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WOLD DECOMPOSITION FOR OPERATORS
CLOSE ISOMETRIES

Laura MANOLESCU

Abstract

The Wold decomposition theorem is used to decompose a wide sense sta-
tionary random process into its deterministic and purely nondeterministic
parts and, also, has an important role in signal processing, factorization the-
ory and the description of dilations in Hilbert spaces. In geometric language,
this means that an isometry is a direct sum between an unitary operator and
a shift.

In Bergman and Dirichlet spaces, the shift operator is not an isometry,
but it is a left invertible operator. In this paper we give conditions on the left
invertible operators such that a operator version, in the sense of Rosenblum
and Rovnyak, of the Wold decomposition to take place.1

1 Introduction

The Wold decomposition theorem [18] applies to the analysis of stationary random
processes. It provides a representation of such processes and also an interpretation
of the representation in terms of linear prediction: an arbitrary unpredictable
process can be written as an orthogonal sum of a regular process and a predictable
process [18].

In 1961, Paul R. Halmos [9] gave the following form of the Wold decomposition
theorem in operator language:

1Mathematical Subject Classification(2020): 47A15, 47A65, 42C15
Keywords and phrases: Wold decomposition, wandering subspace,left invertible operators,

random processes, frames in Hilbert spaces

3



4 L. Manolescu

Theorem 1.1. Let V be an isometry on a Hilbert space H. Then there is a
decomposition of H as a direct sum of two mutually orthogonal subspaces

H = H∞
⊕

Hs

such that

(i) H∞ and Hs reduce V .

(ii) The restriction of V to H∞ is an unitary operator.

(iii) The restriction of V to Hs is unitarily equivalent to an unilateral shift.

The decomposition is unique.

We recall that a subspace H0 of H reduce V if H0 is invariant to V and its
adjoint. In fact, the subspaces H∞ and Hs are obtained in the following
manner

H∞ =

∞⋂
n=1

V nH

Hs =

∞⊕
n=1

V nW,

where W := H ⊖ VH is the orthogonal complement of VH in H. Here, W is a
wandering subspace for V, that is

V mW ⊥ V nW, m ̸= n.

See also [10], [14].

Theorem 1.1 has some remarkable consequences (see [3], [11]) such as:

• the deduction of the Beurling’s invariant subspace Theorem in Hardy spaces;

• the description of the structure of a wide-sense stationary random sequence;

• the description of the structure of isometric and unitary dilation spaces for
contractions of a Hilbert space (see Nagy and Foiaş [17]).

The above version of the Wold decomposition emphasizes spatial structure.
An operator version of the Wold decomposition of an isometry is given by M.
Rosenblum and J. Rovyak in their book [13].

But in Bergman and Dirichlet spaces the shift operator is no longer an isom-
etry. Remarkable Wold type Theorems for classes of left invertible operators and
applications to problems of invariant subspaces were obtained by S. Richter [12]
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and S. Shimorin [16]. In 1991, A. Aleman, S. Richter, C. Sundberg [2] proved the
Beurling type theorem for Bergman shift, which was a big step in the study of
invariant subspaces of the Bergman shift. This result became an important tool
in the function theory of L2

a because it shows the structure of invariant subspaces
of the Bergman space.

This paper is motivated by a problem posed by S. Shimorin [16]. The prob-
lem is to give new conditions for a left invertible operator to imply Wold type
decompositions. The aim of this paper is to give conditions on the left invertible
operators such that a operator version of the Wold decomposition can be proved.
The left invertible operators (the operators bounded below) are the analysis op-
erators from frame theory (see [5], [8]).

2 Results

We denote by L(H) the algebra of all linear bounded operators on the Hilbert
space H and for T ∈ L(H), we denote by T ∗ the adjoint operator of T . The
following lemma is a well-known result.

Lemma 2.1. Let be T ∈ L(H). The following are equivalent

(i) T is left invertible;

(ii) T is bounded below, i.e. there exists a constant m > 0 such that

∥Th∥ ≥ m∥h∥, h ∈ H;

(iii) T ∗ is surjective;

(iv) T ∗T is invertible.

