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A B S T R A C T

Fuzzy control has long been applied to industry with several important theoretical results and successful

results. Originally introduced as model-free control design approach, model-based fuzzy control has

gained widespread significance in the past decade. This paper presents a survey on recent developments

of analysis and design of fuzzy control systems focused on industrial applications reported after 2000.
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1. Introduction

Classical engineering approaches to the characterization of
real-world problems are based on essentially qualitative and
quantitative technique based on more or less accurate mathemat-
ical modelling. In such approaches expressions like ‘‘medium
temperature’’, ‘‘big humidity’’, ‘‘small pressure’’, ‘‘very big speed’’,
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Fig. 1. Basic fuzzy control system structure.
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related to the variables specific to the behaviour of a controlled
process (CP), are subject to relatively difficult interpretations from
the quantitative point of view. This interpretation is difficult
because classical automation handles variables/information, pro-
cessed with well-specified numerical values. Therefore the
elaboration of the control strategy and its implementation in
the control equipment requires an as accurate as possible
quantitative modelling of the CP. Advanced control strategies
may require the permanent reassessment of the models and of the
values of the parameters characterizing the (parametric) models.
Process control based on fuzzy set theory or fuzzy logic) – referred
to as fuzzy control or fuzzy logic control – is more pragmatically
with this regard because use is made of the linguistic characteri-
zation of the quality of CP dynamics and of the adaptation of this
characterization as function of the concrete conditions of CP
operation.

Zadeh set the basics of fuzzy set theory by a paper that seemed
to be just mathematical entertainment about four decades ago
[1]. The boom in computer science opened in the seventies the
first prospects for applications of the meanwhile built theory in
various fields ranging from control engineering, qualitative
modelling, pattern recognition, signal processing, information
processing, machine intelligence, decision making, management,
finance, medicine, and so on. In particular, fuzzy control, as one of
the earliest branches and applications of fuzzy sets and systems,
has become one of the most successful applications. Fuzzy
control has proven to be a successful control approach to many
complex nonlinear systems or even nonanalytic ones. It has been
suggested as an alternative approach to conventional control
techniques in many situations. This paper will be focused on
industrial applications, and the analysis is dedicated to the period
after 2000.

The first fuzzy control application belongs to Mamdani and
Assilian [2,3], where control of a small steam engine is
considered. The reference applications of fuzzy control, associ-
ated by experiments, deal with a warm water plant [4] and with a
small scale heat exchanger [5]. Afterwards, during the eighties in
Japan, USA, and later, in Europe, a so-called fuzzy boom took
place in the field of fuzzy control applications to several domains
beginning with electrical household industry and consumer
electronics up to other industries like mechanical and robotic
systems, power plants and systems, telecommunications, trans-
portation systems, automotive systems, chemical processes and
nuclear reactors. This boom was caused partly by the spectacular
development of electronic technology and computer systems
that enables:

- the manufacturing of circuits with very high speed of information
processing, dedicated (by construction and usage) to a certain
purpose including fuzzy information processing and resulting in
embedded systems,

- the development of computer-aided design programs, which
allow the control system designer to use efficiently a large
amount of information concerning the CP and the control
equipment.

The industrial applications of fuzzy control reported until now
emphasize two important aspects related to this control strategy:

- In some situations (for example, the control of processes with
functional nonlinearities which subjected to difficult mathemat-
ical modelling and the control of ill-defined processes), fuzzy
control can be viewed as a viable alternative to classical, crisp
control (conventional control),

- Compared to conventional control, fuzzy control can be strongly
based and focused on the experience of a human operator, and a
fuzzy controller can model more accurately this experience (in
linguistic manner) versus a conventional controller.

The main features of fuzzy control can be organised as follows:

- Fuzzy control employs the so-called fuzzy controllers (FCs) or
fuzzy logic controllers ensuring a nonlinear input–output static
map that can be influenced/modified based on designer’s option.

- Fuzzy control can process several variables from the CP, hence it
can be considered as belonging to the class of multi-input–multi-
output (MIMO) systems with interactions. Therefore the FC can
be considered as a multi-input controller (eventually, a multi-
output one, too), similar to linear or nonlinear state-feedback
controllers.

- FCs do not possess dynamics, but the applications and perform-
ance of FCs and fuzzy control systems (FCSs) can be enlarged
significantly by inserting dynamics (i.e., derivative and/or
integral components) to fuzzy controller structures resulting
in the so-called fuzzy controllers with dynamics.

- FCs are flexible with regard to the modification of the transfer
features (by input–output static maps). Thus the possibility to
develop a large variety of adaptive control system structures is
offered.

The control approach based on human experience is acting in
FCs by expressing the control requirements and elaborating the
control signal in terms of the natural IF–THEN rules which belong
to the set of rules

:::
IF ðantecedentÞ THEN ðconsequentÞ;
:::

(1)

where the antecedent (premise) refers to the found out situation
concerning the CP dynamics (compared usually with the desired/
imposed dynamics), and the consequent (conclusion) refers to the
measures which should be taken – under the form of the control
signal u – in order to fulfil the desired dynamics. The set of rules (1)
makes up the rule base of the FC.

Research results obtained in studying the behaviour of the
human expert emphasize that the expert has a specific strongly
nonlinear behaviour accompanied by anticipative, derivative,
integral and predictive effects and by adaptation to the concrete
operating conditions. Colouring the linguistic characterization of
CP dynamics (and, accordingly, of fuzzy mathematical characteri-
zation) based on experience and translating it to the control signal
elaboration and the analysis of CP dynamics will be characterized
by parameters that enable the modification of FC features. From
this point of view the FCSs can be regarded as belonging to the
general framework of intelligent control systems.

The block diagram of principle (considered as classical in the
literature) of an FCS is presented in Fig. 1. The FCS is considered as a
single input system with respect to the reference input r and as a
[()TD$FIG]
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single output system with respect to the controlled output y. The
second input fed to the CP/FCS is the disturbance input d.

Fig. 1 highlights also the operation principle of an FC in its
classical version, characterizing Mamdani FCs, with the following
variables and modules:

(1) the crisp inputs,
(2) the fuzzification module,
(3) the fuzzified inputs,
(4) the inference module,
(5) the fuzzy conclusions,
(6) the defuzzification module,
(7) the crisp output.

The essential, already mentioned, particular feature of FCSs
concerns the multiple interactions regarded from the process to
the controller by the auxiliary variables ya, gathered in the input
vector e0

e0 ¼ ½ e yT
a � ¼ ½ e1 e2 ::: en �T : (2)

These variables are direct or indirect inputs to the fuzzy
controller. No matter how many inputs to the FC are, the FC should
possess at least one input variable e1 that corresponds to the
control error e

e1 ¼ e ¼ r � y: (3)

According to Fig. 1, the operation principle of a Mamdani FC
involves the sequence of operations (a), (b) and (c):

(a) The crisp input information – the measured variables, the
reference input (the set point), the control error – is converted
into fuzzy representation. This operation is called fuzzification
of crisp information.

(b) The fuzzified information is processed using the rule base,
composed of the fuzzy IF-THEN rules referred to as fuzzy
control rules of type (1) that must be well defined in order to
control the given process. The principles to evaluate and
process the rule base represent the inference mechanism/
engine and the result is the ‘‘fuzzy’’ form of the control signal u,
the fuzzy control signal.

(c) The fuzzy control signal must be converted into a crisp
formulation, with well-specified physical nature, directly
understandable and usable by the actuator in order to be
capable of controlling the process. This operation is known
under the name of defuzzification.

The three operations described briefly here characterize the
three modules in the structure of an FC (Fig. 1), the fuzzification
module (2), the inference module (4) and the defuzzification
module (6). All three modules are assisted adequate databases.

In the majority of applications an FC is used for direct feedback
control or on the low level in hierarchical control system
structures. However, it can be used on the supervisory level, for
example in adaptive control system structures. Nowadays fuzzy
control is no longer only used to directly express the knowledge on
the CP or, in other words, to do model-free fuzzy control. An FC can
be calculated from a fuzzy model obtained in terms of system
identification techniques, and thus it can be regarded in the
framework of model-based fuzzy control. Most often used are:

- Mamdani fuzzy controllers, referred to also as linguistic FCs, with
either fuzzy consequents that represent type-I fuzzy systems
according to the classifications given in [6] or singleton
consequents belonging to the type-II fuzzy systems. These FCs
are usually used as direct closed-loop controllers.
- Takagi-Sugeno (T-S) fuzzy controllers, known also as type-III
fuzzy systems especially when affine consequents are employed,
and typically used as supervisory controllers.

Several excellent books and tutorial articles on fuzzy control
are well-acknowledged [7–24]. Several survey and position
papers highlight specific topics in fuzzy control, make character-
izations and present points of view. A good survey on fuzzy
modelling for control is done in [25]. The stability analysis
methods for type-II fuzzy control systems are analyzed in detail in
[6]. A very good survey on neuro-fuzzy rule generation in a rather
general setting of soft computation is given in [26]. The fusion of
computational intelligent methodologies, including fuzzy logic
and sliding mode control, is thoroughly discussed in [27].
Conclusions of great wisdom regarding the perspectives of fuzzy
control systems are pointed out in [28]. An excellent survey on
analysis and design methods of model based fuzzy control
systems is given in [29].

This paper is focused on industrial applications of fuzzy
control with application fields that include but are not limited to
manufacturing, robotics, automotive and process industry, and
control of servo systems and actuators as well. A large part of
these applications can be viewed in the framework of
mechatronic systems. The authors are aware of the fact that
the publications on the topic of fuzzy logic control are so huge
that an exhaustive list is impossible. Selected papers are given in
the end of this paper. Many excellent works are unfortunately
missed. In addition, this survey paper is not able to cover all
categories of industrial applications of fuzzy logic control in
detail.

The paper addresses the following topics. Industrial applica-
tions of control systems with Mamdani fuzzy controllers
are discussed in Section 2. Next, Section 3 is focused on
control systems with Takagi-Sugeno fuzzy controllers. The stable
design of model-based fuzzy control systems and aspects
concerning the tensor product (TP) model transformation are
considered. Applications of adaptive and predictive fuzzy control
dealing with supervision and optimization, i.e., multi-level fuzzy
control systems, are presented in Section 4. Section 5 gives
concluding remarks, perspectives and challenges of fuzzy
control.

2. Control systems with Mamdani fuzzy controllers

The design of FCSs with Mamdani FCs is usually performed by
heuristic means incorporating human skills and experience, and it
is often carried out by a model-free approach. The immediate
shortcoming resulted from the model-free design and FC tuning
concerns the lack of general-purpose design methods. Although
the performance indices of such control systems are generally
satisfactory, a major problem is the analysis of the structural
properties possessed by the FCSs including stability, controlla-
bility, parametric sensitivity and robustness [19,22–24,28]. In
addition, the design of such control systems suffers from the lack
of systematic approaches. Therefore much research attention has
been devoted to the stability analysis. Actual trends make use of
Lyapunov’s approach [30], Krasovskii’s approach [31], the
describing function method [19], Krasovskii-LaSalle’s invariant
set theorem [32], the small gain theorem [33], algebraic
approaches [34] including the vector norms approach [35,36],
applicable to Mamdani FCs but also with minor modifications to T-
S FCs. The common idea of all these approaches is to regard the FC
as a nonlinear controller with Lurie-Postnikov nonlinearity, the CP
with crisp model (linear or not) and embed the stability problem
of FCSs into the stability theory of conventional nonlinear
systems.
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Several applications of FCSs with Mamdani FCs are reported
in manufacturing. They include control of industrial weigh belt
feeders [37], the realization of specific controllers [38,39],
control of machining processes [40–43], laser tracking systems
[44], plastic injection molding [45] and vibration suppression
[46]. The manufacturing area is related to robotics. Mamdani FCs
concern control of both manipulators and mobile robots [47–
60].

The automotive industry is one special successful area of
Mamdani FCs. Problems and practical issues related to suspension
control are discussed in [61]. The control of hybrid electric vehicles
is treated in [62] and the complexity of all related control strategies
is emphasized in [63]. The control of anti-lock braking systems is
analyzed in [64,65].

Process industries include Mamdani fuzzy control. The
applications reported in this context tackle the control of furnaces
[66,67], filtration processes [68], air conditioning [69,70], heat
exchangers [71] or forging machines [72].

Control systems should exhibit generally very good steady-
state, dynamic performance and robustness as well. Hence they
require high quality servo systems that ensure both stabilization
and tracking. The same problem is in case of complex control
systems where the actuators can be viewed as local control
systems with high needs as the performance is concerned. Servo
systems are widely used in mechatronics applications charac-
terized by tight coupling of different implementation techniques
including hydraulics, mechanics, electro-mechanics, electronics
and software [73–75]. Applications of these servo systems can
be found in electro-hydraulic systems, actuators in robots or
automotive systems, etc., where the CPs can be well character-
ized in simplified forms by benchmark systems [76–83]. One of
the actual trends in control systems for mechatronics is that
newer generations shall always be smaller, cheaper and/or
provide additional functionality [75]. One difficult and chal-
lenging task coming from this is to devise cost-effective
solutions that guarantee improved performance of these
systems. Fuzzy control has recently been applied to a variety
of servo systems and actuators in mechatronics [84–93].

Aircraft, missile autopilot and helicopter control represent also
areas where fuzzy control is applied ensure performance
improvements. The results outlined in these areas [94–102] can
be connected well to those dedicated to servo systems.

2.1. PI-, PD- and PID-fuzzy control

PI, PD and PID controllers are still the most widely used in
industrial control loops worldwide because they have simple
structures, can be designed easily and offer good control system
performance at acceptable cost [103]. The CS performance indices
provided by these PID controllers depend not only on the tuning
parameters, but also on the necessary implementation of
additional functionalities including anti-windup, feedforward
action, and set point filtering [104]. However, PI, PD and PID
controllers might not ensure satisfactory control system perform-
ance if the mathematical model of the CP is highly nonlinear,
subjected to parameter variance, and/or uncertainties. On the
other hand, conventional fuzzy control is known for its ability to
cope with nonlinearities and uncertainties. Introduction of
dynamic fuzzy controller structures with the aim of control
system performance improvement leads to PI-, PD- or PID-fuzzy
controllers [105–108]. Several Mamdani PI-fuzzy controllers (PI-
FCs), PD-fuzzy controllers (PD-FCs) and PID-fuzzy controllers (PID-
FCs) [109–111] as well as Takagi-Sugeno PI-FCs, PD-FCs and PID-
FCs [17,90,100,111] are developed.

PI-FCs, PD-FCs, and PID-FCs can be designed and tuned using
two approaches:
- the first is based on the fact that under some well-stated
conditions, the approximate equivalence between linear and
fuzzy controllers is generally acknowledged [37,112–114],

- the second relies on the consideration of these fuzzy controllers
(FCs) as nonlinear PD, PI, or PID controllers with variable gains
[115–118].

The first approach is considered as the direct action type of PI-
FCs, PD-FCs and PID-FCs [110] since the inference module
calculates the control signal (action) directly to control a system.
The second approach is viewed as gain scheduling [119,120].

Industrial implementations of PI-, PD- or PID-fuzzy controllers
involve both approaches although the gain scheduling was first
accepted from industry [121]. Applications of PI-FCs, PD-FCs and
PID-FCs were classified and pointed out at the beginning of this
section. Other applications are reported in [118,122–128]. Several
topics of interest regarding PI-FCs, PD-FCs or PID-FCs, which are
well identified in [29], concern the industrial applications FC
tuning [117], optimal FCs by inserting genetic algorithms
[122,124,129–134] or neural networks [29,135–137], and robust
FCs [29,93,138–140].

2.2. Sliding mode fuzzy control

It is well acknowledged that sliding mode control exhibits
robustness properties [141]. So a natural direction is to embed this
property in fuzzy control. This will lead to the alleviation of the
negative effects due to the chattering phenomenon specific to
sliding mode control systems and the combination between the
two techniques, sliding mode and fuzzy control, leads to
complementing the advantages of both ones.

Usual approaches to sliding mode control are:

- The sliding mode controller handles linguistic information
modelled by means of fuzzy processing with the elimination
of the chattering phenomenon by the creation of fuzzy boundary
layers [142–145].

- Supervisory sliding mode controller is inserted to fuzzy
controller structures leading to the guarantee of stability and
improvement of robustness [146–150].

These approaches ensure the convenient treatment of FCS
stability analysis and design in the framework of the well
developed methods dedicated to sliding mode control. Symmetri-
cal FCs (as to their definition in an input–output matrix) can be
regarded as sliding mode controllers with multiple sliding lines.

2.3. 2-DOF fuzzy control

Since the main tasks in control, the achievement of high
performance in set-point tracking and the regulation in the
presence of disturbance inputs are difficult to be accomplished by
means of PI and PID controllers, one typical approach is to design
two-degree-of-freedom (2-DOF) controllers which have advan-
tages over the one-degree-of-freedom ones [151–153]. But, the
main drawback of 2-DOF controllers is that although they ensure
the regulation, the reduction of overshoot is paid by slower set-
point responses because the 2-DOF structures can be reduced to
feedforward controllers with set-point weighting.

The control performance enhancement with respect to the
modifications of set-point and of load disturbance inputs ensured
by the FCs in connection with the overcome of the above
mentioned drawback of 2-DOF controllers leads to the idea of 2-
DOF fuzzy controllers [154–158]. Very good control system
performance with respect to the set-point and disturbance input
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Fig. 2. Set-point filter 2-DOF control system structure (a), feedforward 2-DOF control system structure (b), feedback 2-DOF control system structure (c), component-separated

2-DOF PI control system structure (d), definition of load disturbance input scenarios (e).
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can be obtained if the process with the transfer function of the
controlled process P(s) is included to the generic 2-DOF control
system structures presented in Fig. 2, referred to as the set-point
filter structure (Fig. 2(a)), the feedforward structure (Fig. 2(b)), the
feedback structure (Fig. 2(c)) and the component-separated
structure exemplified for the 2-DOF PI controller (Fig. 2(d)),
where: r – the set-point, y – controlled output, e = r � y or e = r1 � y

– the control error, u – the control signal, r1, u2, u2 and u4 – the
outputs of the blocks F(s), C(s) (in Fig. 2(b)), C*(s) and CI(s),
respectively, and d1, d2 and d3 – several load disturbance inputs
defined in Fig. 2(e).

Some of the controller blocks in Fig. 2 can be fuzzified in order to
improve the control system performance [158]. Similar structures
can be formulated under the form of state-feedback control
systems to be treated in the following sections.

3. Control systems with Takagi-Sugeno fuzzy controllers

T-S fuzzy models represent fuzzy dynamic models or fuzzy
systems [25,28,159,160]. This brings a twofold advantage. First,
any model-based technique (including a nonlinear one) can be
applied to the fuzzy dynamic models. Second, the controller itself
can be considered as a fuzzy system. Since the fuzzy model of the
nonlinear process is usually based on a set of local linear models
which are smoothly merged by the fuzzy model structure, a natural
and straightforward approach is to design one local controller for
each local model of the process. This idea is known as parallel
distributed compensation [18]. In parallel distributed compensa-
tion (PDC) the structure of the FC model matches the structure of
the fuzzy model of the CP.

The identification of T-S fuzzy models is of great importance
generally for T-S FC designs and strictly necessary for PDC. Many
good results and applications with this respect are reported in
[16,18,29,161–166] where use is made of two approaches. The first
one is to linearize the nonlinear model of the process in the vicinity
of important operating points assuming that the model of the
process is known for example in its first principle form. The second
one, applied when the model of the process is unknown, is to make
use of the data generated (analytically or experimentally) from the
original nonlinear process. The second approach consists of two
steps, the structure identification and the parameter estimation,
and it employs various techniques to solve the optimization
problem with the aim in fitting the models to the pairs of input–
output data.

The industrial applications of T-S FCs were presented in the
previous section in close connection to those of Mamdani FCs.
However, due to the model-based design, most references offer
results concerning the stabilization of T-S fuzzy models.
3.1. Stable design of model-based fuzzy control systems

The following continuous Takago-Sugeno fuzzy model of the
process is considered in the state-space form

ẋðtÞ ¼
XrB

i¼1

hiðzðtÞÞðAixðtÞ þ BiuðtÞÞ;

yðtÞ ¼
XrB

i¼1

hiðzðtÞÞCixðtÞ;
(4)

where rB is the number of rules, z(t) is the vector of measurable
variables of the process, x(t) is the state vector, u(t) is the control
signal (input) vector, y(t) is the output vector, and

hiðzðtÞÞ�0; i ¼ 1; rB; (5)

are the degrees of fulfilment of the rules satisfying the convex sum
property

XrB

i¼1

hiðzðtÞÞ ¼ 1: (6)

The local linear models of the process

ẋðtÞ ¼ AixðtÞ þ BiuðtÞ;
yðtÞ ¼ CixðtÞ; i ¼ 1; rB;

(7)

are supposed to be observable and controllable. In discrete T-S
fuzzy models, ẋðtÞ is replaced by x(t + 1) in the models (4) and (7).

The PDC controller for the system (4) is

uðtÞ ¼ �
XrB

i¼1

hiðzðtÞÞFixðtÞ: (8)

The goal of the control design problem is to obtain the gain
matrices Fi; i ¼ 1; rB, of the nonlinear state-feedback control law
(8) such that the closed-loop system modelled by Eqs. (2) and (8) is
stable and eventually robust. Many design problems derive the
least conservative conditions [28] that fulfil the condition

XrB

i¼1

XrB

j¼1

hiðzðtÞÞh jðzðtÞÞGi j <0; Gi j ¼ GT
i j: (9)

The first results consider the quadratic Lyapunov function
candidate [167]

VðxÞ ¼ xTðtÞPxðtÞ; P ¼ PT >0: (10)

The calculation of the derivative of the function defined in (10)
along the trajectories of the FCS characterized by Eqs. (2) and (8)
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leads to the result

Gi j ¼ ðAi � BiF jÞT Pþ PðAi � BiF jÞ<0; i; j ¼ 1; rB; (11)

for continuous T-S models or

Gi j ¼ ðAi � BiF jÞT PðAi � BiF jÞ � P<0; i; j ¼ 1; rB: (12)

for discrete T-S fuzzy models:
The main approach to solve the system of Eqs. (9) and (11)

makes use of linear matrix inequality (LMI)-based techniques
[168]. Popular approaches employ quadratic, piecewise quadratic,
non-quadratic, parameter-dependent, polynomial and fuzzy Lya-
punov functions [169–182], and they show the constant effort to
reduce the conservativeness of the stability conditions. Although
the LMIs are computationally solvable they require numerical
algorithms embedded in well acknowledged software tools.

The LMIs can be applied to other control system structures with
T-S FCs and models. They include the cascade control systems
[183] eventually with fuzzy observers [184] which are validated by
experiments and/or simulations.

3.2. Tensor product model transformation and fuzzy control systems

One of the current trends in fuzzy control is to derive less
conservative conditions to prove the stability and the performance
of FCSs [19,28,185]. The fuzzy partitions are the combinations of
the products of rather simple arguments expressed as membership
functions. In real-world applications one particular case concerns
fuzzy modelling of nonlinear systems under the form of TP fuzzy
systems. The expression of TP fuzzy systems can be understood in
terms of operations on multi-dimensional arrays [185].

The TP model transformation is capable of transforming a
dynamic system model, given over a bounded domain, into the TP
model form, including polytopic or T-S fuzzy model forms. The TP
model transformation may be defined as one numerical method
capable of transforming the linear parameter-varying (LPV)
dynamic models into parameter-varying weighted combination
of parameter independent (constant) system models under the
form of linear time-invariant (LTI) systems. This transformation of
LPV models is uniform in both theoretical and algorithmic
execution and it considers different optimization constraints.
The main advantage of TP model transformation in modifying the
given LPV models to varying convex combinations of LTI models is
that the LMI-based control design frameworks can be applied
immediately to the resulting affine models in order to get a
tractable and improved performance of the FCSs.

The widely applied transfer function of the product decision
operator-based T-S fuzzy models and the function of the TP model
is the same from the analytical point of view in widely general
cases. The main philosophical difference between them is that the
T-S fuzzy model originally means a fuzzy combination of locally
linearized LTI models, where the locality is expressed by the shape
of the antecedent fuzzy sets, for instance, by triangular fuzzy sets
where the location of the fuzzy set is readily determinable.
However in case of TP model the weighting functions (which
correspond to the membership functions in the fuzzy models) may
not have locality, they spread in the whole interval of interest, so as
the LTI components of the model cannot readily be assigned to a
definite operation point. They are mostly vertexes of a polytopic
structure. In conclusion, the T-S fuzzy model originally is a fuzzy
combination of linearized operation points (LTI systems are close
to local models), while the TP model is originally a polytopic
structure (LTI systems are the vertex models of a convex hull of the
model, they may be relatively far from any linearized operation
points). In other words, an LTI system affects a fuzzy local area in
case of T-S models. In the case of TP models an LTI system affects
the whole operation domain, but according to the weighting
functions. As a matter of fact, in today systems these two original
ideas are combined in both T-S and TP models, therefore the
difference is not important.

The TP model transformation generates two kinds of polytopic
models. Initially, it reconstructs the high order singular value
decomposition (HOSVD)-based canonical form of the LPV models.
The major outcome of the recently developed HOSVD comes from
its ability in decomposing a given N-dimensional tensor into a full
orthonormal system in a special ordering of higher order singular
values.

Regarding the variety of well acknowledged and implemented
identification techniques, it is difficult to derive the uniform
representation of the designed LPV model forms and the forms
resulted from the identification. Hence the TP model transforma-
tion might be a possible solution for that situation, and an
immediate link between the model transformation and the LMIs
should be determined.

A key advantage of the TP model transformation is that it allows
the modification of the parameter varying convex combination
according to the designer’s option. The type of the convex
combination considerably influences the further LMI design and
resulting control performance. Therefore the design can be based
on the manipulation of the convex hull beside the manipulation of
the LMIs.

Based on the core theory of the TP model transformation that is
coming from the singular value decomposition (SVD) methods
[186] the TP model transformation is capable of reducing the
complexity of TP structured functions like T-S fuzzy models or B-
spline models and so on. The multilinear generalizations of the SVD
and the investigation on how the tensor symmetries affect the
decomposition are discussed in [187]. The HOSVD has been
developed since the existing framework of vector and matrix
algebra; it appeared to be insufficient as increasing number of
signal processing problems involved the manipulation of quanti-
ties of which the elements are addressed by more than two indices,
i.e., higher-order tensors. Use is made of higher-order tensors to
describe the transformations in the same way as the matrices
describe linear transformations between vector spaces.

Making use of the TP model transformation, different optimi-
zation and convexity constraints can be considered and the
transformations can be executed as well without any analytical
interactions within less time. Thus, the transformation replaces the
usual analytical conversions.

Accepting an N-dimensional bounded parameter vector p(t)
and considering the LPV model

ẋðtÞ ¼ AðpðtÞÞxðtÞ þ BðpðtÞÞuðtÞ;
yðtÞ ¼ CðpðtÞÞxðtÞ þ DðpðtÞÞuðtÞ;

(13)

the system matrix

SðpðtÞÞ ¼ AðpðtÞÞ BðpðtÞÞ
CðpðtÞÞ DðpðtÞÞ

� �
2RO�I (14)

is a parameter-varying object. The convex state-space TP model
describes the LPV state-space model for any parameter vector p(t)
as the convex combination of LTI system matrices

ẋðtÞ
yðtÞ

 !
¼ S�N

n¼1wnðpnðtÞÞ
xðtÞ
uðtÞ

 !
; (15)

where the row matrix wn(pn(t)) contains one bounded variable and
its continuous weighting functions, and N indicates the tensor’s
dimension. The (finite element) TP model defined in (15) is convex
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Fig. 4. Changing the side slopes of a group of membership functions. The modal

values (centres) stay at the same position.
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only if the weighting functions fulfil the condition

wn;iðpnðtÞÞ 2 ½0;1�; 8 n; i;pnðtÞ;
XIn

i¼1

wn;iðpnðtÞÞ ¼ 1; 8n;pnðtÞ:
(16)

The LMI-based controller design methods can immediately be
applied after the transformation of the LPV model (14) given in
HOSVD-based canonical form to the TP model form expressed in (15)
and (16). In other words, the TP model transformation is to be used
and executed before utilizing the LMI design, i.e., when the LMI
design is started the global weighting functions are already defined.

A short presentation of the applications of TP model transfor-
mation, well connected to T-S FCSs, is presented in [188] and
accompanied by a temperature control application. An attractive
control design method accompanied by application is given
[189,190] to stabilize parameter varying nonlinear state-space
models. It is based on two numerical steps. In the first step the TP
model transformation is executed. In the second step LMIs are
solved under the PDC framework. The first step consists in
transforming a given model into a TP, so that the design techniques
of the PDC framework can be employed. The operations associated
to the second step produce a controller according to various control
specifications. The advantages of this method are twofold. First, the
controller can be derived automatically, regardless of analytic
derivations. Second, the identified model can be defined either by
analytical equations or by other soft computing techniques.

A popular TP model application deals with controlling the TORA
system [191] where a nonlinear controller has been designed
making use of the TP model transformation and a LMI-based
controller design technique. The results show that both numerical
methods, the TP model transformation and the LMIs, can be
accomplished numerically without analytical derivations, leading
to fast controller designs.

A case study regarding the TP model transformation behaviour
in real-world applications is discussed in [192] with focus on the
single pendulum gantry system. A generalization of the double
fuzzy summation results to multiple summations with a TP
structure is emphasized in [185]. This is meant to replace the well
accepted common structure in many fuzzy models. A simulated
application concerning the inverted pendulum system is included.

A Matlab toolbox for TP model transformation, the TP Tool, is
implemented and described in [193]. The toolbox is applied to
several benchmark systems and to the real-time control of the
liquid levels in a three tank system [194].

An excellent application of the TP model transformation deals
with offering a control solution for the aeroelastic wing section
problem that was considered as unsolved previously [195,196].
This is the first convincing well detailed example of applying TP
model transformation with PDC design framework. It shows the
observer design as well.

4. Adaptive fuzzy control, supervision and optimization

There are many formations for the FC in FCSs similarly to the
different control schemes focused on PI controllers presented in
Fig. 2. An adaptive FC has one extra component, a supervisory
module, as shown in Fig. 3. The supervisory module has[()TD$FIG]
Fig. 3. An adaptive fuzzy controller with a supervisory system.
understanding of the process and of the controller, and has access
to all input and usually also to all output signals. The supervisory
module can modify several components of the fuzzy controller like
the size of the membership functions of the fuzzy sets, the position
of the membership functions, the rule weights and/or the link
values. These four items will be discussed below. A predictive FC
will be also described. That controller does not change the
parameters of the underlying FC, but it chooses every time the best
control signal based on a performance measure expressed in terms
of an objective function. The goal is to minimize the objective
function.

4.1. Adaptation of the size of the membership functions

The supervisor can change the size of the membership functions
of the fuzzy sets corresponding to the linguistic terms of the FC,
e.g., increase or decrease the support (width) of an individual
membership functions or change the width to the left-hand or
right-hand side, like in Fig. 4, applicable to both input and output
linguistic variables of the fuzzy controller. The triangular
membership functions of the linguistic terms LT1, Lt2, LT3 and
LT4 were chosen in Fig. 4, with the parameters li; ri; i ¼ 1;4.
Likewise, the spread s of Gaussian fuzzy sets can be adapted.

Actually, the adaptation means that the supervisor can change
the partitioning of the membership functions on the universe of
discourse. An example of this is a controller for the cruise control of
a car [197]. With cruise control the driver fixes the speed of the car.
If the car goes uphill or downhill the cruise system controls the
throttle in such a way that the car keeps its velocity, if the driver
touches the break pedal or the ‘‘coach button’’ the cruise system
will stop working until the ‘‘resume button’’ is touched. By then,
the car will accelerate until it returns to the desired speed.
Depending on the load of the car and the weather conditions this
can lead to too fast or too slow acceleration and overshoot. The
supervisor should ‘‘learn’’ the load of the car and adapt the cruise
control to the current situation.

