotating and co-flowing Batchelor vor-
tex with large core radius, and a co-rotating and counter-flowing

Fig. 22 Eigenmodes corresponding to the largest „positive…
eigenvalue for subcritical swirling flows
Batchelor vortex with small vortex core. The eight parameters of
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this three-vortex system are determined by fitting the experimental
data and are shown to vary smoothly �generally linear� with the
discharge coefficient.

The flow at the runner outlet is then analyzed using the math-
ematical model for a steady, axisymmetric, and inviscid swirling
flow. Following Benjamin’s theory of finite transitions between
frictionless cylindrical flows, we have performed an eigenvalue
analysis of the linearized problem. It is shown that the swirl
reaches a critical state at discharge �=0.365. For larger discharge
the flow ingested by the draft tube is supercritical, while at lower
discharge it is subcritical. The critical state occurs quite close to
the discharge �=0.370 where a sudden variation in the draft tube
pressure recovery, as well as in the overall turbine efficiency, is
experimentally observed. For the particular turbine under investi-
gation this discharge value happens to correspond to the best ef-
ficiency point, leading to a negative impact on the turbine regula-
tion.

A qualitative correlation between the swirling flow at the draft
tube inlet and the complex flow behavior further downstream may
be inferred in conjunction with the Werlé-Legendre separation in
the bend, discovered by Mauri et al. �15�. For subcritical swirling
flow the sustained axisymmetric waves weaken the integrity of the
vortex core, thus preventing the interaction with secondary flows
in the draft tube bend. As the swirling flow reaches the critical
state, and becomes supercritical as the discharge increases, the
vortex core is no longer affected by axisymmetric perturbations,
thus being able to trigger a global Werlé-Legendre separation that
blocks the right channel of the draft tube and accelerates the flow
in the other channel. The static pressure recovery is strongly af-
fected, leading to an important loss in the overall machine effi-
ciency.

Our analysis leads to the conclusion that when designing or
optimizing turbine runners one should avoid reaching a critical
state for the swirl at the runner outlet within the normal operating
range.
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Nomenclature
Aref � reference section area

H � Bernoulli’s total head
K � circulation function
Q � turbine discharge

R0 � survey section radius
Rref � reference section radius

R1 ,R2 � vortex core radii
S � swirl number

U0 ,U1 ,U2 � vortex characteristic axial velocities
p � pressure
r � radial coordinate

u , ũ � axial velocity and its perturbation
v , ṽ � radial velocity and its perturbation

w � circumferential velocity
y � auxiliary variable
z � axial coordinate, aligned with the vertical ma-

chine axis
�0 ,�1 ,�2 � vortex characteristic angular velocities

� � relative flow angle
� � draft tube wall pressure recovery coefficient
� � wave number
� � streamfunction
� � Q /�RrefAref discharge coefficient
� � density
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a b s t r a c t

We introduce and validate a novel mathematical model for computing the radial profiles of
both axial and circumferential velocity components, respectively, of the swirling flow exit-
ing the runner of hydraulic turbines within the full operating range. We assume an incom-
pressible, inviscid, axisymmetrical, and steady swirling flow, with vanishing radial velocity
at runner outlet. First we find the correlation between the flux of moment of momentum
downstream the turbine runner and the operating regime given by turbine’s discharge and
head. Second, we express the relationship between the axial and circumferential velocity
components, corresponding to the fixed pitch runner blades, using the swirl-free velocity
instead of the traditional relative flow angle at runner outlet. It is shown that the swirl-free
velocity profile practically does not change with the operating regime. Third, we introduce
a constrained variational problem corresponding to the minimization of the flow force
while maintaining the prescribed discharge and flux of moment of momentum. This for-
mulation also accounts for a possible central stagnant region to develop when operating
the turbine far from the best efficiency point. Fourth, we show that by representing the
unknown axial velocity profile with a suitable Fourier–Bessel series, the discharge con-
straint can be automatically satisfied. The resulting numerical algorithm is robust and pro-
duces results in good agreement with available data for both axial and circumferential
velocity profiles measured on a model Francis turbine at several operating regimes. Our
mathematical model is suitable for the early optimization stages of the runner design, as
it provides the swirling flow configuration at runner outlet without actually computing
the runner. By optimizing the parameterized swirl-free velocity profile one can achieve
through the inverse design approaches the most suitable runner blades configuration at
the trailing edge.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Modern hydraulic turbines meet new challenges associated with the variable demand on the energy market as well as
limited energy storage capabilities, resulting in great flexibility required in operation. Quite often turbines tend to be oper-
ated over an extended range of regimes far from the best efficiency point. In particular, Francis turbines, which have a fixed
pitch runner, experience an abrupt decrease in efficiency and severe pressure fluctuations at off-design operating regimes. In
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Nomenclature

Notation definition
Q[m3/s], /[–] volumetric turbine discharge and dimensionless discharge coefficient
H[m], w[–] turbine head and dimensionless specific energy coefficient
g[–] hydraulic efficiency
q[kg/m3] liquid density
X[rad/s] runner angular speed
R[m], r[–] radius, dimensional and dimensionless
y[–] dimensionless radius squared
V[m/s], v[–] velocity, dimensional and dimensionless
P[Pa], p[–] pressure, dimensional and dimensionless
a[rad], b[rad] absolute and relative flow angles, respectively
M[kg m2/s3], m[–] flux of moment of momentum, dimensional and dimensionless
Index definition
ref reference section at runner outlet
sf swirl-free
z, r, h axial, radial, and circumferential, respectively
w wall
s stagnation
w reference operating regime
1, 2 upstream/downstream the runner cross-sections
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his review of confined vortices in flow machinery Escudier [1] noticed that the when hydraulic turbines operate at partial
load a high level of residual swirl in the draft tube results from a mismatch between the swirl generated by the wicket gates
(guidevanes) and the angular momentum extracted by the turbine runner. The vortex breakdown associated with this high
level swirl, and in particular helical vortex breakdown, is seen as the source of flow unsteadiness and associated pressure
fluctuations.

Evaluation of the turbine efficiency for the whole range of admissible discharge and head was, and still is, the standard
experimental investigation on model turbines in order to predict the performances of the real size machine. The resulting
efficiency ‘‘hill chart’’ usually displays a peek efficiency at the so-called ‘‘best efficiency point’’ (BEP). For the past decade,
progress in computer algorithms, software and hardware made possible the numerical prediction of the hill-chart with rea-
sonable accuracy, [2]. In addition, numerical investigation of the flow on the complete Francis turbine allows the analysis of
the hydraulic losses on (i) spiral casing, (ii) guide vanes, (iii) runner, and (iv) draft tube, respectively. As shown by Vu and
Retieb [2], the hydraulic losses in the first three segments of the turbine hydraulic passage have a rather modest variation
with the operation regime. This is mainly the result of the significant progress in turbine design over the past decades. On the
other hand, the draft tube which is the machine component where the flow exiting the runner is decelerated, thereby con-
verting the excess of kinetic energy into static pressure, displays an abrupt increase in hydraulic losses as the operating re-
gime departs from the BEP. Practically, for modern Francis turbines the shape of the hill-chart is dictated by the losses in the
draft tube. As a result it is not surprising that a lot of research efforts are devoted now to the draft tube hydrodynamics.

The FLINDT (Flow Investigation in Draft Tubes) project [3] was aimed at extensive, state of the art, experimental inves-
tigations of both velocity and pressure fields in the draft tube of hydraulic turbines. In the case of machine rehabilitation of
an existing power plant, mostly only the runner and the guide vanes are currently modified. For economical and safety rea-
sons, the spiral casing and the draft tube are seldom redesigned. However, it is still a challenge to determine the optimum
flow distribution at the runner outlet which leads to the best overall performance of the machine, including efficiency, power
output and smooth regime for an extended operating range. The swirling flow at runner outlet measured in the first phase of
the FLINDT project has been analyzed by Susan-Resiga et al. [4] who discovered that the axial and circumferential velocity
profiles can be simultaneously represented as a superposition of three vortices: (i) a rigid body rotation with constant axial
velocity, (ii) a counter-rotating Batchelor vortex with large characteristic radius, and (iii) a co-rotating Batchelor vortex with
small characteristic radius. The last vortex is associated with the wake of the runner hub (also called crown), while the other
two vortices are the direct outcome of the runner design. The stability analysis of this swirling flow [4] showed that the flow
experiences a transition from supercritical to subcritical, according to the terminology introduced by Benjamin [5], as the
discharge decreases, and this transition was shown to correspond to the discharge value where the pressure recovery in
the draft tube suffers an abrupt change. When this phenomenon occurs in the neighborhood of the BEP, as it was the case
for the Francis turbine investigated in the FLINDT project, obviously the machine operation is hindered. This sudden change
in the draft tube performance as the turbine discharge is varied was also correlated by Mauri et al. [6] with the numerically
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found Werlé-Legendre flow separation on the draft tube wall. It was clear from these investigations that the swirling flow
ingested by the draft tube is the key issue in both minimizing the draft tube losses and avoiding unexpected hydrodynamic
effects, respectively. While successful in analyzing the swirling flow at runner outlet, our approach [4], further extended for
the draft tube cone [7], lacks the capability of predicting the swirl configuration over a wide operating range. In particular, at
low discharge conditions investigated in the second phase of the FLINDT project, where a precessing helical vortex is devel-
oped in the draft tube cone as a result of the self-induced swirl instability, also called helical vortex breakdown [8], with
associated hydro-acoustic pressure waves [9], the three-vortex model from [4] fails to predict the circumferentially-
averaged annular swirling flow with central quasi-stagnant region. However, we were able to compute this particular
swirling flow in the draft tube cone [10], using axisymmetric turbulent swirling flow models, in good agreement with
experimental data. We have used the Realizable k � � turbulence model (RKE) in our axisymmetric flow simulations
[10,7], but also the Reynolds-Stress model (RSM) or the renormalization group (RNG) k � � model [11] are valid choices.

Predicting and understanding the swirling flow particularities at the runner outlet/draft tube inlet is also the key in devel-
oping novel flow control techniques aimed at mitigating the unwanted flow instabilities at partial discharge. Susan-Resiga
et al. [12] propose a water jet injection from the runner crown, along the machine axis, and show that this method success-
fully mitigates the precessing helical vortex and the associated pressure fluctuations. This method was also confirmed by
Zhang et al. [13] who also approximate the swirl in the draft tube cone with a Batchelor vortex in order to correlate the vor-
tex rope occurrence with previous studies on the global instability of the swirling flow.

Most of the studies on draft tube hydrodynamics rely on velocity data at the draft tube inlet obtained either by direct
measurements [6,8] or by computing the flow in the turbine runner [14,15]. It is clear however that the swirling flow
ingested by the draft tube is directly related to the runner blades geometry in the neighborhood of the trailing edge. The state
of the art in Francis turbine design half a century ago is well exemplified by Bovet [16]. With respect to the flow at Francis
runner outlet, Bovet mentioned that the designer’s choice for the absolute circumferential velocity is practically arbitrary.
Following the argument in [16] one should keep in mind that the kinetic energy associated with the circumferential velocity
downstream the runner cannot be recovered in the turbine diffuser (draft tube) and as a result it should be considered as a
hydraulic loss. It follows that the runner should be designed with vanishing flow rotation at outlet. However, it is recom-
mended to leave a small flow rotation at runner outlet in order to improve the flow in the draft tube cone. Without inlet
rotation, the decelerated flow in the conical diffuser downstream the runner may have large hydraulic losses due to the flow
detachment at the cone wall. This is particularly true for modern compact discharge cones with rather large cone angle. The
benefits of inlet swirl on pressure recovery in conical diffusers has been well documented by Fox et al. [17]. As a result, Bovet
[16] recommended to leave a small circumferential velocity component when designing the runner, arguing that the losses
associated with this excess in outlet kinetic energy is more than compensated by the improvement in the draft tube perfor-
mance. In quantitative terms, Bovet introduced the somehow arbitrary rule of choosing the magnitude of the relative veloc-
ity W equal to the transport velocity U on a mid streamline. Once the discharge velocity component is given at the design
operating point, the above condition allows the computation of absolute circumferential velocity from the velocity triangle.
Other choices for the runner design are detailed by Anton [18, Ch. 8]. Since a rigorous theory for choosing and optimizing the
swirling flow at Francis runner outlet is still lacking, we attempt such a development in this paper.

The modern approaches use fully three-dimensional inverse design methods for turbomachinery blades, [19]. In this
method the distribution of the radius � circumferential velocity on the meridional geometry of the runner is prescribed
and the corresponding blade shape is computed iteratively. For a Francis hydraulic turbine the design data upstream the run-
ner are relatively easy to prescribe for the flow exiting the guide vanes. However, downstream the runner we still need a
systematic approach to determine the best swirling flow configuration such that the turbine will have high efficiency and
smooth operation over an extended range. The real challenge is to determine the best choice of the flow at runner outlet
before actually designing and analyzing the runner. It is this challenge we address in the present paper.

If one attempts to use the large body of literature devoted to swirling flows and vortex breakdown phenomenon for
hydraulic turbines design, the main difficulty is that most of the papers consider theoretical swirl configurations associated
with a one parameter Batchelor vortex, [20], or two-parameter vortex [21]. Even if using such simple analytical vortex rep-
resentations may be useful in analyzing and understanding measured [4] or computed [13] turbine swirling flows, it is clear
that we need an approach to actually construct the swirling flow configurations encountered in hydraulic turbines at runner
outlet, if possible without computing the runner flow.

The paper is organized as follows. In Section 2 we introduce a simple model for analyzing the turbine operation over the
full intended range. The main result of this model is the relationship between the flux of moment of momentum at runner
outlet as function of turbine’s discharge and head. Section 3 analyzes the kinematic constrained imposed on the swirling flow
by the fixed-pitch runner blades. In doing so, we introduce the swirl-free velocity profile and show that it has a simple shape,
practically independent on the operating regime. The main result of the paper is given in Section 4, where we present the
constrained variational problem for the swirling flow at runner outlet. The numerical approximation for the unknown axial
velocity profile is developed in Section 5, where we show that a Fourier–Bessel series automatically preserves the turbine
discharge. The numerical approach for solving the variational problem is underlined in Section 6, where we also present
a set of numerical results and validation against experimental data for axial and circumferential velocity profiles. The agree-
ment between our model predictions and experimental data, in the framework of model simplified assumptions, is discussed
in Section 7. The paper conclusions are summarized in the last section.
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2. Francis turbine operation at variable regimes

The analysis of the hydraulic turbine operation at variable regimes starts with the fundamental equation of turboma-
chines, written for a hydraulic turbine as
gðqQÞðgHÞ ¼
Z

S1

ðXRV1hÞqV1rdS1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M1

�
Z

S2

ðXRV2hÞqV2zdS2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M2

: ð1Þ
In the left-hand side of Eq. (1) we have the hydraulic power written as the product of the mass flow rate qQ and specific
energy gH, multiplied by the hydraulic efficiency g. In the right-hand side of Eq. (1) we have the rate at which the fluid does
work on the rotor, which by Newton’s second law applied to the moment of forces is equal to the difference in the flux of
moment of momentum between cross-sections upstream the runner, S1, and downstream the runner, S2, respectively. Figs. 1
and 2 show that S1 is a cylindrical cross-section located at the outlet of the guide vanes, while S2 is a plane normal to the
machine axis located just downstream the runner outlet. Obviously, when computing the flux of moment of momentum up-
stream the runner, M1, we use the discharge velocity V1r, while for M2 the discharge velocity is V2z. The circumferential veloc-
ity uspstream the runner is V1h, while downstream the runner we have V2h.

The above equation can be written in dimensionless form by introducing the following coefficients:
/ � qQ

qðXRrefÞpR2
ref

discharge coefficient; ð2aÞ

w � gH

ðXRrefÞ2=2
energy coefficient; ð2bÞ

m � M

qðXRref Þ3pR2
ref

flux of moment of momentum coefficient: ð2cÞ
The reference radius Rref is the runner outlet radius, as shown in Fig. 1. We can rewrite now Eq. (1) in the simple dimension-
less form:
g/
w
2
¼ m1 �m2: ð3Þ
A turbine operating regime is defined by the turbine discharge and specific energy, i.e. by the pair (/,w). For the preliminary
design of a hydraulic turbine, the hydraulic efficiency can be considered from an estimated hill-chart g(/,w). Our goal for the
present investigation is to evaluate the flux of moment of momentum downstream the runner,
Fig. 1. Meridian cross-section of a Francis turbine.



Fig. 2. Flow angle a1 at distributor outlet/runner inlet.
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m2ð/;wÞ ¼ m1ð/;wÞ � g/
w
2
: ð4Þ
In order to use Eq. (4) we need to build an approximation for m1(/,w) taking into account that the turbine discharge is mod-
ified by opening or closing the guide vanes, Fig. 2.

In our simplified model we consider an averaged velocity at guide vanes outlet, with the magnitude V1 and the flow angle
a1 with respect to the tangential direction. Note that a1 is not the same as the guide vane opening angle aGV, but a correlation
can be found by solving for the flow in the two circular cascades corresponding the both stay vanes and guide vanes. The
velocity magnitude should depend on the turbine head as V1 �

ffiffiffiffiffiffiffiffiffi
ggH

p
. On the other hand, the discharge is proportional to

the radial velocity component, Q � V1r = V1sina1.The moment of momentum flux should be proportional to the product of
radial and circumferential velocity components, M1 � V1rV1h ¼ V2

1 sin a1 cos a1. These considerations should be viewed as
first approximations to be used for the preliminary design stages.

If we consider a reference operating point (e.g. the design operating point, or the best efficiency point for an existing run-
ner), further denoted by (/w,ww), the above considerations lead to
/

/H
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
gw

gHwH

s
sin a1

sin aH

1
; ð5aÞ

m1

mH

1
¼ gw

gHwH

sin 2a1

sin 2aH

1
: ð5bÞ
Given an arbitrary operating point (/,w), Eqs. (5) form a system of two algebraic equations with the unknowns m1 and a1.
Note that at the reference operating point (/w,ww) we assume gH;aH

1 , and mH

1 as known quantities. With m1 computed by
solving Eqs. (5) we can find from Eq. (4) the flux of moment of momentum downstream the runner at any operating point.

In order to validate this mathematical model we consider several operating regimes for a Francis model turbine, where
both axial and circumferential velocity profiles have been measured in a survey section just downstream the runner, S2 sec-
tion in Fig. 1, using Laser Doppler Velocimetry, [4,10]. Using the experimental data for the axial and circumferential velocity
components, shown in Section 6 of this paper, we have computed the turbine discharge and the flux of moment of momen-
tum as follows:
Q ¼
Z Rw

0
V2z2pRdR; ð6aÞ

M2 ¼
Z Rw

0
ðXRV2hÞqV2z2pRdR; ð6bÞ
where Rw is the wall radius in section S2.
By introducing the dimensionless velocity v � V/(XRref) and the dimensionless radius r � R/Rref, respectively, Eqs. (6) can

be written in dimensionless form using the definitions (2a) and (2c),
/ ¼
Z rw

0
v2z2rdr; ð7aÞ

m2 ¼
Z rw

0
ðrv2hÞv2z2rdr: ð7bÞ
The integrals in (7a) and (7b) are computed for the data shown in Fig. 6 using a simple trapezoidal rule, and the correspond-
ing values are given in Table 1.