If T is left invertible, then TH is a closed subspace of H. As in [12, 16] we
distinguish the following left-inverse of T

T− = (T ∗T )−1T ∗

and its kernel
W = H ⊖ TH = KerT ∗.

The subspace W is called the defect of T. It is clear that if T is left invertible then
Tn is left invertible.

In the following, D denotes the set of all left invertible operators on H for
which the following condition holds

(Tn)− = (T−)n, for all n ≥ 2. (1)
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Remark 2.2. If T is an isometry, then T ∗T = I, hence T− = T ∗ and (1) holds.
In fact, if T is left invertible and T− = T ∗, then T is an isometry. Indeed, from
the relation (T ∗T )−1T ∗ = T ∗ it follows

(T ∗T )−1T ∗T = T ∗T

hence I = T ∗T.

In the following we give conditions for operators to be in the class D.

Proposition 2.3. Let Q ∈ L(H) be left invertible and quasinormal. Then
Q ∈ D.

Proof. Since Q quasinormal, we have (Q∗Q)Q = Q(Q∗Q).

We claim that this implies that Q∗nQn = (Q∗Q)n, for all n ≥ 2. We prove
this by induction on n.

Indeed, for n = 2

Q∗2Q2 = Q∗(Q∗Q)Q = (Q∗Q)(Q∗Q)

If Q∗nQn = (Q∗Q)n then

(Q∗Q)n+1 = Q∗Q(Q∗Q)n = (Q∗Q)Q∗nQn

= Q∗n(Q∗Q)Qn.

We used the fact that Q is quasinormal, hence (Q∗Q)Q∗ = Q∗(Q∗Q) and by in-
duction, we have (Q∗Q)Q∗n = Q∗n(Q∗Q).

So we get(Q∗Q)n+1 = Q∗n+1Qn+1.

It follows

(Q∗Q)−n = (Q∗nQn)−1.

Hence

(Q−)n = [(Q∗Q)−1Q∗]n = Q∗n(Q∗Q)−n

= Q∗n(Q∗nQn)−1 = (Qn)−.

We recall that two operators T1, T2 are double commuting if T1T2=T2T1 and
T1T

∗
2=T ∗

2 T1
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Proposition 2.4. Let T1, T2 be double commuting operators in D. Then

T1T2 ∈ D.

Proof. It is clear that T1T2 is left invertible since

T−
2 T−

1 T1T2 = T−
2 T2 = I.

From hypothesis,
T2(T

∗
1 T1) = (T ∗

1 T1)T2

hence
(T ∗

1 T1)
−1T2 = T2(T

∗
1 T1)

−1.

It follows that

T1T2 = [(T1T2)
∗(T1T2)]

−1(T1T2)
∗

= (T ∗
2 T2T

∗
1 T1)

−1T ∗
2 T

∗
1

= (T ∗
1 T1)

−1(T ∗
2 T2)

−1T ∗
1 T

∗
2

= (T ∗
1 T1)

−1T ∗
1 (T

∗
2 T2)

−1T ∗
2

= T−
1 T−

2 .

From here we get

[(T1T2)
−]n = (T−

1 T−
2 )n = (T−

1 )n(T−
2 )n

= (Tn
1 )

−(Tn
2 )

− = (Tn
1 T

n
2 )

− = [(T1T2)
n]−,

since Tn
1 , T

n
2 ∈ D and Tn

1 and Tn
2 are double commuting.

Corollary 2.5. Let be T1 ∈ D and T2 be normal and invertible, and T1T2 = T2T1.
Then T1T2 ∈ D.

Proof. From the hypothesis it follows that T2 ∈ D. From the Fuglede-Putnam
theorem [10] it follows T ∗

1 T2 = T2T
∗
1 . Now, the conclusion is a consequence of

Proposition 2.4.

Remark 2.6. From the above corrollary, we also obtain that every quasinormal
and left invertible operator is in D.

Indeed, T admits polar decomposition T = V A, with V isometry,
A = (T ∗T )1/2 and V A = AV (see [7]).

Next, we give an example of quasinormal, left invertible operator that is not
an isometry.
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Let K be a Hilbert space of dimension at least 2 and

l2(K) = {k̃ = (k0, k1, . . . , kn, . . .)|kj ∈ K, j = 0, 1, . . .} and ∥k̃∥22 :=
∞∑
j=0

∥kj∥2 < ∞}.