In [197] the system is described as in Fig. 5. The error in the
velocity is calculated from the vehicle and the reference speed, the
same holds for the first and second derivative of the speed. The FC
calculates the throttle opening, passes it on to the actuator which
applies it to the vehicle. If the throttle opening is too slow or too
fast, i.e., the car accelerates too slow or to fast, the supervisor
changes the membership functions of the fuzzy sets corresponding
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Fig. 7. Structure of fuzzy parking system.

Table 1
Parking garages and the prediction quality of the adapted fuzzy system.

Parking garage Prediction quality July Prediction quality August

PG1 0.9548 0.9239

PG2 0.9147 0.9086

PG3 0.9298 0.9272

PG4 0.9415 0.9051

PG5 0.9147 0.8849

PG6 0.9415 0.9374

[()TD$FIG]

Fig. 5. Logical scheme of an adaptive fuzzy system for cruise control. EAV is the error

average value, UAV is the average value of the throttle opening, Verr is the maximum

value of the error [197].
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to the linguistic terms of the fuzzy controller. The supervisor has
four inputs: the error average value (EAV) and its first derivative
(DEAV), the maximum value of the error (Verr) and the average
value of the throttle opening (UAV). The error average value and its
derivative give an indication how long it takes to bring the car back
to its desired speed. If the car accelerates too slow this means, for
example, that the car is fully loaded and the membership functions
in the controller should be adapted to this situation.

4.2. Adaptation of the position of the membership functions

Another method to tune an FC or a fuzzy decision system is by
repositioning the membership functions of the fuzzy sets
corresponding to the linguistic terms of the fuzzy controller.
Usually this is done in combination with a data clustering method.
In a high dimensional system the data points are normally not
evenly distributed over the whole data space, but occur in groups.
If one uses a clustering algorithm to identify the data clusters then
one can position the membership functions of the fuzzy sets in
such a way that they correspond exactly to the data clusters. This
enables one to work with a minimal number of fuzzy sets whose
membership functions are well positioned to deal with the data.
Fig. 6 illustrates this information processing, where v1 and v2 are
the inputs, mk1 and mk2 are the membership functions of the input
linguistic terms, k ¼ 1;5. Overviews on data-driven clustering
methods for adaptive fuzzy control are given in [198,199].

An example of this method is a fuzzy system for forecasting the
number of empty places in a number of parking garages downtown
[200]. The system has a large number of inputs like weather data,
time information and traffic information as shown in Fig. 7. The
[()TD$FIG]
Fig. 6. Repositioning fuzzy sets such tha
weather is supposed to influence the number of people that go
downtown for shopping or to visit the theatre, hence the three
weather inputs (temperature, rainfall and sunshine) influence the
number of cars downtown. Time information concerns the time of
the day, the day of the week, the season and special days like
holidays or large events. Together with the weather information
they will give a forecast of the number of cars that will go
downtown in the next hours. Traffic information concerns the
traffic density, and therefore the time people need to arrive at the
parking garage, and the time people need to enter the parking
garage, as many of them have narrow passages and long waiting
times when other people are manoeuvring through the garage.
When one considers data points over a longer period of time for
each parking garage separately, different patterns of data will lead
to a different positioning of the membership functions and
therefore to different fuzzy rule bases. In six different parking
garages in Düsseldorf, Germany, the initial prediction quality of the
described system was around 80%. After repositioning and resizing
the membership functions of the fuzzy sets with a neural network,
the prediction quality changed as described in Table 1.
t they fit to clusters of input data.



R.-E. Precup, H. Hellendoorn / Computers in Industry 62 (2011) 213–226 221
4.3. Adaptation of the rule base

A third adaptation method option is to change the rule weights
depending on the contribution of each rule to the performance of
the fuzzy control system. Each rule has a rule weight ri, usually
these ri’s are initially 1. If a control action was successful the rule
weights of the involved rules in this action are increased. If an
action was unsuccessful the weights of the involved rules are
decreased. Rules that after some time have rule weight 0 are not
involved anymore and will be removed.

This is an easy and straightforward method. Of course the
quality of this method highly depends on the performance
measure and the selection of the training data. One should always
check which rules were removed, in some cases these rules
concern exception cases and should be reintroduced by hand. This
method is used in identifying and controlling a large paper mill
[201], and in traffic modelling and control [202].

4.4. Adaptation of the link values

A fourth adaptation method is to change the link values. This is
derived from neural networks and is actually not natural for fuzzy
systems. It means the following. Consider a rule base with two
inputs X1 and X2 and one output Y, and three fuzzy sets P, Z, and N,
on each input domain. One can translate the fuzzy system to a
neural network as described in Fig. 8. If one takes, for example, the
fifth node in the Inference column, this corresponds to the rule ‘‘if
X1 is N and X2 is P then Y is Z’’. According to [203,204], the
logarithms and exponentials are needed in this scheme to cope
with several neural network properties.

Now one can feed the neural network with input and output
data pairs and train the network. Consider, for example, the rule ‘‘if
X1 is Z and X2 is P then Y is P’’, corresponding to the lowest node in
the Inference column of Fig. 8. After training the network this may
have become ‘‘if (0.5 X1 is Z) and (0.3 X2 is P) then (0.8 Y is P)’’,
because the neural network has adapted the link values. This rule is
hard to interpret but will probably describe the situation exactly.

This method is, for example, used in a system with many
sensors in a car that had to diagnose the kind of road and traffic
conditions the car was driving in [204]. There was an initial rule
base describing the logical relation between the sensors and the
driving situation. Test data were generated by driving the car with
a video camera several days in all kinds of situations. The test data
were categorized to several driving situations. After translating the
rule base to a neural network all rule weights, the positions of the
membership functions and the link weights were adapted which
resulted in a much improved fuzzy rule base. The customer
demanded a rule base that could be checked by hand afterwards

[()TD$FIG]

Fig. 8. A neural network translation from a fuzzy rule base.
instead of a black box neural network. The combination of a neural
network learning system and a readable fuzzy rule base is perfect
for automotive industry.

The neuro-fuzzy control systems can identify fuzzy control
rules and tune membership functions of the fuzzy controller
making use of the learning algorithms specific to neural networks
due to the well accepted functional equivalence between certain
classes of fuzzy systems and certain architectures of neural
networks [161]. Neuro-fuzzy control is in fact fuzzy control that
ensures enhanced control system performance due to the learning
capabilities and parallel processing brought by the neural net-
works. ANFIS [205] is the most popular approach with this regard.
Industrial applications of adaptive fuzzy control can be found in
batch processes [206–210], robotics [58,137,211–213], aircrafts
[214–217] or servo systems and electrical drives [218–221]. An
attractive application concerning the development of an intelligent
distributed and supervised control system for high-volume
production systems is suggested in [222]. A neural-fuzzy-based
force model for controlling band sawing process in the framework
of an intelligent adaptive control and monitoring system is given in
[223]. An adaptive control solution for a ventilating and air-
conditioning (HVAC) system is proposed in [224].

Topics of interest in adaptive fuzzy control include robust
adaptive control, the combination with sliding mode control and
the inclusion of derivative-free optimization techniques to
minimize the objective function that specifies the performance
measure of the FCS. The derivative-free optimization techniques
are needed in industrial applications due to the complicated
expression of the objective function with several possible local
minima and to the specific constraints associated to the
optimization problem. Several fuzzy rule interpolation techniques
can be used in real-time applications which have sparse or
incomplete rule bases [225–227].

4.5. Fuzzy model-based predictive control

One illustrative industrial application of fuzzy model-based
predictive control is presented in [228]. A predictive controller is
suggested to modify the parameters of a T-S FC using the prediction
of the future process output. Use is made of the fact that if you have
a fuzzy model, you can test assumed future situations by putting
data into the model. It is possible to compare the outcomes of
different control inputs and take the best to proceed with. The
results presented in [228] involve a fuzzy model of a chemical
plant under the form of the following six fuzzy rules:

R j : IF CAðkÞ IS A j THEN CAðkþ 1Þ

¼ �a1 jCAðkÞ � a2 jCAðk� 1Þ þ b1 jqcðk� TDm Þ þ r j; j ¼ 1;6; (17)

where CA is the measured product concentration and TDm is the
temperature. It is possible to rewrite these under the classical form

xmðkþ 1Þ ¼ ĀmxmðkÞ þ B̄muðk� TDm Þ þ R̄m;

ymðkÞ ¼ C̄mxmðkÞ:
(18)

The system output is calculated as follows for H steps ahead:

ymðkþ HÞ ¼ C̄m½Ā
H
mxmðkÞ þ ðĀ

H
m � IÞðĀm � IÞ�1ðB̄muðkÞ

þ R̄mÞ�; (19)

and it compares the output with the output of a reference model. It
then calculates which parameters force the output to reach the
reference trajectory in the best way and uses these parameters in
the next control step. Other industrial applications of fuzzy model-
based predictive control are reported in [229–236].
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5. Conclusions

The paper addresses a brief survey on industrial applications of
fuzzy control. The following classification of the control systems
has been proposed with this regard:

- control systems with Mamdani fuzzy controllers,
- control systems with Takagi-Sugeno fuzzy controllers,
- adaptive and predictive control systems.

Although the literature makes a distinction between model-
based and model-free fuzzy control, the model-based design of
fuzzy control outlined in [237] is needed. The authors’ opinion is
that all fuzzy control applications should be tackled in the model-
based design manner. This is the way that enables systematic
analyses of the structural properties of the FCSs such as stability,
controllability, parametric sensitivity and robustness. Further-
more, this is the only solution to guarantee the desired/imposed
control system performance indices in several operating regimes,
and it represents one of the perspectives of fuzzy control.

A lot of industrial applications of fuzzy control are known and
reported today. This paper has highlighted just part of them. It
contains both mathematics and concrete applications thus
emphasizing the concrete connection between the industrial
applications of fuzzy control and the necessity of understanding
the basics of operating principle and mathematical characteriza-
tions of fuzzy controllers. The presentation of rather real-time
experiments instead of digital simulation results is another
perspective of fuzzy control. In this context the popularity of
fuzzy control will increase only if future applications will exhibit
significantly better performance compared to the non-fuzzy ones.

There are several challenges which deserve more study when
fuzzy control is regarded from the point of view of its applicability:

- the design of rather general fuzzy controllers for well defined
classes of systems instead of the particular controllers dedicated
to certain narrow applications,

- the use of iterative tuning and learning techniques that start with
initial fuzzy control systems and ensure next the performance
enhancement making use of the variables measured from those
closed-loop systems during their real-time operation [32,91],

- the identification of Takagi-Sugeno fuzzy models with trade-off
to transparency, approximation accuracy and controller design
possibility,

- the connection between the parameter settings and tuning of the
fuzzy controller, and the imposed control system performance in
terms of performance indices like overshoot and settling time,

- the alleviation of the conservatism and sufficient conditions-like
character in the stable design of fuzzy control systems in case of
Lyapunov’s approach in connection with LMIs,

- the need for low-cost fuzzy controllers from the points of view of
design in tuning transparency as well as implementation costs,

- the need for smooth control signals to be elaborated by all fuzzy
controllers,

- the use of the additional parameterization offered by type-2
fuzzy logic in handling the uncertainties specific to industrial
processes [238–244].

These challenges will attract the researchers and practitioners.
The immediate results will be reflected in more industrial
applications of fuzzy control illustrated in conference and journal
publications. The 244 reference positions cited here present a
sample of the results reported in the literature, and they can be
viewed as a guarantee that future successful applications will be
constructed.
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Abstract—This paper proposes an innovative tuning ap-
proach for fuzzy control systems (CSs) with a reduced para-
metric sensitivity using the Grey Wolf Optimizer (GWO)
algorithm. The CSs consist of servo system processes con-
trolled by Takagi–Sugeno–Kang proportional-integral fuzzy
controllers (TSK PI-FCs). The process models have second-
order dynamics with an integral component, variable param-
eters, a saturation, and dead-zone static nonlinearity. The
sensitivity analysis employs output sensitivity functions of
the sensitivity models defined with respect to the paramet-
ric variations of the processes. The GWO algorithm is used
in solving the optimization problems, where the objective
functions include the output sensitivity functions. GWO’s
motivation is based on its low-computational cost. The tun-
ing approach is validated in an experimental case study of
a position control for a laboratory nonlinear servo system,
and TSK PI-FCs with a reduced process small time constant
sensitivity are offered.

Index Terms—Experimental results, fuzzy control sys-
tems (CSs), Grey Wolf Optimizer (GWO), parametric sen-
sitivity, servo systems.

I. INTRODUCTION

SOFT computing techniques have recently proved to be ef-
fective solutions for resolving optimization problems (OPs)

in various domains. Such techniques, with focus on modeling
and control applications, include fuzzy logic [1]–[4], neural
networks [5]–[7], probabilistic reasoning [8]–[10], knowledge-
based systems [11], [12], heuristic learning and search
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algorithms [13], [14], and the combinations that lead to hy-
brid techniques [15]–[17]. Optimal tuning of fuzzy controllers
is amongst those challenging OPs as they involve nonconvex
or nondifferentiable objective functions (o.f.s), as consequent
of controllers’ structures and nonlinearities, of processes’ com-
plexity found in industrial applications, and of specific perfor-
mance specifications that can lead to multiobjective OPs. The
optimal control of servo systems is a representative OP, as it
requires the minimization of o.f.s expressed as integral- or sum-
type quadratic performance indices with the vector variables
mapped onto the controller tuning parameters.

Fuzzy control has proven to be an efficient control solution
in servo systems and mechatronics applications. Nevertheless,
the combinations with various nature-inspired optimization al-
gorithms (NIOAs), referred to also as metaheuristics, have a
significant impact on the performance of fuzzy control sys-
tems (CSs). Some recent applications of NIOAs to the pa-
rameter tuning of fuzzy controllers for servo systems will be
briefly discussed as follows. Industrial application overviews
are given in [18]–[20]. A proportional-integral-derivative (PID)
fuzzy controller is tuned in [21] using a particle swarm opti-
mization (PSO)-based approach and tested experimentally on
an electrical direct current (dc) drive benchmark. A hybrid PSO
and pattern search optimized PI-fuzzy controller is proposed in
[22], applied to the automatic generation control of multiarea
power systems and validated by simulation. The gravitational
search algorithm (GSA) is applied in several versions in [23]
and [24] to the optimal tuning of PI- and PID-fuzzy controllers
for dc servo systems and load frequency control in power sys-
tems and tested by digitally simulated and experimental results.
Charged system search algorithms are suggested in [25] and
applied to the optimal tuning of PI-fuzzy controllers for dc
servo systems.

The Grey Wolf Optimizer (GWO) algorithm [26] has been
developed by mimicking gray wolf social hierarchy and hunt-
ing habits. The social hierarchy is simulated by categorizing
the population of search agents into four types of individuals,
i.e., alpha, beta, delta, and omega, based on their fitness. The
search process is modeled with the aim of mimicking the hunting
behavior of gray wolfs making use of three stages, i.e., search-
ing, encircling, and attacking the prey. The first two stages are
dedicated to exploration and the last one covers the exploita-
tion. The reduced number of search parameters is an important
advantage of GWO algorithms reflected in various applications:
blackout risk prevention in smart grids [27], training multi-
layer perceptrons [28], optimal reactive power dispatch [29],

0278-0046 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



528 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 64, NO. 1, JANUARY 2017

popular benchmarks specific to optimization [30], hyperspectral
band selection [31], and optimal tuning of PID-fuzzy controllers
[32].

Using the previous results on the optimal tuning of Takagi–
Sugeno–Kang PI-fuzzy controllers (TSK PI-FCs) by means of
NIOAs [20], [23], [25], this paper has a twofold contribution.
First, it introduces an easily understandable GWO algorithm.
Second, it applies the GWO algorithm to the optimal tuning
of TSK PI-FCs. The presentation is focused on servo system
processes that are modeled by second-order dynamics with an
integral component, variable parameters, a saturation, and dead-
zone static nonlinearity.

Out of the objectives set for this paper, the first is the intro-
duction of a reduced sensitivity design approach of TSK PI-FCs
with respect to the small time constant of the process, by avoid-
ing the use of a simplified and idealized linear/linearized model
of the process. With the aim of achieving this, a sensitivity anal-
ysis with respect to process parametric variations is required in
order to handle the unwanted parametric variations in a proper
manner and express the output sensitivity functions as well. The
simplified process models used in the design and tuning of fuzzy
CSs involve the derivation of sensitivity models inserted in the
o.f.s. Solving the OPs in an analytical way is rather complicated
as it involves unmanageable computational costs; therefore, our
GWO-based tuning approach is employed to deal with these
complications.

The second objective is the use of GWO algorithm to solve
the previously mentioned OPs. The simplicity and transparency
of GWO proved in this paper ensure its generality and potential
in solving various OPs [32]–[37] with additional economical or
operational constraints [38]–[42].

The third objective is the application of the extended symmet-
rical optimum (ESO) method [43], [44] and the modal equiv-
alence principle [45], with the aim of reducing the number of
TSK PI-FC parameters, thus simplifying variables and o.f. ex-
pression.

The paper treats the following topics: Section II describes the
OP, the process, and fuzzy controller models. The new GWO
algorithm and the tuning approach for TSK PI-FCs dedicated to
the servo system processes modeled by second-order dynamics
with an integral component, variable parameters, a saturation,
and dead-zone static nonlinearity are presented in Section III.
Section IV treats the case study that deals with the GWO-based
tuning of a TSK PI-FC for the angular position control of a non-
linear dc servo system. Experimental results and a comparison
with other NIOAs are included. The conclusions are presented
in Section V.

II. OPTIMIZATION PROBLEM AND MODELS

The fuzzy CS structure is given in Fig. 1, where FC is the fuzzy
controller, P is the nonlinear process, F is the set-point filter, r
is the set point (the reference input), r1 is the filtered reference
input, y is the controlled output, u is the control signal, and e =
r1 − y is the control error. Disturbance inputs are not considered
in Fig. 1 because the integral component in the controller ensures
the disturbance rejection.

Fig. 1. Set-point filter fuzzy control system structure.

Fig. 1 illustrates a set-point filter CS structure in the frame-
work of two-degree-of-freedom CS structures. The parameters
of both FC and F blocks can be tuned.

The state-space model of P specific to the nonlinear servo
systems mentioned in the previous sections is

m(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−1, if u(t)≤ −ub

[u(t) + uc ]/(ub − uc), if − ub < u(t)< −uc

0, if − uc ≤ |u(t)|≤ ua

[u(t) − ua ]/(ub − ua), if ua < u(t)< ub

1, if u(t)≥ ub

[
ẋ1(t)
ẋ2(t)

]

=
[
0 1
0 −1/TΣ

] [
x1(t)
x2(t)

]

+
[

0
kP /TΣ

]

m(t)

y(t) = [ 1 0 ][x1(t) x2(t) ]T (1)

where t ≥ 0 is the continuous time, kP > 0 is the process
gain, TΣ > 0 is the small time constant, the control signal u(t)
applied to the dc motor is a pulse width modulated duty cycle,
x1(t) = α(t) is the angular position, x2(t) = ω(t) is the angu-
lar speed, and the superscript T indicates matrix transposition.
The variable m(t) is the output of the saturation and dead-zone
static nonlinearity, which is modeled by the first equation in (1)
with the parameters ua , ub, and uc , 0 < ua < ub , 0 < uc < ub .

The state-space model (1) includes the actuator and measure-
ment instrumentation dynamics. The nonlinearity in (1) is not
symmetric, and this offers a more general model compared with
that investigated in [23].

The nonlinearity in (1) is neglected in the simplified model
of the process expressed as the transfer function P (s)

P (s) = kEP /[s(1 + TΣs)] (2)

where kEP is the equivalent process gain

kEP =
{

kP /(ub − uc), if − ub < u(t) < −uc

kP /(ub − ua), if ua < u(t) < ub.
(3)

It is convenient to use the transfer function P (s) in the linear
and fuzzy controller design and tuning in two cases out of the
five cases concerning the nonlinearity in (1). As shown in [43]
and [44], PI controllers can cope with the process modeled in
(2) in terms of Fig. 1, with a PI controller instead of FC. The
transfer function of the PI controller is

C(s) = kc(1 + sTi)/s = kC [1 + 1/(sTi)], kC = kcTi (4)

where kC > 0 (or kc > 0) is the controller gain and Ti > 0 is
the integral time constant.

Considering that the process parameters kP and TΣ are vari-
able and the other ones are constant, the process parameter
vector is

α = [α1 α2 ]T = [kP TΣ ]T . (5)
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Fig. 2. Structure and input membership functions of TSK PI-FC.

The definitions of the state sensitivity functions λυ , υ = 1, ..., n,
and of the output sensitivity function σ are

λυ =
[
∂xυ

∂αj

]

0
, σ =

[
∂y

∂αj

]

0
, υ = 1, ..., n, j ∈ {1, 2} (6)

where the subscript 0 indicates the nominal value of the process
parameter αj , j ∈ {1, 2}, and n is the number of state variables
of the fuzzy CS. The state sensitivity models of the fuzzy CS
with respect to αj are derived using (6), with n = 4 for TSK-
PI-FCs.

Using the notation ρ for the controller parameter vector, the
OP that ensures the sensitivity reduction with respect to the
modifications of the process parameter αj is defined as

ρ∗ = arg min
ρ∈Dρ

J(ρ), J(ρ) =
∞∑

td =0

{e2(td ,ρ) + γ2 [σ(td ,ρ)]2}

(7)
where γ is the weighting parameter, ρ∗ is the optimal controller
parameter vector (the optimal value of ρ), Dρ is the feasible
domain of ρ, J(ρ) is the o.f., and td ∈ Z, td ≥ 0, is the discrete-
time argument.

The ESO method [43], [44] is applied to tune the PI con-
troller parameters in (4), and it guarantees a tradeoff to the
CS performance specifications (maximum values of CS perfor-
mance indices, i.e., percent overshoot, settling time, and rise
time) of the linear CS using only one design parameter β within
the largest recommended domain 1 < β ≤ 20. The PI tuning
conditions specific to the ESO method are

kc = 1/(β
√

βkEPT 2
Σ), Ti = βTΣ , kC = 1/(

√
βkEPTΣ)

(8)
and the transfer function of the set-point filter that exhibits the
CS performance improvement by the cancellation of a closed-
loop CS zero is

F (s) = 1/(1 + βTΣs). (9)

The TSK PI-FCs are designed and tuned using the knowledge
from the PI controller structure in order to ensure an additional
CS performance improvement. The structure and the input mem-
bership functions of a cost-effective TSK PI-FC are presented in
Fig. 2, where q−1 is the backward shift operator, TISO-FC is the
two-inputs single-output fuzzy controller block that produces a

nonlinear input–output static map, Δe(td) is the increment of
control error, and Δu(td) is the increment of control signal.

The two increments result by discretizing the continuous-time
PI controller by Tustin’s method, which leads to the recurrent
equation of the incremental discrete-time PI controller

Δu(td) = KP [Δe(td) + μe(td)] (10)

and its parameters KP and μ

KP = kc(Ti − Ts/2), μ = 2Ts/(2Ti − Ts) (11)

where Ts > 0 is the sampling period.
As shown in [25], the TISO-FC block employs the weighted

average method for defuzzification, and the SUM and PROD
operators in the inference engine. The rule base is

IF(e(td)IS N AND Δe(td) IS N)OR (e(td) IS P

AND Δe(td) IS P ) THEN Δu(td)=ηKP [Δe(td) +μe(td)]

F (e(td) IS ZE)OR (e(td) IS NAND Δe(td) IS ZE)OR

(e(td)ISNAND Δe(td) IS P )OR (e(td)IS P

AND Δe(td)IS ZE)OR (e(td)IS P AND Δe(td)IS P )

THEN Δu(td) = KP [Δe(td) + μe(td)]. (12)

The parameter η, with the largest domain 0 < η < 1, is in-
troduced to mitigate the fuzzy CS overshoot, which occurs if
the two TISO-FC inputs have the same signs. This controller
structure and the rule base given in (12) indicate that our cost-
effective TSK PI-FC behaves as a bumpless interpolator between
two linear PI controllers.

The modal equivalence principle [45] is applied to this TSK
PI-FC resulting in the tuning equation

BΔe = μBe (13)

which along with (8), (10), and (11) give the parameter vector
of TSK PI-FC

ρ = [β Be η ]T . (14)

The parameter vector expressed in (14), associated with the
OP defined in (7), will be obtained in the next section by the
GWO-based tuning approach.

Accepting that u is changing at the discrete-sampling intervals
and the presence of the zero-order hold, the derivation of the
output sensitivity function σ(td) requires the state sensitivity
model of the fuzzy CS. With this regard, the state variables x3
and x4 of the TSK PI-FC are defined in terms of [23]

x3(td) = u(td − 1), x4(td) = e(td − 1) (15)

and the state variable of F, x5 , is its output.
For a constant fuzzy CS input, namely r(t) = const, assum-

ing r1(t) = const for simplicity, the discrete-time state sensi-
tivity model of the fuzzy CS with respect to TΣ is obtained
by applying (6) to the discrete-time state-space model of the
fuzzy CS with the state variables x1 , x2 , . . . , x5 . The non-
linear input–output static map of TISO-FC is involved in the
expression of σ(td).
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III. GWO-BASED TUNING APPROACH

The standard operating mechanism of GWO algorithms [26]
starts with the initialization of the agents that comprise the pack.
A total number of N agents (i.e., gray wolves) are used, and each
agent has a position vector X i associated

X i =
[
x1

i . . . xf
i . . . xq

i

]T
, i = 1, . . . , N (16)

where xf
i is the position of the ith agent in f th dimension,

f = 1, ..., q.
The GWO algorithm’s search process continues with the ex-

ploration stage represented by the search for the prey. During
this stage, the position of the alpha α, beta β, and delta δ agents
dictates the search pattern by diverging from other agents and
converging on the prey, represented here by the optimal solution.

The exploitation stage is represented by the attack on the prey.
The top three agents constrain the other agents, viz., the omegas
ω, to update their positions according to theirs. The following
notations are used in the sequel for the top three agent position
vectors, i.e., the first three best solutions obtained so far (or the
alpha, beta, and delta solutions):

X l(k) =
[
x1

l (k) . . . xf
l (k) . . . xq

l (k)
]T

, l ∈ {α, β, δ}
(17)

where k is the current iteration index, k = 1, ..., kmax , kmax
is the maximum number of iterations, and the vector solutions
Xα (k), Xβ (k), and Xδ (k) fulfill the conditions

J(Xα (k)) = min
i=1...N

{J(X i(k)),X i(k) ∈ Dρ}

J(Xβ (k)) = min
i=1...N

{J(X i(k)),X i(k) ∈ Dρ\{Xα (k)}}

J(Xδ (k)) = min
i=1...N

{J(X i(k)),X i(k)

∈ Dρ\{Xα (k),Xβ (k)}}. (18)

The conditions (18) also result in

J(Xα (k)) < J(Xβ (k)) < J(Xδ (k)). (19)

A set of search coefficient vectors, Al(k) and C l(k), are next
defined

Al(k) = [a1
l (k) ... af

l (k) ... aq
l (k) ]T

C l(k) = [ c1
l (k) ... cf

l (k) ... cq
l (k) ]T , l ∈ {α, β, δ} (20)

with the components

af
l (k) = af (k)(2rf − 1), cf

l (k) = 2rf , l ∈ {α, β, δ} (21)

where rf are uniformly distributed random numbers within
0 ≤ rf ≤ 1, f = 1, ..., q, and the coefficients af (k) are linearly
decreased from 2 to 0 during the search process

af (k) = 2[1 − (k − 1)/(kmax − 1)], f = 1, ..., q. (22)

The approximate distances between the current solution and
alpha, beta, and delta solutions, i.e., di

α (k), di
β (k), and di

δ (k),
respectively, are computed using the formula

di
l (k) = |cf

l (k)xf
l (k) − xf

i (k)|, i = 1, ..., N, l ∈ {α, β, δ}.
(23)

Using the notations X l(k), for the updated alpha, beta, and
delta solutions, l ∈ {α, β, δ}, respectively,

X l(k) = [xl1(k) . . . xlf (k) . . . xlq (k) ]T , l ∈ {α, β, δ}
(24)

the components of these solutions are obtained as

xlf (k) = xf
l (k) − af

l (k)di
l (k), f = 1, ..., q,

i = 1, ..., N, l ∈ {α, β, δ} (25)

and the updated vector solution X i(k + 1) is obtained as the
arithmetic mean of these solutions

X i(k + 1) = (Xα (k) + Xβ (k) + Xδ (k))/3, i = 1, ..., N.
(26)

The GWO algorithm that solves the OP defined in (7) consists
of the following steps:

Step 1: The initial random gray wolf population, represented
by N agents’ positions in the q–dimensional search space, is
generated. The iteration index is initialized to k = 0 and the
maximum number of iterations is set to kmax .

Step 2: The performance of each population member is evaluated
by simulations and/or experiments conducted on the fuzzy
CSs. The evaluation leads to the o.f. value in terms of mapping
the GWO algorithm onto the OP using

X i(k) = ρ, i = 1, ..., N. (27)

Step 3: The first three best solutions obtained so far, i.e., Xα (k),
Xβ (k), and Xδ (k), are identified using (18).

Step 4: The search coefficient vectors are calculated using (20),
(21), and (22).

Step 5: The agents are moved to their new positions by comput-
ing X i(k + 1) in terms of (23)–(26).

Step 6: The updated vector solution X i(k + 1) ∈ Dρ is vali-
dated by checking the steady-state condition for the fuzzy CS
with TSK PI-FC tuning parameters ρ = X i(k + 1) so far

|y(tdf ) − r(tdf )| ≤ εy |r(tdf ) − r(0)| (28)

where tdf is the final time moment. Theoretically, tdf → ∞
as indicated in (7), but tdf takes practically a finite value
to capture the transients in the fuzzy CS responses. Since a
quasi-continuous digital PI controller is used in the design
of the TSK PI-FC, the parameter εy > 0 is chosen using the
expression of the controlled output in continuous time

y(t) = y(0) + TΣ[1 − exp(−t/TΣ)]x2(0)

+ kP

t∫

0

[1 − exp(τ − t)/TΣ]m(u(τ))dτ. (29)

Supposing for the fuzzy CS shown in Fig. 1 that the initial
control signal is within −uc ≤ |u(0)| ≤ ua , the steady-state
value of the controlled output will be

y(tdf ) = lim
t→∞

y(t) = y(0) + TΣx2(0) (30)

which is generally nonzero for nonzero initial conditions,
and indicates that the fuzzy CS is not globally asymptotically



PRECUP et al.: GREY WOLF OPTIMIZER ALGORITHM-BASED TUNING OF FUZZY CSs WITH REDUCED PARAMETRIC SENSITIVITY 531

stable because of the dead-zone static nonlinearity. Therefore,
using (28) and (30), the condition to set the value of εy is

εy > |y(0) + TΣx2(0) − r(tdf )|/|r(tdf ) − r(0)|. (31)

Stability conditions can be used instead of the steady-state con-
dition (28). Rigorous proofs related to stability analyses are
given, for example, in [46] and [47].

Step 7: The iteration index k is incremented and the algorithm
continues with step 2 until kmax is reached.

Step 8: The algorithm is stopped and the final solution obtained
so far is saved as

ρ∗ = arg min
i=1,...,N

J(X i(kmax)). (32)

Aspects concerning the convergence of GWO algorithms are
presented in [26] and [48].

The ESO method and the modal equivalence principle lead
to the o.f. J(ρ) with just three variables (q = 3) that belong to
the controller parameter vector

ρ = [ρ1 ρ2 ρ3 ]T = [β Be η ]T . (33)

Concluding, the novel tuning approach dedicated to TSK PI-
FCs is formulated in terms of the following design steps:

Step A: The ESO method is applied to tune the parameters of
the linear PI controllers, Ts is set and the discrete-time PI
controllers modeled in (10) are obtained. The state sensitivity
models of fuzzy CS are derived.