Table 1
Experimental data for operating regimes with variable discharge / and constant specific energy
w = 1.18.

Relative turbine
discharge

Discharge coefficient
/

Moment of momentum flux coefficient
m2

Q = 0.714 QBEP 0.26428 0.048341
Q = 0.919 QBEP 0.34015 0.036829
Q = 0.974 QBEP 0.36066 0.030264
Q = QBEP 0.37014 0.028227
Q = 1.025 QBEP 0.37950 0.025154
Q = 1.050 QBEP 0.38881 0.021944
Q = 1.107 QBEP 0.40976 0.013239
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Fig. 3. Dimensionless flux of moment of momentum downstream the runner, m2, versus the discharge coefficient, /.
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Six of the operating points in Table 1 are clustered within ± 10% the discharge at the best efficiency point, while the point
at 0.7 QBEP corresponds to the partial discharge regime with well-defined precessing vortex rope. The data from Table 1 are
shown with filled circles in Fig. 3, where the solid line corresponds to the least squares fit using Eqs. (4) and (5). All data
points correspond to the constant energy coefficient ww = 1.18. The reference discharge coefficient /w can be arbitrary cho-
sen and it does not have to coincide with a data point. For example, by choosing /w = 0.3 the fit parameters obtained with the
IMSL [22] routine RNLIN are mH

2 ¼ 0:044232 and aH

1 ¼ 30:348�, respectively. When choosing /w = 0.4 the fit parameters are
mH

2 ¼ 0:016612 and aH

1 ¼ 42:351�, respectively. However, the fit curve is unchanged with the two points mH

2 ð/
HÞ on the

curve, as shown in Fig. 3 with squares. We conclude that the least squares fit procedure based on Eqs. (4) and (5) is robust
in the sense that the fit curve does not depend, as expected, on the choice of the reference discharge /w.

One can see that the simple mathematical model introduced in this section is in quite good agreement with the exper-
imental data. No data were available to check the model for variable head, but it is clear that the model captures correctly the
qualitative behavior of the residual flux of moment of momentum downstream the runner as the turbine is operated within a
wide range. Moreover, this model is not intended for analyzing the turbine swirling flow. Instead, our model provides valu-
able information in the early design and optimization stages for Francis runners. In particular, the model provides the two
main integral quantities defining the swirling flow downstream the runner, i.e. the discharge / and the flux of moment of
momentum m2, respectively, for the whole intended operating range of the turbine.
3. Swirling flow kinematics at Francis runner outlet

For turbine runners with fixed pitch blades, such as Francis runners, the swirling flow at the runner outlet must satisfy the
kinematic constraints given by the runner blades geometry close to the trailing edge.

The well-known velocity triangle, shown in Fig. 4, provides the kinematic constraint corresponding to the relative flow
angle b2. Note that b2 is not the blade angle at the trailing edge. Moreover, b2 is changing along the radius, corresponding
to the blade geometry from hub to shroud. For the present simplified model we assume that b2 depends only on the radius
for the section S2 at runner outlet. In doing so, we consider that this b2 radial variation is not changing with the operating
point. This assumption is acceptable for Francis turbines, where the large number of blades provide a good guidance of the
flow with minimal three-dimensional effects in the inter-blade channel. However, it is clear that the relative flow angle b2
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changes with the operating point even for inviscid flows, but here we assume that such variations could be neglected in a
first approximation.

Fig. 4 shows three particular configurations of the velocity triangle, with the relative velocity kept on the same direction
given by b2. Also, the transport velocity XR remains the same for all three cases further examined. At low discharge, corre-
sponding to turbine’s part-load regimes, the absolute circumferential velocity V2h has the same direction as the transport
velocity, and the swirling flow co-rotates with respect to the runner. At large discharge, corresponding to turbine’s full-load
operating regimes, V2h is in opposite direction with the transport velocity, and the swirl counter-rotates with respect to the
runner. In-between we can always identify a regime where the absolute circumferential velocity vanishes, i.e. V2h = 0. We call
the corresponding axial velocity the ‘‘swirl-free velocity’’, Vsf. Since the relative flow angle is directly related to the swirl-free
velocity as tanb2 = Vsf/(XR), we can use the Vsf instead of b2 to describe the kinematical flow constraint at runner outlet. For
an arbitrary operating regime we have,
V2z

XR� V2h
¼ tan b2 ¼

V sf

XR
; ð8Þ
thus the swirl free-velocity can be written as
V sf ¼
XRV2z

XR� V2h
; or in dimensionless form vsf ¼

rv2z

r � v2h
; ð9Þ
with dimensionless radius and velocity defined as r � R/Rref and v � V/(XRref), respectively. Once the swirl-free velocity pro-
file is known, vsf(r), the circumferential velocity follows from the axial velocity profile as
v2h ¼ r 1� v2z

vsf

� �
: ð10Þ
Eq. (10) shows that at part load, i.e. v2z < vsf, we have v2h > 0 with co-rotating swirl, while at full-load, v2z > vsf, we have coun-
ter-rotating swirl with v2h < 0.

The concept of swirl-free velocity has been employed by Kubota et al. [23] who investigate the draft tube losses for the
GAMM model Francis turbine, and in particular the influence of the swirl intensity of runner outflow for variable operating
points given by the discharge and specific energy coefficients. When analyzing the swirl velocity at runner outlet, they
assume a constant runner outflow angle and express a representative circumferential velocity V2h using the transport
velocity U2 = XR, the swirl-free discharge coefficient /sf, and the discharge coefficient value / corresponding to the operating
point, as V2h = U2(1 � ///sf). Both V2h and U2 are considered by Kubota et al. [23] on a representative mid-streamline at
runner outlet, corresponding to a radius of 0.1394 m while the runner outlet radius is 0.200 m. This rather crude evaluation
does not account for the axial and circumferential velocity profiles, and obviously it does not describe the evolution of the
swirling flow configuration when changing the operating point. However, it introduces the idea of the swirl-free meridian
velocity to replace the relative flow angle.

In this paper we develop the swirl-free concept, but instead of using a single value corresponding to an arbitrary chosen
streamline we introduce a swirl-free velocity profile at runner outlet. Moreover, we argue that this is an essential ingredient
for the runner design and optimization within a range of operating regimes.

The main hypothesis concerning the swirl-free velocity profile introduced above as an alternative to the relative flow an-
gle at runner outlet is that vsf(r) is practically unchanged as the operating regime spans the whole operating range of the
turbine. Fig. 5 shows with filled circles the vsf values computed with Eq. (9) from the experimental data for axial and circum-
ferential velocities measured at the operating points indicated in Table 1. It can be seen that the experimental points are
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Fig. 5. The swirl-free velocity profile at a Francis runner model outlet.
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reasonably clustered around the parabolic fit vsf(r) = 0.323505 + 0.0646465r2, with a standard deviation for the errors of
0.03136 as shown with the grey strip in Fig. 5. We postulate that an expression of the form vsf(r) = a + b r2 can be employed
for optimizing the swirling flow downstream the Francis runner, with a and b as optimization parameters, as an alternative
to consider the relative flow angle b2 at runner outlet. The optimization of vsf(r) should be performed mainly to minimize the
weighted hydraulic losses in the turbine draft tube, or at least with respect to the losses in the draft tube cone.
4. Variational formulation for swirling flow at Francis runner outlet

In Section 2 we have shown that the swirling flow downstream the Francis turbine runner is characterized by two integral
quantities: the discharge coefficient and the flux of moment of momentum coefficient. In addition, this swirling flow satisfies
a kinematic constraint corresponding to the runner blade geometry, described in Section 3 by the swirl-free velocity profile.
The swirling flow exiting the runner is further decelerated by the draft tube in order to convert the excess of kinetic energy
into static pressure, thus reducing the overall losses in the hydraulic turbine. However, in order to evaluate the hydraulic
losses in the draft tube, generated by both swirl deceleration and change in the overall flow direction one needs to know
the axial and circumferential velocity profile at the draft tube inlet for the whole operating range of the turbine.

From now on, for the rest of the paper we will refer only to the swirling flow at the runner outlet S2, thus we will drop the
index 2 in order to simplify the notations.

In order to find the swirling flow configuration we will consider a simplified swirling flow model corresponding to steady,
axisymmetric, incompressible and inviscid swirling flow. In this case, the Euler equations reduce to the Bragg–Hawthorne
equation [24] for the stream-function. The symmetry investigations of the Bragg–Hawthorne equation led Frewer et al.
[25] to the conclusion that it possesses additional symmetries not being admitted by the original Euler equations. As a result,
it appears that not the Euler equations but rather a set of integro-differential equations attains full equivalence to the Bragg–
Hawthorne equation. A particularity of the Bragg–Hawthorne equation is that it includes two arbitrary functions, circulation
and total specific energy, which depends only on the stream function by Kelvin’s and Bernoulli’s theorems, respectively. For
the problem examined in this paper, the information available for the swirling flow downstream the Francis turbine runner
does not allow the determination of the two generating functions in the Bragg–Hawthorne equation.

The Bragg–Hawthorne equation became the mathematical foundation for the throughflow theory of turbomachines. How-
ever, Oates et al. [26] introduced a variational formulation of the throughflow problem, leading to robust finite element algo-
rithms. Their variational functional corresponds to the integral of the meridional momentum over all computational domain.
The variational approach had been previously used by Benjamin [5] to explain the vortex breakdown phenomenon, where the
functional was named ’’flow force’’. The variational formulation has been extended by Keller et al. [27] to allow variable lower
endpoints, i.e. for cases when the flow occupies an annulus starting from a positive radius and going up to the wall. This ap-
proach has been further developed by Wang and Rusak [20] who explore both local and global minimizers of the variational
functional for inviscid, incompressible and steady axisymmetric swirling flows to explain the dynamics of swirling flows in a
pipe and transition to axisymmetric vortex breakdown.

Going back to the swirling flow at the Francis runner outlet, we consider that the flow is locally parallel (so-called colum-
nar flow) due to the proximity to the turbine throat. Indeed, the radial velocity component close to the runner outlet is much
smaller than either axial and circumferential velocities. Cervantes and Gustavsson [28] attempt to estimate the radial veloc-
ity in swirling flow at the draft tube inlet of a Kaplan turbine using the Bragg–Hawthorne equation (also known in literature
as Long (1953)-Squire (1956) equation). However, we consider vanishing radial velocity at Francis runner outlet for the pres-
ent simplified model. This assumption is also supported by experimental data of Tridon et al. [29].
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The variational formulation for incompressible, inviscid, steady, columnar, swirling flow requires the minimization of the
integral flow force,
F �
Z Rw

0
qV2

z þ Pw � P
� �

2pRdR; ð11Þ
where we have employed the pressure deficit with respect to the wall pressure, Pw � P instead of the static pressure P. The
corresponding dimensionless flow force and pressure are defined as
f � F

qðXRrefÞ2pR2
ref

; ð12aÞ

p � Pw � P

qðXRrefÞ2
: ð12bÞ
The dimensionless flow force can now be written as
f ¼
Z yw

0
v2

z þ p
� 	

dy; ð13Þ
where y � r2 being a modified radial coordinate.
The radial distribution of the pressure is correlated with the circumferential velocity through the radial equilibrium equa-

tion, i.e. the radial component of the axisymmetric Euler equation for vanishing radial velocity,
1
q

dP
dR
¼ V2

h

R
: ð14Þ
After integrating Eq. (14) and using Eq. (10) we obtain the dimensionless pressure,
pðyÞ ¼ 1
2

Z yw

y
1� vz

vsf

� �2

dx: ð15Þ
Given the swirl-free velocity profile, for example vsf(y) = a + by as shown in Section 3, the functional f will depend only on the
axial velocity profile vz(y) as follows:
f ðvzÞ ¼
Z yw

0
v2

z dyþ 1
2

Z y w

0

Z yw

y
1� vz

vsf

� �2

dxdy: ð16Þ
The minimization of functional f(vz) should be done with the integral constraints Eqs. (7), rewritten here as
Z yw

0
vzdy ¼ /; ð17ÞZ yw

0
1� vz

vsf

� �
vzydy ¼ m; ð18Þ
where the values of / and m depend on the operating regime as shown in Section 2. Once the axial velocity vz is found by
minimizing (16) subject to constraints (17) and (18), the circumferential velocity follows from Eq. (10).

When the turbine operates at low discharge, the swirling flow downstream the runner develops a self-induced instability
leading to an unsteady precessing helical vortex, also known as vortex rope. A qualitative model of this particular flow-field
was given by Nishi et al. [30] who observed a quasi-stagnant (stalled) central region with the spiral vortex core wrapped
around it. Of course, the flow in the central region is highly fluctuating, but on average all velocity components vanish.
The thin shear layer between the central stalled region and the main annular swirling flow becomes unstable, breaks-up
and rolls-up in a helical vortex with precession. This model has been further confirmed by the measurements of axial and
circumferential velocity profiles made in Francis turbines [8,31], numerical simulations [10], or analytical models [32]. In
order to incorporate the stagnant region model into the present variational formulation we proceed as Keller et al. [27]
and introduce an additional unknown in the problem, ys � r2

s , where rs is the radius of the central stagnant region. As a result,
we re-formulate the variational problem corresponding to the swirling flow downstream the Francis turbine runner as
follows:

Given the discharge coefficient, /, the dimensionless flux of moment of momentum, m, the swirl-free velocity profile vsf(y) and
the radial extent of the cross-section at runner outlet, yw, find the axial velocity profile vz(y) and the stagnant region extent ys that
minimize the functional,
f ðvz; ysÞ ¼
Z yw

ys

v2
z dyþ 1

2

Z yw

ys

Z yw

y
1� vz

vsf

� �2

dxdy; ð19Þ
subject to the integral constraints,
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Z yw

ys

vzdy ¼ /; ð20Þ
Z yw

ys

1� vz

vsf

� �
vzydy ¼ m: ð21Þ
The problem (19)–(21) admits solutions with jump in vz at ys > 0, in contrast to the solutions with central stagnant region
obtained from Bragg–Hawthorne equation where vz(ys) = 0, [27]. This is consistent with the circumferentially averaged
velocity field from the analytical solution for the helical vortex in a pipe of Alekseenko et al. [32].
5. Fourier–Bessel approximation of the axial velocity profile

In order to solve constrained variational problem (19)–(21) we consider a representation of the axial velocity profile at
runner outlet, vz(r), in terms of a truncated Fourier–Bessel series, [33]
vzðrÞ ¼ v0 þ
XN

i¼1

v iJ0 ki
r

rw

� �
ð22Þ
where N is the finite number of modes and ki are the zeros of the J1 Bessel function, i.e. the non-zero solutions of J1(ki) = 0.
These zeros are computed numerically and have the values k1 = 3.831705970, k2 = 7.015586670, k3 = 10.17346814, . . . , with
the asymptotic sequence kn ¼ ðnþ 1=4Þpþ Oð1=nÞ. The Bessel functions in (22) are orthogonal,
Z rw

0
J0 ki

r
rw

� �
J0 kj

r
rw

� �
rdr ¼

0 if i – j
r2

w
2 J2

0ðkiÞ if i ¼ j

(
ð23Þ
If we evaluate the discharge coefficient using Eq. (7a), we obtain
/ ¼
Z rw

0
v02rdr þ

XN

i¼1

v i

Z rw

0
J0 ki

r
rw

� �
2rdr ¼ v0r2

w: ð24Þ
This result follows from the Bessel function property that
Z rw

0
J0 ki

r
rw

� �
rdr ¼ 0; i ¼ 1;2; . . . ð25Þ
In other words, each mode J0(kir/rw) has a vanishing contribution to the discharge. As a result, by replacing v0 with /=r2
w the

Fourier–Bessel approximation of the axial velocity will always satisfy the discharge constraint (20).
Since we have introduced the modified radial coordinate y = r2, we can re-write the discharge preserving axial velocity

profile as
vzðyÞ ¼
/
yw
þ
XN

i¼1

v iJ0 ki

ffiffiffiffiffiffi
y

yw

r� �
; 0 6 y 6 yw: ð26Þ
When a stagnant region is present, i.e. ys 6 y 6 yw, with ys > 0, each mode will have a non-zero contribution to the overall
discharge as follows:
Z yw

ys

J0 ki

ffiffiffiffiffiffi
y

yw

r� �
dy ¼ �2

ffiffiffiffiffiffiffiffiffiffi
ysyw
p

ki
J1 ki

ffiffiffiffiffiffiffiffi
ys

y w

r� �
; i ¼ 1;2; . . . ð27Þ
Using Eq. (27) we can compute the discharge for the annular section ys 6 y 6 yw as
/ ¼
Z yw

ys

vzðyÞdy ¼ v0ðyw � ysÞ � 2
ffiffiffiffiffiffiffiffiffiffi
ysyw
p XN

i¼1

v i

ki
J1 ki

ffiffiffiffiffiffi
ys

yw

r� �
: ð28Þ
We can now write the discharge-preserving axial velocity representation as
vzðyÞ ¼
/

yw � ys
þ 2

ffiffiffiffiffiffiffiffiffiffi
ysyw
p

yw � ys

XN

i¼1

v i

ki
J1 ki

ffiffiffiffiffiffi
ys

yw

r� �
þ
XN

i¼1

v iJ0 ki

ffiffiffiffiffiffi
y

yw

r� �
; ys 6 y 6 yw ð29Þ
Note that in this case the average discharge velocity //(yw � ys) should be corrected because the modes have no longer van-
ishing contributions to the overall discharge. Obviously, if ys vanishes in Eq. (29) we recover Eq. (26).
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6. Numerical method and results

With the Fourier–Bessel representation of the axial velocity profile, Eq. (29), the discharge constraint (20) is automatically
satisfied and we have to minimize the functional (19), subject to the constraint (21), with respect to the unknowns ys and vi,
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Fig. 6. Axial and circumferential velocity profiles at S2 cross-section, Fig. 1.
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i = 1, 2, . . .N. For the numerical results further presented in this section we have used N = 9, since the solution does not
change anymore by adding Fourier–Bessel modes.

We have developed a computer code using the IMSL (International Mathematics and Statistics Library) FORTRAN numer-
ical library, [22]. The constrained minimization problem (19), (21) is solved numerically with the IMSL routine NCONF which
is based on subroutine NLPQL developed by Schittkowski [34]. It uses a successive quadratic programming method to solve
the general nonlinear programming problem. The simple integrals are evaluated numerically using the QDAG subroutine
which uses a globally adaptive scheme based on Gauss-Konrod rules, [35]. The two-dimensional integral in the functional
(19) is computed with the TWODQ subroutine by iterated calls to QDAG. The Bessel functions are evaluated with BSJ0
and BSJ1, respectively. The zeros of the J1 function are computed only once using M}uller [36] method implemented by
the ZREAL subroutine, with the initial guess kn = (n + 1/4)p.

The numerical results presented in this section are aimed at validating the mathematical model introduced in the previ-
ous sections. As a result, we examine the operating points presented in Table 1, with the swirl-free velocity profile
vsf(y) = 0.323505 + 0.0646465y from Fig. 5.