Let L ∈ L(K) be a positive invertible operator such that ∥Lk∥ ≥ m∥k∥, for
all k and some m > 1. We define the following operator on l2(K):

T k̃ := (0, Lk0, Lk1, . . .)

Note that T is bounded on l2(K) and is not surjective;

(T ∗T k̃)n = L2kn

[T (T ∗T )k̃] = (0, L3k0, . . . , L
3kn, . . .)

(T ∗T )T k̃ = T ∗T (0, Lk0, . . . , Lkn, . . .) = (0, L3k0, . . . , L
3kn, . . .)

It follows that T is quasinormal.

We have ∥T k̃∥22 =
∑

∥Lkn∥2 ≥ m2
∑

∥kn∥2.
This implies that T is not an isometry, since ∥T k̃∥22 ̸=

∑
∥kn∥2.

We give conditions for the weighted shifts [15] and weighted translation oper-
ators [6] to be in D.

Proposition 2.7. Every bounded left invertible unilateral weighted shift on l2 is
in the class D.

Proof. Let T be a unilateral weighted shift, which is bounded below, ie
Tek = wkek+1, k ≥ 0 and C1 ≤ wn ≤ C2, where C1, C2 are positive constants.

We have:

T ∗ek =

{
wk−1ek−1, k ≥ 1

0, k = 0;

Tnek = wkwk+1 · · ·wk+n−1ek+n, and

T ∗nek =

{
wk−1wk−2 · · ·wk−nek−n, k ≥ n

0, 0 ≤ k < n.

It follows

(T−)∗ek = T (T ∗T )−1ek = T

(
1

|wk|2
ek

)
=

1

|wk|2
wkek+1

=
1

wk
ek+1
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and

(T−)∗
n
ek =

1

wkwk+1 · · ·wk+n−1
ek+n.

On the other hand,

T ∗nTnek = wkwk+1 · · ·wk+n−1wk+n−1 · · ·wkek

which implies

[(Tn)−]∗ = Tn

(
1

|wk|2 · · · |wk+n−1|2

)
ek

=
1

wk · · ·wk+n−1
ek+n

It follows (T−)n = (Tn)−, for all n ≥ 2.

From the above Proposition, it follows that the Bergman shifts, i.e. the shifts

with sequence weights

{√
k + 1

k + 2

}
k∈N

and also, the Dirichlet shifts, i.e. the shifts

with sequence weights

{√
k + 2

k + 1

}
k∈N

are in the class of D.

Proposition 2.8. Every left invertible weighted translation operator on L2(0,∞)
is in D.

Proof. Let T be a weighted translation operator, i.e.

Tf(x) =


φ(x)

φ(x− t)
f(x− t), if x > t

0, if 0 < x ≤ t

Further we have

T ∗f(x) =
φ(x+ t)

φ(x)
f(x+ t)

Tnf(x) =
φ(x)

φ(x− nt)
f(x− nt), for x > nt

and

T ∗nf(x) =
φ(x+ nt)

φ(x)
f(x+ nt).

It follows that

T ∗nTnf(x) =

[
φ(x+ nt)

φ(x)

]2
f(x),
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T ∗Tf(x) =

[
φ(x+ t)

φ(x)

]2
f(x),

T−f(x) =
φ(x)

φ(x+ t)
f(x+ t),

(T−)nf(x) =
φ(x)

φ(x+ nt)
f(x+ nt) and

(Tn)−f(x) =
φ(x)

φ(x+ nt)
f(x+ nt).

Next, we give the main result of this paper. We recall here the following
notation T− = (T ∗T )−1T ∗.