Step B: The weighting parameter γ in (7) is set to meet the
performance specifications of the fuzzy CS. The parameter
tdf is set according to step 6 of the GWO algorithm, and Dρ

is set to include all constraints imposed to the elements of ρ.
Step C: The GWO algorithm is applied to solve the OP defined

in (7) that gives the optimal value of the parameter vector ρ∗

and the optimal parameters β∗, Be
∗, and η∗

ρ∗ = [β∗ Be
∗ η∗ ] = [ρ1

∗ ρ2
∗ ρ3

∗ ]T . (34)

Step D: The optimal value of the parameter BΔe results from
the particular form of (13)

BΔe
∗ = 2TsBe

∗/(2β∗TΣ0 − Ts). (35)

Step E: The transfer function of the set-point filter is obtained
from the particular form of (9)

F (s) = 1/(1 + β∗TΣ0s). (36)

IV. VALIDATION AND RESULTS

The tuning approach proposed and given in the previous
section is validated as follows by the design and tuning of a
TSK PI-FC for the angular position of the experimental setup
[23], [25], built around the Inteco dc servo system laboratory
equipment [49]. The nominal values of the parameters of the
process models given in (1) and (2) have been obtained by
least squares identification algorithms as ua = 0.15, ub = 1,
uc = 0.15, kP 0 = kEP0 = 140, and TΣ0 = 0.92 s. Since a re-
duced process small time constant sensitivity is targeted, TΣ is
variable, therefore α1 = TΣ in (6).

The steps A to E of the tuning approach have been applied.
Step A starts with setting the sampling period to Ts = 0.01 s
such that to have and fulfill the conditions of quasi-continuous
digital control.

The weighting parameter in (7) has been set in step B in order
to get a ratio of {0.1, 1, 10}, of the initial values of the two terms
in the sum in (7). This has resulted in the weighting parameter
values γ2 ∈ {0.17187, 1.7187, 17.187}. The feasible domain
of ρ used as search space has been set to

Dρ ={3 ≤ β ≤ 17} × {20 ≤ Be ≤ 40}×{0.55 ≤ η ≤ 0.75}.
(37)

The experiment-based evaluation of the o.f. J(ρ) is carried
out in step C on a time horizon of 20 s in terms of the dynamic
regimes of the CS with respect to the step-type modification of
the reference input r to actually measure the values of J(ρ). A
part of the results obtained for the r = 40rad step-type modifi-
cation of r will be exemplified as follows.

The parameters of the GWO algorithm implemented in step
C have been set to achieve a good tradeoff to convergence and
use of allocated resources (agents, iterations) as N = 20 and
kmax = 100. The parameter εy in (28) has been set such that
to fulfill the condition (31), namely εy = 1.001 for zero initial
conditions.

The performance of the fuzzy CS tuned by means of our GWO
algorithm has been compared with two other NIOAs, i.e., PSO
and GSA, also applied in [23] and [25], and used here in step C of
the tuning approach instead of the GWO algorithm. Since these
NIOAs include random parameters, the top five obtained values
for each weighting parameter values have been considered, and
the information extracted from the real-time experiments will
be presented as follows in terms of averaged measured values.

For a fair comparison of the NIOAs, both PSO and GSA
have been implemented to work with the parameters N = 20
and kmax = 100. In addition, the other parameters of PSO have
been set to weighting parameters values c1 = 0.3 and c2 = 0.9,
and a linear decrease of the inertia weight parameter within the
domain determined by wmax = 0.9 and wmin = 0.4. The other
parameters of GSA have been set to an exponential decrease law
of the gravitational constant with the initial value g(0) = 100,
the exponential parameter ζ = 8.5, and the denominator param-
eter in the expression of the force ε = 10−4 . These parameter
values lead to a good compromise to algorithms’ exploration
and exploitation capabilities.

The optimal values of the controller tuning parameters ob-
tained with our GWO algorithm are synthesized in Table I along
with similar values obtained by PSO and GSA. Table I shows
that the GWO algorithm leads to similar optimal values of the
o.f. compared with the results of the other two NIOAs for sev-
eral values of the weighting parameter γ, and this demonstrates
that the GWO algorithm is a viable alternative to solve (7). As
in the case of other metaheuristics, GWO gives close to optimal
values, which can be accepted as solution for the fuzzy CSs with
a reduced parametric sensitivity.

Two performance indices have been measured to compare the
performance of the three NIOAs. The first performance index is
the convergence speed cs , defined as the number of evaluations
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TABLE I
WEIGHTING PARAMETER AND CONTROLLER PARAMETERS FOR THE

NIOA-BASED MINIMIZATION OF J

γ 2 Be
∗ BΔ e

∗ η ∗ β ∗ k ∗
c T ∗

i J

GWO 0 40 0.138621 0.75 3.14193 0.0043801 2.89057 390460
0.17187 40 0.145191 0.668808 3 0.0044825 2.76 628132
1.7187 40 0.140516 0.75 3.09962 0.0044099 2.85165 2861740
17.187 20.3574 0.013021 1 17 0.0018831 15.64 22794100

PSO 0 40 0.145191 0.75 3 0.004483 2.76 392076
0.17187 40 0.145191 0.75 3 0.004483 2.76 641826
1.7187 39.8689 0.144715 0.75 3 0.004483 2.76 1007420
17.187 20 0.012792 0.25 17 0.001883 15.64 22809200

GSA 0 40 0.138541 0.75 3.14374 0.004379 2.8922 390459
0.17187 39.3697 0.142008 0.75 3.01888 0.004469 2.7774 618429
1.7187 36.4119 0.129304 0.75 3.0663 0.004434 2.821 2861380
17.187 20 0.01281 0.287 16.9763 0.001884 15.618 22794600

TABLE II
WEIGHTING PARAMETER, INDICES cs AND ar FOR THREE NIOAS

γ 2 GWO PSO GSA

cs 0 1155 1952 1538
0.17187 1138 1880 1417
1.7187 1180 1321 1051
17.187 1087 937 1491

ar 0 0.8763 0.2231 0.1769
0.17187 0.9159 0.0076 0.8221
1.7187 0.1241 0.3292 0.1727
17.187 0.2884 0.0069 0.1306

of J(ρ) until getting ρ∗. Table II highlights the values of cs

obtained by experiments for the three NIOAs.
The average value of the o.f. J(ρ) obtained by running a

certain NIOA, with the notation Avg(Jmin), is computed as

Avg(Jmin) = (1/Nbest)
Nb e s t∑

j=1

J(j)
min (38)

where Jmin is the value of J(ρ) obtained by running a certain
NIOA, Nbest is the number of best values (i.e., the smallest
values) obtained for J(ρ), and the superscript j, j = 1, ..., Nbest
indicates the value of J(ρ) obtained by one of the best Nbest
runs; therefore, Jmin

(j ) is the value of J(ρ) obtained by the run
j, j = 1, ..., Nbest , of a certain NIOA. The value Nbest = 5 has
been set in this paper.

The second performance index is the accuracy rate ar , which
is the percent standard deviation of J(ρ) obtained by running a
certain NIOA and divided to Avg(Jmin)

ar = StDev%(Jmin) = 100StDev(Jmin)/Avg(Jmin)

StDev(Jmin) =

√

1
Nb e s t−1

Nb e s t∑

j=1
(Jmin

(j ) − Avg(Jmin))
2
.

(39)
Another set of experimental results is summarized in Table II

as the values of the performance index ar . The results given
in Table II show that no algorithm has a clear advantage as the
values of the two performance indices are rather close. However,
GWO proves to be the overall best one from the point of view

Fig. 3. Real-time experimental results of the fuzzy control system for
the nominal process parameters: angular position and control signal
versus time, and phase portraits (for reference input of 10, 20, 30, 40,
50, and 60 rad).

of cs , and PSO proves to be the overall best one as far as ar is
concerned.

Fig. 3 offers a sample of experimental results for the fuzzy
CS with the TSK PI-FC parameters given in the second row of
Table I considering the nominal process, i.e., these parame-
ters have been obtained by the GWO-based tuning for γ2 =
0.17187. The average o.f. measured for the fuzzy CS is J (1) =
629462.33.

The sensitivity reduction and the robustness ensured by the
proposed fuzzy CS have been tested by several experiments
conducted for different disturbed values (i.e., parametric dis-
turbances) of the process parameter TΣ using the r = 40 rad,
step-type modification of r. For example, such a test has consid-
ered less than 10% increase of TΣ , namely from TΣ0 = 0.92 s
to TΣ = 1s. The responses are similar to those presented in
Fig. 3, and the average measured o.f. is J (2) = 629578.67. Us-
ing other TSK-PI-FC parameters, namely those given in the
fourth row of Table I, which are different to those optimally
tuned for γ2 = 0.17187, the average measured o.f. for the nom-
inal process is J (3) = 760873.58 and the average measured
o.f. for the disturbed process is J (4) = 8272554.21. The ratios
of the o.f.s are J (4)/J (3) · 100 = 108.76% for the nonoptimal
TSK-PI-FC and J (2)/J (1) · 100 = 100.02% for the optimally
tuned TSK-PI-FC, which clearly indicate the sensitivity reduc-
tion. The fuzzy CS responses are similar in these four cases, and
this highlights the robustness of the proposed approach.

The results given in Fig. 3 illustrate the nonlinearity of the
servo system and the friction in the bearings of the experimental
setup as the proportional component of the controller is not
capable of triggering an aggressive control signal. Consequently,
the control signal varies in the vicinity of the dead zone. In
addition, the behavior close to origin illustrates, as pointed out
in relation with (30), that the closed-loop system is not globally
asymptotically stable.



PRECUP et al.: GREY WOLF OPTIMIZER ALGORITHM-BASED TUNING OF FUZZY CSs WITH REDUCED PARAMETRIC SENSITIVITY 533

V. CONCLUSION

This paper proposed a GWO-based approach to the optimal
tuning of fuzzy controllers with a reduced process small time
constant sensitivity. The simplicity and robustness of our GWO
algorithm made it a seamless candidate for solving the OPs
comprised in the tuning approach.

Reducing the number of input variables of the o.f.s will lead to
an improved cost-effective design and implementation of fuzzy
controllers, with beneficial effects in various servo system and
mechatronics applications [50]–[57].

Future research will deal with the adaptation of the proposed
GWO algorithm formulation and fuzzy controller tuning ap-
proach to other OPs, including the optimal control of industrial
applications.
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1. Introduction 

The Model-Free Control (MFC) technique [13,14,15] , which is also referred to in the literature as model-free tuning, is a

data-driven technique that uses a local linear approximation of the process model, which is valid for a small time window

and a fast estimator is employed to update this approximation. The main advantages of MFC are: it does not require the

process model in the controller tuning (this is specific to data-driven control techniques) and few experiments are conducted

on the real-world control system structure in the tuning process. The MFC technique is implemented as MFC algorithms that

usually contain proportional (P), proportional-integral (PI), proportional-derivative (PD), or proportional-integral-derivative 

(PID) controllers and additional terms to compensate for the mismatch of the online estimation, and altogether form the

so called intelligent P/PI/PD/PID (iP/iPI/iPD/iPID) controllers. A shortcoming of the initial MFC algorithm [13] is that it has

not been formulated with a set of reset conditions that guarantee stability, but several conditions have been proposed in

[52,57,65] to mitigate this shortcoming. 

The MFC algorithms are successfully applied to many processes and a short analysis of the state-of-the-art is presented

as follows. The problems and challenges of MFC in the framework of data-driven control are analyzed versus model-based
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control in [18] . A comparison of an MFC algorithm without stability proof and a classical PID controller is performed in

[17] and validated experimentally on a shape memory alloy spring-based actuator. An event-driven MFC is applied to a

simulated model of a quadrotor in [66] , compared with a backstepping control and with a sliding mode control, and the

stability of the control systems is proven. An MFC algorithm is designed in [19] to optimally control the oscillations of a

single body heaving energy converter, and the stability is ensured through a conventional lead compensator. An MFC algo-

rithm is suggested in [22] to control an experimental greenhouse with an application to a fault accommodation, and the

results are compared with Boolean controllers. An MFC algorithm is analyzed in [4] and extended using time-varying pa-

rameters. An MFC algorithm with guaranteed stability is discussed in [52] and compared with a model-free adaptive control

algorithm, both data-driven techniques are experimental validated on a twin rotor aerodynamic system (TRAS). An MFC al-

gorithm is optimally tuned in [57] using a linear quadratic regulator in order to guarantee the stability. Other attractive MFC

applications validated by simulation results are reported in [21] , where an MFC algorithm without stability proof is applied

to the water level control behavior of hydroelectric power plants, in [29] , where an MFC algorithm without stability proven

is applied to an instrumented car, and in [54] , where an MFC algorithm regulates the glycemia in type-1 diabetes. 

Sliding mode control is a relatively easily understandable nonlinear control technique with the advantage of robust-

ness against parameter variations and disturbances. Some recent sliding mode control structures and applications are next

discussed. The robust control using sliding mode is conducted in [48] targeting a class of under-actuated systems with mis-

matched uncertainties. A second-order sliding mode observer for a pendulum system with Coulomb friction is proposed

in [9] . Sliding mode control and PD controllers for a permanent magnet synchronous motor are given in [25] . An adap-

tive seeding sliding mode control is suggested in [69] and applied to design adaptive cruise system for off-road vehicles.

Sliding mode controllers that stabilize TRAS are discussed in [7,59] . The sliding delayed sliding mode control for nonlinear

systems is suggested in [10] . A switched/time-based adaptation strategy for second-order sliding mode control algorithms

is proposed in [35] and tested on a single-link manipulator with flexible joint and negligible damping. The adaptive sliding

mode control problem of a nonlinear Markovian jump systems is treated in [24] . The input–output finite-time stabilization

for a class of nonlinear system like Chua circuits via sliding mode control is investigated in [60] . The integral sliding mode

control for stochastic Markovian jump systems with time-varying delay is proposed in [27] . A sliding mode fuzzy controller

is designed in [5] in order to satisfy performance constrains imposed to continuous-time Takagi–Sugeno fuzzy models with

a bilinear consequent part. Attractive discrete-time sliding mode control applications are reported in [26,30,32,64] . 

The combination of the advantages of data-driven control and sliding mode control has resulted in the merge of data-

driven and sliding mode control techniques. Some mixed data-driven and sliding mode control techniques are next dis-

cussed. Sliding mode control is combined with a model-free iPI controller in [45] and applied to real-time servo system

equipment; the real-time experimental results are compared with a model-free iPI controller. A mixed sliding mode control-

model-free iPD controller is proposed in [65] and applied to a quadrotor system; the simulation results are compared with

a PD controller and a model-free iPD controller. Sliding mode control mixed with model-free adaptive control is suggested

in [67] and tested in the simulated behavior of a robotic exoskeleton. An iterative learning control scheme is designed via

continuous sliding mode control in [6] and validated experimentally on a rotary plant. Sliding mode control is designed

by adaptive dynamic programming in [11] and tested in a simulated class of partially unknown systems with input distur-

bances. An adaptive sliding mode inverse control strategy of continuous-time nonlinear dynamic systems is analyzed and

digitally simulated in [68] . 

The application considered in this paper is a TRAS, which is a laboratory equipment designed for control system exper-

iments. The TRAS is challenging as in some aspects it behaves like a real helicopter. From the point of view of the control,

the TRAS system presents a mathematical model with strong interconnected nonlinearities. Several data-driven techniques

have been applied recently to TRAS, and the most relevant ones are emphasized as follows. The real-time implementation of

neuron-adaptive observers is proposed in [36] . An MFC algorithm is compared in [52] with model-free adaptive controllers,

and both techniques are validated by experiments. MFC is optimized in [57] in a linear quadratic regulator framework. Two

versions of model-free adaptive control algorithms (the compact form dynamic linearization and the partial form dynamic

linearization) are analyzed and validated experimentally in [55] . Two implementations of model-free adaptive control are

suggested in [56] ; the experimental results are compared with a data-driven virtual reference feedback tuning technique.

The model-free adaptive control is combined with virtual reference feedback tuning to automatically obtain the controller

parameters in [58] and with iterative feedback tuning in [50,51] . The data-driven algorithms dedicated to TRAS are compared

in [52,55,56,57,58] using a sum-type performance index. 

Building upon our recent model-free sliding mode control system (MFSMCS) structure and design approach [45] applied

to a nonlinear servo system equipment and validated experimentally and next to a quadrotor simulated model [65] , this

paper proposes two MFSMCS structures and design approaches. Both structures and design approaches are based on Lya-

punov’s stability theory. The first structure includes a simplified filter compared to [45] , namely a derivative plus low-pass

filter to estimate the first-order derivative of the controlled output. The estimated derivative is included in a first-order

nonlinear dynamic system as a local approximation of the process model and next introduced in the control laws. The

first structure and design approach make also use of the equivalent control method specific to sliding mode control. Both

approaches are applied to TRAS and validated by real-time experimental results. 

This paper suggests four new contributions with respect to the state-of-the-art: 

- Two novel MFSMCS structures and their design approaches are offered. 
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- Two sliding mode reaching and existence conditions are formulated in order to guarantee the control system stability. 

- The MFSMCS structures are compared systematically with an MFC structure built around an iPI controller by measuring

the real-time control system performance in terms of sum-type performance indices. The parameters of the three model-

free controllers are optimally tuned by the minimization of these performance indices viewed as objective functions. 

- The MFSMCS structures are validated by experiments on TRAS, i.e., on a process that exhibits stronger nonlinearities than

those usually used to test MFC. 

Our MFSMCS structures are developed on the basis of an iPI controller for which the systematic design does not guaran-

tee that the tracking error converges asymptotically to zero. As shown in [14] , the stability of the tracking error involves the

asymptotic convergence to zero only if the system is in a steady-state regime. That is the reason why this paper suggests

an augmented control signal that is inserted in the control system structure and next designed by sliding mode control. Our

design approaches are model-free in tuning because, as mentioned in [18,45] , data-driven control is characterized by the

controller designed in terms of directly using on-line or off-line input–output data of the controlled system or knowledge

from the data processing but not any explicit information from the process model. The data-driven approaches given in this

paper actually employ the sliding mode control of the model represented by the tracking error dynamics obtained by MFC. 

The new contributions of this paper are important and advantageous with respect to the current literature in the field

analyzed above because of the following reasons: 

- Simple design approaches are given. 

- The stability of the tracking error dynamics specific to MFC is guaranteed by sliding mode control that also influences

the behavior of the tracking error dynamics. 

- The control system structures resulted after design and tuning are robust against parameter variations and disturbances

as a benefit of sliding mode control. 

This paper is structured as follows: a short overview on model-free iPI control is given in the next section. Section

3 focuses on the MFCMCS structures and design approaches. Section 4 considers the case study of the design of model-free

controllers for the position control of the TRAS. Experimental results are included in order to validate the new MFSMCS

structures and to carry out the comparison with MFC. The conclusions are highlighted in Section 5 . 

2. Model-free iPI control 

As shown in [13,15] , the general form of the first order local process model subsequently used in the design of the iPI

controller is 

˙ y (t) = F (t) + αu (t) , (1) 

where t is the continuous variable, F ( t ) is a function that incorporates the effects of unmodeled dynamics and disturbances,

this function is estimated using the information from the control signal u ( t ) and the controlled output y ( t ), and α > 0 is

a design parameter, which is chosen by the user such that ˙ y (t) and αu ( t ) should have the same order of magnitude. The

tracking error e ( t ) is 

e (t) = y (t) − y ∗(t) , (2) 

where y ∗( t ) is the desired reference trajectory, that describes the behavior imposed to the control system, the control law

of the iPI controller is 

u (t) = 

1 

α

(
− ˆ F (t) + 

˙ y ∗(t) − K P e (t) − K I 

∫ t 

0 

e (τ ) dτ

)
, (3) 

where ˆ F (t) is the estimate of F ( t ), K P and K I are the proportional and the integral gains of the PI controller with the following

transfer function: 

C(s ) = K P + 

K I 

s 
. (4) 

For the practical implementation of the derivates of the controlled output y ( t ) in ( 1 ) and the desired reference trajectory

y ∗( t ) in ( 3 ), we propose to use a first order derivative plus low-pass filter with the transfer function 

H Lp1 (s ) = 

K Lp1 s 

1 + T Lp1 s 
, (5) 

where K Lp 1 is the filter gain and T Lp 1 is the filter time constant. The filter parameters should be chosen as a compromise to

noise reduction and the delay it induces. This filter generates the estimate of ˙ y (t) , with the notation 

ˆ ˙ y (t) , which leads to

the modified expression of ( 1 ) 

ˆ F (t) = 

ˆ ˙ y (t) − αu (t) . (6) 

The filter with the transfer function given in ( 5 ) also generates ˙ y ∗(t) in ( 3 ), which represents the filtered derivative of

the desired reference trajectory y ∗( t ). 



R.-E. Precup et al. / Information Sciences 381 (2017) 176–192 179 

.̂

^

Fig. 1. Model-free control structure with iPI controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The structure of the MFC structure with an iPI controller is presented in Fig. 1 , where the Lp1 block represents the first

order derivative plus low-pass filter with the transfer function given in ( 5 ). 

The estimation error of F ( t ), namely e est ( t ) whose value is considered negligible is defined as 

e est (t) = 

˙ y (t) − ˆ ˙ y (t) = F (t) − ˆ F (t) . (7)

Substituting ( 6 ) in ( 3 ), adding and subtracting the derivate of the controlled output ˙ y (t) , the dynamics of the control

system structure is described by 

ˆ ˙ y (t) − ˙ y (t) + 

˙ y (t) − ˙ y ∗(t) + K P e (t) + K I 

∫ t 

0 

e (τ ) dτ = 0 . (8)

Using ( 7 ) and ( 2 ) in ( 8 ), the control system structure given in Fig. 1 is characterized by the following tracking error

dynamics: 

˙ e (t) + K P e (t) + K I 

∫ t 

0 

e (τ ) dτ = e est (t) . (9)

3. Model-free sliding mode control system structures and design approaches 

Starting with the control law given in ( 3 ), which is in fact an iPI controller and adding an augmented control signal

u aug ( t ), the control law of the MFSMCS structure is 

u (t) = 

1 

α

(
− ˆ F (t) + 

˙ y ∗(t) − K P e (t) − K I 

∫ t 

0 

e (τ ) dτ

)
+ u aug ( t) , (10)

and the closed-loop control system structure is described by 

˙ e (t) + K P e (t) + K I 

∫ t 

0 

e (τ ) dτ = e est (t) + αu aug (t) . (11)

For estimating the first-order derivative of the controlled output the MFSMCS structures uses a derivative plus low-pass

filter with the transfer function H Lp 1 ( s ) expressed in ( 5 ). 

To combine the MFC algorithm with sliding mode control, the state variables x 1 ( t ) and x 2 ( t ) are introduced in terms of 

x 1 (t) = 

∫ t 

0 

e (τ ) dτ , 

x 2 (t) = e (t) , (12)

and the state-space equations of the closed-loop control system related to ( 11 ) are 

˙ x 1 (t) = x 2 (t) , 

˙ x 2 (t) = −K I x 1 (t) − K P x 2 (t) + αu aug (t) + e est (t) , (13)

where e est ( t ) is the disturbance input. 

The switching variable σ ( t ) used in designing the sliding mode control law u aug ( t ) is 

σ (t) = x 1 (t) + T x 2 (t) , (14)

where T > 0 is the design parameter that prescribes the desired behavior of the control system on the sliding mode surface.

The Lyapunov function candidate introduced in order to guarantee the stability of the closed-loop system related to ( 11 ) is

V (t) = 

1 

σ 2 (t) , (15)

2 
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and using the Lyapunov’s stability theory the condition 

˙ V (t) < 0 is transformed into the sliding mode reaching and existence

condition 

σ (t) ˙ σ (t) < 0 , (16) 

which is employed to derive the control law u aug ( t ) as function of x 1 ( t ) and x 2 ( t ). 

The variable ˙ σ (t) is the derivative of the switching variable, expressed as 

˙ σ (t) = 

˙ x 1 (t) + T ˙ x 2 (t) . (17) 

Introducing ( 13 ) in ( 17 ), ˙ σ (t) becomes 

˙ σ (t) = −K I T x 1 (t) + (1 − K P T ) x 2 (t) + αT u aug (t) + T e est (t) . (18)

Since the estimation error e est ( t ) is unknown, its range will be estimated. The value of e est ( t ) is assumed to be bounded

| e est (t) | ≤ e est max , (19) 

where e est max is the upper bound of | e est ( t )|, and its value is known. The parameter e est max plays the role of a design

parameter. 

Two MFSMCS structures are considered as follows. The first MFSMCS structure was first proposed in [45] and applied

to model-free iPI controllers but with a different filter (this time with a first order derivative plus low-pass filter) and next

extended in [65] to model-free iPD controllers. 

3.1. The first MFSMCS structure 

The first MFSMCS structure and its design approach are described in this sub-section. The abbreviation MFSMCS1 will be

used for this control system structure. 

The augmented control signal u aug ( t ) consists of two control signals 

u aug (t) = u eq (t) + u cor (t) , (20) 

where u eq ( t ) and u cor ( t ) are the equivalent control signal and correction control signal, respectively. The equivalent control

signal u eq ( t ) is obtained from the ideal sliding mode condition σ ( t ) = 0, which leads to 

˙ σ (t) = 0 . (21) 

Substituting ( 20 ) in ( 18 ), where u aug ( t ) = u eq ( t ) and solving for u eq ( t ), the expression of u eq ( t ) becomes 

u eq (t) = 

K I T x 1 (t) − (1 − K P T ) x 2 (t) − T e est (t) 

αT 
. (22) 

Since e est ( t ) is unknown in ( 22 ), its value will be replaced with e est max , hence ( 22 ) is rewritten as 

u eq (t) = 

K I T x 1 (t) − (1 − K P T ) x 2 (t) − T e est max 

αT 
. (23) 

To satisfy the sliding mode reaching and existence condition given in ( 16 ) and to alleviate the chattering effects a bound-

ary layer approach is next applied. The proposed expression of the correction signal u cor ( t ) is 

u cor (t) = − η

αT 
sat (σ (t) , ε) = − η

αT 

⎧ ⎪ ⎨ 

⎪ ⎩ 

−1 if σ (t) < −ε, 

σ (t) 

ε 
if | σ (t) | ≤ ε, 

1 if σ (t) > ε, 

(24) 

where η > 0 and ε > 0 are the convergence factor and the boundary layer thickness, respectively. 

Substituting ( 23 ) and ( 24 ) in ( 20 ) and next u aug ( t ) in ( 18 ), the expression of ˙ V (t) becomes 

˙ V (t) = σ (t ) ˙ σ (t ) = −σ (t) ηsat (σ (t) , ε) + σ (t ) T [ e est (t ) − e est max ] . (25)

Theorem 1. Let the sliding mode control law defined in ( 10 ) for the process model specified in ( 1 ) with the disturbance estimator

described in ( 6 ) be given together with the closed-loop control system dynamics presented in ( 13 ), the switching variable defined

in ( 14 ) and the Lyapunov function candidate expressed in ( 15 ). Let us assume the bounded estimation error according ( 19 ). Then

the MFSMCS1 structure is stable if 

u aug (t) = 

K I T x 1 (t) − (1 − K P T ) x 2 (t) − T e est max 

αT 
− η

αT 
sat ( σ ( t) , ε) . (26) 

Proof. Two cases that depend on the possible values of σ ( t ) are next considered in order to ensure the fulfillment of the

sliding mode reaching and existence condition ( 16 ). 
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Case 1. | σ ( t )| ≤ ε (the state vector belongs to the boundary layer). Substituting ( 24 ) in ( 25 ), the sliding mode reaching

and existence condition ( 16 ) becomes 

σ (t) ˙ σ (t) = −σ 2 (t) η

ε 
+ σ (t) T [ e est (t) − e est max ] . (27)

To ensure the negative right-hand term ( 27 ), the following condition is sufficient: 

σ 2 (t) η

ε 
> | σ (t) | T | e est (t) − e est max | . (28)

Since 

| e est (t) − e est max | ≤ 2 e est max , (29)

a sufficient condition to fulfill ( 16 ) is 

| σ (t) | η
ε 

> 2 T e est max . (30)

Case 2. | σ ( t )| > ε (the state vector is out of the boundary layer). Substituting ( 24 ) in ( 25 ), the sliding mode reaching and

existence condition ( 16 ) becomes 

σ (t) ˙ σ (t) = −σ 2 (t) η + σ (t) T [ e est (t) − e est max ] . (31)

To ensure the negative right-hand term in ( 31 ), the following condition is sufficient: 

σ 2 (t) η > | σ (t) | T | e est (t) − e est max | . (32)

Using ( 29 ), a sufficient condition to fulfill ( 16 ) is 

| σ (t) | η > 2 T e est max . (33)

The switching variable dynamics in sliding mode is characterized by this expression derived from ( 25 ): 

˙ σ (t) = −ηsat (σ (t) , ε) + T [ e est (t) − e est max ] . (34)

The steady-state switching variable σ∞ 

fulfills ˙ σ (t) = 0 and its boundary layer is reached if 

sat ( σ∞ 

, ε) = 

σ∞ 

ε 
, (35)

so the steady state expression of ( 34 ) is 

0 = −ησ∞ 

ε 
+ T [ e est ∞ 

− e est max ] , (36)

where e est ∞ 

is the steady-state estimation error. Eq. (36) yields the steady-state switching variable 

σ∞ 

= −T ε[ e est∞ 

− e est max ] 

η
. (37)

Eq. (37) indicates, as ( 34 ), that large values of η > 0, small values of ε > 0 and accurate derivative estimators are

recommended to reduce the undesirable chattering effects. 

Substituting u eq ( t ) from ( 23 ) and u cor ( t ) from ( 24 ) in ( 20 ), the expression of u aug ( t ) results in terms of ( 26 ). Concluding,

the two cases reflected in ( 30 ) and ( 33 ), the subsequent processing of the switching variable dynamics that leads to ( 24 ) and

the steady-state estimation error given in ( 37 ). According to ( 26 ) it is guaranteed that ˙ V (t) < 0 , leading to a stable MFSMCS2

structure and thus concluding the proof. 

Rewriting u aug ( t ) in terms of ( 12 ), the final expression of the control law specific to the MFSMCS1 structure is 

u (t) = 

1 

α

(
− ˆ F (t) + 

˙ y ∗(t) − e (t) 

T 
− e est max − η

T 
sat (σ (t) , ε) 

)
, (38)

and it is illustrated in Fig. 2. 

The design approach of the MFSMCS1 structure consists of the following steps: 

Step 1.1 . Set the design parameter α > 0 such that ˙ y (t) and αu ( t ) should have the same order of magnitude. 

Step 1.2 . Choose the parameters of the first order derivative plus low-pass filter with the transfer function H Lp 1 ( s ) given

in ( 5 ) such that to ensure a tradeoff to noise reduction and delay induced by the filter. This filter is also used to obtain

accurate derivative estimates ˆ ˙ y (t) characterized by small estimation errors and derivatives smoothing. 

Step 1.3 . Estimate a small value for the design parameter e est max . 

Step 1.4 . Set the design parameter T > 0 to prescribe the desired behavior of the control system on the sliding manifold.

Step 1.5 . Set the parameters η > 0 and ε > 0 using Eqs. (33) and ( 36 ). 
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Fig. 2. MFSMCS1 structure. 

 

 

 

 

 

 

 

 

 

 

 

3.2. The second MFSMCS structure 

The second MFSMCS structure and its design approach are described in this sub-section. The abbreviation MFSMCS2 will

be used for this control system structure. 