Fig. 6 shows the measured and computed velocity profiles, for axial and circumferential velocity components, respec-
tively. The experimental data were obtained within the FLINDT project phase 1 [3], Figs. 6(a)-(f), and phase 2 [8],
Fig. 6(g), respectively. The velocity was measured with a two-component probe Laser Doppler Anemometry (LDA), using
back-scattered light. The measuring point geometrical location is controlled within a 0.05 mm accuracy, and uncertainties
in velocity measurements are estimated at 2% of the measured value [37]. The same data have also been used in our previous
investigations [4,10,7]. The computed axial velocity profile is shown with solid lines in Fig. 6, and the circumferential velocity
computed with Eq. (10) is represented with dashed lines. The dimensionless wall radius at S2 is rw = 1.063.

7. Discussion

Fig. 6 shows that our mathematical model correctly captures the swirling flow evolution as the turbine discharge is var-
ied. At full load, Q > QBEP, one can see an increase of the axial velocity excess near the axis. On the other hand, at part load
Q < QBEP this velocity excess is gradually decreased until a stagnant region develops in the axis neighborhood.

The agreement with experimental data within the ±10% the best efficiency discharge QBEP, Figs. 6(a)-(f), is quite good
except the wake of the crown which widens as the discharge decreases. This discrepancy is expected since our model does
not account for the viscous effects which lead to the crown wake.

At low discharge, our model correctly captures the central stagnant region extent, Fig. 6(g), as well as the overall shape of
the velocity components radial variation. The measured flow acceleration close to the wall is associated with the inter-blade
vortex developed at the junction of the blade with the band [15, section 7.1]. Obviously, the present axisymmetric inviscid
swirling flow model cannot capture the effects induced by such three-dimensional flow structures. The transition between
the central stagnant region and the main annular swirling flow corresponds to the vortex sheet which evolves in the precess-
ing helical vortex, [10]. In reality, the helical vortex has a finite core size and the corresponding circumferentially averaged
flow displays a finite gradient in the stagnation - main flow transition zone, [38]. The swirl predicted by our simplified model
corresponds to a thin vortex filament when the circumferentially averaged vortex sheet has vanishing thickness and a jump
in the velocity.

Using the relationship between the flux of moment of momentum downstream the runner and the discharge, as shown in
Fig. 3 for constant turbine head, we can examine the evolution at runner outlet for variable discharge. Fig. 7 shows the maps
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of axial and circumferential velocity components versus the radial coordinate and discharge. The radial profiles of the veloc-
ity components shown in Fig. 6 are horizontal slices of the 2D maps from Fig. 7. One can immediately identify the occurrence
and development of the central stagnant region as the discharge decreases, as shown on the lower-left corner of the plots.
Fig. 7(a) shows the excess in axial velocity at the axis for large discharge, and the graduate flow deceleration at the axis as the
discharge decreases. However, our model predicts the development of the stagnant region before the axial velocity vanishes
at the axis. Fig. 7(b) shows the development of the counter-rotation in the central region as the discharge increases, with the
increase of the radius of vanishing circumferential velocity. For low discharge values the whole flow rotates in the same
direction with the runner, and the circumferential velocity does not vanish at the stagnant region. In our opinion, it is this
jump in both axial and circumferential velocity components at the stagnant region boundary, with a corresponding vortex
sheet, which triggers the self-induced instabilities of the swirling flow and the development of the helical precessing vortex.
It is clear that from the design point of view, the swirl-free velocity profile must be optimized such that the stagnant region
shown in Fig. 7 be reduced and moved to lower values of the discharge.
8. Conclusions

We introduce a complete mathematical methodology for computing the swirling flow, i.e. radial profiles of axial and cir-
cumferential velocity components, respectively, at the runner outlet for Francis hydraulic turbines operated within the full
admissible range. Since this methodology does not require the computation of the flow in the runner, it is suitable for early
stages of turbine design and optimization.

Using the basic Euler equation of turbomachines, together with several considerations on the flow generated by the guide
vanes of the turbine, we find a set of algebraic equations which allow the correlation between the flux of moment of momen-
tum downstream the runner and the turbine operating regimes. As a result, given the turbine discharge and head, one can
evaluate the level of swirl for the flow exiting the runner and further ingested by the draft tube.

For the fixed pitch runners, such as Francis hydraulic turbines, the swirling flow at runner outlet must satisfy a kinematic
constraint usually given by the relative flow angle. However, we introduce in this paper the swirl-free velocity as a more
suitable approach to describe the swirl kinematics at runner outlet. We show that the radial profile of the hypothetical
swirl-free velocity at runner outlet is practically unchanged by the operating regime once three-dimensional and viscous
effects of the flow in the inter-blade channels are neglected in the first approximation. The kinematic constraint on the swirl
exiting the runner provides a simple relationship for computing the circumferential velocity once the radial profile of the
axial velocity is known.

Several simplified assumptions are made on the swirl at runner outlet, consistent with the flow conditions in Francis tur-
bines. We assume a steady, axisymmetric, parallel flow, of an inviscid and incompressible fluid. As a result, such swirling
flow must minimize the so-called flow force, a functional introduced by Benjamin [5]. Using the kinematic constraint at run-
ner outlet and the radial equilibrium equation, we express the flow force functional only with the axial velocity. Moreover, in
agreement with the flow physics and experimental data, we modify the functional to allow the development of a central
stagnant region. The radial profile of the axial velocity component is found by minimizing the flow force functional, while
maintaining the overall discharge and flux of moment of momentum, resulting in a constrained variational problem. This
is the core of the mathematical methodology introduced in this paper.

In order to solve numerically the variational problem we represent the unknown axial velocity as a truncated Fourier–
Bessel series. We show that by suitably choosing the first coefficient in this series the overall discharge constraint is iden-
tically satisfied. As a result, the flow force functional must be minimized with respect to the set of mode coefficients in the
Fourier–Bessel series and the additional unknown for the stagnant region radius, respectively, while satisfying only the con-
straint for the flux of moment of momentum. The resulting numerical algorithm is robust, most likely thanks to the Fourier–
Bessel modes orthogonality.

The above mathematical methodology is validated against available experimental data for axial and circumferential
velocity profiles measured at the runner outlet of a Francis model turbine for seven operating regimes. We show that our
model correctly captures the swirling flow evolution with the variable operating regime of the Francis turbine. However,
as expected the flow features associated with viscous effects, such as the runner hub wake, or three-dimensional effects,
such as inter-blade vortices, cannot be captured within the simplified assumptions of our model.

Finally, let us summarize the main advantages and potential applications of the mathematical model introduced in this
paper:

(i) The model allows the computation of the swirling flow, i.e. radial profiles of axial and circumferential velocity com-
ponents, at the runner outlet of Francis turbines for any operating regime without any computation of the three-
dimensional flow in the turbine.

(ii) The runner blades geometry at the trailing edge is embedded in the swirl-free velocity profile. The radial profile of
the swirl-free velocity has a simple shape, and a simple two-parameter representation is quite suitable for optimiz-
ing the swirling flow ingested by the turbine’ s draft tube before designing the runner. This is essential for modern
hydraulic turbines where the shape of the efficiency hill-chart is actually driven by the hydraulic losses in the draft
tube.
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(iii) The model is intended to be used in the early design and optimization stages of a new hydraulic turbine, or for refur-
bishment of existing turbines, as it allows the evaluation of a large number of operating regimes and design choices
with very low computational costs.

(iv) Since the model correctly captures the development of the central stagnant region when operating the turbine far
from the design operating regime, one can estimate in the early design stages the boundaries of the smooth operation
range.

(v) Once an optimum swirling flow configuration at runner outlet is achieved by optimizing the swirl-free velocity in con-
junction with the performances of the draft tube, the runner blades geometry follows through an inverse design
approach.

Due to the simplified assumptions taken into account, the present model is recommended for a priori evaluation of design
choices for hydraulic turbines, leaving the a posteriori evaluation to the current experimental protocols or to the full three-
dimensional viscous flow computations.
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Unsteady Pressure Analysis
of a Swirling Flow With Vortex
Rope and Axial Water Injection
in a Discharge Cone
The variable demand of the energy market requires that hydraulic turbines operate at
variable conditions, which includes regimes far from the best efficiency point. The vortex
rope developed at partial discharges in the conical diffuser is responsible for large pres-
sure pulsations, runner blades breakdowns and may lead to power swing phenomena. A
novel method introduced by Resiga et al. (2006, “Jet Control of the Draft Tube in Francis
Turbines at Partial Discharge,” Proceedings of the 23rd IAHR Symposium on Hydraulic
Machinery and Systems, Yokohama, Japan, Paper No. F192) injects an axial water jet
from the runner crown downstream in the draft tube cone to mitigate the vortex rope and
its consequences. A special test rig was developed at “Politehnica” University of Timi-
soara in order to investigate different flow control techniques. Consequently, a vortex
rope similar to the one developed in a Francis turbine cone at 70% partial discharge is
generated in the rig’s test section. In order to investigate the new jet control method an
auxiliary hydraulic circuit was designed in order to supply the jet. The experimental
investigations presented in this paper are concerned with pressure measurements at the
wall of the conical diffuser. The pressure fluctuations’ Fourier spectra are analyzed in
order to assess how the amplitude and dominating frequency are modified by the water
injection. It is shown that the water jet injection significantly reduces both the amplitude
and the frequency of pressure fluctuations, while improving the pressure recovery in the
conical diffuser. [DOI: 10.1115/1.4007074]

Keywords: decelerated swirling flow, vortex rope, water injection method, unsteady
pressure, experimental investigation

1 Introduction

The swirling flow emerging from a Francis turbine runner has a
major influence in a draft tube cone downstream. It produces
self-induced flow instabilities leading to pressure fluctuations and
ultimately to the draft tube surge [1]. At part load operation it
develops a precessing helical vortex (also known as vortex rope)
in the Francis turbine draft tube cone. Consequently, the vortex
rope generates pressure fluctuations, additional hydraulic losses,
and power swing phenomena at the electrical generator [2].
Unsteady pressure measurements for hydraulic Francis turbines
operating at part load have been performed on site by Wang et al.
[3] and Baya et al. [4]. They reveal a low frequency oscillation
(from 1/5 to 1/3 of the runner rotation frequency) associated with
the vortex rope. Extensive unsteady wall pressure measurements
in the elbow draft tube of the hydraulic Francis turbine model at
partial discharge are performed by Arpe et al. [5]. The pressure
waves’ source was located near the inner part of the elbow draft
tube based on experimental data. Moreover, these waves are
propagated in all hydraulic systems. The synchronous nature of
the pressure fluctuations and the pressure distribution along the
draft tube suggests hydro acoustic resonance of the entire hydrau-
lic system.

Different methods were proposed in order to mitigate the
instabilities produced by the vortex rope. Examples include aera-
tors mounted at the inlet of the cone, stabilizer fins or runner

cone extensions [6]. Numerical Francis turbine simulation of the
flow was performed by Qian et al. [7] in order to investigate
the air admission from the spindle hole. Analysis of the draft
tube cone air admission showed that the amplitude and the pres-
sure difference in the cross section of the draft tube decreases
while the blade frequency pressure pulsation increases in front of
the runner. Therefore, proper air discharge to mitigate the pres-
sure pulsations in the draft tube cone of the hydraulic turbine
should be chosen according to specific operating conditions.
These methods lead to some improvements in reducing the pres-
sure pulsations for a narrow regime but they are not effective or
even increase the unwanted effects. Given by the energy injected
in the draft tube cone these methods can be divided into active,
passive or semipassive control. If an external energy source is
used to mitigate or eliminate the vortex rope, the control is
called active. Examples of active control include air injection
either downstream (through runner cone) or upstream (through
wicket gates trailing edge) of the runner [6,8], or tangential
water jets at the discharge cone wall [9]. The control involving
no additional energy to destroy the vortex rope is called passive.
Passive control methods include fins mounted on the cone
[10,11], extending cones mounted on the runner’s crown [12] or
using J-grooves [13].

Resiga et al. [14] proposed a new method in order to mitigate
the vortex rope, axial water injected through the runner’s crown
along to the discharge cone. An experimental test rig was
designed and developed in the Hydraulic Machinery Laboratory at
“Politehnica” University of Timisoara in order to investigate this
new method. The rig is used to determine the parameters of the
swirling flow with vortex rope and the optimum water jet in order
to mitigate the pressure fluctuations.
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This paper presents our experimental investigations of the
swirling flow with vortex rope in order to assess the water injec-
tion method benefits. The second section presents the experimen-
tal test rig and the swirl apparatus used to generate the swirling
flow in a conical diffuser similar to the draft tube cone of a Fran-
cis turbine. The third section presents the equipment used for pres-
sure measurements and the results obtained. Pressure data are
analyzed to determine the vortex rope amplitude and frequency
corresponding to the self-induced instabilities of the decelerated
swirling flow. Energetically, the pressure recovery coefficient in
the draft tube cone is used to assess the efficiency of this method.
The pressure pulsations are analyzed for the swirling flow with
vortex rope as well as for the swirling flow with water injection in
order to evaluate this method. The last section draws the
conclusions.

2 Experimental Test Rig for Swirling Flows

Two different methods are usually employed to generate a
swirling flow under the laboratory conditions: using a turbine
model or a swirl generator. Using a turbine model is quite expen-
sive. Alternatively, a swirl generator is a simpler solution allowing
physical phenomena investigation. For the production of a swirl-
ing flow, Kurokawa et al. [13] used an axial flow impeller at about
3.3d upstream of the diffuser inlet, where d(¼156 mm) is the inlet
pipe diameter. Kurokawa’s rig employs an additional blower
arranged at far upstream of the divergent channel to widely
change the discharge. Another method to generate a swirling flow
in a conical diffuser was proposed by Kirschner et al. [15]. The
swirl generator is installed instead of the turbine in order to inves-
tigate different swirl conditions, and was built with adjustable
guide vanes. A straight draft tube was mounted downstream.
The cone angle is 2� 8.6 deg, similar to the angle of a real draft
tube cone.

Based on the large experience accumulated over the decades of
design, the hydraulic losses are small in the spiral casing, in the
wicket gates, and runner. However, the hydraulic losses still
exhibit large variations during the full operating range. According
to Vu and Retieb [16] in the case of Francis turbines, the largest
fraction of the hydraulic loses is located in the draft tube except in
the neighborhood of the best efficiency regime. When the turbine
is operated far from the best efficiency point, its losses increase
sharply with a corresponding decrease in overall efficiency. This
is the reason why researchers focus their efforts to improve the
draft tube cone flow.

An experimental test rig was developed to analyze the deceler-
ated swirling flow in a conical diffuser and to evaluate the new
water-injection control method. The main purpose of the rig is to
reproduce the flow field specific to a conical diffuser with a decel-
erated swirling flow and the development of the vortex rope. The
rig, developed in the Hydraulic Machinery Laboratory at the Poli-
tehnica University of Timisoara, is composed of the following
main elements: (i) the main hydraulic circuit used to generate the
decelerated swirling flow in the conical diffuser; (ii) the auxiliary
hydraulic circuit needed to supply water for the jet control
method. The main hydraulic circuit (shown in Fig. 1) is employed
to generate a flow similar to the one encountered at a partial dis-
charge operated Francis runner while the auxiliary circuit (shown
in Fig. 1) is used to inject water in the conical diffuser’s inlet
through a nozzle.

The swirling flow apparatus is installed along the main hy-
draulic circuit and it contains two main parts: the swirl generator
and the convergent-divergent test section [17]. The swirl genera-
tor has an upstream annular section with stationary and rotating
blades for generating swirling flow. It has three components: the
ogive, the guide vanes, and the free runner. The ogive with four
leaned struts has the role to sustain the swirl generator and to
deliver the jet water to the nozzle (it can be seen in Fig. 2). The
guide vane and the free runner are mounted in the cylindrical
section, Ds ¼ 0:15 m. The swirl generator was designed to

operate similar to a Francis turbine model at partial discharge
[18,19]. This part load operating point was chosen at 70%
because at this regime the vortex rope is well developed and
generates the largest pressure pulsations [20]. The main part of
the swirl generator is the free runner. Its main purpose is to
redistribute the total pressure at the entrance. The free runner
induces an excess of energy near the shroud and a deficit of
energy near the hub. Therefore it acts as a turbine at the hub and
as a pump at the shroud having a vanishing total torque. The
swirl generator’s hub and shroud diameters are Dh ¼ 0:09 m and
Ds ¼ 0:15 m, respectively. The 10-bladed runner spins freely
and ensures the designed output flow configuration. Teflon bear-
ing was preferred as it ensures low friction. Supplied by the aux-
iliary hydraulic circuit (Fig. 1(a)), the injected water passes
through the leaned struts of the ogive, the hub’s interior and
reaches the nozzle.

The inverse method [21] was used to design the runner and
the guide vanes. The runner’s exit velocity profiles resulting
from the FLINDT project were imposed for design. These veloc-
ity profiles were measured by Ciocan et al. [22] and numerically
determined by Stein et al. [23,24]. As a result, the axial and the
swirl velocity profiles in the test section are quite similar to the
ones measured downstream of the runner of a Francis turbine
model according to Fig. 7 from Resiga and Muntean [25]. Note
that this is the runaway speed for the swirl generator runner and
it is not related to the turbine model runner speed. The dimen-
sionless precession frequency of the vortex rope is expressed
using the Strouhal number shown in Table 1. It can be seen that
the swirl apparatus generates a vortex rope with Strouhal number
equal to 0.39 quite close to the Strouhal number for the model
Francis turbine (Sh¼ 0.408).

The vortex rope visualized in Fig. 3(a) was obtained using the
above-described swirl. It can be seen that the vortex rope develops
along the entire length of the cone. Having a spiral shape with a
precession movement, it starts close to the injection nozzle and
it disintegrates at the downstream exit having a total length of
about 200 mm. When the jet is turned on, it pushes the stagnant
region and the associated vortex rope downstream the cone,
Fig. 3(b) [26].

Fig. 1 Experimental closed loop test rig installed in the
Hydraulic Machinery Laboratory. Sketch of the test rig with the
main elements.
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3 Pressure Measurements

The aim of this research is to assess a new method for diminish-
ing the pressure pulsations and increase pressure recovery in a
straight conical diffuser similar to the draft tube cone of a Francis
turbine. The recorded unsteady pressure is used to analyze the
dynamic and energetic performances. Pressure fluctuation data are
used to assess the dynamic behavior while the mean pressure is
needed for energetic assessment.

Energetically, the pressure recovery coefficient along the cone
is determined by analyzing the averaged pressure. Dynamically,
the decelerated swirling flow’s amplitude and frequency and the
type of conical diffuser’s unsteadiness are determined by analyz-
ing the Fourier spectra. The latter is evaluated using two pressure
transducers flash mounted on the same level. According to Jacob
and Prenat [27], depending on the phase between the two pressure

signals the conical diffuser unsteadiness is either rotating or
plunging oscillation type.