Theorem 2.9. Let T ∈ L(H) be in D. Then

(i) P0 := I − TT− is the projection of H on W := H ⊖ TH;

(ii) as n → ∞, Tn(T−)n converges strongly to the projection operator, P, on

∞⋂
n=1

TnH;

(iii)
∞∑
j=0

T jP0(T
−)j converges strongly to Q := I − P ;

(iv) QH = {h ∈ H : lim
n→∞

∥(T ∗nTn)−1/2T ∗n∥ = 0};

(v) PH and QH reduce T ;

(vi) T |PH is surjective;

(vii) I = P +
∞∑
j=0

T jP0(T
−)j

Proof. Let Pn = Tn(T−)n, n ≥ 1. We prove that Pn is the orthogonal projection
of H on TnH, n ≥ 1. Indeed,

P 2
1 = T (T−T )T− = TT− = P1
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P ∗
1 = (T−)∗T ∗ = T (T ∗T )−1T ∗ = TT− = P1.

Hence P1 is the orthogonal projection of H on P1H = TT−H = TH since T− is
surjective. For n ≥ 2, Tn is also left invertible.

From the above result it follows that Pn = Tn(Tn)− = Tn(T−)n is the orthog-
onal projection of H on TnH.

It is clear that P0 : I − TT− is the orthogonal projection of H on H ⊖ TH.

We prove that Pnh → Ph, for all h ∈ H and TmW ⊥ TnW, m ̸= n.
It is clear that Pn −Pn+1 is the orthogonal projection of H on TnH

⋂
(Tn+1H)⊥.

It follows
(Pn − Pn+1)H ⊥ (Pm − Pm+1)H,m ̸= n.

Hence

m∑
n=0

∥Pnh− Pn+1h∥2 = ∥
m∑

n=0

(Pnh− Pn+1h)∥2

= ∥h− Pm+1h∥2 ≤ 4∥h∥2

It follows that
∞∑
n=0

∥Pnh−Pn+1h∥2 converges, i.e. for every ε > 0, there exists an

N(ε) such that for n ≥ N(ε), we have:

∥Pnh− Pn+1h∥2 + ∥Pn+1h− Pn+2h∥2 + . . .+ ∥Pn+p−1h− Pn+ph∥2 < ε

⇐⇒ ∥Pnh− Pn+ph∥2 < ε, for all p ∈ N, p ≥ 1.

So (Pnh) converges to an element in H.

We denote Ph = lim
n→∞

Pnh. We prove that P is the orthogonal projection of

H on

∞⋂
n=1

TnH.

Indeed, we consider h ∈
∞⋂
n=1

TnH. Then h ∈ TnH, for all n ≥ 1 and Pnh = h,

for all n ≥ 1. Hence Ph = h.

On the other hand, if we take h ⊥
∞⋂
n=1

TnH. Notice that, by the definition of P ,

it follows that Ph ∈
∞⋂
n=1

TnH. Then

P (Ph) = lim
n→∞

Pn(Ph) = lim
n→∞

Ph = Ph
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and hence
∥Ph∥2 = ⟨Ph, Ph⟩ = ⟨P 2h, h⟩ = ⟨Ph, h⟩ = 0.

Thus Ph = 0.

We have

Pn − Pn+1 = Tn(T−)n − Tn+1(T−)n+1

= Tn(I − TT−)(T−)n

= TnP0(T
−)n

and
(I − P1) + (P1 − P2) + . . .+ (Pn − Pn+1) = I − Pn+1.

Hence
∞∑
n=0

TnP0(T
−)n converges to I − P = Q.

For proving (iv), we observe that

h ∈ QH ⇐⇒ Ph = 0 ⇐⇒ lim
n→∞

∥Tn(T−)nh∥ = 0.

The last equality is equivalent with

lim
n→∞

⟨Tn(T ∗nTn)−1T ∗nh, Tn(T ∗nTn)−1T ∗nh⟩ = 0

i.e. lim
n→∞

∥(T ∗nTn)−1/2T ∗nh∥ = 0.

For proving that H∞ reduces T we note that

Pn+1T = Tn+1(T−)n+1T

= Tn+1(T−)n(T−T ) = Tn+1(T−)n

TPn = TTn(T−)n = Tn+1(T−)n

Hence Pn+1T = TPn ⇒ PT = TP hence H∞ reduces T.

Next we prove now that T |H∞ is surjective.

Let h0 ∈ H∞. It follows h0 ∈ TnH, for all n ≥ 1.

For any n ≥ 1 there exists hn ∈ H so that h0 = Tnhn. Then

h0 = Th′n, h
′
n ∈ Tn−1H, n ≥ 1 ⇒ T−h0 = h′n, n ≥ 1 ⇒ h′n = h′1, n ≥ 1.