Theorem 2. Let the sliding mode control law defined in ( 10 ) for the process model specified in ( 1 ) with the disturbance estimator

described in ( 6 ) be given together with the closed-loop control system dynamics presented in ( 13 ), the switching variable defined

in ( 14 ) and the Lyapunov function candidate expressed in ( 15 ). Let us assume the bounded estimation error according ( 19 ). Then

the MFSMCS2 structure is stable if 

u aug (t) = −
(

ψ + | K I T x 1 (t) + ( K P T − 1) x 2 (t) | + T e est max 

αT 
+ δ

)
sgn (σ (t)) , (39) 

where ψ > 0 and δ > 0 are user-selectable design variables . 

Proof. As in the first approach, two cases are considered as follows in order to ensure the fulfillment of the sliding mode

reaching and existence condition ( 16 ). 

Case 1. σ ( t ) < 0. The condition ( 16 ) yields ˙ σ (t) > 0 , but we impose the condition 

˙ σ (t) > ψ, (40) 

where the design parameter ψ > 0 guarantees ˙ V (t) < 0 if bounded uncertainties and unstructured system dynamics are

accounted for. Using ( 18 ) in ( 20 ), the following condition for the augmented control signal u aug ( t ) is derived: 

u aug (t) > 

ψ + K I T x 1 (t) + ( K P T − 1) x 2 (t) − T e est (t) 

αT 
. (41) 

Using ( 19 ) in ( 41 ), a sufficient condition to fulfill ( 16 ) is 

u aug (t) > 

ψ + | K I T x 1 (t) + ( K P T − 1) x 2 (t) | + T e est max 

αT 
. (42) 

Case 2. σ ( t ) > 0. The condition ( 16 ) yields ˙ σ (t) < 0 , but we impose the condition 

˙ σ (t) < −ψ (43) 

to guarantee ˙ V (t) < 0 if parametric disturbances occur and to ensure faster reaching phase. Using ( 18 ) in ( 43 ), the following

condition for the augmented control signal u aug ( t ) is derived: 

u aug (t) < 

−ψ + K I T x 1 (t) + ( K P T − 1) x 2 (t) − T e est (t) 

αT 
. (44) 

Using next ( 19 ) in ( 44 ), a sufficient condition to fulfill ( 16 ) is 

u aug (t) < −ψ + | K I T x 1 (t) + ( K P T − 1) x 2 (t) | + T e est max 

αT 
. (45) 

Concluding, the two cases reflected in ( 42 ) and ( 45 ) can be combined in the augmented control signal u aug ( t ) in ( 39 )

that guarantees the sliding mode reaching and existence condition ( 16 ), where δ > 0 should be large enough to suppress

all bounded uncertainties and unstructured system dynamics. According to ( 39 ) it is guaranteed that ˙ V (t) < 0 , leading to a

stable MFSMCS2 structure and thus concluding the proof. 

The dynamics of the switching variable in sliding mode is characterized by the following relationship derived from ( 18 )

and ( 45 ): 

˙ σ (t) = −K I T x 1 (t) + (1 − K P T ) x 2 (t) − (ψ + | K I T x 1 (t) + ( K P T − 1) x 2 (t) | 
+ T e est max + αT δ) sgn (σ (t)) + T e est (t) . (46) 
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Fig. 3. MFSMCS2 structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The steady-state switching variable σ∞ 

fulfills ˙ σ∞ 

= 0 . Therefore, the steady-state expression of Eq. (46) is 

K I T x 1 (t) + ( K P T − 1) x 2 (t) + (ψ + | K I T x 1 (t) + ( K P T − 1) x 2 (t) | + T e est max + αT δ) sgn (σ (t)) = T e est ∞ 

, (47)

where e est ∞ 

is the steady-state estimation error. Eq. (47) points out that since σ∞ 

=0 is desired, large values of T > 0 and

accurate derivative estimators are recommended. 

The substitution of u aug ( t ) from ( 45 ) in ( 10 ) in terms of the notations ( 12 ) leads to the expression of the control law

specific to the MFSMCS2 structure 

u (t) = 

1 

α

[
− ˆ F (t) + 

˙ y ∗(t) − K P e (t) − K I 

∫ t 

0 

e (τ ) dτ

− 1 

T 

(
δαT + ψ + T e est max + | K I T 

∫ t 

0 

e (τ ) dτ + ( K P T − 1) e (t) | 
)

sgn (σ (t)) 

]
, (48)

and it is pointed out in Fig. 3. 

The design approach of the MFSMCS2 structure consists of the following steps: 

Step 2.1 . Set the design parameter α > 0 such that the terms ˙ y (t) and α u ( t ) have the same order of magnitude. 

Step 2.2 . Choose the parameters of the first order derivative plus low-pass filter with the transfer function H Lp 1 ( s ) given

in ( 5 ) as in the step 1.2, such that to ensure a tradeoff to noise reduction and delay induced by the filter. This filter is also

used to obtain accurate derivative estimates ˆ ˙ y (t) characterized by small estimation errors and derivatives smoothing. 

Step 2.3 . Estimate a small value for the design parameter e est max . 

Step 2.4 . Fine tune the parameters with small values of K P and K I . 

Step 2.5 . Set the design parameter T > 0 to prescribe the desired behavior of the control system on the sliding manifold

and to account for the recommendations related to Eq. (47) . 

Step 2.6 . Set small values for the parameters ψ > 0 and δ > 0 using the experience of the control systems designer. 

4. Experimental case study 

This section is dedicated to the real-time experimental validation of the control structures and design approaches pro-

posed in the previous section by the azimuth and pitch positions control of a nonlinear laboratory TRAS. Our two MFSMCS

structures belong to the MIMO TRAS control system, where the azimuth and pitch positions are controlled using separate

Single Input–Single Output (SISO) control system structures for each control channel, namely for azimuth and pitch. The

validation is achieved by two experimental scenarios that illustrate the MFSMCS structures performance. The comparison

versus a model-free iPI control system structure is included as well and the control system performance is expressed by

measuring the real-time control system responses and comparing the values of two sum-type performance indices. In addi-

tion, the parameters of the three model-free controllers are tuned by the minimization of these performance indices, which

are considered as objective functions in terms of two separate optimization problems, one for the optimal tuning of the

azimuth controllers and the other one for the optimal tuning of the pitch controllers. 
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Fig. 4. The schematics of the aero-dynamical model of TRAS [62] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Experimental setup 

The nonlinear state-space model that describes the MIMO TRAS process is [62] 

˙ 	h = [ l t F h ( ω h ) cos αv − 	h k h + u 2 k v h ] / J h , 
˙ 	v = [ l m 

F v ( ω v ) − 	v k v − gC αv + k h v u 1 ] / J v , 
˙ αh = 	h , 

˙ αv = 	v , 

˙ ω h = ( u 1 − k −1 
Hh 

( ω h )) / I h , 

˙ ω v = ( u 2 − k −1 
Hv ( ω v )) / I v , 

y 1 = αh , 

y 2 = αv , 

(49) 

where: u 1 (%)—the first control signal, i.e., the Pulse Width Modulation (PWM) duty cycle of the azimuth direct current

(DC) motor, u 2 (%)—the second control signal, i.e., the PWM duty cycle of the pitch DC motor, αh (rad) = y 1 —the first process

output, i.e., the azimuth (horizontal) position of the beam that supports the main and the tail rotor, αv (rad) = y 2 —the second

process output, i.e., the pitch (vertical) position of the beam [50,51,52,55,56,57,58] , 	h (rad)—the angular (pitch) velocity of

the TRAS, 	v (rad)—the angular (azimuth) velocity of the TRAS, I h (kg m 

2 )—the moment of inertia of the azimuth (tail)

rotor, I v (kg m 

2 )—the moment of inertia of the pitch (main) rotor, J v (kg m 

2 )—the sum of moments of inertia relative to

the azimuth (horizontal) axis, J h (kg m 

2 )—the sum of moments of inertia relative to the pitch (vertical) axis, F h ( ω h )(N) and

F v ( ω v )(N)—the nonlinear characteristics that determine the dependence of the propeller trust on DC motor rotational speed

(trust characteristics), ω h (rad/s)—the rotational speed of the azimuth (tail) rotor, ω v (rad/s)—the rotational speed of the pitch

(main) rotor, k hv (N m)—the coefficient of the moment of inertia from azimuth motor to pitch, k vh (N m)—the coefficient of

the moment of inertia from pitch motor to azimuth, l t (m)—the length of the azimuth (tail) part of the beam, l m 

(m)—the

length of the pitch (main) part of the beam, k h (N ms)—the horizontal angular momentum, k v (N ms)—the vertical angular

momentum, C (kg m)—the sum between the half of the mass of the counter-weight beam multiplied with the length of

the counter-weight beam with the product between the mass of the counter-weight and the distance between the counter-

weight and the joint, and g (m/s 2 )—the gravitational acceleration. 

The variables k Hh and k Hv in ( 49 ) depend on ω h and ω v , namely ω h =k Hh ( u 1 ) (rad/s) and ω v =k Hv ( u 2 ) (rad/s), which

in turn are used in determining the trust characteristics F h ( ω h )(N) and F v ( ω v )(N). The nonlinear state-space model ( 49 )

that describes the MIMO TRAS process is only an approximation of the real time equipment. This model has been in-

cluded to give an overview on the TRAS equipment. That is the reason why the four trust characteristics of the propellers,

ω h = k Hh ( u 1 ) (rad/s), ω v = k Hv ( u 2 ) (rad/s), F h ( ω h )(N) and F v ( ω v )(N), which have been measured in [62] to be used by means

of their polynomial approximations, and the values of the parameters related to ( 49 ) are not included here. 

The schematics of the aero-dynamical model of TRAS is given in Fig. 4. 

The typical control objective for TRAS is to ensure the regulation and tracking for the vertical and the horizontal motion,

i.e., to control the azimuth and the pitch positions. This paper considers a MIMO control system that is decomposed into

two SISO control systems, namely the azimuth control loop and the pitch control loop. The experimental results will be

presented for both SISO control systems. 

The TRAS was chosen because it is a laboratory equipment that has strong nonlinearities and it represents a challenge to

control it with MFSMCS1, MFSMCS2 and MFC structures. 

4.2. Experimental scenarios 

Two experimental scenarios are defined in this sub-section. Each experimental scenario tests three control structures: a

model-free structure with iPI controller (MFC) and the two MFSMCS structures (MFSMCS1 and MFSMCS2) introduced in the

previous section. The purpose of the experimental scenario is to point out that the MFSMCS1 or the MFSMCS2 structures

outperform the MFC structure. 
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The desired reference trajectories in the first scenario are set to 

y ∗1 (k ) = 0 . 12sin (0 . 12 k ) if k = 0 ... 90 0 0 , 

y ∗2 (k ) = 0 . 15sin (0 . 15 k ) if k = 0 ... 90 0 0 , (50)

where y ∗
1 
(k ) and y ∗

2 
(k ) are the azimuth and pitch desired reference trajectories, respectively, and k is the discrete time index

because all three controllers are actually implemented as quasi-continuous digital controllers. With this regard the sampling

period has been set to 0.01s in order to meet the requirements of quasi-continuous digital control of this process. 

The first scenario aims to assess how the MFC, MFSMCS1 and MFSMCS2 structures behave if the reference trajectory is a

tracking signal represented by a sine signal. 

The desired reference trajectories in the second scenario are set to 

y ∗1 (k ) = 

{ 

0 . 003 k if k = 0 ... 3350 , 

0 . 15 if k = 3351 ... 6500 , 

−0 . 1 if k = 6501 ... 90 0 0 , 

y ∗2 (k ) = 

{ 

0 . 003 k if k = 0 ... 3350 , 

0 . 15 if k = 3351 ... 6500 , 

−0 . 1 if k = 6501 ... 90 0 0 . 

(51)

The second scenario aims to assess how the MFC, MFSMCS1 and MFSMCS2 structures behave if the reference trajectory

is a ramp signal combined with step type signals. 

The following performance index will be used to measure the performance of the MFC, MFSMCS1 and MFSMCS2 struc-

tures: 

J a ε ( χ
a ) = 

N ∑ 

k =1 

(y ∗1 (k, χ a ) − y 1 (k, χ a )) 
2 
, 

J p ε ( χ
p ) = 

N ∑ 

k =1 

(y ∗2 (k, χ p ) − y 2 (k, χ p )) 
2 
, 

(52)

where the N is the length of the time horizon, N = 90 0 0, and the superscripts a and p indicate the azimuth and pitch control,

respectively, but other objective functions that could account for fuzzy models can be used as well [16,31,43,44,46,70] . The

parameter vectors χa and χp contain the parameters of the controllers in the MFC, MFSMCS1 and MFSMCS2 structures: 

χ a = [ K 

a 
P K 

a 
I ] , χ

p = [ K 

p 
P 

K 

p 
I 

] (53)

for the model-free iPI controllers, 

χ a = [ ε a T a e a est max η
a ] , χ p = [ ε p T p e p est max η

p ] (54)

for the controllers in the MFSMCS1 structure, and 

χ a = [ K 

a 
P K 

a 
I ψ 

a T a e a est max δ
a ] , χ p = [ K 

p 
P 

K 

p 
I 

ψ 

p T p e p est max δ
p ] (55)

for the controllers in the MFSMCS2 structure. 

4.3. Real-time experimental results in the first experimental scenario 

The steps of the design approaches presented in Sections 3.1 and 3.2 are applied as follows to the TRAS. The parameter α
in ( 1 ) has been set in step 1.1 and step 2.1 such that to have the same value in all experiments and for each control system

structure, α=90 in order not to alter the behavior of the controller to later have a later fair comparison of all experimental

scenarios. 

The parameters of the first order derivative plus low-pass filter with the transfer function H Lp 1 ( s ) in ( 5 ) have been set in

step 1.2 and step 2.2 to K Lp 1 =0.85 and T Lp 1 =0.15s in all experiments and for each control system structures such that for

each experiment all the signals y ∗( t ) and y ( t ) shall be filtered through a first order derivative plus low-pass filter having the

same parameters in order to have a later fair comparison of all experimental scenarios. 

The reference trajectory used in all experiments is given in ( 50 ). 

The controller parameters in all three model-free control system structures have been optimally tuned as solutions to

the following optimization problems: 

χ a ∗ = arg min 

χ a 
J a ε ( χ

a ) , 

χ p∗ = arg min 

χ p 
J p ε ( χ

p ) , 
(56)

where the objective functions are expressed in ( 52 ), χa ∗ and χp ∗ are the optimal parameter vectors for azimuth and pitch

control, respectively, and the inequality-type constraints that appear in the design approaches are accounted for. A meta-

heuristics Gravitational Search Algorithm (GSA) optimizer, with the parameters given in [8,38] has been applied to solve

the optimization problems specified in ( 56 ), but other classical or modern optimization algorithms can be used as well

[2,3,12,23,28,37,49,63] . 
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A brief description of the GSA is given as follows. The GSA consists of the following steps: 

Step 1 . The initial populations of agents is generated, i.e., the number of agents N GSA is set and the agents’ position vector

V i is initialized randomly 

V i = [ v 1 
i 

... v d 
i 

... v q 
i 
] T , i = 1 ... N GSA , (57) 

where v d 
i 

is the position of i th agent in d th dimension, d = 1... q , and q is the dimension of the search space that includes the

vector variables χa or χp of the objective functions, i.e., the parameter vectors of the controllers. 

Using the notation μ for the iteration index in GSA, the maximum number of iterations is set to μmax . 

The GSA is mapped onto the optimization problems defined in ( 56 ) by two relationships. First, the relationship between

the fitness function f and fitness value f i ( μ) of i th agent at the iteration index μ in the GSA on the one hand, and the

objective functions defined in ( 52 ) on the other hand is 

f i (μ) = J a ε ( χ
a ) , f i (μ) = J a ε ( χ

a ) , i = 1 ... N GSA . (58)

Second, the relationship between the agents’ position vector V i in the GSA and the parameter vectors of the controllers

χa or χp is 

V i = χ a , V i = χ p , i = 1 ... N GSA . (59) 

Step 2 . The agents’ fitness is evaluated using ( 52 ), ( 58 ) and ( 59 ) and simulations conducted on the control system. 

Step 3 . The population of agents is updated. The depreciation of the gravitational constant with the advance of GSA’s

iterations is 

g(μ) = g 0 e 
−αGSA μ/ μmax , (60) 

where g ( μ) is the value of the gravitational constant at the current iteration index, g 0 is the initial gravitational constant,

and αGSA > 0 is a parameter that is set to ensure GSA’s convergence and influence the accuracy of the search process. The

expressions of the gravitational and inertial masses are [53] 

n i (μ) = [ f i (μ) − w (μ)] / [ b(μ) − w (μ)] , 

m i (μ) = n i (μ) / 
N a ∑ 

j=1 

n j (μ) , 

m Ai = m Pi = m Ii = m i , 

(61) 

where the terms b ( μ) (corresponding to the best agent) and w ( μ) (corresponding to the worst agent) are computed as

follows for the optimization problems that target the minimization of the objective functions: 

b(μ) = min 

j=1 ... N GSA 

f j (μ) , 

w (μ) = max 
j=1 ... N GSA 

f j (μ) . (62) 

Step 4 . The agents’ accelerations a d 
i 
(μ) are computed 

a d i (μ) = (1 / m Ii (μ)) 

N GSA ∑ 

j =1 , j � = i 
ρ j F 

d 
i j (μ) , (63) 

where m Ii ( μ) is the inertia mass related to i th agent, ρ j , 0 ≤ ρ j ≤ 1, are randomly generated numbers, and F d 
i j 
(μ) is the

force acting on i th agent from j th agent 

F d i j (μ) = g(μ) m Pi (μ) m A j (μ)[ v d j (μ) − v d i (μ)] / [ || V i (μ) − V j (μ) || + ε GSA v d j (μ)] , (64)

m Pi ( μ) is the passive gravitational mass related to i th agent, m Aj ( μ) is the active gravitational mass related to j th agent,

|| V i ( μ) −V j ( μ)|| is the Euclidian distance between i th and j th agents, and εGSA > 0 is a small constant. 

The agents’ speeds ϑ 

d 
i 
(μ + 1) and positions v d 

i 
(μ + 1) are updated in terms of [53] 

ϑ 

d 
i 
(μ + 1) = ρi ϑ 

d 
i 
(μ) + a d 

i 
(μ) , 

v d 
i 
(μ + 1) = v d 

i 
(μ) + ϑ 

d 
i 
(μ + 1) , 

(65) 

where ρ i , 0 ≤ ρ i ≤ 1, are uniform random variables. 

Step 5 . The obtained vector solution V i ( μ+ 1) is validated if the objective functions are bounded, i.e., 

f i (μ) < ε f , (66) 

where the parameter ε f , ε f > 0, is set be the designer in order to restrict the feasible domain for V i ( μ+ 1) to guarantee the

convergence of the objective functions and the stability of the fuzzy control system as well. The recommended value of εf 

is εf =10 5 . 
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Table 1 

Average and variance values of the objective functions for 

SISO azimuth position control in the first scenario. 

MFC MFSMCS1 MFSMCS2 

Average of J a ε 40 .78 44 .53 25 .28 

Variance of J a ε 310 .2827 297 .0851 1 .9931 
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Fig. 5. Experimental results for SISO azimuth position control in the first scenario: a) the control signal u 1 of MFC (green line), MFSMCS1 (red line) and 

MFSMCS2 (blue line), b) the controlled output y 1 of MFC (green line), MFSMCS1 (red line) and MFSMCS2 (blue line) and the reference trajectory (black 

dashed line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 6 . μ is incremented and the algorithm continues with the step 2 until the maximum number of iterations is reached,

i.e., μ= μmax , and the final solution is 

χ a ∗ = min 

i =1 ... N GSA 

V i ( μmax ) , χ
p∗ = min 

i =1 ... N GSA 

V i ( μmax ) . (67)

The parameters of GSA were set as in [40,41,42] to N GSA = 50, μmax = 100, g 0 = 100, αGSA = 8.5 and εGSA =0.0001. These

settings ensure a good convergence of the GSA. 

The application of GSA has resulted in the following parameters of the controllers that carry out the azimuth position

control: 

- the parameters of the model-free iPI controller: χa ∗ = [0.1 0.001], 

- the parameters of the controller in the MFSMCS1 structure in steps 1.3, 1.4 and 1.5 of the design approach:

χa ∗ = [10 35.5 0.0 0 07 0.1], 

- the parameters of the controller in the MFSMCS1 structure in steps 2.3, 2.4, 2.5 and 2.6 of the design approach:

χa ∗ = [0.0 01 0.0 0 01 0.05 355 0.0 0 0 0 01 0.0 0 0 0 012]. 

To reduce the effect of the random disturbances on the measured control system performance, the objective functions of

the MFC, MFSMCS1 and MFSMCS2 structures have been averaged after 10 trials. The results for the SISO azimuth position

control are synthesized in Table 1 , which presents the average and the variance of J a ε . The real-time experimental results are

also presented as the control system responses expressed as control signals and controlled outputs in Fig. 5. 

The parameters of the controllers that carry out the pitch position control, obtained by GSA, are: 

- the parameters of the model-free iPI controller: χp ∗ = [0.25 0.001], 

- the parameters of the controller in the MFSMCS1 structure in steps 1.3, 1.4 and 1.5 of the design approach:

χp ∗ = [10 4.3 0.0 0 07 0.1], 

- the parameters of the controller in the MFSMCS1 structure in steps 2.3, 2.4, 2.5 and 2.6 of the design approach:

χp ∗ = [0.0 0 085 0.0 0 01 0.05 350 0.0 0 01 0.0 0 02]. 

The results are presented by averaging the measurements after 10 experiments conducted on the control system struc-

tures. The results of the average and variance values of the objective functions J 
p 
ε for the SISO pitch position control are

presented in Table 2 . The evolution of the control signals and controlled outputs is illustrated in Fig. 6. 

4.4. Real-time experimental results in the second experimental scenario 

The same first two steps of the design approaches as in the first experimental scenario have been applied in this scenario

as well, GSA has been employed as in Section 4.3 in solving the optimization problem ( 56 ), but the reference trajectory used

in all experiments is given in ( 51 ). 
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Table 2 

Average and variance values of the objective functions for 

SISO pitch position control in the first scenario. 

MFC MFSMCS1 MFSMCS2 

Average of J p ε 13 .52 12 .90 10 .31 

Variance of J p ε 0 .6950 0 .2904 0 .2341 
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Fig. 6. Experimental results for SISO pitch position control in the first scenario: a) the control signal u 2 of MFC (green line), MFSMCS1 (red line) and 

MFSMCS2 (blue line), b) the controlled output y 2 of MFC (green line), MFSMCS1 (red line) and MFSMCS2 (blue line) and the reference trajectory (black 

dashed line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 

Average and variance values of the objective functions 

for SISO azimuth position control in the second scenario. 

MFC MFSMCS1 MFSMCS2 

Average of J a ε 18 .40 18 .12 53 .30 

Variance of J a ε 1 .9539 8 .2650 56 .6316 

 

 

 

 

 

 

 

 

 

 

 

The application of GSA has led to the following parameter vectors of the controllers that carry out the azimuth position

control: 

- the parameters of the model-free iPI controller: χa ∗ = [0.15 0.001], 

- the parameters of the controller in the MFSMCS1 structure in steps 1.3, 1.4 and 1.5 of the design approach:

χa ∗ = [20 5.5 0.0 0 07 0.1], 

- the parameters of the controller in the MFSMCS1 structure in steps 2.3, 2.4, 2.5 and 2.6 of the design approach:

χa ∗ = [0.0 01 0.0 0 01 0.05 355 0.0 0 03 0.0 0 0 095]. 

To avoid the effects of random disturbances, the objective functions of the MFC, MFSMCS1 and MFSMCS2 structures have

been averaged 10 times. The results concerning the objective functions for SISO azimuth position control are presented in

Table 3 . The control signals and controlled outputs versus time are shown in Fig. 7. 

GSA has been also applied to tine the parameters of the controllers that carry out the pitch position control, and the

obtained parameter vectors are 

- the parameters of the model-free iPI controller: χp ∗ = [0.35 0.001], 

- the parameters of the controller in the MFSMCS1 structure in steps 1.3, 1.4 and 1.5 of the design approach:

χp ∗ = [10 2.5 0.0 0 07 0.1], 

- the parameters of the controller in the MFSMCS1 structure in steps 2.3, 2.4, 2.5 and 2.6 of the design approach:

χp ∗ = [0.09 0.01 0.05 350 0.0 0 01 0.0 0 01]. 

The effects of random disturbances on the results have been mitigated by conducting 10 experiments/trials for each

control system structure and the results are presented as averaged values. The results related to the average and variance

values of the objective functions J 
p 
ε for the SISO pitch position control are presented in Table 4 . The real-time experimental

results are also given in Fig. 8 as control system responses in terms of control signals and controlled outputs versus time. 
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Fig. 7. Experimental results for SISO azimuth position control in the second scenario: a) the control signal u 1 of MFC (green line), MFSMCS1 (red line) and 

MFSMCS2 (blue line), b) the controlled output y 1 of MFC (green line), MFSMCS1 (red line) and MFSMCS2 (blue line) and the reference trajectory (black 

dashed line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 

Average and variance values of the objective functions 

for SISO pitch position control in the second scenario. 

MFC MFSMCS1 MFSMCS2 

Average of J p ε 12 .13 11 .59 13 .52 

Variance of J p ε 0 .1031 0 .3098 0 .3658 

Fig. 8. Experimental results for SISO pitch position control in the second scenario: a) the control signal u 2 of MFC (green line), MFSMCS1 (red line) and 

MFSMCS2 (blue line), b) the controlled output y 2 of MFC (green line), MFSMCS1 (red line) and MFSMCS2 (blue line) and the reference trajectory (black 

dashed line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

4.5. Discussion 

Table 1 and Fig. 5 related to the first experimental scenario show that for SISO azimuth position control the best results

have been obtained by the MFSMCS2 structure followed by the MFC structure and the MFSMCS1 structure, i.e., J a ε M F SM CS2 
<

J a ε MF C 
< J a ε M F SM CS1 

. The reason for this ranking is represented by the following relationships between the average measured

objective functions: 1 . 61 J a ε M F SM CS2 
≈ J a ε MF C 

and 1 . 76 J a ε M F SM CS2 
≈ J a ε M F SM CS1 

. So the MFSMCS2 structure outperforms the basic

MFC structure, mentioning that both MFSMCS1 and MFSMCS2 structures are built starting with the MFC algorithm. 

Table 2 and Fig. 6 show that for SISO pitch position control the best performance has been achieved by the MFSMCS2

structure, then the MFSMCS1 structure and finally the MFC structure. The relationships between the average measured

objective functions obtained after the real-time experiments are J 
p 
ε M F SM CS2 

< J 
p 
ε M F SM CS1 

< J 
p 
ε MF C 

, 1 . 25 J 
p 
ε M F SM CS2 

≈ J 
p 
ε M F SM CS1

and 1 . 31 J 
p 
ε M F SM CS2 

≈ J 
p 
ε MF C 

. So the MFSMCS2 structure outperforms the basic MFC structure, mentioning that both MFSMCS1

and MFSMCS2 structures are built starting with the MFC algorithm. 

Table 3 and Fig. 7 related to the second experimental scenario applied to azimuth position control show that the MF-

SMCS1 structure and the MFC structure exhibit similar performance and they also perform approximate 2.9 times bet-

ter than the MFSMCS2 structure. The relationships between the average measured objective functions are 1 . 01 J a ε M F SM CS1 
≈
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J a ε MF C 
, 2 . 94 J a ε M F SM CS1 

≈ J a ε M F SM CS2 
and J a ε M F SM CS1 

< J a ε MF C 
< J a ε M F SM CS2 

. So the MFSMCS1 structure outperforms the basic MFC

structure, mentioning that both MFSMCS1 and MFSMCS2 structures are built starting with the MFC algorithm. 

Table 4 and Fig. 8 show that the best performance for SISO pitch position control has been achieved by the MFSMCS1

structure, and similar performance has been obtained by the MFC structure and next followed by the MFSMCS2 struc-

ture. The relationships between the average measured objective functions obtained after the real-time experiments are

J 
p 
ε M F SM CS1 

< J 
p 
ε MF C 

< J 
p 
ε M F SM CS2 

, 1 . 04 J 
p 
ε M F SM CS1 

≈ J 
p 
ε MF C 

and 1 . 16 J 
p 
ε M F SM CS1 

≈ J 
p 
ε M F SM CS2 

. So the MFSMCS1 structure outper-

forms the basic MFC structure, mentioning that both MFSMCS1 and MFSMCS2 structures are built starting with the MFC

algorithm. 

The above comparison will be different for other nonlinear processes. Such examples of representative processes are

given in [1,20,33,34,39,47,61] . In addition, the performance improvement exhibited by our MFSMCS structures is not spec-

tacular as these structures do not perform the direct model-free tuning of sliding mode controllers. As shown in Section 3 ,

sliding mode control is applied to the model represented by the tracking error dynamics obtained by MFC and not to the

process itself. 

5. Conclusions 

This paper has proposed two model-free control system structures that include sliding mode control. The two sliding

mode control system structures control the tracking error dynamics obtained by model-free control in order to benefit from

the specific advantages, i.e., robustness against parameter variations and disturbances. 

Our control system structures and design approaches have been validated by real-time experimental results related to

the position control of laboratory equipment represented by the twin rotor aerodynamic system. The model-free controllers

have been implemented as azimuth and pitch position controllers in two SISO control loops. The performance comparison

with a model-free intelligent PI control system structures proves the performance improvement and effectiveness of the

new model-free control system structures. 

It is not necessary to tune optimally the parameters of the three model-free controllers but this is a fair way to carry

out the systematic performance comparison of the model-free control system structures presented in this paper. Different

results will be obtained if other performance indices viewed as objective functions are used. 

Future research will be focused on the discrete-time formulation of the control system structures, on the extension to

MIMO model-free sliding mode control and on the direct model-free tuning of sliding mode controllers. 
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This paper suggests the optimal tuning of low-cost fuzzy controllers dedicated to a class of servo systems
by means of three new evolutionary optimization algorithms: Gravitational Search Algorithm (GSA), Par-
ticle Swarm Optimization (PSO) algorithm and Simulated Annealing (SA) algorithm. The processes in
these servo systems are characterized by second-order models with an integral component and variable
parameters; therefore the objective functions in the optimization problems include the output sensitivity
functions of the sensitivity models defined with respect to the parametric variations of the processes. The
servo systems are controlled by Takagi–Sugeno proportional-integral-fuzzy controllers (T–S PI-FCs) that
consist of two inputs, triangular input membership functions, nine rules in the rule base, the SUM and
PROD operators in the inference engine, and the weighted average method in the defuzzification module.
The T–S PI-FCs are implemented as low-cost fuzzy controllers because of their simple structure and of the
only three tuning parameters because of mapping the parameters of the linear proportional-integral (PI)
controllers onto the parameters of the fuzzy ones in terms of the modal equivalence principle and of the
Extended Symmetrical Optimum method. The optimization problems are solved by GSA, PSO and SA
resulting in fuzzy controllers with a reduced parametric sensitivity. The comparison of the three evolu-
tionary algorithms is carried out in the framework of a case study focused on the optimal tuning of T–S
PI-FCs meant for the position control system of a servo system laboratory equipment. Reduced process
gain sensitivity is ensured.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The performance specifications in many control system applica-
tions can be fulfilled by fuzzy control and fuzzy models as
convenient nonlinear control strategies [2,6,7,31,33,40,48]. The
performance specifications can be fulfilled optimally and system-
atically by the definition of optimization problems where the
objective functions are integral performance indices, the variables
are the tuning parameters of the fuzzy controllers, and the con-
straints should be accounted for. The solutions to the optimization
problems are the optimal tuning parameters as part of optimal fuz-
zy control systems.