Four levels were selected for pressure measurements as shown
in Fig. 4. The top level located in the test section’s throat was
denoted MG0. This level is considered the benchmark (the refer-
ences for dimensionless values are being calculated with respect
to this level). The other levels MG1, MG2, and MG3 correspond
to 50, 100, and 150 mm downstream in the discharge cone, rela-
tive to the MG0. The first step of experimental procedure was to
confirm that two pressure transducers located on the same level
indicate the same static pressure. The capacitive pressure trans-
ducers used for measurements have an accuracy of 0.13% within
a range of 61 bar relative pressure. Having two pressure trans-
ducers on the same level, allows the same level average pressure
comparison confirming the transducer’s accuracy.

The unsteady pressure was measured at the test section’s wall
to assess the influence of the water injection control method. A
main operating discharge of 30 l/s was used for experimental
investigation in all regimes. The water jet discharge used for con-
trol purposes was calculated as a percentage of the main flow.
Pressure pulsation measurements were performed while injecting
water of 5%, 7.5%, 9.3%, 10%, 10.9%, 11.3%, 11.6%, 11.9%,
12.5%, 13%, and 14% discharge. The unsteady pressure is meas-
ured using eight transducers mounted on the conical diffuser’s
wall. In order to verify the measurements repeatability ten
experiments were performed for each jet discharge value. Each
set corresponds to an acquisition time interval of 32 s at a

Fig. 2 The swirl apparatus and cross section with the main elements

Table 1 Vortex rope Strouhal number for the model Francis
turbine and for the swirl apparatus

Francis model turbine at
partial discharge [22] Swirl apparatus

f (Hz) 4.17 14.9
Dref (m) 0.4 0.1
Vref (m/s) 4.084 3.82
Sh¼ (f�Dref)/Vref 0.408 0.39
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sampling rate of 256 samples/s. The investigations reported in this
paper follow two research directions. Energetically, the cone pres-
sure recovery coefficient is evaluated using the experimental data
to assess the efficiency of the proposed control method for differ-
ent jet discharge values. Dynamically, the pressure pulsations are
evaluated for several different jet discharge values.

4 Pressure Data Analysis

4.1 Averaged Pressure Analysis. Energetically, the mean
pressure has to be analyzed for all measurement levels in order to
assess the influence of our flow control approach on the overall
diffuser efficiency. The pressure recovery coefficient is given by
the following equation:

cp ¼
p� pMG0

q � v2
t =2

(1)

Fig. 3 The visualization of the cavitating vortex rope from the
discharge cone of the test section (a) and with water injection (b)

Fig. 4 The test section with wall flash mounted pressure
transducers on the rig (a) and the labels for each level (b)
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where cp is the pressure recovery coefficient, pMG0 is the mean
pressure recorded in the MG0 level, p is the mean pressure
recorded at downstream levels from MG0 (see Fig. 4), q is the
water density, and vt is the throat velocity. The pressure recovery
coefficient expressed by Eq. (1) for the MG1, MG2, and MG3 lev-
els in terms of the ratio of Qjet/Q was analyzed. This coefficient
(relative to the throat section labeled MG0 which is considered as
a reference) is plotted in Fig. 5 for all the above mentioned levels.
The measurements have been repeated ten times, with a resulting
standard deviation less than 2% as shown with error bars in Fig. 5.

After a drop down at 1%, the pressure recovery coefficient start
to increase up to 2% discharge for the first 50 mm along the cone
(level MG1), Fig. 5(a). At over 2% control jet discharge value,
the stagnant region is located below the MG1 level. As such,
increasing the control jet discharge over this value causes insignif-
icant pressure recovery coefficient modification at the MG1 level
(Fig. 5(a)). The pressure recovery coefficient variation related to
the control jet discharge at the MG2 level (located in the middle
of the cone) reveals two distinctive regions. A significant
improvement (about 30%) of the pressure recovery coefficient is
observed between 0% and 5% control jet discharge. Over this 5%
value, the pressure recovery coefficient increases monotonically
up to 60% in the full water injection domain (Fig. 5(b)). At the
MG3 level one can see a monotonic increase about 30% of the
pressure recovery coefficient as the control jet discharge increases
from 0% to about 13%, Fig. 5(c). It is important to note that the
pressure recovery coefficients for levels MG2 and MG3 continue
to grow as the control jet discharge exceeds the critical threshold
value (11.5%) towards 13%. This suggests a better pressure recov-
ery along the cone up to 13% control jet discharge. However, the
optimum control jet discharge value is a balance between the cone
recovered energy and the jet hydraulic power [28]. Over the 13%
control jet discharge value the pressure recovery coefficient is
practically constant for all the levels. Consequently, an analysis of
the pressure recovery coefficient variation along the cone is per-
formed for a control jet discharge of 14%. Figure 6 shows a com-
parison of the pressure recovery coefficient’s distribution along
the cone in two cases, vortex rope (no control jet) and 14% control
jet discharge. One can see an increase of the pressure recovery
coefficient for all levels (MG1, MG2, and MG3) in the jet case
versus the vortex rope case, Fig. 6. At MG1 level the pressure re-
covery coefficient increases by 23% (from around 0.55 to around
0.68). The second level MG2 shows a significant improvement of
110% of this coefficient (from around 0.39 to around 0.82). On
the third investigated level MG3, one can notice an increase
of 47% of this coefficient (from around 0.55 to around 0.81).
Figure 6 demonstrates that our control method increases the
energy recovery in the cone which exhibits the designed hydrody-
namic behavior even in these conditions [17].

4.2 Unsteady Pressure Analysis. Dynamically, the unsteady
pressure signal’s Fourier spectra has to be analyzed in order to
understand the swirling flow configuration and to assess the water
injection method. A new approach is employed to analyze the
pressure signal. It offers a metric which allows quantitatively
dynamical characterization of the unsteady pressure signal. Based
on the acquired unsteady pressure signal, this approach leads to an
accurate evaluation of the unsteadiness level. Mathematically, it
compares two signals having different Fourier spectra (amplitude,
harmonics number, and their frequencies). The second signal is
reconstructed based on the acquired one using the Parseval’s theo-
rem. It has the same frequency as the first harmonic of the
acquired signal and root mean square (rms) equivalent amplitude.

The results will be presented as dimensionless. The following
reference values are considered in the analysis: (i) the throat diam-
eter of the test section Dt¼ 0.1 m, (ii) the overall throat discharge,
which includes the main circuit discharge Q¼ 30 l/s and the jet
discharge Qjet (associated with a different water injection regime),
(iii) the throat average static pressure denoted pMG0.

The first dimensionless parameter to be used is the Strouhal
number Eq. (2) associated with the frequency. The throat refer-
ence velocity value takes into account the overall discharge which
includes the main circuit’s and the jet’s discharges. Particularly,
the overall discharge equals to the main circuit’s discharge when
the jet is turned off,

Fig. 5 Evolution of the pressure recovery coefficient for MG1
(a), MG2 (b), and MG3 (c) levels depending on the Qjet/Q
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Sh ¼ f � Dt

vt
where vt ¼

4 Qþ Qjet

� �
pD2

t

(2)

The second dimensionless parameter to be used is the pressure’s
amplitude. This is described in the following. The Fourier trans-
form for a continuous signal p(t) is defined according to statistical
theory [29,30]

pðtÞ ¼ p0

2
þ
X1
m¼1

am cos
2pmt

T

� �
þ bm sin

2pmt

T

� �� �
(3)

where T is the period, m the mode, t the time, and am and bm are
the Fourier transform coefficients defined as

am ¼
2

T

ðt0þT

t0

p tð Þ cos
2pmt

T

� �
dt; bm ¼

2

T

ðt0þT

t0

p tð Þ sin
2pmt

T

� �
dt

(4)

with t0 being the initial time.
The first coefficient represents the average value �p of the signal

and it is defined in Eq. (5),

p0 ¼
2

T

ðt0þT

t0

p tð Þdt ¼ 2p (5)

where p0/2 is the mean value of p(t). The amplitude and the angu-
lar frequency can be written as follows:

Am ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

m þ b2
m

q
; xm ¼ m

2p
T

(6)

The Parseval’s theorem applied to the Fourier transform is written
as below,

1

T

ðt0þT

t0

pðtÞj j2dt ¼ 1

2
p0

� �2

þ 1

2

X1
m¼1

a2
m þ b2

m

� �
(7)

The pressure root mean square (rms) is defined according to the
following equation:

prms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

ðt0þT

t0

p tð Þ � pð Þ2
s

dt (8)

Appling the Parseval’s theorem yields

p2
rms ¼

1

T

ðt0þT

t0

p2 tð Þdt� p
2

(9)

According to this theorem, the pressure’s rms is defined as

p2
rms ¼

1

2

X1
m¼1

a2
m þ b2

m

� �
(10)

For a discrete signal the following equation applies:

prms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

pi � pð Þ2
vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

X
m

A2
m

s
(11)

The amplitude’s dimensionless form for a discrete signal can be
defined as

A ¼
ffiffiffi
2
p

prms

leading to

�A ¼
ffiffiffi
2
p

prms

	 
� 1

2
qv2

t

� �
where vt ¼

4 Qþ Qjet

� �
pD2

t

(12)

This means that the equivalent amplitude (A) of the pressure pul-
sation is proportional to the rms. In other words, the equivalent
amplitude collects all spectrum contributions. As a result, the
original signal can be accurately reconstructed using its funda-
mental frequency and the equivalent amplitude computed based
on the pressure signal. Both the acquired (points) and the recon-
structed signals according to the above approach (continuous
line), can be seen in Fig. 7 for all investigated levels. However,
this procedure may be employed to reconstruct rms equivalent sig-
nals using the fundamental frequency and a number of harmonics.
With no control water jet the swirling flow loses the stability and
develops the vortex rope and associated unsteadiness. Conse-
quently, the vortex rope’s Strouhal number is 0.39 as shown in
Fig. 8(b). A qualitative model of the vortex rope flow field was
given by Nishi et al. [31] who observed a quasi-stagnant (stalled)
central region with the spiral vortex core wrapped around it. This
statement was validated with experimental data using the FLINDT
turbine model operating at part load by Resiga et al. [32]. The vor-
tex rope geometrical shape is almost cylindrical having a very
small eccentricity (see Fig. 3) close to the nozzle. It is important
to note that at MG0 and MG1 levels (Fig. 7), the amplitude of the
fundamental frequency associated with the vortex rope is domi-
nant, while the higher harmonics have negligible amplitudes.
The highest equivalent amplitude corresponds to the MG2 level,
Fig. 8(a) (the rhombus-marked curve). These differences in ampli-
tude for each level (Fig. 8(a), corresponding to Qjet/Q¼ 0) are due
to the vortex rope shape. Indeed, the angle of the cone the vortex
rope wraps on larger than the geometry cone’s angle. As a result,
the vortex rope’s eccentricity is largest at the MG2 level. As it
advances downstream, the vortex rope loses strength and begins
to disintegrate (level MG3) and its higher harmonics increase sig-
nificantly [33,34].

When starting to inject the water, the stagnant region associated
with the vortex rope is gradually pushed downstream of the cone.
Consequently, at 5% control jet discharge the vortex rope’s ampli-
tudes remain almost constant for the MG0 level, decrease for
the next two levels (MG1 and MG2) approximately by 10%,
and increase for the last level (MG3) by approximately 40%
(Fig. 8(a)). The vortex rope Strouhal number sharply decreases
from 0.39 to 0.27 (Fig. 8(b)). Exceeding this discharge value leads
to a monotonous decrease of frequency and amplitudes for all

Fig. 6 Pressure recovery coefficient comparison between the
swirling flow with vortex rope regime and the full water injec-
tion 14% discharge of the main flow at all levels
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levels until reaching the 11.5% jet discharge critical threshold. At
11.5% jet discharge, the frequency decreases by 35% with respect
to no control jet. Correspondingly, the amplitudes decrease for all
levels except MG3 due to the fact that the top of the stagnant

region reaches this level. Over this critical threshold, this region
gets completely pushed out of the cone. As a result, a sudden drop
is noted in both amplitudes (at all levels) and frequency. Further
jet discharge increase causes no modification in amplitudes and

Fig. 7 Reconstructed signal against acquired signal for MG0, MG1, MG2, and MG3 levels
(left) and equivalent amplitude overlapped with Fourier spectra of pressure signal (right) in
the case of swirling flow with vortex rope
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frequency. Both plots in Fig. 8 include the 2% error band of the
main value for each measuring point. It is important to note that
below the critical jet threshold the error bands are small. This
occurs due to the fact that the value of the amplitudes and
frequency associated to the swirling flow are significantly larger
than the noise. Over the threshold, the error bands increase due to
the fact that the noise becomes significant with respect to the
measured values.

4.3 Pressure Signal Decomposition. As mentioned above,
according to Jacob and Prenat [27], there are two types of draft
tube cone pulsations. The plunging type (synchronous) is acting
like a water hammer along the cone axis. The rotation type
(asynchronous) is acting in the cross sections. A minimum of two
sensors located on the same section are required for measurements
in order to evaluate this pulsation type. The asynchronous
pulsation is produced by instabilities, such as the vortex rope due
to its shape and its precession motion, Koutnik et al. [35]. Two
unsteady pressure signals S1 and S2 are used to discriminate
between the two pulsation types as follows:

S1þS2

2
)Synchronous component ðplungingÞof the pressure signal

(13)

S1�S2

2
)Asynchronouscomponent ðrotatingÞof the pressure signal

(14)

In this analysis, the S1 and S2 signals are reconstructed from
the acquired experimental data using the procedure based on the
Parceval’s theorem. As described above, this procedure was
employed at all levels for ten cases (from no jet to 14% control jet
discharge). Figure 9 exemplifies the S1 and S2 reconstructed sig-
nals in the two outermost cases for the MG0 level: no control jet
and 14% control jet discharge.

As mentioned above, each reconstructed signal has the same
frequency as the first harmonic of the acquired signal used and its
amplitude is rms-equivalent. Therefore, the reconstructed signal is
sinusoidal. The phase between the two reconstructed signals indi-
cates the type of pressure pulsation. Indeed, if S1 and S2 are in
phase then according to Eq. (14) the asynchronous component
vanishes. In this first ideal case, only the pure plunging pulsation
is detected. On the contrary, when S1 and S2 are out of phase,
according to Eq. (13) the synchronous component vanishes. This
is the second ideal case in which only the pure rotation component
is found. Generally, both pulsation types are expected to be found
in all investigated cases. The pressure pulsation type’s distribu-
tions along the cone in the two outermost cases are displayed in
Fig. 10. The swirling flow with vortex rope case (Fig. 10(a))
reveals predominant rotational pressure pulsations at all

Fig. 8 Equivalent amplitudes corresponding to levels from the
test section (a) and Strouhal number (b) versus ratio Qjet/Q

Fig. 9 Dimensionless pressure signals for MG0 level for swirl-
ing flow with vortex rope (a) and 14% full water injection (b)
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investigated levels. This is expected due to the vortex rope preces-
sion motion. On the contrary, the 14% control jet discharge
(Fig. 10(b)) highlights a significant decrease (about 30 times for
the most significant level – MG2) of the rotational pulsation com-
ponent. However, one can observe an increase (about five times
for the MG2 level) of the plunging component of the pressure
pulsation in comparison to the vortex rope case. We conclude
from Fig. 10 that the jet injection along the cone axis removes the
precessing helical vortex and its associated rotating pressure fluc-
tuations. As a result, the swirling flow becomes axisymmetric, and
the relative increase in the level of plunging pressure fluctuations
might be related to a possible “subcritical” swirl configuration, as
defined by Benjamin [36], when the swirling flow can sustain axi-
symmetric waves.

Figure 11 displays the two pressure component types (plunging
and rotational) distribution with respect to the control jet dis-
charge values for the four investigated levels. The following ten
values of jet discharges were used for measurements: 0%, 1.4%,
3.2%, 5%, 7.5%, 9%, 11%, 11.6%, 13.8%, and 14%. The rota-
tional component of the pressure pulsation associated with the
vortex rope is significant for all jet values located in the partial
water injection domain. In the full water injection domain, the
plunging pulsation becomes predominant for all injection values.

This behavior characterizes all investigated levels in Fig. 11.
Overall, the pulsations have decreased. The significant decrease of
the rotational pulsation component allows a safe turbine operation
at these conditions.

Fig. 10 Dimensionless pressure signal decomposition for
swirling flow with vortex rope (a) and 14% water injection (b) in
the length of the cone

Fig. 11 Pressure pulsations types’ distributions versus control
jet discharge
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5 Conclusions

The paper investigates the decelerated swirling flow with vortex
rope in a conical diffuser, using a swirl generator that mimics the
flow in the discharge cone of hydraulic turbines operated at partial
discharge. A novel flow control technique which uses axial injec-
tion is proposed, in order to improve the pressure recovery coeffi-
cient and to mitigate the pressure pulsations. The unsteady
pressure measurements were performed on the wall test sections.
Eight points located on four levels were investigated. For each
operating mode (swirling flow with vortex rope or swirling flow
with water injection) ten sets were measured.

Firstly, the average pressure was determined to compute the
pressure recovery coefficient in order to assess the energetic per-
formance of the new control method. The jet discharge increase
reveals two domains: the partial water injection and the full water
injection. The two domains are separated by the critical water
injection threshold at 11.5% discharge. The experiments reveal an
increase of the pressure recovery coefficient when increasing the
control jet discharge. Overall, the pressure recovery coefficient
associated with the full water injection leads to about 30%
improvements. The highest improvement was measured for the
MG2 level (located in the middle of the cone) and it was about
60%. This fact suggests a better energetic behavior of compact
discharge cones. These overall results demonstrate an improved
energetic cone behavior at this operating point. However, the opti-
mum control jet discharge value has to be selected as a balance
between the draft tube cone recovered energy and the jet hydraulic
power. Although, the method proves consistent energy recovery,
the 11.5% jet discharge value is prohibitive from an energetic
point of view if taking into account that the control jet is consid-
ered a volumetric loss.

Secondly, the dynamical behavior associated to this control
method was investigated by analyzing the pressure signal’s Fou-
rier spectra. A new method based on the Parceval’s theorem was
employed to reconstruct the acquired unsteady pressure signal.
The result of this procedure was a sinusoidal signal having the
same frequency as the first harmonic of the acquired signal and
rms equivalent amplitude. As the control jet discharge increases,
the unsteady pressure frequency decreases monotonically in the
partial water injection domain. During the full water injection
domain, the frequency remains practically constant. Generally,
the unsteady pressure amplitudes decrease as the jet discharge
increases in the partial water injection domain (MG0 and MG3
show a different variation pattern for small discharge values). The
amplitudes variations display a sudden drop at 11.5% jet dis-
charge. This is the reason why the 11.5% discharge was labeled
“critical threshold jet.” Above this value, the amplitudes exhibit
negligible variations with regard to the jet discharge. Therefore,
the instabilities associated with the vortex rope have been miti-
gated. As such this domain becomes desirable for operation.

The unsteady pressure signal is decomposed into rotational and
plunging components. The rotational component of pressure
pulsation associated with the vortex rope is significant for all jet
values located in the partial water injection domain. In the full
water injection domain, the plunging pulsation becomes dominant
for all injection values, but with small amplitudes. In general, the
pulsations have decreased. The significant decrease of the rota-
tional pulsation component suggests operation under these condi-
tions. However, the plunging pulsation propagates into the whole
hydraulic system. Mitigation of this component is the subject of
future research.