Hence
h0 = Th′1, h

′
1 ∈ Tn−1H, n ≥ 1 ⇒ h′1 ∈

⋂
n≥1

Tn−1H = H∞.
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Theorem 2.10. Let T ∈ D. Then W := H ⊖ TH is a wandering subspace of H
and

H = H∞ ⊕Hs,

where

H∞ =

∞⋂
n=1

TnH, Hs =

∞⊕
n=0

TnW.

H∞ and Hs are reducing spaces of T and T |H∞ is bijective. The decomposition
is unique.

Proof. The fact that the decomposition exists follows from Theorem 2.9. We prove
that the decomposition is unique. Let H = H′

∞
⊕

H′
s a decomposition such that

TH′
∞ = H′

∞

H′
s =

∞⊕
n=0

TnW ′,

where W ′ is a wandering subspace of T . We prove that H′
∞ = H∞ and H′

s = Hs.
Indeed,

W = H ⊖ TH = (H′
∞
⊕

H′
s)⊖ (TH′

∞
⊕

TH′
s)

= (H′
∞
⊕

H′
s)⊖ (H′

∞
⊕

TH′
s)

= H′
s ⊖ TH′

s = W ′

We use the following fact:
If H = H1 ⊕H2 is such that H1, H2 are reducing subspaces of T , then

TH = TH1 ⊕ TH2.

This is clear because

h = h1 + h2, h1 ⊥ h2, h1 ∈ H1, h2 ∈ H2

Th = Th1 + Th2 and ⟨Th1, Th2⟩ = ⟨T ∗Th1, h2⟩ = 0.

The following result is a Wold-type decomposition for a pair of double com-
muting operators in D.

Theorem 2.11. Let be T1, T2 ∈ D double commuting. Then H has the following
orthogonal decomposition

H = H∞∞
⊕

H∞s

⊕
Hs∞

⊕
Hss,
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where H∞∞, H∞s, Hs∞, Hss are reducing spaces of Ti(i = 1, 2) and

H∞∞ =
∞⋂

m,n=1

Tm
1 Tn

2 H

H∞s =

( ∞⋂
m=1

Tm
1 H

)⋂( ∞⊕
n=0

Tn
2 W2

)

Hs∞ =

( ∞⊕
m=0

Tm
1 W1

)⋂( ∞⋂
n=1

Tn
2 H

)

Hss =

( ∞⊕
m=0

Tm
1 W1

)⋂( ∞⊕
n=0

Tn
2 W2

)
.

Proof. We denote by Qi the orthogonal projection on

∞⋂
n=1

Tn
i H, (i = 1, 2)

From hypothesis, Q1, Q2 are commuting. The decomposition given in Theorem
2.11 follows from the identity

I = Q1Q2 +Q1(I −Q2) + (I −Q1)Q2 + (I −Q1)(I −Q2).

Comments. The results of this paper appeared on Arxiv, in 2017, under my
maiden name, Laura Găvruţa: https://arxiv.org/abs/1704.04200.

After the paper was posted on Arxiv, we saw the paper [4] and the book [1],
in connection with the subject of our paper.

Acknowledgments. I would like to thank Dr. Olivia Constantin for intro-
ducing me in the theory of Bergman spaces and for her useful remarks.

Also, I thank Dr. Sameer Chavan for his remarks regarding our paper.
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Abstract

Using the section method we characterize the solutions f : U → Y of the
following four equations

n∑
i=0

(−1)
n−i (n

i

)
f
(

m
√
um + ivm

)
= (n!) f (v) ,

f (u) +

n+1∑
i=1

(−1)
i (n+1

i

)
f
(

m
√
um + ivm

)
= 0,

n∑
i=0

(−1)
n−i (n

i

)
f
(
arcsin

∣∣sinu sini v
∣∣) = (n!) f (v) and

f (u) +

n+1∑
i=1

(−1)
i (n+1

i

)
f
(
arcsin

∣∣sinu sini v
∣∣) = 0,

where m ≥ 2 and n are positive integers, U ⊆ R is a maximally relevant
real domain and (Y,+) is an (n!) -divisible Abelian group. 1