The evolutionary algorithms prove to be successful in the opti-
mal tuning of fuzzy control systems. Some current approaches
include the Simulated Annealing (SA) algorithms in conventional
ll rights reserved.

; fax: +40 256403214.
ecup), davidradu@gmail.com
u), mircea.radac@aut.upt.ro
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and adaptive fuzzy control system structures [18,21,38], the piece-
wise parametric polynomial fuzzy sets in optimization [11], the
cross-entropy method [17], the fuzzy bang-bang control for mini-
mum time response [32], the genetic algorithms in sliding mode
and cascade fuzzy control systems [9,34], and the differential evo-
lution and similarity classifier results [1,30].

This paper will discuss three new evolutionary optimization
algorithms dedicated to the optimal tuning of low-cost fuzzy con-
trollers for servo systems. The three optimization algorithms use
Gravitational Search Algorithms (GSAs) [43,44], Particle Swarm
Optimization (PSO) algorithms [26,27] and SA algorithms [15,25].
Building upon our previous works on GSAs for the optimal tuning
of Takagi–Sugeno proportional-integral (PI)-fuzzy controllers
[37,39] and on PSO algorithms for the optimal tuning of PI control-
lers and of Takagi–Sugeno PI-fuzzy controllers (T–S PI-FCs) [12,13],
the new evolutionary optimization algorithms presented in this
paper aim the minimization of the objective functions expressed
as discrete-time weighted sums of the control error and of the out-
put sensitivity functions. The output sensitivity functions are taken
from the sensitivity models defined with respect to the parametric

http://dx.doi.org/10.1016/j.knosys.2011.07.006
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Fig. 1. Structure of the fuzzy control system.
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variations of the process that belongs to a class of servo systems
characterized by linear or linearized second-order models with
an integral component. Since the variables in the optimization
problems solved by the new GSA, PSO algorithm and SA algorithm
are the parameters of T–S PI-FCs, our algorithms lead to optimal T–
S PI-FCs.

The main new contributions of this paper with respect to the
current treated in the literature are:

– Three new evolutionary optimization algorithms that use GSA,
PSO and SA are offered to ensure the optimal tuning of low-cost
fuzzy controllers for servo systems with a reduced parametric
sensitivity. Our new algorithms are characterized by the imple-
mentation of a constraint that ensures the convergence of the
objective functions, which is inserted to validate the solution
for the next iteration, and by the calculation of the state-space
models of the T–S PI-FCs. In order to make the SA algorithm
more computationally efficient two additional iteration indices
are introduced, the success rate and the rejection rate, aiming
the acceleration of the cooling process and to improve the con-
vergence of the algorithm when small values of the objective
functions are found.

– A new generation of low-cost optimal T–S PI-FCs is given. The
T–S PI-FCs consist of two inputs, triangular input membership
functions, nine rules in the rule base, the SUM and PROD oper-
ators in the inference engine, and the weighted average method
in the defuzzification module.

– An analysis of the comparison between the three evolution-
ary optimization algorithms is conducted accepting a case
study related to the angular position control of a direct cur-
rent (DC) servo system laboratory equipment. Digital and
experimental results are included to support this analysis.
A reduced process gain sensitivity is obtained, i.e., a reduced
sensitivity with respect to the modifications of the process
gain.

These new contributions are important and advantageous with
respect to the state-of-the-art because:

– Our evolutionary optimization algorithms offer a reduced sensi-
tivity with respect to the parameters involved in the sensitivity
models, which enables the use of simplified process models in
the design and tuning of fuzzy and of intelligent control systems
[5,10,29,49,51,53].

– Our optimal T–S PI-FCs are implemented as low-cost fuzzy con-
trollers in the framework of low-cost automation solutions
[8,28,35,36,41,46] because of the relatively small number of
tuning parameters used as variables in the objective functions,
and of the simplicity of the unified tuning approach used for
GSA, PSO and SA as well.

This paper is organized as follows. The definition of the optimi-
zation problem and the new evolutionary algorithms are pre-
sented in Section 2 and in Section 3, respectively. Section 4 is
next dedicated to the case study of the tuning of T–S PI-FCs for
a class of servo systems where the process is described by sec-
ond-order linear or linearized models with an integral component.
A unified tuning approach for low-cost T–S PI-FCs proposed that
results in a new generation of low-cost optimal T–S PI-FCs. Sec-
tion 5 validates the new fuzzy controllers and optimization algo-
rithms by a case study concerning the angular position control of
a DC servo system laboratory equipment and aiming a reduced
process gain sensitivity. An analysis of the comparison of the
three optimization algorithms, digital simulation results and
real-time experimental results are included. The conclusions are
pointed out in Section 6.
2. Optimization problems

The fuzzy control system structure is presented in Fig. 1, where
FC is the fuzzy controller, P is the process, r is the reference input,
dinp is the disturbance input, y is the controlled output, u is the con-
trol signal, e is the control error

e ¼ r � y; ð1Þ

a ¼ ½a1 a2 . . . am �T 2 Rm is the parameter vector with the
elements aa, a = 1 . . .m, which are the parameters of the process,
q ¼ ½q1 q2 . . . qq �T 2 Rq is the parameter vector with the
elements ql, l = 1 . . .q, which are the tuning parameters of the con-
troller, and the superscript T indicates the matrix transposition.

The control system structure presented in Fig. 1 can be ex-
tended to tracking controllers in terms of adding an additional
block. This leads to two-degree-of-freedom (2-DOF) control system
structures that can ensure improved regulation and tracking per-
formance with respect to the one-degree-of-freedom (1-DOF) con-
trol system structures. Several ways to introduce this additional
block in fuzzy control systems are presented in [40] with emphasis
on PI-FCs.

The process is represented by the Single Input–Single Output
(SISO) discrete-time state-space model

xPðt þ 1Þ ¼ fP;dðxPðtÞ;a;uðtÞ;dinpðtÞÞ;
yðtÞ ¼ gP;dðxPðtÞ;a;dinpðtÞÞ;
xPðt0Þ ¼ xP;0;

ð2Þ

where t0 2 N is the initial time moment, t, t 2 N, t P t0, is the dis-
crete time argument, xP ¼ ½ xP;1 xP;2 . . . xP;n �T 2 Rn is the state
vector of the process, xP,0 2 Rn is the initial state vector of the pro-
cess, and the functions fP,d :Rn+m+2 ? Rn and gP,d :Rn+m+1 ? R are
differentiable with respect to the parameter aa, a = 1 . . .m. The
state-space models presented in (2) is a nonlinear model without
direct feedthrough, and it can be obtained from a SISO continu-
ous-time state-space model accepting that the inputs u and dinp

are changing at the discrete sampling intervals, i.e., accepting the
presence of the zero-order hold (ZOH).

The fuzzy controller is characterized by the general nonlinear
SISO discrete-time state-space model

xCðt þ 1Þ ¼ fC;dðxCðtÞ;q; eðtÞÞ;
uðtÞ ¼ gC;dðxCðtÞ;q; eðtÞÞ;
xCðt0Þ ¼ xC;0;

ð3Þ

where xC ¼ ½ xC;1 xC;2 . . . xC;p �T 2 Rp is the state vector of the con-
troller, xC,0 2 Rp is the initial state vector of the controller,
fC,d :Rp+q+1 ? Rp and gC,d :Rp+q+1 ? R, and the convergence of the
integrals in the objective functions requires that the controller
should have an integral component in order to ensure the zero stea-
dy-state value of the control error for several types of disturbance
inputs. The functions fC,d :Rp+q+1 ? Rp and gC,d :Rp+q+1 ? R in the
model (3) should contribute to the assurance of the differentiability
of state-space model of the fuzzy control system with respect to the
parameter aa, a = 1 . . .m.

The state vector of the process xP and the state vector of the
controller xC are grouped in the state vector of the control
system x
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x ¼
xP

xC

� �
¼ ½ x1 x2 . . . xnþp �T 2 Rnþp;

xb ¼
xP;i ifb ¼ 1;n;
xC;i�n otherwise;

(
b ¼ 1;nþ p:

ð4Þ

The state-space models (2) and (3) are merged using Eqs. (1)
and (4) leading to the following discrete-time state-space model
of the fuzzy control system:

xðt þ 1Þ ¼
fP;dðxPðtÞ;a; gC;dðxCðtÞ;q; r � gP;dðxPðtÞ;a; dinpðtÞÞÞ; dinpÞ

fC;dðxCðtÞ;q; r � gPðxPðtÞ;a;dinpðtÞÞÞ

" #

¼fdðxðtÞ;a;q; rðtÞ; dinpðtÞÞ; ð5Þ

yðtÞ ¼ gP;dðxðtÞ;a;dinpðtÞÞhP;dðxðtÞ;a; dinpðtÞÞ;

xðt0Þ ¼
xP;0

xC;0

� �
;

where the functions fd :Rn+p+m+q+2 ? Rn+p and hP,d :Rn+p+m+1 ? Rn+p

are differentiable with respect to the process parameter aa,
a = 1 . . .m.

The state sensitivity functions kaa
b ; b ¼ 1 . . . nþ p, and the output

sensitivity function raa are defined as follows:

kaa
b ¼

@xb

@aa

� �
aa ;0

; raa ¼ @y
@aa

� �
aa ;0

; b ¼ 1 . . . nþ p; a ¼ 1 . . . m;

ð6Þ

where the subscript 0 indicates the nominal value of the process
parameter aa, a = 1 . . .m, which is subjected to variations and there-
fore the sensitivity reduction is justified.

The following discrete-time objective functions are defined to
ensure the sensitivity reduction with respect to the modifications
of aa, a = 1 . . .m:

Iaa
ISEðqÞ ¼

X1
t¼0

fe2ðtÞ þ ðcaa Þ2½raa ðtÞ�2g; a ¼ 1 . . . m; ð7Þ

where caa ; a ¼ 1 . . . m, are the weighting parameters, all variables in
the sum depend on q standing for the vector variable of the objec-
tive function, and ISE points out the Integral of Squared Error. The
objective functions defined in (7) are referred to as extended ISE cri-
teria. In practical control problem solutions the sum in (7) should be
truncated such that to capture all transients of the control systems
during the time horizon specific to (7). The time horizon should in-
clude the moments when the objective functions reach their stea-
dy-state values. The upper limit of the sum depends on the
dynamics of the particular process under consideration.

The minimization of the objective functions defined in (7) aims
the sensitivity reduction, and it is expressed in terms of the optimi-
zation problems

q� ¼ arg min
q2Dq

Iaa
ISEðqÞ; a ¼ 1 . . . m; ð8Þ

where q⁄ is the optimal value of the vector q, and Dq is the feasible
domain of q. Several constraints including the stability of the fuzzy
control system can be imposed and expressed by means of Dq.

3. Evolutionary optimization algorithms

GSA, PSO and SA are the three evolutionary optimization algo-
rithms employed in the numerical solving of the optimization
problems defined in (8). These algorithms are presented briefly
in the sequel.
3.1. Gravitational Search Algorithms

The operating mechanism of GSAs makes use of agents (i.e., par-
ticles) and of Newton’s law of gravity. The depreciation of the grav-
itational constant with the advance of the GSA’s iterations is
modeled by

gðkÞ ¼ g0 expð�fk=kmaxÞ; ð9Þ

where g(k) is the value of the gravitational constant at the current
iteration index k, g0 is the initial value of the gravitational constant,
f is a preset constant to ensure the GSA’s convergence and to influ-
ence the search accuracy, and kmax is the maximum number of
iterations.

Considering N agents and a q-dimensional search space the po-
sition of the ith agent is defined by the vector

Xi ¼ ½ x1
i . . . xd

i . . . xq
i �

T
; i ¼ 1 . . . N; ð10Þ

where xd
i is the position of the ith agent in the dth dimension,

d = 1 . . .q. To ensure the stochastic characteristic of the GSA the total
force acting on the ith agent in the dth dimension, referred to as
Fd

i ðkÞ, is a randomly weighted sum of all forces exerted from the
other agents:

Fd
i ðkÞ ¼

XN

j¼1;j–i

qjF
d
ijðkÞ; ð11Þ

where qj, 0 6 qj 6 1, is a random generated number, and the force
acting on the ith agent from the jth agent is

Fd
ijðkÞ ¼ gðkÞmPiðkÞmAjðkÞ

rijðkÞ þ e
½xd

j ðkÞ � xd
i ðkÞ�; ð12Þ

where mPi(k) is the active gravitational mass related to the ith agent,
mAj(k) is the passive gravitational mass related to the jth agent, e > 0
is a relatively small constant, and rij(k) is the Euclidian distance be-
tween the ith and the jth agents:

rijðkÞ ¼ kXiðkÞ � XjðkÞk: ð13Þ

The law of motion leads to the acceleration ad
i ðkÞ of the ith agent

at the iteration index k in the dth dimension:

ad
i ðkÞ ¼ Fd

i ðkÞ=mIiðkÞ; ð14Þ

where mIi(t) is the inertia mass related to the ith agent. The next
velocity of an agent, vd

i ðkþ 1Þ, and the next position of an agent,
xd

i ðkþ 1Þ, are obtained in terms of the state-space equations
[44,45]:

vd
i ðkþ 1Þ ¼ qivd

i ðkÞ þ ad
i ðkÞ;

xd
i ðkþ 1Þ ¼ xd

i ðkÞ þ vd
i ðkþ 1Þ;

ð15Þ

where qi, 0 6 qi 6 1, is a uniform random variable.
The passive gravitational mass and the inertial masses are ob-

tained by means of

niðkÞ ¼
fiðkÞ �wðkÞ
bðkÞ �wðkÞ ;

miðkÞ ¼
niðkÞPN
j¼1njðkÞ

;

mAi ¼ mIi ¼ mi;

ð16Þ

where fi(k) is the fitness value of the ith agent at the iteration index
k, and the terms b(k) (corresponding to the best agent) and w(k)
(corresponding to the worst agent) are

bðkÞ ¼ min
j¼1...n

fjðkÞ;

wðkÞ ¼max
j¼1...n

fjðkÞ:
ð17Þ
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The relation between the fitness function f and the value fi (k) in
the GSA on the one hand, and the objective functions defined in (7)
on the other hand is

fjðkÞ ¼ Iaa
ISEðqÞ; a ¼ 1 . . . m; j ¼ 1 . . . N ð18Þ

and the relation between the agents’ position vector Xi in the GSA
and the parameter vector q of the fuzzy controller is

Xi ¼ q; i ¼ 1 . . . N: ð19Þ

The relationships (18) and (19) map the GSA onto the optimiza-
tion problems defined in (8). The steps of our GSA are presented in
Fig. 2.

The step 1 of the GSA concerns the generation of the initial pop-
ulation of agents, i.e., the initialization of the q-dimensional search
space, of the number of agents N, the random initialization of the
agents’ position vector Xi, and the initialization of the maximum
number of iterations kmax. The step 6 validates the obtained vector
solution Xi(k) by checking the following inequality-type constraint
which guarantees that the fuzzy control system with the obtained
fuzzy controller tuning parameters q = Xi(k) ensures the conver-
gence of the objective functions:

jyðtf Þ � rðtf Þj 6 eyjrðtf Þ � rðt0Þj; ð20Þ

where t0 is the initial time moment, tf is the final time moment, and
ey = 0.001 for a 2% settling time. Theoretically tf ?1 as shown in
(7), but tf takes practically a finite value to capture the transients
Fig. 2. Flowchart of the GSA.
in the fuzzy control systems’ response. The condition (20) guaran-
tees the stability of the fuzzy control systems and it also ensures
the zero steady-state control error of the fuzzy control systems.

3.2. Particle Swarm Optimization algorithms

The operating mechanism of PSO algorithms makes use of
swarm particles characterized by two vectors Xi, referred to as par-
ticle position vector, and Vi, referred to as particle velocity vector:

Xi ¼ ½ x1
i . . . xd

i . . . xq
i �

T
;

Vi ¼ ½v1
i . . . vd

i . . . vq
i �

T
; i ¼ 1 . . . N; ð21Þ

where i, i = 1 . . .N, is the index of the current particle in the swarm,
and N is the number of particles in the swarm. Let Pi,Best be the best
particle position vector of a specific particle with the index
i, i = 1 . . .N, and Pg,Best be the best swarm position vector:

Pi;Best ¼ ½ p1
i . . . pd

i . . . pq
i �

T
;

Pg;Best ¼ ½p1
g . . . pd

g . . . pq
g �T ; i ¼ 1 . . . N: ð22Þ

The next particle velocity, vd
i ðkþ 1Þ, and the next particle posi-

tion, xd
i ðkþ 1Þ, are obtained in terms of the state-space equations

processed from [26,27]:

vd
i ðkþ 1Þ ¼ wðkÞvd

i ðkÞ þ c1r1½pd
gðkÞ � xd

i ðkÞ� þ c2r2½pd
i ðkÞ � xd

i ðkÞ�;
xd

i ðkþ 1Þ ¼ xd
i ðkÞ þ vd

i ðkþ 1Þ; d ¼ 1 . . . q; i ¼ 1 . . . N; ð23Þ

where r1 and r2 are uniformly distributed random variables,
0 6 r1 6 1, 0 6 r2 6 1, w is the inertia weight, c1 and c2 are the
weighting factors of the stochastic accelerations pulling the parti-
cles towards their final positions, and k is the current iteration in-
dex. The parameter w(k) points out the effect of the previous
velocity vector on the new one, and an upper limit wmax is imposed
to all velocities to prevent the particles from moving too rapidly in
the search space:

wðkÞ ¼ wmax � k½ðwmax �wminÞ=kmax�: ð24Þ

If wmax is too small, particles may not explore sufficiently beyond
local solutions. The minimum value of w(k) in (24) is wmin.

Adopting low values of c1 and c2 will allow particles to roam far
from the target regions before being tugged back; contrarily, too
high values of the weighting factors c1 and c2 will result in abrupt
movements towards or overshooting the target regions. The steps
of our PSO algorithm are presented in Fig. 3.

The notation g, g :Rq ? R, is used for the fitness function in the
PSO algorithm. The relation between the value of the fitness func-
tion, g(Xi), in the PSO algorithm on the one hand, and the objective
functions defined in (7) on the other hand is similar to (18):

gðXiÞ ¼ Iaa
ISEðqÞ; a ¼ 1 . . . m; i ¼ 1 . . . N ð25Þ

and the relation between the particle position vector Xi in the PSO
algorithm and the parameter vector q of the fuzzy controller is (19).
The step 1 of the PSO algorithm is related to the generation of the
initial population of particles, i.e.:

– The initialization of the q-dimensional search space by setting
its boundaries.

– The initialization of the maximum number of iterations kmax.
– The initialization of the parameters in (23).
– The initialization of the particle position vector with a uni-

formly distributed random vector Xi, i = 1 . . .N, that belongs to
the search space, and the initialization of the particle velocity
vector Vi, i = 1 . . .N, accounting for the boundaries of the search
space.

– The initialization of the best particle position vector Pi,Best = Xi,
i = 1 . . .N, and of the best swarm position vector Pg,Best.



Fig. 3. Flowchart of the PSO algorithm.

Fig. 4. Flowchart of the SA algorithm.
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– If g(Pi,Best) < g(Pg,Best), i = 1 . . .N, update the best swarm position
vector Pg,Best = Pi,Best.
The step 3 of the PSO algorithm consists of the following
calculations:

– If g(Xi) < g(Pi,Best),i = 1 . . .N, update the best particle position,
Pi,Best = Xi, and if g(Pi,Best) < g(Pg,Best),i = 1 . . .N, update the best
swarm position vector, Pg,Best = Pi,Best.

The step 5 of the PSO algorithm is similar to the step 6 of the
GSA, and the best found solution will be the solution to one of
the optimization problems defined in (8):

q� ¼ Pg;Best: ð26Þ
3.3. Simulated Annealing algorithms

The operating mechanism of SA algorithms is based on a prob-
abilistic framework involved in the acceptance of the solution
using the analogy with the temperature decrease in metallurgy
[15,25]. Considering the initial solution represented by the vector
u 2 Rq with the fitness value g(u) of the fitness function g,
g :Rq ? R, the new probable solution is represented by the vector
w 2 Rq that is chosen such that to belong to the vicinity of u. The
steps of our SA algorithm are presented in Fig. 4.

In order to make the SA algorithm more computationally effi-
cient two additional iteration indices are introduced, viz. the suc-
cess rate sr and with the rejection rate rr. The success rate sr aims
the acceleration of the cooling process by forcing a jump in tem-
perature when the minimum value of the objective function
changes for a preset number of times at the same temperature
level. The rejection rate rr is introduced as an alternative indicator
for the convergence of the algorithm, and it is reset only when
small values of the objective function are found and not when
the temperature cools.

The step 1 of the SA algorithm is related to the generation of the
initial solution, i.e.:

– The random generation of the initial solution u and the calcula-
tion of its fitness value g(u).

– The setting of the minimum temperature hmin.
– The initialization of the maximum number of iterations kmax, of

the maximum accepted success rate rrmax of the maximum
accepted rejection rate rrmax, and of the minimum accepted
value of the objective function expressed as the minimum fit-
ness value gmin.

– The setting of the initial temperature h(k), where k is the current
iteration index.

– The initial setting of the rejection rate to rr = 0.

The step 3 of the SA algorithm concerns the random generation
of the new probable solution w in the vicinity of u in terms of dis-
turbing u. The step 4 of the SA algorithm consists of the following
calculations:

– Calculate the difference of the fitness values referred to as
Dguw:
Dguw ¼ gðuÞ � gðwÞ: ð27Þ
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– If Dguw 6 0, then accept w as the new solution. Otherwise,
select randomly rn, 0 6 rn 6 1, and calculate the probability of
w being the new solution, referred to as pw:
pw ¼
1 if Dguw 6 0;
exp½�Dguw=hðkÞ� otherwise;

(
ð28Þ
Fig. 6. Structure and input membership functions of the Takagi–Sugeno PI-fuzzy
controller.
and if pw > rn, then w is the new solution.

The temperature decrease in the step 9 of the SA algorithm is
carried out according to [38]

hðkþ 1Þ ¼ acshðkÞ; ð29Þ

where acs = const,a < 1,a � 1.
The step 10 of our SA algorithm is similar to the step 6 of the

GSA and to the step 5 of the PSO algorithm, and the last new solu-
tion found will be the solution to one of the optimization problems
defined in (8):

q� ¼ w: ð30Þ

The relations between the fitness values g(u) and g(w) in the SA
algorithm on the one hand, and the values of the objective function
defined in (7) on the other hand are similar to (18) and (25):

gðuÞ ¼ Iaa
ISEðqÞ; gðwÞ ¼ Iaa

ISEðqÞ; a ¼ 1 . . . m; ð31Þ

and the relation between the solutions u and w in the SA algorithm
and the parameter vector q of the fuzzy controller are similar to
(19):

u ¼ q;w ¼ q: ð32Þ

Our three evolutionary algorithms will be applied in the next sec-
tion to obtain low-cost optimal T–S PI-FCs for a class of nonlinear
servo systems such that to ensure a reduced process gain
sensitivity.

4. Case study

A class of servo systems used in position control is considered,
where the process is described by the nonlinear continuous-time
state-space model

mðtÞ ¼
0; if juðtÞj 6 ua;

ku;mðuðtÞ � uasgnðuðtÞÞÞ; if ua < juðtÞj < ub;

ku;mðub � uaÞsgnðuðtÞÞ; if juðtÞjP ub;

8><
>:

_xPðtÞ ¼
0 1
0 �1=TR

� �
xPðtÞ þ

0
kP1=TR

� �
mðtÞ þ

1
0

� �
diinpðtÞ; ð33Þ

yðtÞ ¼ ½1 0 �xPðtÞ;

where t is the independent continuous time argument, t 2 R, t P 0,
the control signal u is a pulse width modulation duty cycle, m is the
output of the saturation and dead zone static nonlinearity with the
parameters ku,m > 0,ua, ub,0 < ua < ub represented by the first equa-
tion in (33). The process structure is illustrated in Fig. 5, and it in-
cludes the actuator and measuring element dynamics. The state
vector xP(t) is expressed as follows in angular position applications:
Fig. 5. Structure of the process.
xPðtÞ ¼ ½ xP;1ðtÞ ¼ aðtÞ xP;2ðtÞ ¼ xðtÞ �T ; ð34Þ

where xP,1(t) = a(t) is the first state variable that represents the
angular position, and xP,2(t) = x(t) is the second state variable that
represents the angular speed.

The process has an input nonlinearity concerning the actuator,
i.e., a saturation and dead zone static nonlinearity. However, this
is not included in the following simplified model of the process ex-
pressed as the transfer function P(s) used in the tuning of low-cost
fuzzy controllers:

PðsÞ ¼ kP

sð1þ TRsÞ ; ð35Þ

where kP is the process gain, kP = ku,mkP1, and TR is the small time
constant. The models presented in (33) and (35) are used in servo
systems in many applications [14,16,19,22,24,47,50].

As shown in [42], PI controllers can cope with the process
modeled in (33) and (35), and the PI controllers can be tuned by
the Extended Symmetrical Optimum (ESO) method to guarantee
a good trade-off to the desired/ imposed control performance indi-
ces (overshoot, settling time, rise time, etc.) using a single design
parameter referred to as b. The parameters of the PI controllers
are next mapped onto the parameters of the T–S PI-FCs (Fig. 6) in
terms of the modal equivalence principle to improve these control
system performance indices.

More membership functions can be defined but they lead to
complicated rule base. One solution to deal with such situations
in order to design low-cost fuzzy controllers is represented by fuz-
zy rule interpolation [3,4,23,52].

The Two Inputs-Single Output fuzzy controller (TISO-FC) block
introduced in Fig. 6 is characterized by the weighted average meth-
od in the defuzzification module, and by the SUM and PROD oper-
ators in the inference engine. The dynamics of the Takagi–Sugeno
PI-FC is ensured by the two linear blocks in Fig. 6. The rule base
of the TISO-FC block is formulated as the decision table presented
in Table 1, and the consequents of the rules are modeled by

f1ðtÞ ¼ KP½DeðtÞ þ leðtÞ�; f 2ðtÞ ¼ gf1ðtÞ: ð37Þ

The parameters in (37) are obtained by the application of Tus-
tin’s method to discretize the linear PI controller with the transfer
function

CðsÞ ¼ kcð1þ sTiÞ=s ¼ kC ½1þ 1=ðsTiÞ�; kC ¼ kcTi; ð38Þ
Table 1
Decision table of the TISO-FC block.

De(t) e(t)

N ZE P

P Du(t) = f1(t) Du(t) = f1(t) Du(t) = f2(t)
ZE Du(t) = f1(t) Du(t) = f1(t) Du(t) = f1(t)
N Du(t) = f2(t) Du(t) = f1(t) Du(t) = f1(t)
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where kc is the controller gain and Ti is the integral time constant.
Tustin’s method leads to

KP ¼ kcðTi � Ts=2Þ; l ¼ 2Ts=ð2Ti � TsÞ; ð39Þ

where Ts is the sampling period.
The parameter g is introduced in (37) to alleviate the overshoot

of the fuzzy control system when e(t) and De(t) have the same
signs. The modal equivalence principle results in the tuning
equation

BDe ¼ lBe: ð40Þ

The PI tuning conditions specific to the ESO method are

kc ¼ 1=ðb
ffiffiffi
b

p
T2

RkPÞ; Ti ¼ bTR: ð41Þ

The parameter vector of the controller q (q = 3) and the param-
eter vector of the process a (m = 2) obtain the following particular
expressions if the evolutionary algorithms described in the previ-
ous section are employed in the numerical solving of the optimiza-
tion problems defined in (8):

q ¼ ½q1 ¼ b q2 ¼ Be q3 ¼ g �T 2 R3;

a ¼ ½a1 ¼ kP a2 ¼ TR �T 2 R2:
ð42Þ

Our three evolutionary algorithms are employed to solve the
following optimization problem that ensures the sensitivity reduc-
tion of the fuzzy control systems with respect to the process
parameter a1 = kP, i.e., a reduced process gain sensitivity:

q� ¼ arg min
q2Do

IkP
ISEðqÞ; IkP

ISEðqÞ ¼
X1
t¼0

fe2ðtÞ þ ðckP Þ2½rkP ðtÞ�2g; ð43Þ

where ckP is the weighting parameter, and rkP is the output sensitiv-
ity function. The calculation of rkP results from the state sensitivity
model of the fuzzy control system derived as follows.

Accepting that the inputs u and dinp are changing at the discrete
sampling intervals, the following discrete-time state-space model
of the process is obtained (n = 2):

mðtÞ ¼
0; if juðtÞj 6 ua;

ku;mðuðtÞ � uasgnðuðtÞÞÞ; if ua < juðtÞj < ub;

ku;mðub � uaÞsgnðuðtÞÞ; if juðtÞjP ub;

8><
>: ð44Þ

xP;1ðt þ 1Þ ¼ xP;1ðtÞ þ TR½1� expð�Ts=TRÞ�xP;2ðtÞ
þ kP1½Ts þ TR expð�Ts=TRÞ � TR�mðtÞ þ TsdinpðtÞ;

xP;2ðt þ 1Þ ¼ ½expð�Ts=TRÞ�xP;2ðtÞ þ kP1½1� expð�Ts=TRÞ�mðtÞ;
yðtÞ ¼ xP;1ðtÞ;

where t 2 N. The discretization of the process model given in (33) is
conducted such that the models in (33) and (44) should exhibit the
same response at the discrete time moments defined by the discrete
sampling intervals. The choice of Ts depends on the time constant
(s) of the process, and it should fulfill the conditions of quasi-
continuous digital control [20].

The state variables xC,1 and xC,2 are next defined for the T–S
PI-FC:
Fig. 7. Modified structure of the Takagi–Sugeno PI-fuzzy controller such that to
include the state variables.
xC;1ðtÞ ¼ uðt � 1Þ;
xC;2ðtÞ ¼ eðt � 1Þ;

ð45Þ

where the two state variables (p = 2 according to Section 2) are
highlighted in Fig. 7. Fig. 6 and (45) result in the following dis-
crete-time state-space model of the T–S PI-FC:

xC;1ðt þ 1Þ ¼ xC;1ðtÞ þ fTISO�FCðeðtÞ; eðtÞ � xC;2ðtÞÞ;
xC;2ðt þ 1Þ ¼ eðtÞ;
uðtÞ ¼ xC;1ðtÞ þ fTISO�FCðeðtÞ; eðtÞ � xC;2ðtÞÞ;

ð46Þ

where

fTISO�FC : R2 ! R;

fTISO�FCðeðtÞ;DeðtÞÞ ¼ fTISO�FCðrðtÞ � xP;1ðtÞ; rðtÞ � xP;1ðtÞ � xC;2ðtÞÞ;
ð47Þ

is the nonlinear input–output map of the TISO-FC block, and the
notation fTISO�FC(t) is also used to simplify the presentation.