Generally, the proposed control method leads to an improve-
ment of energetic and dynamic performances of the decelerated
swirling flow in the discharge cone. The necessary jet discharge
values to attain optimum operation conditions have to be eval-
uated particularly from case to case. Each case will be defined by
the cone geometry and the swirling flow configuration. Although
0.115 jet discharge seems to be too large for a real turbine with
respect to pumping energy, one should note that the jet does not

necessarily need a separate water supply. The novel flow-
feedback technique proposed by Susan-Resiga et al. [25] uses a
fraction of the main discharge, collected near the wall, at the cone
outlet, to supply the jet. It is proved numerically [25] and experi-
mentally [37] that the pressure excess at the cone wall with
respect to nozzle outlet can drive the control jet with large enough
discharge in order to mitigate the central stagnation region and
associated vortex rope.
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Nomenclature
am; bmðPaÞ ¼ Fourier transform coefficients

Dh mð Þ ¼ hub diameter of the swirl generator, Dh ¼ 0:09 mð Þ
Di mð Þ ¼ nozzle exit diameter, Di ¼ 0:033 mð Þ
Do mð Þ ¼ outlet diameter from the test section, Do ¼ 0:16 mð Þ
Ds mð Þ ¼ shroud diameter of the swirl generator,

Ds ¼ 0:15 mð Þ
Dt mð Þ ¼ reference diameter from the throat of the

convergent-divergent test section, Dt ¼ 0:1 mð Þ
f Hzð Þ ¼ dominant frequency from Fourier spectrum

Q m3=sð Þ ¼ main discharge from the primary hydraulic circuit
Qjet m3=sð Þ ¼ jet discharge at the nozzle

cp ¼ pressure recovery coefficient
p tð Þ ¼ continuous pressure signal

p Pað Þ ¼ average pressure for each level
p0 Pað Þ ¼ mean value of a pressure signal

pMG0 Pað Þ ¼ average pressure from level MG0 situated in the
throat of convergent-divergent test section

prms Pað Þ ¼ root mean square of a continuous pressure signal
Sh ¼ Strouhal number

S1; S2 ¼ pressure signals measured for the same level
vt m=sð Þ ¼ reference velocity from the throat of

convergent-divergent test section
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[35] Koutnik, J., Krüger, K., Pochyly, F., Rudolf, P., and Haban, V., 2006, “On Cav-
itating Vortex Rope Form Stability During Francis Turbine Part Load Oper-
ation,” IAHR International Meeting of the Workgroup on Cavitation and
Dynamic Problems in Hydraulic Machinery and Systems, Barcelona, Spain.

[36] Benjamin, T., 1962, “Theory of Vortex Breakdown Phenomenon,” J. Fluid
Mech., 14, pp. 593–629.

[37] Tanasa, C., Bosioc, A. I., Muntean, S., and Susan-Resiga, R., 2011, “Flow-
Feedback Control Technique for Vortex Rope Mitigation From Conical Dif-
fuser of Hydraulic Turbines,” Proc. Rom. Acad., Ser. A, 12(2), pp. 125–132.

Journal of Fluids Engineering AUGUST 2012, Vol. 134 / 081104-11

Downloaded 06 Aug 2012 to 193.226.8.56. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

http://dx.doi.org/10.1002/fld.1650130505
http://dx.doi.org/10.1002/fld.1650130505
http://dx.doi.org/10.1115/1.2409332
http://dx.doi.org/10.1115/1.4001486
http://dx.doi.org/10.5293/IJFMS.2009.2.4.295
http://dx.doi.org/10.1115/1.3002318
http://dx.doi.org/10.1017/S0022112062001482
http://dx.doi.org/10.1017/S0022112062001482


Constantin Tănasă
Scientific Researcher

Research Center for Engineering of

Systems With Complex Fluids,

“Politehnica” University of Timis�oara,

Boulevard Mihai Viteazu 1,

RO-300222 Timis�oara, Romania

e-mail: costel@mh.mec.upt.ro

Romeo Susan-Resiga1

Professor

Hydraulic Machinery Department,

“Politehnica” University of Timis�oara,

Boulevard Mihai Viteazu 1,

RO-300222 Timis�oara, Romania

e-mail: resiga@mh.mec.upt.ro

Sebastian Muntean
Senior Researcher

e-mail: seby@acad-tim.tm.edu.ro

Alin Ilie Bosioc
Scientific Researcher

e-mail: alin@mh.mec.upt.ro

Center for Advanced Research in

Engineering Science,

Romanian Academy—Timis�oara Branch,

Boulevard Mihai Viteazu 24,

RO-300223 Timis�oara, Romania

Flow-Feedback Method
for Mitigating the Vortex Rope
in Decelerated Swirling Flows
When reaction hydraulic turbines are operated far from the design operating regime,
particularly at partial discharge, swirling flow instability is developed downstream of the
runner, in the discharge cone, with a precessing helical vortex and its associated severe
pressure fluctuations. Bosioc et al. (2012, “Unsteady Pressure Analysis of a Swirling
Flow With Vortex Rope and Axial Water Injection in a Discharge Cone,” ASME J. Fluids
Eng., 134(8), p. 081104) showed that this instability can be successfully mitigated by
injecting a water jet along the axis. However, the jet discharge is too large to be supplied
with high pressure water bypassing the runner, since this discharge is associated with the
volumetric loss. In the present paper we demonstrate that the control jet injected at the
inlet of the conical diffuser can actually be supplied with water collected from the dis-
charge cone outlet, thus introducing a new concept of flow feedback. In this case, the jet
is driven by the pressure difference between the cone wall, where the feedback spiral
case is located, and the pressure at the jet nozzle outlet. In order to reach the required
threshold value of the jet discharge, we also introduce ejector pumps to partially compen-
sate for the hydraulic losses in the return pipes. Extensive experimental investigations
show that the wall pressure fluctuations are successfully mitigated when the jet reaches
12% of the main flow discharge for a typical part load turbine operating regime. About
10% of the jet discharge is supplied by the plain flow feedback, and only 2% boost is
insured by the ejector pumps. As a result, this new approach paves the way towards prac-
tical applications in real hydraulic turbines. [DOI: 10.1115/1.4023946]

Keywords: decelerated swirling flow, vortex rope, flow-feedback method, experimental
investigations, unsteady pressure analysis

1 Introduction

Hydropower remains the main option for regulating power
grids, whereas other renewable energy sources, such as wind,
introduce power fluctuations [1]. However, Francis hydraulic tur-
bines are designed to operate at, or in the neighborhood of, the
best efficiency regime. Far from such optimal regime, hydraulic
turbine operation is hindered by unwanted flow instabilities, with
associated low-frequency phenomena developed in swirling flows
[2]. For example, at partial discharge the self-induced instability
of the decelerated swirling flow downstream the runner, in the dis-
charge cone, with precessing helical vortex (also known as vortex
rope), is accompanied by severe pressure fluctuations [3,4] lead-
ing to: (i) failure of the draft tube connecting bolts [5], (ii) re-
moval of the runner hub cone due to the rupture of connecting
bolts [6], (iii) breakdown of runner blades [7], (iv) damage of lab-
yrinth seal, and (v) nonuniform wear of the bearings.

Conventionally, the characteristic length for hydraulic turbines
is the runner diameter (marked with D in Fig. 1) according to the
IEC standards [8]. Francis runner prototype diameters are typi-
cally in the range from 2 to 10 m while the associated Reynolds
number ranges from 107 to 108, Anton [9]. Generally, extensive
experimental investigations are performed on hydraulic turbines
models in the laboratory. Correspondingly, runner model diame-
ters are within range from 0.25 m up to 0.5 m, with Reynolds num-
ber values from 105 to 106.

Mitigating the vortex rope phenomenon is an open problem for
modern Francis hydraulic turbines, with a plethora of techniques
aimed either at removing the causes of flow instability or at dimin-

ishing its effects. Such techniques can be categorized as either
active or passive [10], depending on the energy injected in the main
flow. An early review of passive technical solutions that address hy-
draulic instabilities in the draft tubes of hydraulic turbines was
compiled by Thicke [11], and later on, various methodologies have
been developed up to their technical application: (i) air admission
[12,13] (ii) stabilizer fins [14] (iii) runner cone extensions [15,16]
(iv) J-grooves [17,18]. Although such techniques led to significant
improvements in turbine operation at far off-design regimes, fins,
cones, or grooves cannot be removed when their presence is no lon-
ger required, thus introducing unwanted additional hydraulic losses
when operated in the neighborhood of the best efficiency regime.
The air admission is self-adjusting with the operating point, how-
ever the large air pocket significantly changes the overall imped-
ance of the hydraulic system, and it may trigger even larger
problems than the original ones in case resonance occurs.

Active flow control methods generally use either air or water
injection, using an external energy source, such as: (i) air injection
at the trailing edge of the wicket gates [12] (ii) water injection at
the trailing edge of the wicket gates [19] (iii) tangential water jet
injection at the cone wall [20] (iv) axial water jet injection with
high velocity and low discharge [21] (v) water jet injected along
the axis with low velocity and large discharge [22] (vi) two-phase
air-water jet injection along the axis [23]. Beside such methods
aimed at modifying the hydrodynamics of the flow, Blommaert
et al. [24] and Blommaert [25] attempted to alter hydro acoustic
properties by injecting in the draft tube cone an inverse modulated
jet carrying up to 1% of the overall turbine power, with the pur-
pose of canceling out the self-induced pressure fluctuations caused
by the vortex rope.

The above analyses clearly show that an effective swirling
flow control technique should address the main cause of the
self-induced instability rather than the effects of a well-developed
precessing vortex rope. As a result, Susan-Resiga et al. [26]
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introduced a novel technique for stabilizing the decelerated swirl-
ing flow in the discharge cone of hydraulic turbines operated at
partial discharge, which uses a water injection from the runner
crown along machine axis. The initial proof of concept was per-
formed for a Francis turbine operated at partial discharge, with a
well-developed vortex rope [4] as sketched in Fig. 1(a). It was
shown, that the vortex rope can be practically removed by inject-
ing a water jet from the runner crown, thus eliminating harmful
pressure fluctuations as well. Numerical assessment of this
approach was later on performed by Zhang et al. [27], who con-
firmed the effectiveness of vortex rope mitigation. Further exten-
sive experimental investigations of the control jet parameters
were performed by Bosioc et al. [22], who showed that a jet dis-
charge of 10% to 12% from the turbine discharge is required to
completely remove the vortex rope. From a practical viewpoint,
these investigations raised a new issue regarding the supply of the
control jet. A simple approach is to supply the control jet with

high pressure water from upstream the runner. As a result, a large
fraction of the turbine discharge will bypass the runner, with an
inacceptable increase of the so-called volumetric losses. An alter-
native approach is, to supply the control jet by collecting a frac-
tion of the discharge from downstream the runner at the discharge
cone outlet, Fig. 1(b), by installing a small spiral collecting case
connected through return pipes to the turbine tubular shaft and the
jet nozzle. It is clear that in this case no additional volumetric
losses occur, and no additional energy is required to drive the con-
trol jet. The first numerical experiments for this passive flow-
feedback method (FFM) were performed by Susan-Resiga and
Muntean [28] who showed that the pressure excess at the dis-
charge cone wall, mainly due to the swirl, with respect to the pres-
sure deficit at the runner crown tip, could drive the control jet to
completely mitigate the quasi-stagnant region induced by the vor-
tex rope. Moreover, the FFM approach has the potential to
actually increase the overall turbine efficiency by reducing the
rather large hydraulic losses in the draft tube at off-design operat-
ing points. Qualitatively, the FFM is self-regulated, since the pres-
sure difference that drives the control jet decreases near the best
efficiency regime, thus reducing or cancelling the jet discharge
when it is no longer needed. This preliminary assessment of the
FFM did not fully account for the hydraulic losses on the return
circuit. As a result, the experimental investigations presented in
this paper also considered an active flow feedback method with
additional energy (FFMþ) provided by ejector pumps installed on
the return pipes. Both control methods are investigated using the
methodology presented by Bosioc et al. [22]. Moreover, the ex-
perimental results of the FFM are compared against the plain
water injection method investigated in [22] in order to assess as
clear as possible the FFM advantages and limitations.

The second section presents the experimental test rig used for
the present experimental investigations of both FFM and FFMþ,
with a swirl generator that provides a swirling flow similar to the
one encountered in hydraulic turbines operated at partial dis-
charge, where a well-developed vortex rope is present in the dis-
charge cone. The experimental setup for pressure measurements is
also detailed in Sec. 2. An extensive analysis of both steady (pres-
sure recovery) and unsteady (pressure fluctuations) pressure on
the conical diffuser wall is presented in Sec. 3. The paper conclu-
sions are summarized in Sec. 4.

2 Experimental Setup

2.1 Swirling Flow Apparatus and Pressure Measuring
Setup. In order to investigate experimentally the flow-feedback
control, we are using the test rig with a closed loop hydraulic cir-
cuit described in [22]. Instead of testing the FFM on a model hy-
draulic turbine, we have designed and built a special swirl
apparatus, Fig. 2. The swirling flow apparatus, included in the
main hydraulic circuit, contains two main parts: the swirl genera-
tor and the convergent-divergent test section. The swirl generator
has an upstream annular section with stationary and rotating
blades for generating a swirling flow. It has three components: the
ogive, the guide vanes, and the free runner, see the detail in
Fig. 2. The ogive with four leaned struts sustains the swirl genera-
tor and supplies the jet nozzle. The guide vanes and the free run-
ner are installed in a cylindrical section with Ds ¼ 150 mm. The
nozzle outlet with Dn ¼ 30 mm is located close to the throat sec-
tion with Dt ¼ 100 mm. This swirl generator provides a swirling
flow configuration at the inlet of the conical diffuser quite similar
to the corresponding flow downstream a Francis runner operated
at partial discharge [29]. As a result, the decelerated swirling flow
in the cone develops a precessing vortex rope with the same
Strouhal number as the one corresponding to the Francis turbine
model investigated in [4]. The flow in this swirling flow apparatus
was extensively investigated numerically by Ojima and
Kamemoto [30], Bergman [31], and Petit et al. [32], who clearly

Fig. 1 Cross section through a Francis hydraulic turbine (a)
vortex rope in the discharge cone and (b) flow-feedback system
with jet injection into the discharge cone
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showed the well-developed vortex rope in agreement with the ex-
perimental investigations performed on our test rig.

The present paper is focused on the wall pressure measurements
on the conical diffuser, using a set of eight fast responding trans-
ducers to measure the unsteady pressure at four levels in the cone,
L0, L1, L2, and L3, as shown in Fig. 2. The L0 level corresponds
to the throat of the convergent-divergent test section, and the next
three levels are located downstream with 50 mm spacing. Each
pressure tap with a diameter of 3 mm was manufactured with mis-
alignment in the limit of 60.1 mm on the cone wall using a CNC
machine.

The cone half-angle is 8.6 deg, similar to the compact discharge
cones used in the modern draft tubes for hydraulic turbines. How-
ever, in our case the ratio between the cone length L ¼ 200 mmð Þ
and the throat diameter Dt ¼ 100 mmð Þ is quite large L=Dt ¼ 2ð Þ
in order to capture the entire vortex rope in the conical diffuser.
The capacitive unsteady pressure transducers, flush-mounted on
the cone wall, have an accuracy of 60.13% within a full range of
6100 kPa. At least ten data sets have been acquired for each
investigated flow regime in order to insure data reliability. Each
set corresponds to an acquisition time interval of 32 s at a sam-
pling rate of 256 samples per second. Given a fundamental fre-
quency f ¼ 15 Hz associated with the vortex rope, we have more
than 17 samples per period, which ensures a good resolution for
the unsteady signal. The standard deviation for measured values is
less than 61% for all pressure transducers. The uncertainty is
computed taking into account the systematic and random errors
[33,34], respectively.

Most of the results have been obtained for a test rig discharge
of Q¼ 30 l/s, but the scaling of the results was checked with respect
to the dimensionless pressure coefficients at 25 and 20 l/s. The flow
meter accuracy installed on the test rig is 60.15% of the full range
of 50 l/s. The Reynolds number of 3.8� 105 corresponds to our
investigation on the test rig, taking into account the main discharge
of Q¼ 30 l/s in the throat section with Dt ¼ 100 mm.

The experimental investigations have been performed with a
water temperature distribution from 20 to 25 �C during each cam-
paign. In this case, no cooling system was used due to the fact that
the water volume is large enough (more 4 m3) in order to have
negligible uncertainties due to the temperature variations. Also,

all experimental investigations, have been done under overpres-
sure conditions. Moreover, the hydraulic circuit is fully filled with
water. As a result, only noncavitating vortex ropes were consid-
ered in our investigations, meaning no air volume trapped inside.
That is the reason, why the density was taken constant and equal
with the water density value q ¼ 998 kg=m3ð Þ.

2.2 The Passive Flow Feedback Method Implementation. The
flow-feedback system implemented on our swirl apparatus is
sketched in Fig. 3. Essentially, we have added a twin spiral case at
the cone outlet to collect a fraction of the discharge, which is
directed through a pair of return pipes towards the jet nozzle.
Note, that in our previous investigations [22] we have used an
auxiliary pump to supply the jet, while here the jet is simply
driven by the pressure difference from the cone wall and the jet
nozzle exit without any external energy. For FFM implementa-
tion, the auxiliary pump was completely removed.

The main component of the FFM system is the twin spiral case
shown in Fig. 4. We have considered a circular cross section, with
a linear cross-section area increase versus the angular coordinate
resulting in a cross-section radius variation as shown in Fig. 4(a).
The corresponding design is shown in Fig. 4(b), with geometrical
details given in Fig. 4(c) for several meridian cross sections. The
inlet and outlet diameters are the same, Dinlet ¼ Doutlet ¼ 160 mm,
the tongue diameter is Dtongue ¼ 150 mm, and the axial extent of
the twin spiral case is H ¼ 70 mm. A transversal cross-section
view of the twin spiral case is shown in Fig. 4(d). This particular
design was chosen such that the radial extent of the spiral case is
minimized, as required for the practical implementation in real
power plants. Two 30 mm diameter and 600 mm length return
pipes connect the spiral case outlets to the jet nozzle, see Fig. 3.
Note, that in this straightforward implementation of the FFM there
are no elements to regulate the jet discharge.

2.3 The Active FFM1 Implementation. During the experi-
mental investigations we have found that the hydraulic losses
through the flow return pipes are slightly larger than initially esti-
mated. As a result, the jet discharge was found to be slightly lower
than the threshold value required for effective vortex rope

Fig. 2 Cross section through the swirling flow apparatus and detail of the swirl
generator
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Fig. 3 Schematic representation of the flow-feedback system (FFM) implemented on the swirl
apparatus and a cross section through the swirl generator

Fig. 4 Collecting spiral case (a) radius of the cross section, (b) top view of the twin spiral case,
(c) meridian cross-section geometry, and (d) transversal cross-section
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mitigation [35]. In order to provide the necessary jet discharge
increase, we have designed and installed two elbow ejector
pumps, Fig. 5, on the return pipes. By measuring the pressure loss
versus the jet discharge, Fig. 6, we have determined the pressure
rise required for the ejector pumps. The actual design of the ejec-
tor pump follows the classical methodology [36], with an esti-
mated efficiency of 36%. Although this efficiency is rather low,
the simplicity and robustness of the ejector, correlated with the
small amount of hydraulic energy required for the driving jet, rec-
ommends this technical solution for real practical applications as
well. On our test rig, the ejector driving jets are supplied with an
auxiliary pump, but, for real turbines these driving jets could be
supplied with high pressure water from upstream the turbine. The
required discharge, included in the overall volumetric losses, is no
larger than from 1% to 2% of the turbine discharge.