1 Introduction

Educated at the Cluj school of functional equations, approximations and convex-
ity founded by Academician Tiberiu Popoviciu, Professor Borislav Crstici had
among his main concerns the functional characterization of polynomials and their
generalizations. Without pretending exhaustiveness, we mention here Professor’s
thesis dedicated to the functional equations that define polynomials [7] and the
additions made in [18], [19] and [8]. A brief presentation of Professor’s personality

1Mathematical Subject Classification (2020): 39A70, 39B52, 47B39
Keywords and phrases: monomial, Fréchet polynomial, section method.
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is given in [6]. In this context we mention the works [1], [2], [3], [4], [5], [9], [10],
[11], [12], [13], [20] and [21], published only in the last decade and which contain
some generalizations and analyses of different types of polynomials.

Let m,n be positive integers, m ≥ 2 and (Y,+) be an (n!)-divisible Abelian
group - i.e. the group homomorphism Y → Y , y 7→ (n!) y is an isomorphism.
This paper is dedicated to characterize the solutions f : R → Y of the equations

n∑
i=0

(−1)n−i (n
i

)
f
(

m
√
um + ivm

)
= (n!) f (v) for all u, v ∈ R, (1)

f (u) +

n+1∑
i=1

(−1)i
(
n+1
i

)
f
(

m
√
um + ivm

)
= 0 for all u, v ∈ R, (2)

and the solutions f : U := R⧹ {kπ| k ∈ Z} → Y of the equations

n∑
i=0

(−1)n−i (n
i

)
f
(
arcsin

∣∣sinu sini v∣∣) = (n!) f (v) for all u, v ∈ U , (3)

f (u) +
n+1∑
i=1

(−1)i
(
n+1
i

)
f
(
arcsin

∣∣sinu sini v∣∣) = 0 for all u, v ∈ U . (4)

The tool use for these characterizations is the section method [14], [15].

2 Framework

Everywhere in what follows (X,+) is a commutative semigroup, n is a positive
integer and (Y,+) is an (n!)-divisible Abelian group. We denote by Si the set of
the solutions of equation (i); for instance S1 is the set of all functions f : R → Y
that satisfy equation (1). Let j be a nonnegative integer; we will use the operator

∆j
y : Y X → Y X , ∆j

yρ (x) :=

j∑
i=0

(−1)j−i (j
i

)
ρ (x+ iy)

for y ∈ X; Mj (X,Y ) denotes the j-monomials, i.e. the solutions ρ : X → Y of
the equation

∆j
yρ (x) = (j!) ρ (y) for all x, y ∈ X

and Pn (X,Y ) denotes the (Fréchet) n-polynomials, i.e. the solutions ρ : X → Y
of the equation

∆n+1
y ρ (x) = 0 for all x, y ∈ X.

The first characterization of continuous real n-polynomials by this equation was
realized by Fréchet in [17]. A detailed analysis of Fréchet polynomials in the
present framework was given by Djoković in [16]; from this paper we will use only
the following result.
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Lemma 2.1. Let ρ : X → Y. Then ρ ∈ Pn (X,Y ) if and only if there exists

ρj ∈ Mj (X,Y ) for all j ∈ {0, 1, ..., n} such that ρ =
n∑

j=0
ρj.

The section method [14], [15] provides, among other things, a technique for
solving - partial or total - some equations whose solutions are composite functions.
We will give below only a few rudiments of this method adapted to our goals.

Let g : U → X be a surjection and g′ : X → U be a section of g (i.e.
g ◦ g′ = idX). Let also the functions

G : Y X ×X2 → Y , H : Y × Y → Y

and the equation

G
(
f ◦ g′, (g (u) , g (v))

)
= H (f (u) , f (v)) for all u, v ∈ U, (5)

where the unknown is f : U → Y . The equation

G (ρ, (x, y)) = H (ρ (x) , ρ (y)) for all x, y ∈ X, (6)

where ρ : X → Y is the unknown, is the characteristic of equation (5).
We will use the following results extracted from Th. 2.4.1, Th 2.4.2 and Th.

2.6.6 in [14].