The discrete-time state-space models of the process and of the
fuzzy controller expressed in (44) and (46) are next merged as
shown in Section 2, and the discrete-time state-space model of
the fuzzy control system is

x1ðtþ1Þ¼ x1ðtÞþTR½1�expð�Ts=TRÞ�x2ðtÞþTsdinpðtÞ

þ

0; if juðtÞj6ua;

kP ½TsþTR expð�Ts=TRÞ�TR�x3ðtÞþkP ½TsþTR expð�Ts=TRÞ
�TR�fTISO�FCðrðtÞ�x1ðtÞ;rðtÞ�x1ðtÞ�x4ðtÞÞ�kP ½Ts if ua < juðtÞj<ub;

þTR expð�Ts=TRÞ�TR�uasgnðuðtÞ;
kP ½TsþTR expð�Ts=TRÞ�TR�ðub�uaÞsgnðuðtÞÞ; if juðtÞjP ub;

8>>>>>><
>>>>>>:

x2ðt þ 1Þ ¼ ½expð�Ts=TRÞ�x2ðtÞ

þ

0; if juðtÞj 6 ua;

kP ½1� expð�Ts=TRÞ�x3ðtÞ þ kP ½1� expð�Ts=TRÞ�
�fTISO�FCðrðtÞ � x1ðtÞ; rðtÞ � x1ðtÞ � x4ðtÞÞ � kP ½1 if ua < juðtÞj < ub;

� expð�Ts=TRÞ�uasgnðuðtÞ;
kP ½1� expð�Ts=TRÞ�ðub � uaÞsgnðuðtÞÞ; if juðtÞjP ub;

8>>>>>><
>>>>>>:

x3ðtþ1Þ¼x3ðtÞþ fTISO�FCðrðtÞ�x1ðtÞ; rðtÞ�x1ðtÞ�x4ðtÞÞþTsdinpðtÞ;
x4ðtþ1Þ¼ rðtÞ�x1ðtÞ;
yðtÞ¼ x1ðtÞ; ð48Þ

where the state variables x1, x2, x3 and x4 are the elements of the
state vector x of the fuzzy control system,

x ¼ ½ x1 ¼ xP;1 x2 ¼ xP;2 x3 ¼ xC;1 x4 ¼ xC;2 �T 2 R4: ð49Þ

Accepting constant inputs of the fuzzy control system, r(t) =
const and dinp(t) = const, the state sensitivity models of the fuzzy
control system with respect to the parameter kP is derived using
the definition (6) in the model (48) for

a1 ¼ kP;m ¼ 1: ð50Þ

The state sensitivity model of the fuzzy control system is obtained
as follows by the differentiation of the right-hand terms of all equa-
tions in (48) with respect to a1 = kP using the definitions of the state
and output sensitivity functions given in (6):

kkP
1 ðtþ1Þ¼ kkP

1 ðtÞþTR;0½1�expð�Ts=TR;0Þ�kkP
2 ðtÞ

þ

0; if juðtÞj6 ua;

½TsþTR;0 expð�Ts=TR;0Þ�TR;0�x3;0ðtÞþkP;0½Ts

þTR;0 expð�Ts=TR;0Þ�TR;0�kkP
3 ðtÞþ ½TsþTR;0 expð�Ts=TR;0Þ

�TR;0�fTISO�FC;0ðtÞ�kP;0½TsþTR;0 expð�Ts=TR;0Þ

�TR;0� @fTISO�FC;0ðtÞ
@eðtÞ

h i
0
kkP

1 ðtÞ�kP;0½TsþTR;0 expð�Ts=TR;0Þ if ua < juðtÞj<ub;

�TR;0� @fTISO�FC;0ðtÞ
@DeðtÞ

h i
0
½kkP

1 ðtÞþkkP
4 ðtÞ�� ½TsþTR;0 expð�Ts=TR;0Þ

�TR;0�uasgnðuðtÞ;
½TsþTR;0 expð�Ts=TR;0Þ�TR;0�ðub�uaÞsgnðuðtÞÞ; if juðtÞjP ub;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:
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kkP
2 ðtþ1Þ¼ expð�Ts=TR;0ÞkkP

2 ðtÞ

þ

0; if juðtÞj6ua;

½1�expð�Ts=TR;0Þ�x3;0ðtÞþkP;0½1�expð�Ts=TR;0Þ�kkP
3 ðtÞ

þ½1�expð�Ts=TR;0Þ�fTISO�FC;0ðtÞ�kP;0½1

�expð�Ts=TR;0Þ� @fTISO�FC;0 ðtÞ
@eðtÞ

h i
0
kkP

1 ðtÞ�kP;0½1 if ua < juðtÞj<ub;

�expð�Ts=TR;0Þ� @fTISO�FC;0 ðtÞ
@DeðtÞ

h i
0
½kkP

1 ðtÞþkkP
4 ðtÞ�

�½1�expð�Ts=TR;0Þ�uasgnðuðtÞ;
½1�expð�Ts=TR;0Þ�ðub�uaÞsgnðuðtÞÞ; if juðtÞjP ub;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

kkP
3 ðt þ 1Þ ¼ kkP

3 ðtÞ �
@fTISO�FC;0ðtÞ

@eðtÞ

� �
0
kkP

1 ðtÞ �
@fTISO�FC;0ðtÞ
@DeðtÞ

� �
0
kkP

4 ðtÞ; ð51Þ

kkP
4 ðt þ 1Þ ¼ �kkP

1 ðtÞ;

rkP ðtÞ ¼ kkP
1 ðtÞ;

where the subscript 0 indicates both the nominal value of process
parameter and the nominal trajectory of the fuzzy control system,
i.e., the trajectory considered for the nominal parameters of the
process.

The parameters of the T–S PI-FCs are obtained in terms of the
following unified tuning approach that consists of the steps A to D:

Step A. Set the sampling period Ts and derive the state sensitivity
model (51) which is based on a linear tuning method and
on the modal equivalence principle.

Step B. Set the weighting parameter ckP in the objective function
IkP

ISE defined in (43) to meet the performance specifications
of the fuzzy control systems. Set the upper limit of the sum
in (43) that replaces infinity such that the finite time hori-
zon includes all transients of the fuzzy control systems
until IkP

ISE reaches the steady-state values.
Step C. Apply the of the GSA, of the PSO algorithm or of

the SA algorithm presented in the previous section to
solve the optimization problem defined in (43) that
leads to the optimal parameter vector of the fuzzy con-
troller, q⁄:
q� ¼ ½q�1 ¼ b� q�2 ¼ B�e q�3 ¼ g� �T : ð52Þ
Step D. Apply Eqs. (40) and (52) to obtain the tuning parameters of
the T–S PI-FC, B�e;B

�
De and g⁄.

This four-step tuning approach is applied to all three evolution-
ary optimization algorithms considered in this paper, i.e., GSA, PSO
and SA. It is sufficiently general as it can employ other optimiza-
tion algorithms.

The implementation of low-cost fuzzy controllers is targeted by
the application of the ESO method and of the modal equivalence
principle which maps the parameters of the PI controller onto
the parameters of the PI-fuzzy one. Therefore a new generation
of low-cost optimal T–S PI-FCs is offered. The application of our
tuning approach is exemplified as follows.

5. Results and discussion

The application of our unified tuning approach is carried out to
ensure the fuzzy control of the angular position of the experimen-
tal setup built around the INTECO DC servo system laboratory
equipment (Fig. 8). The setup is characterized by rated amplitude
of 24 V, rated current of 3.1 A, rated torque of 15 N cm, rated speed
of 3000 rpm, and weight of inertial load of 2.03 kg. The parameters
of the linear dynamics of the process model in (33) are the gain
kP1 = 121.6956 and the small time constant TR = 0.9198 s. The
parameters of the saturation and dead zone static nonlinearity in
(33) are identified by nonlinear least squares as ku,m = 1.149,
ua = 0.13 and ub = 1. Therefore the process gain is kP = ku,mkP1 =
139.88.

The steps A, B, C and D of the tuning approach proposed in
Section 4 are applied as follows. They start with setting the
sampling period to Ts = 0.01 s such that to fulfill the conditions of
quasi-continuous digital control.

The transfer function of the process given in (35) is used in the
application of the linear tuning method in the step A of our tuning
approach which enables the reduction of the number of elements
in the vector variable q of the optimization problems, viz. the num-
ber of tuning parameters of the T–S PI-FCs. The detailed process
model (33) is used in the Matlab & Simulink-based simulations
conducted in the step C of the tuning approach where the fitness
function values are calculated in the framework of the GSA, of
the PSO algorithm and of the SA algorithm. Our three evolutionary
algorithms do not require the calculations of the partial derivatives
of the nonlinear input–output map fTISO�FC of the TISO-FC block be-
cause they are calculated in the simulations conducted in the step
C of the tuning approach. These simulations are based on the intro-
duction of the reference filter with the transfer function [42]

FðsÞ ¼ 1=ð1þ bTRsÞ; ð54Þ

to improve the fuzzy control system performance indices. The aver-
age value of the design parameter b was taken into account, b = 7.
The fuzzy control system becomes thus a two-degree-of-freedom
fuzzy control system structure, the filter can be complicated and
its parameters can be included in the vector variable q of the opti-
mization problems.

The step B of the tuning approach employs the calculation of the
weighting parameter for the objective function (i.e., the fitness
functions in the evolutionary algorithms) IkP

ISE defined in (43) in
order for the ratio of the initial values of the two sums in (43) to
take the values {0.1,1,10}. In addition the cases with zero weight-
ing parameters were analyzed. The upper limit of the sum in (43)
was wet to 150 s in our simulations.

The step C of the tuning approach uses the digital simulation of
the fuzzy control system behavior with respect to the step-type
modification of the reference input r to evaluate the fitness
function IkP

ISE. A part of the results obtained for r = 40 rad and no
disturbance input will be exemplified as follows.

The parameters of the three evolutionary algorithms are initial-
ized taking into consideration the following boundaries which
define the domain Dq:

Dq ¼ fbj3 6 b 6 17g � fBej20 6 Be 6 40g � fgj0:55 6 g 6 1g:
ð55Þ

Other stability conditions imposed to the fuzzy control system can
be added to make stronger the inequality-type constraints defined



Table 2
Results for the GSA-based minimization of IkP

ISE .

ðckP Þ2 B�De B�e g⁄ b⁄ k�c T�i IkP
ISE min

0 0.066726 20 1 3.26339 0.004302 3.00232 436071
1129.5 0.102233 30.3089 1 3.22792 0.004325 2.96969 480680
11295 0.073425 20.2706 1 3.0062 0.004482 2.76571 875441
112950 0.077628 21.4454 1 3.00825 0.00448 2.76759 4780930

Table 3
Results for the PSO algorithm-based minimization of IkP

ISE .

ðckP Þ2 B�De B�e g⁄ b⁄ k�c T�i IkP
ISE min

0 0.096608 28.9388 1 3.26141 0.004303 3.00049 436068
1129.5 0.067616 20 1 3.22051 0.00433 2.96287 480674
11295 0.110882 30.6078 1 3.00587 0.004482 2.7654 875415
112950 0.144907 40 1 3.00587 0.004482 2.7654 4779430

Table 4
Results for the SA algorithm-based minimization of IkP

ISE .

ðckP Þ2 B�De B�e g⁄ b⁄ k�c T�i IkP
ISE min

0 0.133453 39.9756 1 3.26141 0.004303 3.0005 436068
1129.5 0.126662 37.4652 1 3.22052 0.00433 2.96288 480674
11295 0.120132 33.6636 1 3.05132 0.004448 2.80721 875876
112950 0.144906 39.9999 0.999999 3.00587 0.004482 2.7654 4779430

Table 5
Values of convergence speed.

ðckP Þ2 cs for the GSA cs for the PSO algorithm cs for the SA algorithm

0 418.6 1964.6 8608.6
1129.5 511 1949.6 7732.8
11295 582.4 1882.4 3773.8
112950 265.2 1711.2 4020.2
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in Eq. (55) but they are not necessary because the condition defined
in (20) guarantees the stability of the fuzzy control system.

The objective function depends on three variables, b, Be and g as
shown in (42), so the parameter vector of the controller of all opti-
mization algorithms is a d = 3-dimensional vector. The values of
the weighting parameters in the optimization problem defined in
(43) were set to ðckP Þ2 2 f0;1129:5;11295;112950g such that to
ensure a ratio of 0, 0.1, 1 and 10 of the first and second term in
the sum defined in (43).

In order to ensure a good convergence of the GSA the parame-
ters were set to N = 20, kmax = 200, f = 20, e = 0.0001, and
g0 = 100. These values of the parameters of the GSA are derived
on the basis of the study conducted in [37]. The optimal values
of the controller tuning parameters obtained with our GSA are syn-
thesized in Table 2.

In the case of the PSO algorithm the parameters were set to
N = 20, kmax = 200, c1 = c2 = 1.2, wmin = 0.4 and wmax = 0.9 such that
to ensure also a good tradeoff to PSO algorithm’s convergence
speed and accuracy as proved in [13]. The optimal values of the
controller tuning parameters obtained with our PSO algorithm
are presented in Table 3.

The parameters of our SA algorithm were set to hmin = 10�8,
gmin = 10�4, acs = 0.9, srmax = 50, and rrmax = 1000 in order to obtain
a slow cooling rate and thus a good convergence; these are the val-
ues of the parameters obtained in accordance with the analysis
carried out in [38]. The optimal values of the controller tuning
parameters obtained with our SA algorithm are presented in
Table 4.

The performance index referred to as convergence speed (cs) is
introduced to compare our evolutionary optimization algorithms.
The convergence speed is represented by the number of evalua-
tions of the objective functions until finding its minimum value.
Table 5 highlights average values of this performance index calcu-
lated for the best five runs in case of each algorithm.

Tables 2–4 show that all three evolutionary algorithms lead to
the same values of the tuning parameters and of the minimum val-
ues of the objective function for the same values of the weighting
parameter ckP . This result is important as it shows that although it
is not guaranteed that the optimal solutions were obtained, since
the solutions obtained through three different algorithms are very
close, it can be accepted that our solutions are very close to the
optimal ones.

The fourth column in Tables 2–4 points out that the implemen-
tation of our evolutionary optimization algorithms in combination
with the ESO method results practically in the same rule conse-
quent for all rules of the T–S PI-FCs. This result is explained by
the fact that the ESO method represents in fact an advantageous
constraint that reduces the number of variables of the objective
functions. Dropping out this constraint will complicate the imple-
mentation of our algorithms and will increase the cost of imple-
mentation but it can result in smaller values of the objective
functions with respect to those illustrated in the last column of
Tables 2–4.

The results presented in Table 5 outline that the GSA is two to
four times quicker compared to the PSO algorithm and fifteen to
twenty times quicker than the SA algorithm.

Once the optimal tuning parameters of the T–S PI-FCs are
obtained in terms of Matlab & Simulink-based digital simulations
conducted with the fuzzy control system to evaluate the objective
functions, they are next mapped onto the parameters of the T–S
PI-FCs implemented for the real-world servo system. This requires
that very accurate process models are needed. If no accurate
process models are available our evolutionary optimization
algorithms are not applicable because the solutions will be slightly



Fig. 9. Real-time experimental results: controlled output and control signal of the
control system with the PI controller (dashed line) and of the control system with
the T–S PI-FC (solid line) for the parameters in the second line of Tables 2–4.
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different to the optimal ones. However our sensitivity reduction
approach aims the alleviation of these differences. Several real-
time experiments were conducted to illustrate this aspect, and a
part of the real-time experimental results will be presented as
follows. The presentation of the real-time experimental results is
organized in terms of plotting the evolutions of the control signal
u and of the controlled output y versus time, and of evaluating
the objective functions for the control systems on the real-world
servo system represented by our experimental setup.

The experimental results were obtained for the step-type angu-
lar position reference input of r = 40 rad. The experiments were
conducted for the control systems with both the PI controller
and the T–S PI-FCs. A sample of the real-time experimental that
correspond to the control systems with the controllers and the
parameters given in the second line of Tables 2–4 is presented in
Fig. 9. The objective function measured for the fuzzy control sys-
tem (i.e., the control system with the T–S PI-FC) is IkP

ISE ¼ 506502.

6. Conclusions

This paper has proposed a novel evolutionary algorithm-based
tuning approach of fuzzy controllers for servo systems that ensures
the sensitivity reduction with respect to the parametric variations
of the process models. This approach is important as a new gener-
ation of low-cost optimal T–S PI-FCs is offered; this generation is
characterized by simplified process models in the controller tuning
and by simple fuzzy controller structures. Therefore the sensitivity
reduction is justified and proved here by the reduction of the
objective functions that include the weighted output sensitivity
functions.

The proposed tuning approach has proved to be effective in ref-
erence input tracking and load disturbance regulation when con-
trolling a real-world servo system targeting the reduced process
gain sensitivity. The experimental results validate our evolutionary
algorithms, our tuning approach and the fuzzy controllers.

The main drawback of the approach presented in this paper is
the need to calculate the sensitivity models. The convenient
expressions of the state-space models of the T–S PI-FCs derived
in Section 4 can be used as a support for other fuzzy controller
structures and models.

Another drawback of our evolutionary algorithms is that they
are supported by many simulations conducted with the fuzzy con-
trol system to calculate the objective functions, viz. to evaluate the
fitness functions. Working with experiments instead of simulations
is not a good choice for critical or complex industrial applications
in these situations. Therefore the future research will be focused
on the reduction of the number of experiments, using iterative
experiment-based approaches. Another direction of future re-
search will be focused on the modifications of the objective func-
tions to ensure an improved robustness as well.
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A B S T R A C T

Fault detection, isolation and optimal control have long been applied to industry. These techniques have

proven various successful theoretical results and industrial applications. Fault diagnosis is considered as

the merge of fault detection (that indicates if there is a fault) and fault isolation (that determines where

the fault is), and it has important effects on the operation of complex dynamical systems specific to

modern industry applications such as industrial electronics, business management systems, energy, and

public sectors. Since the resources are always limited in real-world industrial applications, the solutions

to optimally use them under various constraints are of high actuality. In this context, the optimal tuning

of linear and nonlinear controllers is a systematic way to meet the performance specifications expressed

as optimization problems that target the minimization of integral- or sum-type objective functions,

where the tuning parameters of the controllers are the vector variables of the objective functions. The

nature-inspired optimization algorithms give efficient solutions to such optimization problems. This

paper presents an overview on recent developments in machine learning, data mining and evolving soft

computing techniques for fault diagnosis and on nature-inspired optimal control. The generic theory is

discussed along with illustrative industrial process applications that include a real liquid level control

application, wind turbines and a nonlinear servo system. New research challenges with strong industrial

impact are highlighted.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

For four decades fault diagnosis, also referred to as Fault
Detection and Isolation (FDI), has been a strong field of study,
however, it has gained more attention in the later years.
Considering the complexity of the current industrial applications,
FDI is a very challenging issue nowadays. Studies have shown that
the human operator is responsible for 70–90% of the accidents in
industrial environments [1,2]. Therefore, FDI techniques are used
to improve operational safety, preventing (or reducing) accidents
and unscheduled stoppages.

The data-driven methods, or process history-based methods,
are regularly used for FDI tasks, many times combined with
* Corresponding author. Tel.: +40 256 403229; fax: +40 256 403214.
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model-based approaches. The main advantage of such methods is
that they do not require much (or none at all) expertise of the
operator/designer, since they are mainly based on the data
collected from the process, which can be historical (off-line) or
real-time (on-line). This is a very important feature, since data-
driven methods can cope with the problem of data drift and other
unpredicted disturbances.

The data drift is defined in [3] as a change in the learned
structure that occurs over time and can lead to a drastic drop of
classification accuracy. Many times a system is designed to work
under determined circumstances and its behaviour can be
inadequate when dealing with unpredictable changes. These
variations can occur due to process faults, disturbances or even
slow environmental alterations.

At this point it is important to distinguish the concepts of
adaptive and evolving systems. The term ‘‘adaptive’’ usually refers
to the conventional systems, known in control theory for working

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2015.03.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2015.03.001&domain=pdf
http://dx.doi.org/10.1016/j.compind.2015.03.001
mailto:radu.precup@upt.ro
http://www.sciencedirect.com/science/journal/01663615
www.elsevier.com/locate/compind
http://dx.doi.org/10.1016/j.compind.2015.03.001
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with linear parameter adaptation, e.g., the traditional Adaptive
Neural Fuzzy Inference Systems (ANFIS). The term ‘‘evolving’’, on
the other hand, is associated to the systems that are also able to
perform a gradual change in its core [4], either updating (adding
and removing rules) the rule base, in the case of fuzzy systems, or
updating (adding and removing nodes and layers) the structure, in
the case of neural networks.

The decision regarding the use of process history-based
methods rely on the fact that model-based techniques are very
restrictive in the sense that they require information that it is
usually not available in practical applications. While quantitative
model-based methods require accurate mathematical descriptors
of the process, qualitative model-based techniques work with a
qualitative database, usually built from knowledge from an
operator or an expert system. These models are often not available
and, even it they are, it is many times impracticable to obtain all
information of relevant physical parameters of the system, not to
mention that external parameters, such as unpredictable dis-
turbances, model uncertainties and so on, are not considered.

Process history-based techniques, on the other hand, do not
require any knowledge, either quantitative or qualitative, about
the process. Instead, they use massive historical information
collected from the process. This data is, then, transformed and
presented as a priori information to the FDI system.

The task of FDI can be analyzed as a classification problem in
both stages–detection and isolation. Fault detection is the task
where it is possible to identify whether the system is working in a
normal operating state or in a faulty mode. However, in this stage,
vital information about the fault, such as physical location, length
or intensity, are not provided to the operator [5]. The detection
stage, thus, can be addressed by a general one-class classifier, able
to distinguish if the current collected data samples belong to a
determined class of data, e.g. ‘‘normal’’. Fault isolation, on the other
hand, refers to determination of kind, location and time of
detection of a fault, and follows the fault detection stage [6]. The
challenge is to match each pattern of the symptom vector with one
of the pre-assigned classes of faults, in the case of supervised
approaches, and the fault-free case [7], as a multi-class classifier.

Once the fault diagnosis is guaranteed, a systematic way to
meet the performance specifications of control systems in
industrial applications is the optimization in terms of optimiza-
tion problems with variables represented by the tuning param-
eters of the controllers. Nature-inspired algorithms can solve
these optimization problems, and they ensure the optimal tuning
of controllers in order to meet the performance specifications
expressed by adequately defined objective functions and con-
straints. The constraints are due to technical and/or economical
operating conditions of industrial process applications, and they
include stability, sensitivity, robustness and fault diagnosis
conditions.

The motivation for nature-inspired optimization algorithms
(NIOAs) in the optimal control of industrial process applications
concerns the ability of such algorithms to cope with non-convex or
non-differentiable objective functions because of the process
complexity, of the controllers’ structures and eventually the
controllers’ nonlinearities, which can lead to multi-objective
optimization problems. In addition, the complexity of the classical
optimization algorithms is very high, and this requires enormous
amount of computational work. Therefore, the NIOAs are
appreciated because they are better in terms of efficiency and
complexity than classical optimization algorithms.

As generally shown or with focus on certain classes of NIOAs in
[8–13], these algorithms are based on biological, physical, and
chemical phenomena of nature. NIOAs have the distinct ability of
finding the global minimum (or maximum) of certain objective
functions under specific conditions. In addition, the analytical
expression of the objective functions depending on other design
(or tuning) parameters may be difficult or even impossible to
formulate. These are the reasons why the NIOAs applied to optimal
control of industrial processes are justified and also challenging.

This paper addresses the following topics: the state-of-the-art
on machine learning, data mining and evolving soft computing
techniques for fault diagnosis is discussed in Section 2. The
unsupervised and autonomous self-evolving fault diagnosis is
treated in Section 3. An illustrative fault diagnosis application
related to a real liquid level control system controlled by a multi-
stage fuzzy controller using a pilot plant for industrial process
control is included. The problem setting for fault diagnosis in wind
turbines and a classification of the methods used with this regard is
presented in Section 4. It discusses the interest, motivation and
challenges related to the fault diagnosis of wind turbines. Machine
learning and data mining techniques are next organized in the
framework of a general scheme that achieves fault diagnosis of
wind turbines. Then, the different steps of this scheme are detailed
in order to emphasize the links between the methods and
techniques that they use and how they answer the challenges
related to the fault diagnosis of wind turbines. Section 5 discusses
NIOAs in the optimal tuning of linear controllers for industrial
process applications and gives an example concerning the position
control of a nonlinear servo system. The nature-inspired optimal
tuning of nonlinear controllers in industrial process applications is
next treated in Section 6 with focus on fuzzy controllers, but neural
network controllers and sliding mode controllers are also
considered. The drawbacks and research challenges in fault
diagnosis and nature-inspired optimal control are discussed in
Section 7. The concluding remarks are highlighted in Section 8.

2. State-of-the-art on machine learning, data mining and
evolving soft computing techniques for fault diagnosis

Many authors have, very recently, contributed to the fault
diagnosis field of study, with extensive studies, compilations and
throughout reviews. In this section, we are going to address a few
important approaches to FDI using intelligent techniques, specially
focusing on machine learning, data mining, clustering and evolving
techniques applied to industrial problems.

Among the recent studies on the topic, the paper [14] proposes
an incremental support vector data description and extreme
learning machines are used to solve the problem of classification of
faults when the number of classes is unknown and tend to increase
over time. While the proposed Support Vector Machine (SVM) is
used to quickly detect new failure modes, Extreme Learning
Machine (ELM) is changed into an elastic structure whose output
nodes can be added incrementally to cope with the new fault
scenario. The algorithm is applied to a Diesel engine under eleven
different fault conditions, however can be suitable to other
mechanical equipment.

An application of ELM to real-time FDI with data pre-processing
through wavelet packet transform and time-domain statistical
features is suggested in [15]. The process of feature extraction is,
then, performed by a kernel Principal Component Analysis (PCA)
algorithm. As a case of study, a comparison between ELM and SVM
on a fault detection problem is conducted, resulting in a
considerable advantage for the ELM algorithm.

An automatic method for bearing FDI using the vibration signals
as input is given in [16]. A one-class v-SVM is used to distinguish
normal and faulty operation modes, where the model of normality
is built from data extracted under normal conditions. Band-pass
filters and Hilbert Transform are used to isolate the fault. An
experimental study is then performed using two different data
sets: real data from a laboratory test-to-failure experiment and
data obtained from a fault-seeded bearing test. The results
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obtained were very satisfactory both to detection and isolation
stages.

An approach to FDI of monoblock centrifugal pump using SVM
is presented in [17]. Again, vibration signals are used as input and
the feature extraction task is performed by continuous wavelet
transform. Classification accuracies of different wavelet families
and levels were calculated and compared to find the best wavelet
for the FDI task.

A wind turbine feature extraction FDI method, based on
diagonal spectrum and clustering binary tree SVM using, once
again, vibration rotating machine signals as input, is suggested in
[18]. Then, a self-organizing feature map neural network is used to
build a cluster binary tree of fault features and multiple fault
classifiers are designed to train and test the data samples.

An FDI scheme for condition machinery of an industrial steam
turbine using a fusion of SVM and ANFIS classifiers is introduced
in [19]. A multi-attribute data is fused into aggregated values
of a single attribute by ordered weighted averaging operators.
A simulation study is then performed and indicates that the
proposed technique outperforms individual SVM and ANFIS
individual methods.

A comparative study between several unsupervised learning
algorithms applied to FDI in industrial machines is performed in
[20]. A particular weighted local and global regressive mapping
algorithm is proposed and compared to the others, including
regressive mappings, locality preserving projection, Isomap and
PCA. Machine vibration signals are analyzed and deviations from
the normal pattern are used to build a 13-dimension feature data
set representing different health conditions. The results show that,
not only different faults can be classified, but degree of fault
severity can also be captured, especially with the proposed
algorithm.

A semi-supervised weighted kernel clustering algorithm to FDI
of known and unknown fault patterns in order to overcome the
recurrent problem of traditional supervised learning methods
such as SVM is proposed in [21]. The algorithm is based on
gravitational search and is able to use historical classification
information to improve diagnosis accuracy. A clustering data set
composed of labelled and unlabeled fault samples is created and
the model is defined based on wrong classification rate of labelled
samples. New fault samples are isolated by calculating the
weighted kernel distance to fault cluster centres. If the fault
sample is unknown, it will be added in historical data sets and
clustering results updated. The algorithm is applied to FDI of
rotary bearing and compared to other traditional clustering
methods, SVM and neural network.

An adaptive recursive clustering algorithm for novelty
detection applied to real-time FDI of a pneumatic process is
suggested in [22]. The procedure is able of identifying previously
unseen operation modes of the process, updating the knowledge
basis and clusters, evolving and learning the new features of the
monitored data.

An early fault detection method based on thermal parameters
and a fault predication system for marine Diesel engines is
discussed in [23]. The algorithm is developed based on data mining
of abnormal thermal parameters from local safety, alarm and
control systems.

An approach to adaptive FDI by detecting new operation modes
of a process and incorporating that information in an evolving
fuzzy classifier used for diagnosis is presented in [24]. The
algorithm is based on incremental clustering to generate fuzzy
rules describing each new detected state of operation, which is
then learned and properly identified the next time it occurs. The
adaptive classification process is performed on-line and applied to
the FDI of an industrial actuator. The results show that the
algorithm is very suitable for the FDI of dynamic systems,
especially when there is no previous knowledge on all failure
modes of the process.

The problem of design and development of data-driven
multiple sensor FDI for nonlinear processes is addressed in
[25]. The problem solving is based on an evolving multi-Takagi-
Sugeno framework, in which each sensor output is estimated using
a model derived from the available input-output data, and an
algorithm is proposed. Simulation results from a continuous-flow
stirred-tank reactor validate the algorithm.

A fuzzy relational sliding mode observer for estimation of
magnitude of incipient faults in non-linear systems is proposed in
[26]. An on-line learning FDI scheme is used to update the model
and identify the fault in periodical modes. The algorithm is applied
to a simulated cooling-coil subsystem of an air-conditioning plant.

A general method to deal with concept drift on one-class data-
driven models is presented in [27]. The proposed algorithm is able
to develop an automatically retrained and updated polygon-based
model on-line. Data representing relevant faults was inserted into
the data set and the proposal tested using data collected from a real
hydraulic drive system. Results were significantly improved when
compared to static polygon-based models.

An application of evolving fuzzy modelling to FDI divided in two
steps, detection and accommodation, is given in [28]. Both
detection and accommodation stages use evolving Takagi-Sugeno
fuzzy models. Data from detection stage is used for accommoda-
tion in a model predictive control scheme. The evolving fuzzy
modelling approach increases control performance when the
system is in a faulty mode. The algorithm continuously evaluates
control performance and performs on-line clustering. Two
simulated faults – load process and change in heating – in a
distillation column process were used to validate the proposal.

3. Unsupervised and autonomous self-evolving fault diagnosis

A few unsupervised and autonomous fuzzy rule-based
approaches have very recently been proposed to fault diagnosis
problems [29–31]. These approaches divide the fault diagnosis task
in its two sequential stages, detection and isolation.

The detection algorithm is based on the recursive density
estimation (RDE) [32], which allows building, accumulating, and
self-learning a dynamically evolving information model of
‘‘normality’’, based on the process data for particular specific
plant, and considering the normal/accident-free cases only. It
works as other statistical methods, however, RDE does not require
that the process parameters follow Gaussian/normal distribution
(or any distribution at all) nor makes other prior assumptions.

The isolation stage is based on the concept of self-learning
evolving classifiers, firstly proposed in [33]. However, this new
algorithm, called AutoClass, is fully unsupervised, based on AnYa
model and thus, unlike the traditional fuzzy rule-based (FRB)
systems (e.g., Mamdani, Takagi-Sugeno), does not require the
definition of membership functions. The antecedent part of the
inference rule works with the concepts of data clouds [34] and
relative data density, representing the exact real distribution
of the data.

A data cloud can be defined as a set of data points in the n-
dimensional feature space, similarly to concept of data clusters.
However, a data cloud does not have boundaries or pre-defined
shapes, as the clusters, and are also non parametric, following the
exact distribution of the data [32]. Its model is intrinsically fuzzy,
since a given data sample can belong to all the data clouds with a
different membership degree.

Although AnYa-like systems enable the use of any type of
consequents (Mamdani, linear, quadratic and so on), the inference
rules of AutoClass use zero-order Takagi-Sugeno crisp functions,
i.e., a class label Li = [1,K]. The inference rules follow the default
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Fig. 2. Fault-free state of operation of the plant.

[(Fig._3)TD$FIG]
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construct of an AnYa FRB system [33]:

Ri : IF x�ðiÞ THEN Li; (1)

where Ri is ith rule, x = [x1 . . . xn]T 2 Rn is the input data vector, (i) 2
Ri is ith data cloud, and� denotes the fuzzy membership expressed
linguistically as ‘‘is associated with’’. The inference is, then,
produced with the ‘‘winner-takes-it-all’’ rule.