3 Pressure Data Analysis

3.1 Mean Pressure Analysis. The main purpose of the dis-
charge cone is to convert the excess of kinetic energy at the runner

outlet into static pressure by decelerating the swirling flow down-
stream the hydraulic turbine runner. In practice, this dynamic-to-
static pressure conversion is quantified by the so-called pressure
recovery coefficient, usually evaluated with the wall pressure. The
wall pressure evolution is expressed in dimensionless form with
the pressure coefficient,

cp ¼
p� pL0

qV2
t =2

where Vt ¼
Qþ Qjet

pD2
t =4

(1)

where pL0 is the mean pressure measured by the transducers at the
L0 level, Fig. 2, p is the mean pressure measured further down-
stream on the cone wall, q is the water density, and Vt is the throat
average discharge velocity with Dt ¼ 100 mm the throat diameter
of the swirl apparatus at level L0, respectively. The pressure coef-
ficient defined in Eq. (1) is plotted in Fig. 7 for the levels L1, L2,

Fig. 5 Flow-feedback system with ejector pumps (FFM1) and a detail with the ejector pump

Fig. 6 Pressure loss on the return pipes versus jet discharge

Fig. 7 Dimensionless pressure coefficient measured on the
conical diffuser wall for swirling flow with vortex rope and with
flow-feedback control, respectively
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and L3, where the axial coordinate is made dimensionless by the
throat radius. The measurements were repeated N> 10 times for
each operating regime, and the standard deviation for the mea-
surement set,

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
pi � �pð Þ2

N � 1

s
(2)

is shown in Fig. 7 with error bars. One can easily observe a signif-
icant increase in the pressure recovery when we inject the control
jet. For example, in the middle of the conical diffuser, level L2,
the wall pressure recovery coefficient is practically doubled. It is
clear that by mitigating the vortex rope and the associated addi-
tional hydraulic losses, the dynamic-to-static pressure conversion
is more efficient. For real turbines, this improved pressure recov-
ery in the discharge cone is reflected in an increase of the overall

Fig. 8 Pressure fluctuation when using the FFM: original signal (left) and its Fourier
spectrum (right)
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turbine efficiency far from the best efficiency point, especially for
low-head hydraulic turbines, since the main fraction of the hy-
draulic losses at such operating points are associated with the
swirl in the draft tube cone [37]. At the L1 level, the pressure re-
covery increases from 0.55 to 0.75 (þ36.4%), and a similar
increase is recorded at the L3 level.

The control jet discharge is 10% from the main flow discharge
for FFM, and 12% for FFMþ when the ejector pumps are turned
on. From the pressure recovery perspective, the small increase in
the jet discharge leads to a corresponding small improvement in
the diffuser performance. However, from a dynamic point of
view, there is a significant improvement, as shown below.

Fig. 9 Pressure fluctuation when using the FFM1: original signal (left) and its Fourier
spectrum (right)

Journal of Fluids Engineering JUNE 2013, Vol. 135 / 061304-7

Downloaded From: http://fluidsengineering.asmedigitalcollection.asme.org/ on 05/21/2013 Terms of Use: http://asme.org/terms



The analysis of the mean pressure evolution along the cone
wall shows, that the jet injection with the flow-feedback method
has the potential to significantly improve the pressure recovery in
compact conical diffusers (with an angle larger than 13 deg [38])
when the hydraulic turbine is operated far from the best efficiency
point.

3.2 Unsteady Pressure Analysis. The self-induced flow
instability of the decelerated swirl in a conical diffuser develops a
precessing helical vortex with an associated pressure fluctuation
which hinders the hydraulic turbine operation. This is the reason,
why we focus in the present section on the unsteady part of the
pressure measurements, as well as on the effect of the flow-
feedback on the pressure fluctuation level.

Since the unsteady part of the pressure signal is periodic, we
characterize it using the vortex rope precessing frequency, f Hzð Þ,
and the equivalent amplitude computed using Parseval’s theorem
[39]. In dimensionless form, the precessing frequency is expressed
using the Strouhal number,

Sh ¼ f
Dt

Vt
(3)

and the pressure pulsation amplitude is

A �
ffiffiffi
2
p

pRMS

qV2
t =2

(4)

Note, that according to Parseval’s theorem, the equivalent pres-
sure fluctuation amplitude is

ffiffiffi
2
p

pRMS, whereas pRMS is the random
mean square of the fluctuating part of the pressure signal.

For Eq. (4), we practically approximate the periodic signal with
a sinusoidal one, but the equivalent amplitude (EA) correctly
accounts for the whole energy content of the signal. This one-
harmonic approximation is labeled “reconstructed signal” (RS).
One can see from Figs. 8 and 9 that the reconstructed signal cap-
tures the main characteristics of the acquired signal (AS), as
shown in [22] for the pressure fluctuations generated by the vortex

Fig. 10 Dimensionless amplitude (a) Strouhal number and (b)
versus the jet discharge fraction presented by Bosioc et al. [22].
FFM and FFM1 are marked on both figures.

Fig. 11 Mitigation of the pressure fluctuations using FFM and FFM1 with respect
to the vortex rope case at the four levels shown in Fig. 2
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rope, even if higher order harmonics are present in the original
signal. A more accurate and detailed analysis would involve the
phase-averaging of the pressure fluctuations, but this is beyond
the scope of the present investigations.

Let us now examine the cause of the significant pressure pulsa-
tion reduction displayed in Fig. 9, in comparison with Fig. 8,
which in turn is significantly lower than the corresponding level
measured without flow control ([22], Fig. 7). Figure 10 recalls the
decrease in both amplitude and frequency of the pressure fluctua-
tion measured by Bosioc et al. [22] at the L0–L3 levels of the con-
ical diffuser, with the increase in the relative control jet discharge.
When using the flow-feedback, either as FFM or as FFMþ, there
is no possibility to directly measure the jet discharge. As a result,
we have estimated the jet discharge by comparing the velocity
profile measured with laser Doppler velocimetry in two setups
[35]: (i) the jet is supplied with an auxiliary pump, when the jet
discharge is directly measured (ii) the jet is supplied through the
flow-feedback return pipes. Using this approach, we found that
when using the FFM the jet discharge is approximately 10% of
the main flow discharge, while when the ejector pumps are turned
on the FFMþ provides an additional 2% increase in the jet dis-
charge. This rather small contribution of the ejector pumps allows
the FFMþ to cross the threshold jet discharge, Fig. 10, thus pro-
viding a significant drop in both amplitude and frequency.

A synopsis of the pressure fluctuation mitigation is presented in
Fig. 11. One can see that the water injection reduces the preces-
sion frequency, as well as the equivalent amplitude of the pressure
fluctuations. Moreover, the flow-feedback with ejector pumps
(FFMþ) provides the largest amplitude reduction (up to 65%),
while the Strouhal number decreases from 0.39 with vortex rope
to 0.23 with FFMþ. We conclude, that the flow feedback
approach has the potential to effectively mitigate the pressure
fluctuations in decelerated swirling flows with precessing vortex
rope, while improving the pressure recovery as shown in Sec. 3.1.

3.3 Pressure Signal Decomposition. Jacob and Prenat [40]
use the phase analysis of two simultaneously acquired pressure
signals from transducers mounted on the discharge cone of a Fran-
cis turbine to discriminate between rotating and plunging oscilla-
tions, respectively. The rotating component (RC) of the unsteady
pressure field is associated with the precessing vortex rope. As a
result, the vortex rope is removed when the rotating component is
negligible. On the other hand, the plunging oscillations corre-
spond to the flow field oscillations in the whole hydraulic passage,
and are generally propagated overall in the hydraulic system.

Figure 12 shows, that when the passive FFM is employed, and
the jet discharge is lower than the threshold value, the pressure
fluctuations correspond to the rotating unsteady pressure field,
with negligible plunging components (PC). On the other hand,
when using the FFMþ the jet discharge becomes larger than the
threshold value, the vortex rope is practically eliminated, and the
unsteady pressure field practically has only plunging oscillations.
Although these plunging oscillations have amplitudes less than
half the amplitude of the rotating oscillations, their potentially
harmful effects must account the propagation in the whole
hydraulic system. However, it is clear that the water injection
practically changes the stability properties of the decelerated
swirling flows, with respect to the capacity of sustaining or
enhancing either asymmetric (rotating) or axisymmetric (plung-
ing) perturbations.

4 Conclusions

The present paper introduces the novel flow-feedback approach
for mitigating the instabilities of decelerated swirling flows.
According to this approach, a water jet is injected along the
machine axis, into the discharge cone of the hydraulic turbine,
using a fraction of the discharge collected at the cone outlet. The
passive flow feedback method (FFM) does not use any additional
energy input, while the active version (FFMþ) uses ejector pumps
on the return pipes to increase the jet discharge.

We have performed extensive experimental investigations on
both FFM and FFMþ implemented on a swirling flow apparatus
which mimics the flow configuration encountered in a Francis

Fig. 12 Rotating and plunging pressure fluctuation decompo-
sition for swirling flow with vortex rope (a), FFM (b), and FFM1
(c), respectively, at the four levels shown in Fig. 2
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turbine operated at partial discharge. The main conclusions can be
summarized as follows:

(i) Both, FFM and FFMþ, significantly improve the pressure
recovery in the conical diffuser by reducing the additional
hydraulic losses.

(ii) Both, FFM and FFMþ, decrease the pressure fluctuation
amplitude and dominant frequency. However, since
FFMþ provides a jet discharge larger than a threshold
value, it practically removes the vortex rope. It is consid-
ered that the vortex rope is practically removed when the
rotating component is negligible. The FFMþ leads to the
same dynamical performance as the water injection
method investigated by Bosioc et al. [22]. However, the
main advantage of the FFMþ is that it requires only a 2%
discharge for the ejector pumps motor jets in comparison
to 12% discharge for the plain water jet injection. This as-
pect is important in engineering applications.

(iii) The FFM mitigates the vortex rope (decreases the pressure
fluctuation amplitude and frequency) but leaves a rotating
fluctuation of the flow field. On the other hand, the FFMþ
completely removes the vortex rope, and leaves a residual
plunging (axisymmetric) fluctuation, with much lower am-
plitude and frequency.

In our opinion, the above conclusions recommend the flow-
feedback method to be considered for either new or refurbished
hydraulic turbines to improve both efficiency and safety of the
operation far from the best efficiency point.
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Nomenclature

FFM ¼ flow-feedback method
FFMþ ¼ flow-feedback method with additional energy

AS ¼ acquired signal
RS ¼ reconstructed signal
FT ¼ Fourier transform
EA ¼ equivalent amplitude
PC ¼ plunging component
RC ¼ rotating component
Dt ¼ reference diameter from the throat of the

convergent-divergent test section, Dt ¼ 0:1ðmÞ
f ¼ dominant frequency (Hz)

Q ¼ main discharge at the inlet of the test section (m3/s)
Qjet ¼ jet discharge (m3/s)

cp ¼ dimensionless pressure coefficient
ni ¼ value of a sample
�n ¼ mean value

N ¼ number of measured samples
p ¼ mean pressure (Pa)

pRMS ¼ root mean square of the pressure signal (Pa)
Sh ¼ Strouhal number
Vt ¼ reference velocity from the throat of

convergent-divergent test section (m/s)
r ¼ standard deviation
q ¼ density (kg/m3)
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Pressure Analysis of a Swirling Flow With Vortex Rope and Axial Water Injec-
tion in a Discharge Cone,” ASME J. Fluids Eng., 134(8), p. 081104.

[23] Kirschner, O., Schmidt, H., Ruprecht, A., Mader, R., and Meusburger, P., 2010,
“Experimental Investigation of Vortex Control With an Axial Jet in the Draft
Tube of a Model Pump-Turbine,” IOP Conf. Series: Earth Environ. Sci., 12, p.
012092.

[24] Blommaert, G., Prenat, J. E., Avellan, F., and Boyer, A., 1999, “Active Control of
Francis Turbine Operation Stability,” Proceedings of the 3rd ASME/JSME Joint
Fluids Engineering Conference, San Francisco, CA, Paper No. FEDSM99-7210 3.
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a b s t r a c t

We introduce a variational formulation for computing swirling flow stateswith stagnant regions in a pipe.
The new extended flow force functional is maximized with respect to the location of the stagnant region
boundary, leading to a swirling flow state with minimum swirl number. By allowing a jump in velocity
across the vortex sheet that bounds the stagnant region, while the static pressure remains continuous, our
variational principle does not require anymore additional kinematic conditions such as vanishing velocity.
Solutions with or without velocity jump are naturally recovered. An assessment of the proposed model
against experimental data is also presented.

© 2015 Elsevier Masson SAS. All rights reserved.
1. Introduction

The practical importance of swirling flows, and in particular
the need for understanding and eventually controlling the local
recirculation or extensive regions of reversed flow, periodic
fluctuations in pressure and velocity, and high levels of kinetic
energy dissipation, is clearly emphasized by Escudier [1]. The range
of practical applications includes flame stabilization in furnaces,
instabilities in the draft tube of hydraulic turbines, fluidic vortex
valves, cyclones, etc.

There is a large body of literature dealingwith such phenomena.
However, in this paper we focus our investigations on the steady
swirling flow configurations in confined axisymmetric geometries
in order to identify the so-called base flows on which further
stability analyses can be applied. Moreover, when focusing on
the inertia-driven effects, the simplified hypothesis of an inviscid
fluid is generally accepted for design, analysis and optimization
methodologies.
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Steady, axisymmetric swirling flow of an inviscid fluid is
governed by a single second order partial differential equation,
known as Bragg–Hawthorne [2], or Long [3]–Squire [4] equation,
derived from the axisymmetric Euler equations.

The abrupt change which sometimes occurs in a swirling flow,
known as vortex breakdown or vortex bursting, and in particular for
the vortex formed at the leading edge of delta wings with large
incidence, motivated Benjamin [5] to propose a theory analogous
to the hydraulic jump in open channel flows as an alternative
to the hypothesis that vortex breakdown is a manifestation of
instability. Although Benjamin does not exclude that instability
may be responsible for the disruption of many swirling flows in
practice, the view he advocates for in [5] is that the explanation
of the vortex breakdown phenomenon is outside the reach of
conventional stability theory. This perspective was not generally
accepted as Hall [6] concludes that ‘‘Benjamin’s theory for finite-
amplitude waves, and his analogy to hydraulic jump, are both
inappropriate for describing the vortex breakdown’’. In this paper
we propose an approach for predicting swirling flow states that
hopefully meets Hall’s [6] requirements to (i) have a high degree
of explanatory power, (ii) deal with the interesting and relevant
aspects of the problem, (iii) proceed from some simple, unifying
idea, and (iv) have a high degree of refutability or testability.

Buntine and Saffman [7] study the Squire–Long equation for the
case of diverging swirling flows and investigate the dependence
of solutions on upstream and downstream boundary conditions,
as well as on the pipe geometry, with the aim to understand
how the vortex breakdown occurs. They show that the axial flow
ceases to be unidirectional, so that breakdown can be inferred,
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when a parameter measuring the relative magnitude of rotation
and axial flow (Squire number) exceeds critical values. Moreover,
for the simplified quasi-cylindrical model, they show that the
axial velocity on the pipe centerline decreases as the Squire
number increases, until a stagnation point occurs. Buntine and
Saffman [7] state that further continuation of the solution cannot
be performed due to the need for additional specifications of
circulation and Bernoulli’s functions on closed streamlines, or
streamlines entering through downstream boundary. It is clear
that this difficulty cannot be overcome as long as the flow is
considered to occupy the whole pipe cross section.

This difficulty was solved by Keller et al. [8] by admitting that
the flow may develop a central stagnant region, and as a result
the axial velocity remains unidirectional in the remaining annu-
lar section. They consider an extension of Benjamin’s variational
principle by considering variable lower end points, and conclude
that on the free surface bounding the stagnant region all veloc-
ity components vanish. This rather restrictive additional boundary
condition is further used for solving the differential equation with
a free boundary. An inverse Euler equation is developed to pro-
vide a differential equation in a fixed computational domain (with
axial coordinate and streamfunction as independent variables, see
also [9]) in order to incorporate the vanishing velocity condition
on the free boundary. This initially one-dimensional approach has
been further extended by Keller et al. [10] for the case of varying
cross-sectional area. In spite of his initial work, Keller [11] later ad-
vocates for an ad-hoc extension of the circulation and Bernoulli’s
functions beyond the upstream interval of the streamfunction val-
ues, as vanishing circulation and constant total head. He recognizes
that simple analytical extensions do not seem to lead to physical
meaningful results. This approach was further employed by Elcrat
et al. [12] to examine various axisymmetric vortex flowswith swirl
and shear. Other authors, e.g. Ortega-Casanova and Fernandez-
Feria [13,14], pursue the simple choice of analytical continuation
of circulation and Bernoulli’s functions, thus obtaining various so-
lutions for swirling flow in pipes with recirculation. However, they
have a word of caution: ‘‘one should be cautious before draw-
ing conclusions about the behavior (particularly breakdown) of
swirling flow in pipes from the inviscid equations alone’’.

Goldshtik and Hussain [15] make a convincing case in favor
of the stagnation zone model, without velocity jump, arguing
that it excels the traditional analytic continuation method which
leads to recirculation zones. Further [16], they show that an
inviscid stagnation zone without a velocity jump at the boundary
is stable to infinitesimal perturbations. That would imply that the
stagnation zone could be replaced by a solid body because the no-
slip conditions are fulfilled on its boundary without the boundary
layer normally produced by such a no-slip condition.

Wang and Rusak [17] use the axisymmetric unsteady Euler
equations to describe the dynamics of a swirling flow in a finite-
length constant-area pipe. They conclude that the axisymmetric
vortex breakdown phenomenon in inertia-driven (high-Reynolds
number) flows is an evolution from an initial columnar swirling
flow to another relatively stable equilibrium state which repre-
sents a flow around a separation zone. Their analysis employ the
functional associated with the variational formulation introduced
by Benjamin [5] and further used by Keller et al. [8], and perform an
extensive global analysis of this functional in order to shed light on
the development of a swirling flow inpipe. Further, Rusak et al. [18]
argue that the fundamental characteristicswhich lead to vortex in-
stability and breakdown in high-Reynolds-number flows may be
calculated fromconsiderations of a single, reducedorder, nonlinear
ordinary differential equation representing a columnar flow prob-
lem. This model is considered in the present paper in order to ex-
amine the swirling flow states in a pipe. However, our approach is
different, more general, in the sense that we do not rely on rather
restrictive conditions imposed on the velocity at the free bound-
ary in order to find the free boundary location. In a recent study,
Rusak et al. [19] examine equilibrium states of inviscid, axisym-
metric swirling flows, and found that pipe divergence promotes
the appearance of vortex breakdown to lower swirl ratios and de-
lays wall separation, while pipe contraction delays the appearance
of vortex breakdown to higher levels of swirl ratios but promotes
wall-separation states. Although they employ the flow force func-
tional for analysis purposes, the axial swirling flow stateswith pos-
sible stagnant regions are obtained by solving the one-dimensional
Bragg–Hawthorne equation with additional velocity conditions at
the free boundary. It is important to note, however, that they im-
plicitly accept solutions with velocity jump (at least in the circum-
ferential component) when considering stagnant regions near the
wall.