Lemma 2.2. 1. {f ◦ g′|f ∈ S5} ⊆ S6.
2. Sc5 := {ρ ◦ g|ρ ∈ S6} ⊆ S5.
3. If f ∈ S5 and u0 ∈ U such that the function

f (U) → Y , y 7→ H (f (u0) , y) (or y 7→ H (y, f (u0)) )

is one-to-one, then f ∈ Sc5.

The functions in Sc5 are named canonical solutions (of equation (5)). Thus
Lemma 2.2.2 gives a partial solution for equation (5) and Lemma 2.2.3 provides
sufficient conditions under which a solution of equation (5) is a canonical solution.

In the following we will use the notions and the conventions introduced above.

3 Radical-Fréchet equations

Let m ≥ 2 be an integer, U = R and (X,+) be the additive semigroup defined by

(X,+) :=

{
(R,+) if m is odd
(R+,+) if m is even

,

where R+ := [0,∞).
First we characterize the solutions of the radical-monomial equation (1).
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Theorem 3.1. Let f : R → Y be a function. Then f is a solution of equation
(1) if and only if there exists an n-monomial ρ ∈ Mn (X,Y ) such that

f (u) = ρ (um) for all u ∈ R. (7)

Proof. We apply the section method for the surjection

g : R → X, u 7→ um,

its section

g′ : X → R, x 7→ m
√
x,

and the functions

G : Y X ×X2 → Y , G (ρ, (x, y)) := ∆n
yρ (x) ,

H : Y × Y → Y , H (y1, y2) := (n!) y2.

Then equation (1) becomes equation (5) and its characteristic is equation (6).
Therefore the characteristic of equation (1) is exactly the n-monomial equation

∆n
yρ (x) = (n!) ρ (y) for all x, y ∈ X

and all its solutions are in Mn (X,Y ) .
1. Let ρ ∈ Mn (X,Y ) and f : R → Y defined by (7). Then f = ρ ◦ g and,

according to Lemma 2.2.2, f is a solution of equation (1).
2. For proving the converse it suffices to show that S1 ⊆ Sc1. Let f be a

solution of equation (1). Since (Y,+) is (n!)-divisible, the function

f (R) → Y , y 7→ H (0, y) = (n!) y

is injective. According to Lemma 2.2.3, f is a canonical solution of equation (1),
i.e. there exists ρ ∈ Mn (X,Y ) such that f (u) = ρ (um) for all u ∈ R.

Now we are in position to characterize the solutions of the radical-Fréchet
equation (2).

Theorem 3.2. Let f : R → Y be a function. Then f is a solution of equation
(2) if and only if there exists ρi ∈ Mi (X,Y ) for all i ∈ {0, 1, ..., n} such that

f (u) = ρ0 (u
m) + ρ1 (u

m) + · · ·+ ρn (u
m) for all u ∈ R. (8)

Proof. As in the proof of the previous theorem, let

g : R → X, g (u) := um and g′ : X → R, g′ (x) := m
√
x.
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Let also be the functions

G : Y X ×X2 → Y , G (ρ, (x, y)) :=

n+1∑
i=1

(−1)i
(
n+1
i

)
ρ (x+ iy) and

H : Y × Y → Y , H (y1, y2) := −y1.

Then equation (2) can be written in the form (5) and its characteristic is (6) or,
equivalent, the Fréchet polynomial equation

∆n+1
y ρ (x) = 0 for all x, y ∈ X.

We note that the solutions of the last equation are given by Pn (X,Y ) and their
characterization is given by Lemma 2.1.

1. Let ρi ∈ Mi (X,Y ) for all i ∈ {0, 1, ..., n} and f : R → Y defined by (8).

Then ρ :=
n∑

i=0
ρi ∈ Pn (X,Y ) (by Lemma 2.1) and f = ρ ◦ g ∈ S2 (by Lemma

2.2.2).

2. Let f ∈ S2. To show that f can be expressed by (8) with ρi ∈ Mi (X,Y )

- or, equivalent, that f = ρ ◦ g, where ρ :=
n∑

i=0
ρi ∈ Pn (X,Y ) -, it is sufficient to

prove that f is a canonical solution of equation (2). But the function

f (R) → Y , y 7→ H (y, 0) = −y

is injective; according to Lemma 2.2.3, f ∈ Sc2, and the theorem is completely
proved.