The rule base is, at each step/iteration of the algorithm,
updated. Not only the parameters of each rule/cloud is changed
(e.g., centre, radius, class label), but new rules can be created after
the discovery of a new regular point of operation. The whole
procedure is recursive, which guarantees that read data samples do
not need to be stored in memory, enhancing performance and
minimizing computational effort and requirements. The member-
ship degree of xk to the data cloud (i) can be recursively calculated
as [32]

g i
k ¼

1

1þ jjxk �mkjj
2 þ Xk � jjmkjj

2
; (2)

where mk and Xk are updated by

mk ¼ x1; mk ¼
k� 1

k
mk�1 þ

1

k
xk; k ¼ 2 . . . n; (3)

X1 ¼ jjx1jj2; Xk ¼
k� 1

k
Xk�1 þ

1

k
jjxkjj2; k ¼ 2 . . . n: (4)

Due to the recursive calculations, both stages are highly suitable
for on-line and real-time applications, can start with no prior
knowledge about the process or off-line training, from the very first
data point acquired. The AnYa-type fuzzy rules have no specific
shapes or parameters for the membership functions and the
approach is entirely data-driven.

As a case of study, the algorithms were tested in a real liquid
level control application, using a pilot plant for industrial process
control. The plant, which is developed by De Lorenzo [35], and
consists of a set of commercial industrial sensors and actuators
connected to two tanks through a piping system, is presented in
Fig. 1.

The plant is controlled by a multi-stage fuzzy controller,
developed in [36]. The fault-free behaviour of the system for the
steady state regime is shown in Fig. 2. Note that all signals (u is the
control action and y is the plant output) are stable/non-oscillatory
for the normal state of operation of the plant, which leads to a high
data density. Any considerable density drops will be automatically
evaluated.

A group of four different faults, including actuator offsets and
tank leakages, was generated. The faults F2 (positive high offset),
F4 (negative high offset), F1 (positive low offset) and F9
[(Fig._1)TD$FIG]

Fig. 1. Pilot plant for industrial process control.
(tank leakage) were sequentially activated, separated by short
periods of fault-free states of operation. Fig. 3 shows the detection
stage of the proposed sequence of faults. While monitoring the
oscillation of the error and control signals, the algorithm is able to
detect the beginning (black dashed bars) and end (grey dashed
bars) of each fault without any considerable delays. In the first
stage, the system is responsible only for distinguish the normal
operation from a fault.
Fig. 3. Detection of a sequence of faults using RDE.
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When a fault is detected (event indicated by the black dashed
bars in Fig. 3), the isolation stage of the proposed algorithm is
activated. The data set is spatially distributed in the n-
dimension feature space. The feature input vector is composed
of the most descriptive data elements from the process, which
may be manually or automatically selected (through PCA,
wavelet or any known feature extraction techniques). For this
particular example, two features were manually selected and
used as input to the isolation stage – here called Feature 1 and
Feature 2 –, where the first represents the period and the
second represents the amplitude of the control signal. Fig. 4
shows the 2-dimensional feature space, after the reading of all
available data samples.

At the end of the on-line procedure, the fuzzy rule base,
autonomously generated from the data stream (total of 5600 data
samples) is

R1 : IF x�ð1Þ THEN ð00Class 100Þ
R2 : IF x�ð2Þ THEN ð00Class 200Þ
R3 : IF x�ð3Þ THEN ð00Class 300Þ

(5)

with

ð1Þ : c1 ¼ ½0:416 3:316 � AND Z1 ¼ ½0:251 0:756 �;
ð2Þ : c2 ¼ ½�0:513 2:706 � AND Z2 ¼ ½0:250 0:601 ;
ð3Þ : c3 ¼ ½�0:416 1:491 � AND Z3 ¼ ½0:197 0:451 �;

(6)

where ci is the focal point (mean) and Zi is the zone of influence of
the cloud, i = 1. . .3.

It is possible to see in Fig. 4 that three different clouds (Class 1,
Class 2 and Class 3) were created, each one representing one class
of fault (F1 and F2 – actuator positive offset, F4 – negative offset, F9 –
tank leakage). The normal state of operation is not represented in
the chart because the isolation/classification stage is only triggered
once a fault is detected. The classification algorithm is quite unique
in the sense that it autonomously and in a completely unsuper-
vised manner (automatic labelling) identifies the types of faults.
Traditional models, such as neural networks, start to drift and a re-
calibration is needed. This unsupervised and self-learning method
does not suffer from such disadvantage because it is adapting and
evolving.

It is important to highlight that all class labels are generated
automatically in a sequence (‘‘Class 1’’, ‘‘Class 2’’ and so on), as
different and unknown faults are detected. The labels, thus, do not
represent the actual type or location of the fault, but they are very
useful to distinguish different faults. Since no training or pre-
definition of faults or models are needed, the correct labelling can
be done in a semi-supervised manner by the human operators,
[(Fig._4)TD$FIG]

Fig. 4. Classification and automatic labelling of the faults using AutoClass.
without requiring prompt/synchronized actions of the user.
Moreover, in a semi-supervised approach, the operator, should
be able to merge, split and rename the generated clouds/rules/
classes of faults, enabling the classification of faults/operation
states that cannot be represented by compact/convex data clouds.

4. Methods used for fault diagnosis in wind turbines

Wind turbines convert the kinetic energy of wind into the
electrical energy. The most used wind turbines are horizontal-axis
using a three-bladed rotor design with an active yaw system
keeping the rotor oriented upwind [37]. The wind turbine main
components (Fig. 5) are the gearbox, the generator with converter
and the blade and pitch system [38]. The gearbox connects the low-
speed shaft to the high-speed shaft in order to increase the
rotational speed to a level required by the generator to produce
electric energy. The generator converts rotational energy into
electric energy. The role of the pitch system is to adjust the blade
pitch by rotating it according to the pitch angle position reference
provided by the controller. The latter decides the pitch angle
position reference according to the wind speed in order to allow an
optimum energy production.

Wind turbines operate, generally, in severe and remote
environments and require frequent schedule maintenance. Reduc-
ing their operations and maintenance (O&M) costs provides the
impetus for increasing the competitiveness of this clean energy
source according to the traditional ones. Indeed, O&M costs may
reach 25–30% of the energy generation cost [39]. One of the main
sources for the O&M costs is the unscheduled maintenance due to
unexpected failures. This can be costly not only for the mainte-
nance support but also for the produced energy. Moreover, the
accidents, in particular the fatal ones, of wind turbines increases
year over year [40]. Therefore, a comprehensive and automated
health monitoring system can reduce the O&M costs as well as the
lost production time and ensure the wind turbines security and
safety by detecting and isolating faults before becoming expensive,
critical or catastrophic.

The operational state of a wind turbine varies from fully
operational to malfunction and shutdown. Their monitoring
system reports excessive wear to maintenance operators based
on the use of SCADA (Supervisory Control and Data Acquisition)
data. SCADA records the values of multiple operational param-
eters at time intervals of 10 min as well as system’s potential or
emerging faults expressed as status codes. The latter are event
trigger that point to the actions needed to overcome the fault or
to indicate affected components. However, SCADA based
monitoring systems suffer from two major drawbacks. Firstly,
they cannot achieve a precise and reliable localization of affected
components. This is due to fault propagation from the compo-
nent, source of this fault, to the other connected components
[(Fig._5)TD$FIG]

Fig. 5. Main components of a horizontal-axis wind turbine using a three-bladed

rotor design.
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with it. Indeed, a faulty component, as blade angle asymmetry,
adversely impacts other components, as blade pitch motor,
electronic control and gearbox, since they are directly in contact
with this affected component. Therefore, several components of
wind turbine are suspected and additional time is required to
isolate the component responsible of the occurrence of this fault.
This will lead to increase the time of wind turbine unavailability
as well as its cost maintenance. As an example, a turbine
shutdown may occur due to the blade angle asymmetry fault.
Turbine unavailability due to this fault may reach 180 h resulting
in production losses [41]. The second major drawback of SCADA
monitoring systems is the delay between acknowledging status
codes and maintenance actions which can exceed, for example,
168 h [42] for blade angle asymmetry fault. Moreover, some
critical faults, as blade pitch motor, can generate or execute
dangerous or prohibitive behaviours. Therefore, to ensure wind
turbine security, it is crucial to detect these faults after their
occurrence but prior to the execution of a dangerous behaviour in
order to preserve their safety and security.

However, fault diagnosis of wind turbines is a challenging task
because:
- t
[(Fig._6)TD$FIG]
he measurements of wind turbines are not enough reliable due
to the high uncertainty of wind speed and to the turbulence
around the rotor plane,
- t
he nonlinearity of the wind turbine dynamics,

- t
he occurrence of certain faults (e.g., blade pitch motor faults) in

operation conditions (power optimization region) in which fault
consequences are hidden,
- t
he actions of the control feedback which compensate the fault
effects,
- t
he low volume of data (imbalance data) describing the faults
according to the data coming from normal operation conditions,
which makes the fault prediction task difficult.

There are numerous methods in the literature that are used to
achieve fault diagnosis in wind turbines. They achieve the fault
diagnosis by reasoning over differences between desired or
expected behaviour, defined by a model, and observed behaviour
provided by sensors. Generally, they can be classified according to
the system size (wind turbine as a whole or one of its components)
into general purpose methods treating the whole wind turbine and
components-based methods focusing on one component of the
wind turbine. In general purpose methods [43], the model
represents the global behaviour of the wind turbine based on its
general parameters, as wind speed, generated electrical power, air
Fig. 6. Internal methods used to achieve
temperature, etc. Thresholds are defined as alarm levels in order to
detect significant changes in turbine behaviour. Exceeding these
alarm levels, due to the occurrence of a fault, leads to shut down
the turbine and to wait for a remote restart or repair. Therefore,
trend analysis of some representative signals using signal
processing and data mining techniques can help to detect the
fault occurrence at early stage. These methods have the advantage
to be cost-effective since no need for a prior knowledge about the
relationships between wind turbine components. However, they
do not provide a specific or precise diagnostics about the
components responsible of the fault occurrence. Component-
based methods [44] achieve the fault diagnosis of one specific
component of wind turbine. The failure of this component, e.g.,
gearbox, blade pitch system, is normally critical according to its
maintenance costs or/and its frequency occurrence. These
methods provide reliable and precise diagnostics. However, a
depth analysis is required to determine the high sensitive
parameters and features to normal and faulty behaviours of the
monitored component.

In both categories, a model, representing the wind turbine
normal or/and fault behaviours, is required. There are two main
categories of methods to build a model: internal and external
methods. The internal methods use a mathematical or/and
structural model to represent the relationships between measur-
able variables by exploiting the physical knowledge or/and
experimental data about the system dynamics. These variables
represent the internal parts of the wind turbine. The response of
the mathematical model is compared to the observed values of
variables in order to generate indicators used as a basis for the fault
diagnosis. Generally, the model is used to estimate the system
state, its output or its parameters. The difference between the
system and the model responses is monitored. Then, the trend
analysis of this difference can be used to detect changing
characteristics of the system resulting from a fault occurrence.
The internal methods used to achieve the fault diagnosis of wind
turbines are divided into three main categories (Fig. 6): parameter
identification [45], observer- and state-based [46] and signal- or
feature-based [47] approaches. These methods were applied
successfully to achieve the diagnosis of faults impacting the pitch
system [45,46,48], the generator [48,49], the converter [49], and
the gearbox [48].

The major advantages of these methods are their ability to:
- d
th
etect both the abrupt and progressive failures via trend analysis,
and
- g
ive a precise decision or isolation of a failure.
e fault diagnosis of wind turbines.
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However, they suffer from:
- t
[(Fig._7)TD$FIG]

F
o

he necessity to depth information about system behaviour and
failures, which is hard to obtain for complex and strong non-
stationary systems as wind turbines, and
- t
he sensitivity of the fault detection to model design errors and
measurements noises.

The external methods consider the system as a black box, in
other words, they do not need any mathematical model to describe
the system dynamical behaviours. They use exclusively a set of
measurements or/and heuristic knowledge about system dynam-
ics to build a mapping from the measurement space into a decision
space. They include expert systems and machine learning and data
mining techniques. These methods are suitable for systems that
are difficult to model, they are simple to implement and require
short processing time. However, since the obtained models are not
transparent, the obtained results are hard to be interpreted and
demonstrated.

There are several machine learning and data mining methods
used to achieve the fault diagnosis of wind turbines. Such methods
are described and successfully applied in [50–59]. They are used
through a general scheme based on the following steps (Fig. 7):
data preparation, data preprocessing and labelling, data analysis,
model design and model validation. These steps are developed in
the following subsections.

4.1. Data preparation

The available data are collected through SCADA system of
one or several wind farms. A typical SCADA system records
data on more than 50 parameters. They include operation data
and status data. Operational data records measurements
averaged over 10 min intervals on controlled parameters as
blade pitch angles and generator torque and on non-controlled
parameters as wind speed, tower acceleration and gear box
temperature. Status data are event trigger data recorded when
a wind turbine changes its status because of potential faults
expressed as status codes. The latter trigger, according to the
fault severity, one of the following three alarms: information,
warning and failure.

Since machine learning and data mining techniques require
data about normal and failure conditions, the aim of data
preparation step is to divide SCADA data into several data sets.
Each data set describes the operation conditions of a wind
turbine according to normal conditions or to a fault occurrence
in one of its components. This can be achieved as follows. When
a status code reports the occurrence of a fault in a component
at time t, all SCADA operational data recorded in advance to t of
n 10 min will be considered as describing the conditions of
occurrence of this fault. n must be determined according to the
fault dynamics. As an example, electrical faults have significant
faster dynamics than the ones of mechanical faults. Therefore, n

is much smaller in the case of electrical faults than the one for
ig. 7. General scheme used by machine learning and data mining techniques in

rder to achieve fault diagnosis of wind turbines.
mechanical faults. It is worth to note that 1 second sampled
snapshot files are generated automatically by SCADA system to
record operational data at 1 second sampling rate 7 min before
and 3 min after the occurrence of some critical faults. These
snapshots can be very useful in the analysis and model design
steps since they provide extensive data during the fault
occurrence and development. Finally, each data set will be
divided into learning and validation sets. The learning set will be
used in the model design step to construct the decision space and
the validation set to compute the indicators about the model
performance.

A severe problem meeting in this step is related to the effect
of imbalanced data sets. Indeed, SCADA data about normal
operation conditions are much higher than the one of failure
conditions [41]. The fact that the faults occurring in any wind
turbine component, in particular critical ones, are not frequent
entails that the available SCADA data describing their dynamical
behaviour is low. This makes their prediction a very hard task.
However, several approaches, as the ones studied in [41,42] and
the references therein, can be used to mitigate the impact of
imbalanced data sets.

4.2. Data preprocessing and labelling

The SCADA data collected from wind turbines suffers from
several imperfections as noises due to sensors and their
environment, sensor errors, sensor uncertainties, inconsistent
data, outliers and other abnormal measurements, etc. Therefore,
preprocessing techniques are applied on this data in order to
obtain valid and clean data set. The latter is essential for data
analysis and model design steps in order to build a discriminant
feature space and model optimal generalization. The principal
preprocessing techniques are [57]:
- d
enoising in order to remove noises and enhance the signal to
noise ratio,
- v
alidity check in order to remove outliers,

- o
utside the expected ranges, and inconsistent input data with

other input variables or with output targets,

- d
ata scaling in order to normalize the different input data

variables,

- m
issing data processing in order to remove data with some

unknown or missing attributes or targets (outputs),

- la
g removal in order to remove the delay between wind turbine

measured signals and the changes in its operation conditions.

Before using the preprocessed SCADA data set by data
analysis and model design steps, it must be labelled by a fault
label indicating the fault origin or source or by normal label
N. Indeed, operational state of a component of a wind turbine
varies from fully operational to malfunction and shutdown;
these states are labelled with status codes. As an example,
when the generator brushes starts to wear, the turbine
remains operational until the worn-out of the brushes. In this
case, the wind turbine is shut-down. The generator brushes
worn-out can be seen through the deterioration of the wind
turbine produced power during several consecutive days. The
status codes generated by SCADA monitoring system are used to
label the operation data during the period of produced power
degradation. However, it is worth to note that the time
occurrence of a fault cannot be precisely decided. Therefore,
clustering techniques can be jointly used with status codes in
order to enhance SCADA data labelling. In clustering techniques
[56,59], no labels of observations are available. Therefore, these
observations are partitioned into groups (clusters) of similar
properties.
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4.3. Data analysis

The aim of data analysis is to find the minimum number of
features leading to discriminate between normal and each of the
different fault behaviour of a wind turbine. Features are the
abstraction of data. They are sensitive (related) to the system
behaviours (conditions). They are related to physical character-
istics of a system. These features are determined using two
operations: feature selection and feature extraction [60]. Feature
selection is the operation of seeking, from a large candidate set,
distinguishing features leading to separate as well as possible
the different dynamical behaviours in order to reduce the
prediction error. These candidates are determined based on data
(signal) processing on time-domain (statistical moments), on
frequency response (i.e., Power Spectral Density), on the
estimation of the coefficients of Auto Regressive model, etc.
Feature extraction (dimension reduction) is the procedure of
keeping a subset of features from the set of selected features by
removing the redundant and irrelevant ones.

There are more than 50 parameters measured by SCADA system
for wind turbines. In order to define the feature space, the
parameters related to each component of wind turbines are
determined. As an example, to diagnose the blade pitch angle
asymmetry (abnormal deviation of the pitch angle among the
blades) and implausibility (abnormal difference between the
actual and desired blade angles) faults [41,54], only the parameters
(original and derived ones) related to the pitch system are analyzed
(e.g., blades 1, 2 and 3 pitch angles provided by each of the two
redundant sensors, desired pitch angle, nacelle revolution, tower
deflection, etc.). Features calculated based on the deviations
between the pitch angles of blade 1, blade 2 and blade 3 are
discriminant to diagnose the blade pitch angle asymmetry and
implausibility [41,54,61].

4.4. Model design

This step aims at building a model as a mapping of a pattern,
representing the current wind turbine operation mode or one of
its components, from the feature space into the decision one.
The latter is defined by a set of predefined labels indicating
normal or faulty behaviours. This mapping is achieved using a
classifier, a regression model or statistical indicators. A classifier
is a method or algorithm which generates a decision function in
order to assign a label to unlabelled incoming patterns. The
classifier can be built using supervised (labelled patterns in the
learning set) or unsupervised (unlabelled patterns in the
learning set) learning methods. There are many supervised
and unsupervised learning methods in the literature [62]. They
were applied successfully to achieve the fault diagnosis of wind
turbines such as k nearest neighbours [41,54], bagging [41],
neural networks [41,55–57], support vector machines [58,61]
and self-organizing feature maps [56]. The regression model
estimates or predicts the value of an input pattern at time t

based on the correlation between wind turbine input variables.
Then, a fault is diagnosed when the estimation or prediction
error becomes greater than a predefined threshold [57,58]. The
statistical indicators are generated based on some statistical
tests, as Q-stat and T2 stat, on patterns obtained by the
projection of the learning set into a new space using linear or
non-linear principal components analysis [57].

The choice of one of these methods depends on several
factors as the discrimination power of the feature space, the
decision boundaries between the different classes representing
normal and fault behaviours, simple or multiple fault
scenarios, multiplicative or additive faults, abrupt or drift-like
faults, etc.
4.5. Model validation

In order to evaluate the prediction accuracy of the designed
model in the previous step, the following evaluation metrics are
applied using the test data sets:
- a
ccuracy:

Acc ¼ ðTP þ TNÞ=ðTP þ TN þ FP þ FNÞ; (7)

specificity:
-
S pe ¼ TP=ðTP þ FNÞ; (8)

sensitivity:
-
Sen ¼ TN=ðTP þ FNÞ; (9)

weighted prediction accuracy:
-
W pa ¼ ðw1Acc þw2S peþw3SenÞ=ðw1 þw2 þw3Þ; (10)

where TP denotes the number of test patterns correctly assigned to
normal operation conditions (true positive), TN is the number of test
patterns correctly assigned to fault operation conditions (true
negative), FP is the number of test patterns assigned to normal
operation conditions while they represent fault operation conditions
(false positive), and FN defines the number of test patterns assigned to
fault operation conditions while they belong to normal operation
conditions (false negative). (TP+TN+FP+FN) in (7) is the number of
patterns in the test data sets. w1, w2 and w3 in (10) are weights used to
determine the importance of contribution of each evaluation criterion
to the prediction accuracy of the designed model. These weights are
used in order to take into account the effect of imbalanced data
discussed before. The accepted prediction accuracy depends on the
severity of faults and their impact on the deterioration of produced
electrical power and the cost maintenance.

5. Nature-inspired optimization algorithms for the optimal
tuning of linear controllers

Several NIOAs are applied to the optimal tuning of linear
controllers dedicated to industrial process applications. Some of
the latest industrial applications of representative NIOAs will be
briefly discussed as follows in relation with the most frequently
used proportional-integral (PI), proportional-derivative (PD) and
proportional-integral-derivative (PID) controllers.

Particle Swarm Optimization (PSO) is a population-based NIOA
initially introduced in [63] and [64]. PSO is inspired by the
behaviour of entities observed in flocks of birds or schools of fishes.
The movement of the population, characterized by agents, in PSO is
guided by simple laws that repeat at each iteration, helping these
agents, which represent candidate solutions, flow through the
search domain. Each agent has assigned a multidimensional vector
that is updated according to the calculated velocity, which takes
into consideration the best position explored by the agent and best
solution explored by the swarm.

A PSO-based optimal tuning solution for PI controllers in a
self-commissioning procedure for direct drives with elastic
coupling is proposed in [65]; the solution is implemented, with
low computational cost, on a Digital Signal Processor (DSP) and
experimentally tested in industrial processes. The PSO-based
optimal tuning of PID controllers using an objective function
subjected to H1 norm to achieve robust stability and disturbance
attenuation is given in [66]; the designed H1 PID controller is
applied to a Single Input-Single Output (SISO) flexible link
manipulator. A PSO algorithm characterized by a modified
velocity update equation, where an additional factor, namely
the best particle of each sub-population, is added to enhance the
search ability, is suggested in [67]; this PSO algorithm is applied
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to the tuning of PID controllers for Multi Input-Multi Output
(MIMO) processes focusing on a chemical process with two
inputs and two outputs. The velocity update equation specific to
PSO is modified in [68] using a Gaussian distribution; the
resulted PSO algorithm is applied to the optimal tuning of multi-
loop PI controllers for MIMO systems and applied to a multi-
variable quadruple-tank process. A fuzzy gain scheduling control
scheme for servo-pneumatic system is proposed in [69]; the local
PID controllers are optimally tuned using PSO. A comprehensive
review of PSO algorithms’ applications in solar photovoltaic
systems is conducted in [70]; optimal tuning solutions and real-
world applications are included.

Gravitational Search Algorithm (GSA) [71,72] is a relatively
newly introduced NIOA inspired by Newtonian physics principals
of gravity and interaction between masses [73,74]. Each agent, also
referred to as object, interacts with the existing population, by the
law of gravity. This interaction is proportional to each agent’s mass,
expressed in accordance to its fitness, and inversely proportional to
the distance between them. The attraction effect between the
particles of the universe is also inserted by means of the
gravitational constant. The variation of the gravitational constant
is modelled by several decrease laws with respect to GSA’s
iterations.

GSA is applied in [75] to excitation control of wind turbines; the
GSA optimizes the switching angles of the inverter targeting the
minimization of the total harmonic distortion of the generated
voltage. GSA is employed in [76] to optimally tune a damping
controller in multi-machine power systems; the simultaneous
design of power system stabilizers and thyristor controlled series
capacitors is achieved. A modified GSA based on batching
mechanism is suggested in [77] to minimize the makespan in a
two-stage supply chain; a mixed integer programming model is
solved by this GSA and compared with a PSO algorithm and a
genetic algorithm.

Simulated Annealing (SA) is an NIOA derived from a metallurgy
process which describes the way in which the metal cools and
freezes into a minimum energy crystalline structure and the search
for a minimum in a more general system [78]. For this process, the
selected cooling schedule has a decisive role in the final properties
of the substance: if a fast cooling schedule is used the resulting
substance will be easily broken due to an imperfect structure, so as
to avoid this scenario an appropriate cooling schedule has to be
employed, for the resulting structure to be well organized and
strong.

An SA algorithm is hybridized with a genetic algorithm in [79]
to solve the storage container problem in ports; this hybrid NIOA
minimizes the distance between the vessel berthing locations and
the storage zone. An SA algorithm is applied in [80] to optimize the
parameters of PID controllers for time-delay systems; a suggestive
drilling process application is given. The optimal tuning of PI
controllers using PSO and SA algorithms is proposed in [81];
optimal PI controllers with a reduced parametric sensitivity for
servo systems are designed and experimentally tested.

As shown in [82], the cross-entropy (CE) method translates
deterministic optimization problems into stochastic optimization
ones and uses rare event simulation techniques. This leads to
NIOAs, which have started with adaptive algorithms that estimate
the probabilities of rare events in complex stochastic networks on
the basis of variance minimization.

The CE-based optimization of the flexible process planning is
reported in [83]; the implementation is based on a specific sample
representation and probability distribution parameter. Other
illustrative applications of NIOAs with focus on quantum inspired
algorithms are given in [84].

The specific features of Charged System Search (CSS) algorithms
in the context of NIOAs concern the random determination of the
initial positions of charged particles, and the initial velocities of the
charged particles set to zero [85–87]. A class of PI controllers is
optimally tuned by CSS algorithms in [88] to ensure a reduced
sensitivity with respect to the variations of the small time constant
in nonlinear servo systems; the results of the CSS-based
optimization are compared with a PSO algorithm and a GSA.

As shown in [89] and [90], Bacterial Foraging Optimization
algorithms (BFOAs) involve evolutionary and chemical operators
and steps. Several parameters are involved in this regard as the
number of bacteria in the population, the number of chemotaxis
steps, the number of swim steps, the number of reproduction steps,
the number of elimination-dispersal events, the number of
bacteria in the reproduction step, the probability of elimination,
and the size of the step taken during each run or tumble.

The BFOA-based optimal tuning of PI controllers for switched
reluctance motor drives is proposed in [91]; the PI controllers are
applied and implemented in a DSP scheme dedicated to speed
control. An adaptive BFOA for active noise control systems is
suggested in [92]; the experimental results prove that this
algorithm prevents falling into local minima. A performance
analysis of PID controllers tuned by BFOA is given in [93]; the
application concerns torque motor systems in the automotive
industry. A review on NIOAs applied to PID controller tuning is
presented in [94]; BFOA and PSO algorithms are included.

The controller tuning based on evolutionary multi-objective
optimization is investigated in [95]. Applications of PID, predictive,
fuzzy and state feedback controllers are considered.

The analysis presented above shows that PI, PD and PID
controllers have proven very good control system performance if
these controllers are tuned by NIOAs. In addition, the optimal
tuning by NIOAs can compensate for the eventual less experience
of the control systems designer. Other popular linear controllers,
such as:
- s
tate feedback controllers,

- t
wo-degree-of-freedom (2-DOF) controllers,
that require more experience of the control systems designer, are also
tuned by NIOAs. However, the results reported in the literature are
validated mainly by digital simulation results, and there is still room
for industrial applications and validations.

One of the shortcomings of NIOAs is the large number of
evaluations of the objective functions, which affects the industrial
applications, where the users are not allowed to conduct many
experiments on the real-world processes. In this regard, in order to
reduce the number of evaluations of the objective functions and
the number of experiments conducted on the real-world control
systems, we propose the introduction of the gradient in the update
laws for the variables of the NIOAs. This will be presented as
follows in connection with the experiment-based solving of a
widely used state feedback control problem, namely the Linear
Quadratic Regulator (LQR). In addition, the approach given in [96]
is carrying out the estimation of the objective function gradients
directly on the basis of measurements carried out during the
control system operation, and it belongs to data-driven controller
tuning techniques.

Let the process be characterized by the single input discrete-
time linear time-invariant (LTI) state-space model

xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ þ B̄wðkÞ;
yðkÞ ¼ CxðkÞ þ C̄vðkÞ; (11)

where k 2 Z, k � 0 is the discrete time argument, u is the control
signal, x = [x1 . . . xn]T 2 Rn is the state vector, n is the system order,
the subscript T indicates the matrix transposition, y 2 Rn is the
controlled output, and w 2 Rn and v 2 Rn are the uncorrelated
process noise vector and measurement noise vector, respectively.
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The LQR-type objective function is

IðrÞ ¼
X1
k¼0

½xTðr; kÞ Q xðr; kÞ þ lu2ðr; kÞ�; (12)

where the vector variable of the objective function r = [r1 . . . rn]T

is a parameter vector, the state vector and the control signal are
parameterized by r, and the weights are Q � 0 and l > 0, with
Q ¼ ½qi j�i; j¼1...n

, qij = qji, i,j = 1. . .n.
The following optimization problem leads to the optimal

parameter vector r* that corresponds to the optimal state feedback
gain matrix, referred to also as the gain matrix ðr�ÞT :

r� ¼ argmin
r

IðrÞ: (13)

The solution to (7) is the state feedback control law

uðr�; kÞ ¼ �ðr�ÞT xðr�; kÞ: (14)

Adding the reference inputs, the state feedback controller is
characterized by

eðr; kÞ ¼ rðkÞ � xðr; kÞ;
uðr; kÞ ¼ rT eðr; kÞ; (15)

where r = [r1 . . . rn]T is the reference input vector, ri are the
reference inputs that correspond to the state variables xi,
i = 1 . . . n, and e = [e1 . . . en]T = [r1 � x1 . . . rn � xn]T is the state
control error vector that consists of the state variable errors ei,
i = 1 . . . n. The state feedback control system structure is
presented in Fig. 8(a), where P is the process and C is the
controller.

Using the general stochastic framework considered in [96], the
modified objective function is

JðrÞ ¼ Ef
XN

k¼0

½eTðr; kÞ Q eðr; kÞ þ l e2
uðr; kÞ�g; (16)

where E{} is the expectation with respect to the stochastic
disturbances, eu(r, k) is defined as the difference between the
control signal and its steady-state value u(r, 1)

euðr; kÞ ¼ uðr; kÞ � uðr;1Þ; (17)

and N is the finite time horizon taken into consideration for
practical evaluations of the objective function. For a sufficiently
large N, the following equality holds [96]:

IðrÞ� JðrÞ; (18)

so the optimization problem (7) is transformed into the
optimization problem

r� ¼ arg min
r

JðrÞ: (19)

The optimization problem (13) is experimentally solved in [96]
in terms of an Iterative Feedback Tuning (IFT) algorithm. The
update law of this algorithm is

riþ1 ¼ ri � g iðRiÞ
�1

est
@J

@r
ðriÞ

� �
; Ri >0; (20)
[(Fig._8)TD$FIG]

Fig. 8. State feedback control system structure (a) and ex
where i 2 Z, i � 0, is the current iteration/experiment index,
gi > 0 is the step size, est[(@J/@r)(ri)] is the unbiased estimate
of the gradient, and the regular matrix Ri can be the estimate of the
Hessian matrix, the Gauss-Newton approximation of the Hessian,
or the identity matrix. The steps of the algorithm are

Step 0. The step size, the initial controller parameter vector r0

and the weights in the objective function are set.
Step 1. An initial ‘‘normal’’ experiment is conducted using the

control system structure shown in Fig. 8(a). The evolution of all
state variables is recorded.

Step 2. n gradient experiments are conducted using the
experimental setup illustrated in Fig. 8(b) to obtain the partial
derivatives (@xi/@rl) and (@u/@rl), where parameter rl, l = 1 . . . n, is
a certain controller parameter.

Step 3. A ‘‘normal’’ experiment is conducted once more such
that the states contain realizations of noise that differ from the
noise at step 2 to ensure the unbiased estimate of the gradient.