Shtern et al. [20] identified a third alternative to the two main
conjectures encountered in inviscid flow theories for axisymmetric
swirling flow (inside the separation zone either the fluid stagnates
or an analytical continuation of circulation and total head func-
tions is considered). As summarized in [20], in the inviscid limit
this alternative model reveals that: (i) both circulation and head
functions have jumps at the boundary of separation zone, which
contradicts the analytical continuation conjecture; (ii) there is no
swirl in the separation zone, which seems to agree with the stag-
nation zone model; and (iii) the meridian flow in the separation
zone is irrotational and it has the samemagnitude as the flow out-
side the separation zone. However, Shtern et al. [20, §VII] advocate
that their model is suitable for swirling jets while recognizing that
for swirling flows in pipes both theoretical arguments [15,17] and
experimental evidence are in favor of the stagnation model.

The present paper is proposing a new, more general, approach
for finding swirling flow states in a pipe. We consider that, when
necessary, the swirling flow naturally restrict itself within an an-
nular region that occupies only a fraction of the whole geometrical
cross-section available. The rest of the pipe section is occupied by
stagnant region(s), bounded by free surfaces represented as vortex
sheets. Across such a vortex sheet the velocity is allowed to have a
jump, but the static pressure is continuous. The pressure continu-
ity is required since a fluid interface in steady flow cannot support
a pressure jump in normal direction. On the other hand, allowing
a velocity jump does not necessary mean that the velocity compo-
nents will always be discontinuous. As a matter of fact, solutions
with continuous (vanishing) velocity are naturally recoveredwith-
out imposing explicitly a kinematic condition on the free boundary.
The present study does not include stability analysis of the vortex
sheet.

Section 2 briefly revisit the Bragg–Hawthorne equation, with
the boundary-value problem for the second order differential
equation that governs swirling flow states (i.e. columnar flows).
After recalling the flow-force functional introduced by Benjamin,
we introduce the general stagnant region model with possible
velocity jump at the free boundary, then we define the extended
flow force functional that correctly accounts for the stagnant
zone(s) contribution. Although Benjamin’s flow force functional is
minimized by the solution of the boundary value problem for the
Bragg–Hawthorne equation, our extended flow force functional is
maximized with respect to the free boundary(ies) location. This
variational principle is shown to correspond, from physical point
of view, to the rather intuitive minimization of the swirl number.

Section 3 is devoted to probably the simplest example of
swirling flow, corresponding to constant circulation and total head.
A full analytical analysis of the extended flow force behavior leads
to a flow configuration with stagnant region, bounded by a vortex
sheet, which minimizes the swirl number. However, in practice
such axisymmetric swirling flow states may not be stable and
can evolve in three-dimensional unsteady flows with precessing
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helical vortex [21]. Nevertheless, we show that the singularity at
the axis is naturally avoided by the presence of the stagnant region.

Section 4 deals with swirling flows where the circulation and
Bernoulli’s functions are considered as first order polynomials in
the streamfunction. Since analytical solutions are available for the
columnar Bragg–Hawthorne boundary value problems, we focus
on examining solutions with stagnant region which emerge from
the maximization of the flow force functional. We examine in
detail swirling flows originating from a rigid body rotation with
constant axial velocity, and we find solutions with stagnant region
that minimize the swirl number even for angular speed values
lower than the critical value. Moreover, for angular speed larger
than the critical value we recover naturally the solutions with
vanishing velocity at the boundary of the stagnant region, without
explicitly imposing this condition.

In Section 5 we assess the rather simple model presented in
Section 4 against experimental data for swirling flows downstream
the runner of a hydraulic turbine model. While preserving the
integral quantities corresponding to the volumetric flow rate and
the circulation flux, we use a least squares method to fit the slopes
of the circulation and Bernoulli’s functions for best approximations
of measured axial and circumferential velocity profiles. Although
we have previously used these experimental data to validate a
three-vortex empirical model [22], or a kinematically constrained
swirling flow model [23], we show in this paper that the
Bragg–Hawthorne equation augmented with a stagnant region
model embedded in a novel variational formulation has the
capability to consistently reproduce the main features of real
swirling flows. The paper conclusions are summarized in Section 6.

2. Mathematical model for inviscid swirling flow

For high-Reynolds number flows, the steady, axisymmetric
swirling flow model of inviscid and incompressible fluids is a
reasonable approximation to examine inertia-driven phenomena.

Such flows are generally governed by the Euler equations
(continuity and momentum) written in cylindrical coordinates
(x, r, θ). The axial-symmetry hypothesis allows the use of the
Stokes’ streamfunction ψ(x, r) to express the velocity field as,

vxx̂ + vr r̂ + vθ θ̂ = −
θ̂

r
× ∇ψ +

θ̂

r
κ(ψ), (1)

where x̂, r̂ , and θ̂ are the unit vectors for the cylindrical coordinates,
and κ ≡ rvθ is the circulation function. Thanks toKelvin’s theorem,
κ remains constant along a streamtube in steady flows, thus it
depends only on the streamfunction, i.e. we have κ(ψ).

The vorticity vector follows from (1),

∇ ×


vxx̂ + vr r̂ + vθ θ̂


=


vxx̂ + vr r̂

 dκ(ψ)
dψ

+


∂vr

∂x
−
∂vz

∂r


θ̂. (2)

Since the meridian projection of the vorticity, first term in r.h.s. of
(2), is aligned with the meridian velocity, it follows that the vortic-
ity vector is tangent to the streamtube ψ(x, r) = constant, [5].

In the case of steady, axisymmetric swirling flows of inviscid
and incompressible fluids the Euler equations collapse into a sin-
gle partial differential equation, known as the Bragg–Hawthorne
equation, Bragg and Hawthorne [2], or Long–Squire equation,
Long [3], Squire [4],

∇ ·


∇ψ

r2


+
κ(ψ)

r2
dκ(ψ)
dψ

−
dh(ψ)
dψ

= 0, (3)

where h ≡ p + v2/2 is the Bernoulli function, with v2 = v2x +

v2r + v2θ . Thanks to Bernoulli’s theorem, h remains constant along
a streamtube, thus it depends only on the streamfunction, i.e. we
have h(ψ). Note that all quantities in Eq. (3) are to be understood
as dimensionless,

κ =
R Vθ

RrefVref
, h =

P + ρV 2/2
ρV 2

ref
, ψ =

Ψ

R2
refVref

,

where ρ is the constant density, Rref and Vref are arbitrary ref-
erence radius and velocity, respectively. The partial differential
equation (3) is solved for ψ within a domain in the meridian half
plane (x, r), with essential or natural conditions on the domain
boundary, given the generating functions κ(ψ) and h(ψ). Frewer
et al. [24] argue that, under a local Lie point symmetry analysis, the
Bragg–Hawthorne equation (3) is not fully equivalent to the orig-
inal Euler equations since it possesses additional symmetries not
being admitted by its counterpart.

We further restrict our discussion to columnar swirling flows,
i.e. flows independent of the axial coordinate, in constant radius
pipes. In this case, the partial differential equation (3) reduces to a
nonlinear second-order differential equation,

d2ψ

dy2
+
κ(ψ)

2y
dκ(ψ)
dψ

−
dh(ψ)
dψ

= 0, (4)

where y ≡ r2/2 is the transformed radial coordinate. The solution
of Eq. (4) is called a swirling flow state.

Eq. (4) is to be solved for ψ(y) for given generating functions
κ(ψ) and h(ψ), with boundary conditions,

ψ(a) = 0 and ψ(b) =
q
2
, with 0 ≤ a ≤ y ≤ b, (5)

where a ≡
r2hub
2

and b ≡
r2shr
2
.

The inner boundary coordinate, a, corresponds to the hub radius
rhub in the turbomachinery terminology, but we can also call it
central body radius. When there is no hub, a vanishes and the
flow occupies the whole pipe cross-section. The outer boundary
coordinate, b > a, corresponds to the shroud radius, rshr, or the
pipe wall radius. In (5), q denotes the dimensionless volumetric
flow rate, further called discharge coefficient, defined as

q ≡

 b

a
vx 2rdr = 2 (ψ(b)− ψ(a)) . (6)

Although apparently simple, the boundary-value problem (4)
(5) raises a series of difficulties with respect to the physical rele-
vance of the solutions. For example, the generating functions are
implicitly considered to be defined in the interval 0 ≤ ψ ≤ q/2.
Whenever ψ < 0 or ψ > q/2, a simple approach is to consider
the analytical continuation of both κ(ψ) and h(ψ). However, this
approach leads to reverse flow regions, where either the circula-
tion or the total pressure should be provided from downstream.
Elcrat et al. [12] consider, for example, a truncation approach to
obtain physically plausible axisymmetric vortex flows with swirl
and shear.

Another approach is to modify the problem definition, with
the aim of keeping the solution ψ(y) within the interval [0, q/2].
Moreover, if the streamfunction is monotonically increasing then
the axial velocity is only positive, thus having a unidirectional flow.
Such solutions are sought by the model proposed in this paper.

2.1. Variational formulation

Benjamin [5] introduced the equivalent variational formulation
for the boundary-value problem defined by (4) and (5). A function
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ψ(y) that satisfies the boundary conditions (5) will be a solution of
Eq. (4) if it minimizes the functional

F (ψ; a, b) =

 b

a


1
2


dψ
dy

2

−
κ2(ψ)

4y
+ h(ψ)


dy. (7)

Also, Benjamin [5] coined the name ‘‘flow force’’ for the functional
(7) since the integrand corresponds to the axialmomentum, v2x +p,
once a solution is found.

2.2. The stagnant region model

Let us consider now that the cross-section available for the
swirling flow extends from y = a at the hub up to y = b at the
shroud, and the flowmay occupy a smaller annular section such as

0 ≤ a ≤ α < β ≤ b. (8)

In the regions a ≤ y ≤ α and β ≤ y ≤ b the velocity vanishes, thus
we have stagnant regions. This stagnant regionmodel is advocated
for by Goldshtik and Hussain [16], as amore physical alternative to
the simple analytical continuation when recirculation regions oc-
cur as solutions of the boundary-value problem (4) and (5). The
examples examined in literature, e.g. [5,8,18] usually have vanish-
ing velocity at the interface separating the stagnant region from
the swirling flow. Only recently, Rusak et al. [19] consider at least
a circumferentially velocity jump at the stagnant region boundary
when examining possible stagnant regions in the neighborhood of
the pipe wall.

In this paper, we consider that the boundary between a
stagnant region and the swirling flow is generally represented by
a vortex sheet with possible jumps in both velocity components.
However, since this is a fluid interface, the pressure across the
vortex sheet must remain continuous. Since the velocity vanishes
inside the stagnant region(s), the pressure is constant, with the
corresponding values at the hub and shroud, respectively,

pa = h(0)−
1
2


dψ
dy

2

y=α
−
κ2(0)
4α

, (9a)

pb = h(q/2)−
1
2


dψ
dy

2

y=β
−
κ2(q/2)

4β
. (9b)

The expressions (9a) for the inner stagnant region, and (9b) for
the outer one, follow from Bernoulli’s theorem. The expression
corresponding to the static pressure (9a) has been recovered by
Keller et al. [8, §2]while extending Benjamin’s variational principle
to variable lower end-points. Note that the expressions in Eqs. (9)
do not coincide with the integrand in the functional (7) evaluated
at the end-points.

2.3. Extended variational formulation

When stagnant regions are present, the functional (7) must be
extended to account for the possible contributions of the stagnant
pressure (9). The swirling flow is confined to the annular section
α ≤ y ≤ β , and in order to satisfy the differential equation (4)
it must minimize the functional F (ψ;α, β) with respect to the
streamfunction ψ subject to the boundary conditions ψ(α) = 0
and ψ(β) = q/2. As a result, the extended flow force functional
F ⋆ will depend on the inner/outer swirling flow free boundaries α
and β , respectively,

F ⋆ (α, β) = min
ψ

F (ψ;α, β)+ (α − a) pa + (b − β) pb. (10)

Wewill further show that F ⋆ ismaximizedwith respect to the free
boundaries locations. This novel variational principle benefits from
an intuitive (although heuristic) physical interpretation, as follows.
A global quantitative description of the swirling flow is
provided by the swirl number, Sw, defined as the ratio between the
flux of swirlmomentum and the flux of axialmomentum, [25, p. 2],

Sw ≡

 rshr
rhub

vx (rvθ ) 2r dr

rshr
 rshr
rhub


v2x + p


2r dr

. (11)

In the above definition the pressure p is defined up to an arbitrary
additive constant, and in practice it is taken as p − pshr. However,
for the present discussion this aspect is not relevant.

The numerator in (11),

m ≡

 rshr

rhub
vx (rvθ ) 2r dr = 2

 q/2

0
κ(ψ) dψ, (12)

is an integral constant for the swirling flow in bladeless regions,
once κ(ψ) is given. As a result, no matter the shape of the axial
velocity profile, the numerator in the swirl number definition
remains constant for inviscid flows.

The denominator on the other hand depends on the particular
swirling flow state. Aswewill further show, the physically relevant
swirling flow states may develop stagnant regions in order to
maximize the extended flow force, F ⋆, resulting in a minimum
swirl number,

min Sw =
m

rshr maxF ⋆
. (13)

In conclusion, the variational principle we advocate for in this
paper states that the swirling flow state minimizes the swirl number,
by maximizing the extended flow force functional.

The examples presented and analyzed in the next sections sup-
port and validate this variational principle. However, in order to
simplify the discussion, we consider in this paper only swirling
flows with analytical solutions that correspond to minψ F (ψ;

α, β). These examples correspond to zero order or first order poly-
nomials for the generating functions κ(ψ) and h(ψ), respectively.

3. Swirling flow with constant generating functions

The simplest example of swirling flow corresponds to constant
generating functions,

κ(ψ) = κ0 and h(ψ) = h0. (14)

When inserting these functions in Eq. (4) the second and third
terms in the left-hand side vanish. As a result, the general
solution ψ(y) will be a first order polynomial in y. The velocity
components immediately follow as a constant axial velocity and
a circumferential velocity inverse proportional with the radius,

vx ≡
dψ
dy

=
q

2 (β − α)
and vθ =

κ0
√
2y
. (15)

Note that the value of the constant h0 is irrelevant. The static
pressure in the possible inner/outer stagnant regions will be
according to Eqs. (9),

pa = h0 −
q2

8 (β − α)2
−
κ2
0

4α
, (16a)

pb = h0 −
q2

8 (β − α)2
−
κ2
0

4β
, (16b)

and the functional F ⋆ from (10) becomes

F ⋆(α, β) =
q2

8 (β − α)


2 −

b − a
β − α


−
κ2
0

4


b
β

−
a
α

+ ln
β

α


. (17)

The functional (17) has a logarithmic singularity as α → 0.
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We can re-write the functional (17) by factoring out q2/(8b),

F ⋆(α, β; σ , a, b) =
b

β − α


2 −

b − a
β − α


− σ 2


b
β

−
a
α

− ln
α

β


, (18)

where σ ≡

√
2b κ0
q

=
circumferential velocity at the wall

pipe discharge velocity
.

The parameter σ quantify the swirl intensity, but it is not a swirl
number.

We further examine the behavior of the functional (18) with
respect to the variables α and β , with given parameters for the
swirl intensity σ , and hub/shroud positions, a and b, respectively.

The partial derivative with respect to the outer swirling flow
boundary β ,
∂F ⋆(α, β; σ , a, b)

∂β
=

2b

(β − α)3
[(b − a)− (β − α)]

+
σ 2

β2
(b − β) (19)

is always positive thanks to the inequalities (8). As a result, the
functional F ⋆ monotonically increases with respect to β , until it
reaches its maximum at β = b, i.e. the flow occupies the cross-
section up to the pipe wall. Consequently, in this case there is no
possibility for a stagnant region to develop adjacent to the pipe
wall.

Since β is clearly fixed, F ⋆ becomes a function of α only. In
order to examine the variation with respect to α we compute

∂F ⋆(α, b; σ , a, b)
∂α

= (α − a)

σ 2

α2
−

2b

(b − α)3


. (20)

The trivial possibility for F ⋆ to reach an extremumwith respect to
α is when α = a and the derivative in (20) vanishes. In this case,
the swirling flow occupies the whole cross-section from hub to
shroud, a ≤ y ≤ b. The nature of this extremumcan be determined
by examining the second derivative with respect to α evaluated at
α = a,

∂2F ⋆(α, b; σ , a, b)
∂α2


α=a

=
σ 2

a2
−

2b

(b − a)3
. (21)

When a is smaller than the root of the algebraic equation σ 2/x2 −

2b/(b− x)3 = 0, then the second derivative in (21) is positive, and
we have a local minimum when α = a. However, when the hub
size a is larger than the root of the above equation, the expression
in (21) becomes negative, and we have a localmaximum.

The non-trivial possibility for the first derivative in (20) to
vanish is that α be the root of the algebraic equation

σ 2

α2
−

2b

(b − α)3
= 0. (22)

If we evaluate the second derivative with respect to α at the root
of Eq. (22), say α = α0, we get

∂2F ⋆(α, b; σ , a, b)
∂α2


α=α0

= − (α0 − a)
2b (2b + α0)

α0 (b − α0)
4 . (23)

It is clear that the second derivative (23) is negative when α0 > a,
thus F ⋆ reaches a maximum at α = α0, with a stagnant region
a ≤ y ≤ α0. When a > α0, F ⋆ has a maximum at α = a,
according to the previous case, and there is no stagnant region in
the neighborhood of the hub.

In the particular case when a = 0, i.e. there is no hub, a central
stagnant region is always present as long as σ ≠ 0, with the radial
extent given by the root of Eq. (22).
Fig. 1. The stagnant region radius,
√
2α, Eq. (22), within a pipe of unit radius

(b = 1/2), versus the swirl intensity parameter σ .

To summarize the above analysis, we present in Fig. 1 the ratio
between the stagnant region radius rstag =

√
2α, relative to the

pipe wall radius, rwall =
√
2b, versus the swirl intensity σ , as the

solution of Eq. (22).
If the hub radius, rhub =

√
2a is smaller than rstag shown in Fig. 1,

then a stagnant region is developed from rhub ≤ r ≤ rstag, and the
flow occupies the annular section rstag ≤ r ≤ rwall. However, if
the hub radius, rhub is larger than rstag, then there is no stagnant
region and the flow occupies the annular section rhub ≤ r ≤ rwall.
All solutions maximize the functional F ⋆ in (18).

3.1. A numerical example

Let us exemplify the above model for a swirling flow with
discharge coefficient q = 1.0 in a pipe with radius rshr = 1.0,
i.e. b ≡ r2shr/2 = 1/2. The circulation value is chosen as κ0 =

0.4. The corresponding discharge velocity, q/(2b) = 1 and the
circumferential velocity vθ = κ0/r are shown with dashed lines
in Fig. 2(a). The swirling flow configuration with stagnant region is
shownwith solid lines in Fig. 2(a).We notice the jump in both axial
and circumferential velocity components at rstag = 0.4491433,
corresponding to the vortex sheets that separates the stagnant
region from the swirling flow. However, according to the present
model the static pressure remains continuous. Obviously, in order
to preserve the discharge, the axial velocity in the presence of the
stagnant region increases to vx = 1.25271.

The stagnant region radius rstag value corresponds to the max-
imum of the extended flow force functional, as shown in Fig. 2(b).
Although the functional variationwith respect to rstag changeswith
the hub radius, the vortex sheet location remains unchanged as
long as the hub radius is smaller than the corresponding stagnant
region radius. We also note that the line corresponding to a hub
radius rhub = 0.2 has a local minimum at rstag = rhub.

From practical point of view, the main outcome of the present
swirling flow model is the minimum hub radius for an axial
turbomachine in order to prevent a stagnant region development
in the annular section from hub to shroud, as shown in Fig. 1.

4. Swirling flow with first order polynomial generating func-
tions

Let us consider a more general class of swirling flows,
corresponding to generating functions as first order polynomials
in the streamfunction,

κ(ψ) = κ̃ψ + κ0 and h(ψ) = h̃ψ + h0. (24)
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(a) Velocity components vx(r) and vθ (r). (b) Extended flow force functional, Eq. (18).

Fig. 2. Swirling flow with constant circulation κ0 = 0.4, discharge coefficient q = 1 and pipe radius rwall = 1.
The coefficients κ̃ and h̃ correspond to the slope of circulation and
Bernoulli’s functions, respectively.

When inserting the generating functions (24) into the one-
dimensional Bragg–Hawthorne equation (4) we end up with a
linear second order differential equation,

d2ψ

dy2
+
κ̃ (κ̃ψ + κ0)

2y
− h̃ = 0. (25)

The general solution of the differential equation (25) is

ψ(y) =
2h̃y − κ̃κ0

κ̃2
+ C1


2yJ1(κ̃


2y)+ C2


2yY1(κ̃


2y). (26)

The axial velocity profile follows immediately by differentiating
(26),

vx(y) ≡
dψ
dy

=
2h̃
κ̃2

+ C1κ̃ J0(κ̃

2y)+ C2κ̃Y0(κ̃


2y). (27)

In (26) and (27), J0 and J1 denote the Bessel functions of the first
kind, Y0 and Y1 are the Bessel functions of the second kind, having
order zero and one, respectively.

The integration constants C1 and C2 are found by enforcing the
boundary conditions ψ(α) = 0 and ψ(β) = q/2, resulting in a
linear system of two equations,

C1
√
2αJ1(κ̃

√
2α)+ C2

√
2αY1(κ̃

√
2α) =

κ0

κ̃
−

2h̃
κ̃2
α, (28a)

C1

2βJ1(κ̃


2β)+ C2


2βY1(κ̃


2β) =

q
2

+
κ0

κ̃
−

2h̃
κ̃2
β. (28b)

We can now insert the above analytical solution into Benjamin’s
flow force functional (7) and add the contributions of the stagnant
regions to obtain the extended flow force functional to be maxi-
mized with respect to the inner/outer free boundaries location, α
and β , respectively,

F ⋆(α, β; a, b) =

 β

α


v2x

2
−
(κ̃ψ + κ0)

2

2y
+ h̃ψ + h0


dy

+ (α − a)pa + (b − β)pb, (29)

where the pressure values in the inner/outer stagnant regions are,
according to Eqs. (9),

pa = h0 −
v2x (α)

2
−
κ2
0

4α
, (30a)

pb = h̃
q
2

+ h0 −
v2x (β)

2
−
(κ̃q/2 + κ0)

2

4β
. (30b)
Note that by summing up the contributions of the h0 contribu-
tion from all three terms in the right-hand side of (29) we end up
with the constant (b − a)h0 which is independent of either α or β
values. This remark is important since if one attempts to find the
extremum of Benjamin’s functional (7) with respect to variable in-
tegral limits, without adding the contribution of the stagnant re-
gions, the value of h0 would influence the results although it should
not.

4.1. Rigid-body-rotation swirling flow

A particular case within the swirling flow class defined by the
generating functions of the form (24) corresponds to the flow
originating from a circumferential velocity proportional to the
radius, vθ = ωr , and a constant axial velocity vx = q/(2b). The
circulation function is by definition κ = 2ωy, and Bernoulli’s
function follows from the radial equilibrium equation as h =

2ω2y + constant. The constant value is irrelevant, thus without
loss of generality we can take it equal to zero. The streamfunction
is ψ = (q/2)(y/b). Since we can arbitrarily choose the reference
velocity and length, we simplify the problem definition without
any loss of generality by choosing q = 1 and b = 1/2 (unit
pipe radius). As a result, the generating functions for this particular
swirling flow are

κ(ψ) = 2ωψ and h(ψ) = 2ω2ψ. (31)

The analytical solution follows immediately by replacing κ̃ = 2ω,
h̃ = 2ω2, and κ0 = h0 = 0 in Eqs. (26)...(28), see also Batchelor
[26, §7.5]

ψ(y) = y + C1


2yJ1(2ω


2y)+ C2


2yY1(2ω


2y) (32a)

vx(y) = 1 + C12ωJ0(2ω

2y)+ C22ωY0(2ω


2y) (32b)

C1
√
2αJ1(2ω

√
2α)+ C2

√
2αY1(2ω

√
2α) = −α,

C1

2βJ1(2ω


2β)+ C2


2βY1(2ω


2β) = 1/2 − β

(32c)

0 ≤ α < β ≤ 1/2.

A special case corresponds to the critical value of the angular
velocity, ωcr = j1,1/2, where j1,1 = 3.83170597 . . . is the
first positive zero of the Bessel function J1(x), i.e. J1(j1,1) = 0.
There are two scenarios for obtaining non-trivial swirling flow
configurations.

The first one assumes that the flow reaches the pipe wall,
i.e. β = 1/2, while α → 0. In this case, from the boundary
condition for the streamfunction at the pipe wall we have C2 = 0,
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Table 1
Swirling flows originating from a rigid-body rotation, for critical angular velocity ω = j1,1/2.

Wake-like axial velocity Jet-like axial velocity

Axial velocity vx(r) = 1 − J0(j1,1r) vx(r) = 1 −
J0(j1,1r)
J0(j1,1)

Swirl velocity vθ (r) =
j1,1
2 r − J1(j1,1r) vθ (r) =

j1,1
2 r −

J1(j1,1r)
J0(j1,1)

Flow force F ⋆ 2.4647. . . 2.0328. . .
and the C1 constant follows from the boundary condition at y =

α > 0,

C1(α) = −
α

√
2αJ1(j1,1

√
2α)

with lim
α→0

C1(α) = −
1
j1,1
. (33)

The axial and circumferential velocity profiles are shown in Table 1,
the column for wake-like axial velocity. We remark that the flow
occupies the whole pipe cross-section, and the axial velocity
vanishes at the axis, where the circumferential velocity vanishes
as well.

The second scenario considers that the flow reaches the axis,
i.e. α = 0, while β → 1/2. In this case, from the boundary
condition at the axis we have again C2 = 0, and the C1 constant
follows from the boundary condition at y = β < 1/2,

C1(β) =
1/2 − β

√
2βJ1(j1,1

√
2β)

with lim
β→1/2

C1(β) = −
1

j1,1J0(j1,1)
. (34)

The axial and circumferential velocity profiles are shown in Table 1,
the column for jet-like axial velocity. The flow occupies the whole
pipe cross-section, with vanishing axial velocity at the wall.

Let us look at the flow-force functional values for the swirling
flows shown in Table 1. The original swirl with rigid-body rotation,
vx = 1 and vθ = (j1,1/2)r , shown with dashed lines, has a value
F = F ⋆

= 2.3352 . . . . The corresponding value for the jet-
like swirling flow is 2.0328 . . . , while the wake-like configuration
has the maximum value of 2.4647 . . . . According to the maximum
flow force / minimum swirl principle advocated for in this paper,
the swirling flow with wake-like axial velocity profile is the most
favored one.

The swirling flow states in a pipe, originating from a rigid-body
rotation swirl with constant axial velocity, i.e. with generating
functions from Eq. (31), with variable angular speed ω, can be
examined with respect to the stagnant region radius and the axial
velocity at the boundary of the stagnant region, as shown in Fig. 3.
First, one can immediately identify the particular swirling flow
configuration corresponding to ωcr = j1,1/2, where both the
stagnant region radius and the corresponding axial velocity at
the axis vanish, resulting in the wake-like swirling flow shown
in Table 1. Second, when ω < ωcr the stagnant region radius
increases with ω, from zero to a maximum value then falls to zero
for ω = ωcr. On the other hand, the axial velocity at the stagnant
region boundary monotonically decreases as ω increases, until it
vanishes at ωcr. Third, when ω > ωcr the stagnant region radius
increases monotonically with ω, while the axial velocity (as well
as the circumferential velocity) vanishes at the boundary of the
stagnant region.

Let us examine two swirling flow examples, corresponding to
ω smaller and larger than ωcr. Fig. 4 shows the swirling flow state
Fig. 3. The stagnant region radius and the jump in axial velocity for swirling flows
originating from rigid-body rotation swirl with variable angular speedω in Eq. (31).

for ω = 1.8 < ωcr. The stagnant region radius corresponds to
the maximum of the extended flow force functional, as shown in
Fig. 4(b). The axial velocity, Fig. 4(a), has a jump across the vortex
sheet that bounds the stagnant region, while the circumferential
velocity remains continuous. The dashed lines show the velocity
components for the corresponding rigid-body rotation swirl.

Fig. 5 shows the swirling flow state forω = 2.0 > ωcr. The axial
and circumferential velocity profiles, Fig. 5(a), are both continuous
since the velocity vanishes at the stagnant region boundary. On the
other hand, the extended flow force functional versus the stagnant
region radius, Fig. 5(b), displays two branches separated by the
stagnant radius value where the determinant of the system (32c)
vanishes, r⋆stag = 0.12556 . . . . The left branch has a maximum
at vanishing stagnation, corresponding to the basic swirling flow
with rigid-body rotation shown with dashed lines in Fig. 5(a). The
right branch has a maximum at the stagnant region radius that
corresponds to the swirling flow state shown with solid lines in
Fig. 5(a).

5. Assessment against experimental data

We further examine the ability of the simple swirling flow
model presented in Section 4 to reproduce the main features of
real swirling flows measured downstream the runner of a Francis
turbine model at several operating regimes, [22,23].

For completeness we present the experimental setup in Fig. 6,
where the cross-section through a model Francis turbine shows
the survey section downstream the runner, in the discharge
cone, on which both axial and circumferential velocity profiles
are measured using a two-component probe Laser Doppler
Anemometer. Themain characteristics of the LDA system are given
in [22, §2], and uncertainties of the velocity measurements are
estimated to be 2% of the measured value. The dimensionless
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(a) Velocity components vx(r) and vθ (r). (b) Extended flow force functional, Eq. (10).

Fig. 4. Swirling flow originating from a rigid-body rotation swirl, ω = 1.8, with constant axial velocity.
(a) Velocity components vx(r) and vθ (r). (b) Extended flow force functional, Eq. (10).

Fig. 5. Swirling flow originating from a rigid-body rotation swirl, ω = 2.0, with constant axial velocity.
radius in the survey section runs up to the wall value of Rw/Rref =

1.063. The velocity components are made dimensionless with
respect to the runner outlet transport velocity (runner angular
speed × runner outlet radius), as customary for turbomachines.

The discharge coefficient, q, and flux of circulation function
m, are shown in Table 2 for seven operating points where
experimental data are available for axial and circumferential
velocity profiles, [23, Tab. 1]. The operating points are labeled by
indicating the fraction of the best efficiency discharge QBEP, i.e. the
turbine volumetric flow rate where the overall efficiency reaches a
maximum. Such labeling practice gives a clear correlation between
the range of q − values and the turbine operating regimes.

The discharge coefficient q is accounted for through the
boundary conditions for the streamfunction. On the other hand,
m can be incorporated into the model via the generating function
κ(ψ),

m = 2
 q/2

0
(κ̃ψ + κ0) dψ ⇒ κ0 =

m
q

− κ̃
q
4
. (35)

As a result, the generating functions (24) can be rewritten as

κ(ψ) = κ̃

ψ −

q
4


+

m
q
, (36a)

h(ψ) = h̃ψ. (36b)
The constant h0 has been considered zero, without any loss
of generality. The two slope coefficients in Eqs. (36), κ̃ and h̃,
Table 2
Integral quantities for swirling flows downstream a Francis turbine runner.

Operating point q, Eq. (6) m, Eq. (12)

0.714QBEP 0.26428 0.048341
0.919QBEP 0.34015 0.036829
0.974QBEP 0.36066 0.030264
QBEP 0.37014 0.028227
1.025QBEP 0.37950 0.025154
1.050QBEP 0.38881 0.021944
1.107QBEP 0.40976 0.013239

respectively, are found through a least squares fit of experimental
data. More precisely, using the RNLIN subroutine from the IMSL
library, we simultaneously fit the data for axial and circumferential
velocity components using the analytical expression (27) for vx and
vθ = κ(ψ)/r , with ψ from (26).

As shown in Table 3, both κ̃ and h̃ decrease as the turbine
discharge increases. Moreover, h̃ is positive at part load, i.e. there
is a deficit of specific energy near the runner hub, and h̃ is negative
at full load, i.e. there is an excess of specific energy at the hub.
This is consistent with the turbine operation. As expected, near the
best efficiency point the specific energy is practically constant from
hub-to-shroud (vanishing slope), as it is intended in the runner
design methodology.

Figures 7...13 show the comparison of quasi-analytical model
against the experimental data. The stagnant region radius is
obtained by maximizing F ⋆, thus it is not a fit parameter.
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Fig. 6. Experimental setup for a model Francis turbine for swirling flow measurements downstream the runner, in the discharge cone.
(a) Velocity components vx(r) and vθ (r). (b) Circulation function κ(ψ).

Fig. 7. Swirling flow at the operating point with discharge 71.4% the best efficiency value.
Table 3
Fit parameters κ̃ and h̃.

Operating point κ̃ , Eq. (36a) h̃, Eq. (36b)

0.714QBEP 2.265376 0.8529927
0.919QBEP 1.248654 0.2669378
0.974QBEP 0.9127730 0.1045096
QBEP 0.8212194 0.02599025
1.025QBEP 0.8046825 −0.04884591
1.050QBEP 0.7035756 −0.1229106
1.107QBEP 0.5387202 −0.2272735

Fig. 7 corresponds to a part load operating point, quite far from
the best efficiency regime. In this case, there is a large quasi-
stagnant central region, Fig. 7, bounded by a vortex sheet [27].
However, this vortex sheet is unstable and it evolves into a
precessing helical vortex, Ciocan et al. [28]. As a result, the velocity
profiles fromFig. 7(a) correspond to the circumferentially averaged
flow field. Within our model the flow is considered inviscid and
axisymmetrical, thus the vortex sheet is represented by a jump
in both axial and circumferential velocity components. Fig. 7(b)
shows the comparison between the circulation function κ = rvθ
computed from experimental data and the first order polynomial
approximation Eq. (36a). The flux-weighted average m/q value is
also shown with a dashed line. Note that the solid line in Fig. 7(b)
is not a least squares fit of data for κ , as the slope coefficient κ̃ is
obtained by fitting the original velocity data from Fig. 7(a).

The remaining operating points are clustered within ±10%
the best efficiency discharge. Although the analytical model from
Section 4 is a rather crude approximation of the real swirling
flow downstream a hydraulic turbine runner, one can see that
it captures correctly the main flow features. For example, the
stagnant radius decreases as the operating point approaches the
best efficiency regime, either by increasing or by decreasing the
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(a) Velocity components vx(r) and vθ (r). (b) Circulation function κ(ψ).

Fig. 8. Swirling flow at the operating point with discharge 91.9% the best efficiency value.
(a) Velocity components vx(r) and vθ (r). (b) Circulation function κ(ψ).

Fig. 9. Swirling flow at the operating point with discharge 97.4% the best efficiency value.
(a) Velocity components vx(r) and vθ (r). (b) Circulation function κ(ψ).

Fig. 10. Swirling flow at the best efficiency operating point.
discharge. In these cases the central stagnant region can be seen as
the equivalent of the displacement thickness in the boundary layer
theory, but here it can be associated with the runner hub wake.

At full load operating points, e.g. Fig. 13, the first order
polynomial for κ(ψ) becomes a rather poor approximation of
the experimental data, Fig. 13(b), thus we cannot expect a good
approximation of the circumferential velocity profile in Fig. 13(a).
6. Conclusions

The paper introduces a variational principle for computing
swirling flow states in a pipe. Benjamin’s flow force functional is
extended to account for possible stagnant regions developed either
in the neighborhood of the axis (or central body) or near the pipe
wall.
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(a) Velocity components vx(r) and vθ (r). (b) Circulation function κ(ψ).

Fig. 11. Swirling flow at the operating point with discharge 102.5% the best efficiency value.
(a) Velocity components vx(r) and vθ (r). (b) Circulation function κ(ψ).

Fig. 12. Swirling flow at the operating point with discharge 105.0% the best efficiency value.
(a) Velocity components vx(r) and vθ (r). (b) Circulation function κ(ψ).

Fig. 13. Swirling flow at the operating point with discharge 110.7% the best efficiency value.
The stagnant regions are bounded by vortex sheets with pos-
sible jumps in axial and/or circumferential velocity components,
while the pressure remains continuous across the vortex sheet.
These vortex sheets are free boundaries, and their location is found
by maximizing the extended flow force functional. From physical
point of view, this variational principle corresponds to the mini-
mum swirl number value.
The main advantage of using this variational principle for
computing swirling flow states is that there is no need for
specifying additional conditions, such as vanishing velocity, in
order to determine the stagnant region boundary location.

Through a set of numerical examples we show that the
variational principle introduced in this paper can automatically
captures a variety of swirling flow configurations, such as:
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• flowswithout stagnant regions, that occupy thewhole available
cross section;

• flows with stagnant region, without jump in velocity compo-
nents;

• flows with stagnant region with jump in one velocity compo-
nent;

• flows with stagnant region bounded by a vortex sheet with
jumps in both axial and circumferential velocity components.

The examples included in the paper correspond to either zero
order or first order polynomials for the circulation and Bernoulli’s
functions, where analytical solutions are available. It is shown that
by maximizing the extended flow force functional (minimizing
the swirl number), one obtains physically relevant swirling flow
configurations. Moreover, it is shown that the proposedmodel can
successfully capture the main features of real swirling flows, by
a two-parameter fit of experimental data available for axial and
circumferential velocity components.
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