Step 4. The estimates of the gradient of the objective functions
are computed as [96]

@J

@rl

¼ 2
XN

k¼0

(" Xn

i; j ¼ 1
i� j

qi j ei

@e j

@rl

� �#
þ l eu

@eu

@rl

)
¼ 0; l

¼ 1 . . . n: (21)

Step 5. The next parameter vector ri+1 is computed by the
update law (20).

Step 0 is done only once. Steps 1–5 are repeated iteratively until
a stopping condition is met.

This approach is very useful in industrial applications because
of two reasons. First, the estimation of the gradients is carried out
during the real-world control system operation. Second, the
number of iterations/experiments is reduced as suggestively
illustrated in [96] for a nonlinear servo system application.

As mentioned before, this approach can be combined with
NIOAs by adding the following term from (20):

�g iðRiÞ
�1

est
@J

@r
ðriÞ

� �
(22)

to the right-hand terms of the update laws for the variables of
the NIOAs. Therefore, the combination of NIOAs and data-driven
control is expected to merge the advantages of both controller
tuning techniques. We also propose the application of NIOAs
combined with data-driven control to the tuning of state feedback
H1 controllers.

The 2-DOF controllers have been proposed because the main
tasks in control, namely the achievement of high performance in
set-point tracking and the regulation in the presence of distur-
bance inputs are difficult to be accomplished by means of PI and
PID controllers [97–99]. A set of 2-DOF control system structures
with focus on PI controllers is presented in Fig. 9, where P(s) is the
process transfer function: the set-point filter structure (Fig. 9(a)),
the feedforward structure (Fig. 5(b)), the feedback structure
(Fig. 9(c)), and the component-separated structure (Fig. 9(d)),
where: r–the set-point, y – controlled output, e = r � y or e = r1 � y

– the control error, u – the control signal, r1, u2, u2 and u4 – the
perimental setup to compute partial derivatives (b).
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Fig. 9. 2-DOF control system structures: set-point filter 2-DOF control system structure (a), feedforward 2-DOF control system structure (b), feedback 2-DOF control system

structure (c), component-separated 2-DOF PI control system structure (d).
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outputs of the blocks F(s), C(s) (in Fig. 9 (b)), C*(s) and CI(s),
respectively, and d – the disturbance input.

However, as shown in [100], the main drawback of 2-DOF
controllers is that although they ensure the regulation, the
reduction of overshoot is paid by slower set-point responses
because the 2-DOF structures can be reduced to feedforward
controllers with set-point weighting. A first solution is to introduce
fuzzy control in the structure of 2-DOF linear control systems
resulting in 2-DOF fuzzy controllers [101–106]. Some of the
controller blocks in Fig. 9 can be fuzzified in order to improve the
control system performance [105]. We propose a second solution,
to tune the parameters of a part of the blocks of 2-DOF controllers
by NIOAs. Since the search space of optimal control problems for 2-
DOF controllers is large (i.e., more parameters to be tuned backed
up by a solid experience of the control systems designer), this
shortcoming will be mitigated, thus increasing the interest in
industrial and applications of 2-DOF linear and fuzzy controllers
tuned by NIOAs. State feedback control system structures can be
considered as well.

The algorithms were tested on a case study, where the process
is characterized by the following continuous-time time-invariant
SISO state-space model, which defines a general class of nonlinear
servo systems:

mðtÞ ¼

�1; if uðtÞ � �ub;

uðtÞ þ uc

ub � uc
; if � ub <uðtÞ< � uc;

0; if � uc � juðtÞj � ua;

uðtÞ � ua

ub � ua
; if ua <uðtÞ<ub;

1; if uðtÞ�ub;

8>>>>>>>>>><
>>>>>>>>>>:

ẋPðtÞ ¼
0 1

0 �1=TS

� �
xPðtÞ þ

0

kP=TS

� �
mðtÞ þ

1

0

� �
dðtÞ;

yðtÞ ¼ ½1 0 �xPðtÞ;

(23)

where t is the continuous time argument, t 2 R, t � 0, kP is the
process gain, TS is the small time constant, the control signal u is a

[(Fig._10)TD$FIG]

Fig. 10. Nonlinear servo system exper
pulse width modulated (PWM) duty cycle, and m is the output of
the saturation and dead zone static nonlinearity specific to the
actuator. The nonlinearity is modelled by the first equation in (23),
with the parameters ua, ub and uc, that are subjected to 0 < ua < ub,
0 < uc < ub. The state-space model (23) includes the actuator and
measuring element dynamics. The state vector xP(t) is expressed as
follows in (angular) position applications for n = 2:

xPðtÞ ¼ ½ xP;1ðtÞ xP;2ðtÞ �T ¼ ½aðtÞ vðtÞ �T ; (24)

where a(t) is the angular position and v(t) is the angular speed.
The nonlinearity in (23) is neglected in the following simplified

model of the process expressed as the transfer function P(s), which
is convenient as it can be used relatively easily in the controller
design and tuning:

PðsÞ ¼ kEP

sð1þ TSsÞ ; (25)

where the equivalent process gain is kEP:

kEP ¼

kP

ub � uc
; if � ub <uðtÞ< � uc;

kP

ub � ua
; if ua <uðtÞ<ub:

8>><
>>: (26)

The nonlinear servo system model given in (23) is important as
illustrative example in many industrial applications. One such
experimental setup is illustrated in Fig. 10. An optical encoder is
used for the measurement of the angle and a tacho-generator for
the measurement of the angular speed. The speed can also be
estimated from the angle measurements. The PWM signals that are
proportional with the control signal are produced by the actuator
in the power interface. The main features of the experimental
setup are [107]: rated amplitude of 24 V, rated current of 3.1a,
rated torque of 15 N cm, rated speed of 3000 rpm, and weight of
inertial load of 2.03 kg. The nominal values of the parameters of the
process model given in (23) and (26), obtained by a least squares
algorithm, are ua = 0.15, ub = 1, uc = 0.15, kP = keP = 140, and
TS = 0.92 s.
imental setup and block diagram.
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The NIOAs are mapped onto the optimization problems by the
following two aspects:
- t
[(Fig._12)TD$FIG]
he fitness function in the NIOAs are equal to the objective
functions in the optimization problems,
- t
Fig. 11. Control system response with PI controller before and after tuning by CSS

algorithm.
he solution vectors in the NIOAs, which are, for example, the
position vectors in case of PSO, GSA and CSS, are equal to the
vector variables of the objective functions, which are, in fact, the
parameter vectors of the controllers subjected to optimal tuning.

The PI controllers can cope with the process modelled in (25) if
they are inserted in 2-DOF linear control system structures given in
Fig. 9. The transfer function of the PI controller is

CðsÞ ¼ kcð1þ sTiÞ
s

¼ kC 1þ 1

sTi

� �
; kC ¼ kcTi; (27)

where kc is the controller gain and Ti is the integral time constant.
The PI controllers can be tuned by the Extended Symmetrical
Optimum (ESO) method [108] to guarantee a desired compromise
to the performance specifications (i.e., maximum values of control
system performance indices) imposed to the control system using
a single design parameter referred to as b, with the recommended
values within 1 < b � 20. The PI tuning conditions specific to the
ESO method are

kc ¼
1

b
ffiffiffiffi
b

p
kEPT2

S

; Ti ¼ bTS; kC ¼
1ffiffiffiffi

b
p

kEP TS

; (28)

and the single design parameter b is next optimally tuned by
NIOAs.

CSS algorithms are applied in [109] to ensure the optimal PI
controllers with a reduced process gain sensitivity, namely a
reduced sensitivity with respect to the variations of the process
gain kP in (23). The following objective function is defined in this
regard:

IkP
2eðbÞ ¼

Z1
0

½e2ðtÞ þ g2
kPs

2
kPðtÞ�dt; (29)

where gkP is the weighting parameter, skP and is the output
sensitivity function in the appropriately defined state sensitivity
model. The expression of the objective function in (29), where the
variables in the integral depend on b, allows for the definition of
the optimization problem

b� ¼ arg min
b>1

IkP
2eðbÞ; (30)
Fig. 12. Control system response with state
where b* is the optimal value of the design parameter b. Solving
(30) guarantees the optimal tuning of PI controllers with a reduced
process gain sensitivity. Use is made in [109] of CSS algorithms to
solve the optimization problem defined in (30).

A typical control system response with PI controller before and
after tuning by the CSS algorithm is presented in Fig. 11. Fig. 11
shows the control system performance improvement.

The illustration of the application of the IFT algorithm is
presented as follows for the same nonlinear servo system. The
weights in the objective function (16) were set to

Q ¼ 0:2 0
0 0:2

� �
; l ¼ 400; (31)

and the step angular position reference input of 40 rad was
considered. Using the initial step size g0 = 2 	 10�8, the values of
the consequent step sizes according to [96], and Ri = I2, where I2 is
the identity matrix, the initial parameters of the state feedback
controller are tuned by LQR, and the final parameters of the
state feedback controller are considered those obtained by the
application of the IFT algorithms using only 15 iterations.

The evolution of the objective function with respect to the
iteration number (i.e., during the tuning) and the time responses of
the state feedback control system before and after the application
of the IFT algorithm are presented in Fig. 12. Fig. 12 highlights
the control system performance improvement obtained by few
iterations and experiments conducted in the framework of this
IFT-based data-driven control technique.
feedback controller before and after IFT.
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6. Nature-inspired optimization algorithms for the optimal
tuning of nonlinear controllers

The fuzzy controllers are the most widely used and optimally
tuned nonlinear controllers in industrial applications because of
threes reasons pointed out in [100]:
- In
 some situations (for example, the control of processes with
functional nonlinearities which subjected to difficult mathemat-
ical modelling and the control of ill-defined processes), fuzzy
control can be viewed as a viable alternative to classical, crisp
control (conventional control).
- C
ompared to conventional control, fuzzy control can be strongly
based and focused on the experience of a human operator, and a
fuzzy controller (FC) can model more accurately this experience
(in linguistic manner) versus a conventional controller.
- T
[(Fig._13)TD$FIG]

Fig. 13. Type-2 fuzzy control system structure.
he Takagi-Sugeno fuzzy models represent fuzzy dynamic
models or fuzzy systems characterized by two advantages: (i)
any model-based technique (including a nonlinear one) can be
applied to the fuzzy dynamic models, (ii) the controller itself can
be considered as a fuzzy system.

In this regard, the overview will be firstly focused on the nature
inspired optimal tuning of FCs. The industrial applications of the
NIOAs presented in the previous section will be considered as
follows.

The PSO-based tuning of FCs for photovoltaic systems is proposed
in [110]; the optimized FCs are designed to achieve maximum
power point tracking using a current-mode boost converter with
bifurcation control. A multi-objective PSO algorithm is used in [111]
to get multiple Pareto optimal solutions in a multi-objective
optimization problem for the identification of the membership
functions and rules of FCs; the multi-objective PSO algorithm is
applied to the optimal tuning of FCs for voltage regulated DC-DC
power converters. An evolutionary-group-based PSO algorithm for
the optimal tuning of FCs dedicated to mobile robot navigation
problems is suggested in [112]; this NIOA is based on building
different groups to select parents in crossover operations, particle
updates and replacements, and on an adaptive velocity-mutated
operation to improve the search ability. A PSO algorithm is applied
in [113] to the optimal tuning of PID-FCs in terms of two self-
tuning mechanisms; experimental results for DC drives are given.
A PSO algorithm is applied in [110] to the tuning of an FC for the
maximum power point tracking of a photovoltaic system; a current-
mode boost converter with bifurcation control is included.

PSO, GSA and SA algorithms are applied in [114] to tune the
parameters of PI-FCs for nonlinear servo systems. FCs with a
reduced process parametric sensitivity are suggested and experi-
mentally tested.

The GSA-based tuning of FCs is carried out in [115,116]. The
industrial applications of these controllers concern servo systems.

The optimal tuning of FCs in networked control systems using
an offline SA algorithm is proposed in [117]; a drilling process
application is presented. SA algorithms are applied in [118] to the
optimal tuning of FCs for servo systems; experimental results are
included.

The CE-based optimization of FCs is suggested in [119]; the
optimally tuned FCs are applied to the force regulation in a
network-based drilling process control system. CE is applied in
[120] to tune the scaling factors of FCs; the designed FCs carry out
collision avoidance tasks for unmanned aerial systems. A survey
on learning and optimization applied to FC tuning is conducted in
[121]; industrial applications or CE are shown.

The CSS-based optimal tuning of FCs is conducted in [122]. FCs
with a reduced parametric sensitivity applied to servo systems are
proposed and tested by real-time experiments.
A BFOA selects the weights of a fuzzy model predictive control
in [123]. The optimally tuned controller is applied to two nonlinear
chemical processes.

As shown in [124], the type-2 FCs can outperform the
conventional type-1 FCs when the control problems have a high
degree of uncertainty. The structure of a type-2 fuzzy control
system is presented in Fig. 13. The type-2 fuzzy control system is
considered as a single input system with respect to the reference
input r and as a single output system with respect to the controlled
output y. The second input applied to the controlled process (CP) is
the disturbance input d.

Fig. 13 illustrates the operation principle of a type-2 FC, with the
following variables and modules: (1) the crisp inputs, (2) the
fuzzification module, (3) the fuzzified inputs, (4) the inference
module, (5) the type-2 fuzzy conclusions, (6) the type reducer
module, (7) the type-1 fuzzy conclusions, (8) the defuzzification
module, and (9) the crisp output.

One specific feature of fuzzy control systems concerns the
multiple interactions regarded from the process to the controller
by the auxiliary variables ya, gathered in the input vector e’

e0 ¼ ½ e yT
a � ¼ ½ e1 e2 ::: en �T : (32)

These variables are direct or indirect inputs to the FC. No matter
how many inputs to the FC are, the FC should have least one input
variable e1, which corresponds to the control error e

e1 ¼ e ¼ r � y (33)

According to Fig. 13, the operation principle of a type-2 FC
involves the following sequence of operations:
(a) T
he crisp input information – the measured variables, the
reference input (the set point), the control error – is converted
into a fuzzy representation. This operation is called fuzzifica-
tion of crisp information.
(b) T
he fuzzified information is processed using the rule base,
composed of the fuzzy IF-THEN rules that must be well defined
in order to control the given process. The principles to evaluate
and process the rule base represent the inference mechanism/
engine and the result is the ‘‘fuzzy’’ form of the control signal u,
namely the fuzzy control signal.
(c) T
he fuzzy control signal must be converted into a crisp
formulation, with well-specified physical nature, directly
understandable and usable by the actuator in order to be
capable to control the process. This operation is known under
the name of output processing, and it consists of the type
reducer and the defuzzification.

Due to the increased number of parameters in the modules of
type-2 FCs compared to type-1 FCs, the tuning of type-2 FCs is
more difficult. Therefore, NIOAs are employed to cope with the
optimal tuning of type-2 FCs. Interesting surveys on NIOAs applied
to the optimal tuning of type-2 FCs are conducted in [125,126]; the
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effects of the comparisons of different NIOAs are emphasized. The
PSO-based tuning of type-2 FCs for DC motor systems is presented
in [127]; an attractive hardware implementation is suggested.
Type-2 FCs applied to robotics and fault tolerant systems are
reported in [128,129].

Other successful industrial applications of NIOAs concern the
optimal tuning of neural network controllers and of sliding mode
controllers, which are exemplified as follows. These two represen-
tative nonlinear controllers can ensure good control system
performance, but they exhibit lower interpretability in comparison
with FCs.

An SA algorithm is hybridized with a genetic algorithm in [130]
and applied to train a feed-forward backpropagation neural
network; this hybrid NIOA improves the performance of dressing
conditions in grinding processes. The SA algorithm-based optimal
R1 : IF eðkÞ IS N AND DeðkÞ IS N THEN DuðkÞ ¼ f C2ðkÞ;
R2 : IF eðkÞ IS P AND DeðkÞ IS P THEN DuðkÞ ¼ f C2ðkÞ;
R3 . . . R9 : IF eðkÞ AND DeðkÞ DO NOT FULFIL R1 AND R2 THEN DuðkÞ ¼ f C1ðkÞ:

(37)
tuning of neuro-fuzzy models for a green logistic vehicle routing
problem is proposed in [131]; an adaptive neural network is
implemented in combination with logistics operators.

A survey on sliding mode controllers for induction motor is
conducted in [132]; several applications including the optimal
tuning are emphasized. The optimal tuning of sliding mode
controllers by BFOA is proposed in [133]; the performance of the
sliding mode control system is compared with that of a PID control
system in an automotive industry application.

The nature-inspired optimal tuning of nonlinear controllers is
illustrated as follows with focus on a Takagi-Sugeno PI-fuzzy
controller (T-S PI-FC) for the nonlinear servo system described in
the previous section. The T-S PI-FC replaces the block C(s) in the
control system structure given Fig. 9(a). The T-S PI-FC is designed
starting with the linear PI controller such that to ensure the further
improvement of the control system performance for the nonlinear
process modelled in (23). The structure and the input membership
functions of a simple T-S PI-FC are presented in Fig. 14, where q�1 is
the backward shift operator.

Fig. 14 points out the increment of control error
De(k) = e(k) � e(k � 1) and the increment of control signal
Du(k) = u(k) � u(k � 1). These increments offer the dynamics of
the T-S PI-FC and they result from discretizing the continuous-time
PI controller. Tustin’s method leads to the incremental form of
the discrete-time PI controller:

DuðkÞ ¼ KP½DeðkÞ þm eðkÞ� (34)

and to its parameters

KP ¼ kc Ti �
Ts

2

� �
; m ¼ 2 Ts

2 Ti � Ts
(35)
[(Fig._14)TD$FIG]

Fig. 14. Structure and input membership functions of Takagi-Sugeno PI-fuzzy

controller.
obtained by the model equivalence principle as shown in [105],
where Ts is the sampling period set in accordance with the
requirements of quasi-continuous digital control.

The Two Inputs-Single Output fuzzy controller (TISO-FC) block
presented in Fig. 14 is characterized by the weighted average
method in the defuzzification module, and by the SUM and PROD
operators in the inference engine. The consequents of the fuzzy
control rules are modelled by means of the two terms, fC1(k) and
fC2(k):

f C1ðkÞ ¼ KP½DeðkÞ þmeðkÞ�; f C2ðkÞ ¼ h f C1ðkÞ: (36)

The parameter h is introduced in (36) to reduce the overshoot of
the fuzzy control system and eventually the downshoot, and these
appear if e(k) and De(k) have the same signs. Therefore, the rule
base of the TISO-FC block is formulated as
The modal equivalence principle results in the following tuning
equation, which reduces the number of tuning parameters of the T-
S PI-FC:

BDe ¼ m Be: (38)

The application of the ESO method and of the modal
equivalence principle leads to only three tuning parameters for
the T-S PI-FC. These parameters are included in the controller
parameter vector r, which is also the vector variable of the
objective function:

r ¼ ½r1 r2 r3 �
T ¼ ½b Be h �T : (39)

As shown in the previous section, a reduced process gain
sensitivity is obtained by using the objective function

IðrÞ ¼
X1
k¼0

½e2ðkÞ þ g2
kPs

2
kPðkÞ

2�; (40)

where the variables in the sum depend on r. The optimization
problem is similar to (30):

r� ¼ arg min
r2Dr

IðrÞ; (41)

where r* is the optimal value of the controller parameter vector r,
and Dr is the feasible domain of r. Solving (41) guarantees the
optimal tuning of T-S PI-FCs with a reduced process gain
sensitivity. GSA, PSO and SA algorithms are used in [114] to solve
the optimization problem defined in (41).

A sample of real-time experimental results obtained for the
fuzzy control system with the SA-based optimized T-S PI-FC is
presented in Fig. 15. The results are obtained after 50 iterations of
the SA algorithms, and they illustrate good control system
performance that can be improved if more iterations of the SA
algorithm are conducted.

7. Research challenges in fault diagnosis and nature-inspired
optimal control

Fault diagnosis in wind turbines is a challenging task. This is due
principally to their complex nonlinear dynamics and to their
strong non-stationary environments. Data mining and machines
learning methods represent an efficient solution to answer this
challenge. However, they suffer from several drawbacks:
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Fig. 15. Real-time experimental results for of the fuzzy control system with the SA-

based optimized T-S PI-FC.
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- t
hey require a sufficient number of patterns according to each
fault behaviour in order to obtain an efficient diagnosis model,
- t
hey are usually insensitive to the occurrence of undefined or
unpredicted fault or dangerous behaviour,
- s
ince the obtained models are not transparent, the obtained
results are hard to be interpreted and demonstrated,
- t
hey are not adapted to detect drift-like faults representing the
component degradation.

Therefore, it is justified to develop an advanced systematic
methodology and architecture of fault diagnosis in wind turbines
that should be able to:
- s
eparate any abnormal change caused by components degrada-
tion from normal change due to environmental (e.g., weather
conditions) or load (e.g., electricity network status) effects,
- d
escribe wind turbine dynamical behaviours (normal/degraded/
faulty) without the need to depth a priori knowledge, and
- p
rovide complete and coherent explanation of the observed fault
behaviour by providing two complementary forms of the global
diagnosis decision; the first form is a sequence of states and
actions in order to explain what happened to the system, while
the second form is the fault type label in order to identify what is
wrong with the system.

One solution to achieve these tasks is the use of dynamical
machine learning and data mining approaches. In these
approaches, the model parameters and structure are updated
continuously according to the novelties and changes in either its
internal dynamical states or in its environment conditions. This
update enables a continuous learning of the system behaviours
leading to improve or at least to maintain its performance over
time.

The main drawbacks of NIOAs, that can be also considered as
challenges of NIOAs applied to the tuning of fuzzy controllers in
industrial applications, are twofold:
- t
hey require a large number of evaluations of the objective
functions in the optimization (that correspond to the fitness
functions in the NIOAs), which requires a large number of
experiments conducted on the real-world control systems, and
this is critical in industry,
- t
he presence of random parameters in the NIOAs, which affects
the results that cannot be transferred to industry because they
could not be repeatable after several experiments/trials.

A convenient approach to cope with the first drawback is to
introduce, as outlined in Section 5, the gradient in the update laws
for the variables of the NIOAs (i.e., the tuning parameters of the
controllers). This can be associated with the experiment-based
estimation of the gradient in the framework of data-driven control.
The main data-driven techniques are Iterative Feedback Tuning
[134,135], Correlation-based Tuning [136,137], Simultaneous
Perturbation Stochastic Approximation [138,139], data-driven
predictive control [140,141], Model-free Control [142,143], Mod-
el-free Adaptive Control [144,145], unfalsified control [146], [147],
and adaptive online Iterative Feedback Tuning [148]. The number
of experiments conducted on the real-world processes needed in
the implementation these techniques must be reduced, and this
will lead to novel experimental schemes and control structures.

As shown in [149,150], chaos describes the complex behaviour
of nonlinear deterministic systems. Due to the non-repetition of
chaos, the introduction of chaos in NIOAs can carry out overall
searches at higher speeds than stochastic ergodic searches that
depend on probabilities. For example, the application of chaotic
sequences in [150,151] instead of random sequences in PSO
algorithms leads to the diversification of the population of particles
and improves PSO algorithms’ performance in preventing prema-
ture convergence to local minima. That is the reason why a first
way to cope with the second drawback is to generate the random
parameters in NIOAs by chaotic maps. The eventual stabilization of
the chaotic maps can also be considered, and some recent
examples of chaotic maps considered as nonlinear dynamic
systems stabilized by fuzzy control are given in [152–154].

Another way to mitigate the effects of the second drawback is to
modify the objective functions by adding weighted terms that
result from the definition of sensitivity models with respect to the
random parameters in the NIOAs. Let the general expressions of the
velocity and position update laws in an NIOA be

viðkþ 1Þ ¼ fðviðkÞ;a; avar;iðkÞÞ;
xiðkþ 1Þ ¼ xiðkÞ þ viðkÞ;

(42)

where k is the index of the current iteration, the subscript i, i = 1 . . . N,
indicates ith agent in the population that consists of the total
number of N agents, viðkÞ ¼ ½ v1

i ðkÞ . . . vd
i ðkÞ . . . vq

i ðkÞ �
T 2Rq is

the velocity vector of ith agent, vd
i ðkÞ is the velocity of ith agent in dth

dimension, d = 1 . . . q, q is the dimension of the search space, i.e., the
number of variables of the objective function, xiðkÞ ¼
½ x1

i ðkÞ . . . xd
i ðkÞ . . . xq

i ðkÞ �
T 2Rq is the position vector of ith

agent, xd
i ðkÞ is the position of ith agent in dth dimension, d = 1 . . . q,

avar,i is the vector that includes all variables specific to the NIOA
(accelerations, forces, etc.), a ¼ ½a1 a2 . . . am �T 2Rm is the
random parameter vector of the NIOA, with the elements aa,
a = 1 . . . m, which are the random parameters in the NIOA, and the
vector function the function f must be differentiable with respect to
the random parameters aa, a = 1 . . . m.

Eq. (42) can be viewed as the state-space equations of a
nonlinear discrete-time dynamical system in the iteration domain,
with the state vector

½ ðviðkÞÞT ðxiðkÞÞT �
T ¼ ½ x1;iðkÞ . . . xb;iðkÞ . . . x2q;iðkÞ � 2R2q:

(43)

In this context, the state sensitivity functions laa
b ; b ¼ 1 . . . 2q,

are defined as follows:

laa

b ¼
@xb;i

@aa

� �
aa ;0

; b ¼ 1 . . . 2q; a ¼ 1 . . . m; (44)
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where the subscript 0 indicates the nominal value of the random
parameter aa, a = 1 . . . m. Adding one or more properly weighted
terms of type ðlaa

b Þ
2
; b ¼ 1 . . . 2q, or jlaa

b j; b ¼ 1 . . . 2q, in the
objective functions, will result in NIOAs with a reduced sensitivity
with respect to their random parameters.

This suggested sensitivity reduction approach is more general,
and it can be combined with several other objective functions that
come from the field of industrial applications. Such objective
functions are presented in various forms in [155–165].

All optimization problems should account for constraints
imposed from the specific industrial environment. The formulation
of constraints depends on the industrial environments related to
the optimization problems and/or on specific systems engineering
analysis aspects [166–173].

8. Conclusions

This paper has addressed a brief overview on fault diagnosis and
on nature-inspired optimal control in industrial applications.
Recent developments in machine learning, data mining and
evolving soft computing techniques for fault diagnosis have been
considered.

The theoretical results are accompanied by illustrative indus-
trial process applications. These examples concern a real liquid
level control application, wind turbines and a nonlinear servo
system.

This paper has proposed the following classification of internal
methods for the fault diagnosis of wind turbines:
- p
arameter identification,

- o
bserver- and state-based approaches,

- s
ignal- or feature-based approaches.

A lot of NIOAs applied to the tuning of the parameters of
controllers in industrial applications are known and reported
today. This paper has highlighted just part of them, the most recent
ones, and only those that treat concrete industrial applications.
That is the reason why genetic algorithms have not been presented,
and other NIOAs have been shown: PSO, GSA, SA, CE, CSS and BFOA.
The authors consider that it is necessary to understand the basics
of the operating principle and of the mathematical characteriza-
tions of the fuzzy controllers that are subjected to optimal tuning.

The nature-inspired optimal tuning of controllers has been
divided in linear and nonlinear controllers. A trade-off to these
controllers is represented by the Tensor Product (TP) model
transformation that exhibits two advantages proven in many
applications [174–183]:
- A
lthough the transfer function of the product decision operator-
based Takagi-Sugeno fuzzy models and the function of the TP
model is generally the same, there is an important difference.
This difference comes from the fact that the Takagi-Sugeno fuzzy
model means a fuzzy combination of locally linearized Linear
Time-Invariant (LTI) models, where the locality is expressed by
the shape of the antecedent fuzzy sets. But, in case of TP model
the weighting functions (that correspond to the membership
functions in the fuzzy models) may not have locality, they spread
in the whole interval of interest, so as the LTI components of the
model cannot readily be assigned to a definite operation point.
They are mostly vertexes of a polytopic structure as emphasized
in [100].
- It
 allows the modification of the parameter varying convex
combination according to the designer’s option. The type of
convex combination influences the further Linear Matrix
Inequality (LMI) design and, therefore, the control system
performance. Hence, the design can employ the manipulation of
the convex hull specific to TP model transformation beside the
manipulation of the LMIs, so more flexibility is achieved.

The presentation of rather real-time experiments instead of
digital simulation results is a perspective of NIOAs. In this context
the popularity of NIOAs in the optimal tuning of controllers will
increase only if future applications as, for example, those from
[184–189], will exhibit significantly better performance compared
to existing ones.

The combination of fault diagnosis and NIOAs is one of the
perspectives that the authors are suggesting. On the one hand, the
NIOAs can be applied in the optimal tuning of the models involved
in fault diagnosis. On the other hand, the fault diagnosis methods
can lead to conditions that can be incorporated as additional
constraints in the design and implementation of optimal
controllers. This will attract both researchers and practitioners,
and will represent a guarantee for future successful industrial
applications.
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fuzzy modeling to fault tolerant control, Evolving Systems 1 (4) (2010) 209–223.

[29] B.S.J. Costa, P.P. Angelov, L.A. Guedes, Real-time fault detection using recursive
density estimation, Journal of Control, Automation and Electrical Systems 25 (4)
(2014) 428–437.

[30] B.S.J. Costa, P.P. Angelov, L.A. Guedes, Fully unsupervised fault detection and
identification based on recursive density estimation and self-evolving cloud-
based classifier, Neurocomputing 150 (2015) 289–303.

[31] B.S.J. Costa, P.P. Angelov, L.A. Guedes, A new unsupervised approach to fault
detection and identification, in: Proceedings of 2014 International Joint Confer-
ence on Neural Networks, Beijing, China, (2014), pp. 1557–1564.

[32] P. Angelov, Autonomous Learning Systems: From Data to Knowledge in Real
Time, John Willey and Sons, Chichester, UK, 2013.

[33] P. Angelov, X. Zhou, Evolving fuzzy-rule-based classifiers from data streams, IEEE
Transactions on Fuzzy Systems 16 (6) (2008) 1462–1475.

[34] P. Angelov, R. Yager, A new type of simplified fuzzy rule-based systems, Inter-
national Journal of General Systems 41 (2) (2012) 163–185.

[35] A. Marins, Bancada de processo continuo, Manual tecnico, De Lorenzo do Brasil,
Brasil, 2009.

[36] B.S.J. Costa, C.G. Bezerra, L.A.H.G. de Oliveira, A multistage fuzzy controller:
toolbox for industrial applications, in: Proceedings of 2012 IEEE International
Conference on Industrial Technology, Athens, Greece, (2012), pp. 1142–1147.

[37] How Stuff Works, Horizontal-axis Turbine, 2006, http://static.howstuffworks.
com/gif/wind-power-horizontal.gif.

[38] The Encyclopedia of Alternative Energy and Sustainable Living, Wind Turbine
(2005). http://www.daviddarling.info/encyclopedia/W/AE_wind_turbine.html.

[39] D. Milborrow, Operation and maintenance costs compared and revealed, Wind
Stats Newsletter 19 (3) (2006).

[40] Caithness Windfarm Information Forum, Summary of Wind Turbine Accident
data to 30 June 2014, 2014.

[41] A. Kusiak, A. Verma, A data-driven approach for monitoring blade pitch faults in
wind turbines, IEEE Transactions on Sustainable Energy 2 (1) (2011) 87–96.

[42] A. Verma, A. Kusiak, Fault monitoring of wind turbine generator brushes: a data
mining approach, Journal of Solar Energy Engineering 134 (2012) 1–9.

[43] T.W. Verbruggen, Wind turbine operation & maintenance based on condition
monitoring WT-V, Final report ECN-C–03-047, ECN, Petten, The Netherlands,
2003.

[44] F.P.G. Márquez, A.M. Tobias, J.M.P. Pérez, M. Papaelias, Condition monitoring of
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