4 Arcsine-Fréchet equations

Before proceeding to the characterizations of the solutions of the arcsine-Fréchet
equations (3) and (4), let us note that U := R⧹ {kπ|k ∈ Z} is the maximal domain
on which these equations has nontrivial solutions; indeed if there is k ∈ Z such
that kπ is in the domain, for u = kπ in (3) we get 0 = (n!) f (v), and, since
(Y,+) is (n!)-divisible we immediately obtain f = 0, i.e. S3 = {0}; analogously,
for v = kπ in (4) we get f = 0 and S4 = {0}.

In the following lines, the set X := (−∞, 0] is endowed with the addition of
real numbers, hence (X,+) is an Abelian semigroup.

Theorem 4.1. Let f : U := R⧹ {kπ|k ∈ Z} → Y . Then f ∈ S3 if and only if
there exists an n-monomial ρ ∈ Mn (X,Y ) and

f (u) = ρ (ln |sinu|) for all u ∈ U . (9)
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Proof. We apply the section method for

g : U → X, g (u) := ln |sinu| for all u ∈ U ,

its section
g′ : X → U , g′ (x) := arcsin ex for all x ∈ X,

and the functions G,H defined by

G : Y X ×X2 → Y , G (ρ, (x, y)) := ∆n
yρ (x) ,

H : Y × Y → Y , H (y1, y2) := (n!) y2.

We note that equation (3) becomes equation (5) and its characteristic is equation
(6) or, the monomial equation

∆n
yρ (x) = (n!) ρ (y) for all x, y ∈ X.

1. If ρ ∈ Mn (X,Y ) and f : U → Y is defined by (9), then f = ρ ◦ g and -
from Lemma 2.2.2 - f is a solution of equation (3).

2. Let f ∈ S3 and u0 ∈ U . Since (Y,+) is (n!)-divisible, the function

f (U) → Y , y 7→ H (f (u0) , y) = (n!) y

is an injection and, from Lemma 2.2.3, there exists an n-monomial ρ ∈ Mn (X,Y )
such that f = ρ ◦ g; therefore f satisfies relation (9).

Finally we characterize the solutions of equation (4).

Theorem 4.2. Let f : U → Y be a function. Then f is a solution of equation
(4) if and only if there exists the monomials ρi ∈ Mi (X,Y ) for i ∈ {0, 1, ..., n}
such that

f (u) =

n∑
i=0

ρi ((ln |sinu|)) for all u ∈ U . (10)

Proof. Let
g : U → X, g (u) := ln |sinu| for all u ∈ U ,

g′ : X → U , g′ (x) := arcsin ex for all x ∈ X,

G : Y X ×X2 → Y , G (ρ, (x, y)) :=
n+1∑
i=1

(−1)i
(
n+1
i

)
ρ (x+ iy) and

H : Y × Y → Y , H (y1, y2) := −y1.

We note that equation (4) can be rewritten in the form (5) and, consequently, its
characteristic is equation (6) or, equivalent, the Fréchet polynomial equation

∆n+1
y ρ (x) = 0 for all x, y ∈ X.
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Then, according to Lemma 2.2.2, Sc4 ⊆ S4. Moreover, if f ∈ S4 and u0 is an
arbitrary number in U , the function

f (U) → Y , y 7→ H (y, f (u0)) = −y

is bijective; from Lemma 2.2.3 we have f ∈ Sc4. Hence

S4 = {ρ ◦ g| ρ ∈ Pn (X,Y )} ,

and, by Lemma 2.1,

Pn (X,Y ) = M0 (X,Y ) +M1 (X,Y ) + · · ·+Mn (X,Y ) .

Consequently, if f : U → Y , then f ∈ S4 if and only if there exist ρi ∈ Mi (X,Y )

for i ∈ {0, 1, ..., n} such that f (u) =
n∑

i=0
ρi ((ln |sinu|)) for all u ∈ U , and the

theorem is completely proved.
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CURRENT DISTRIBUTION IN A MASSIVE
COATED HOLLOW CONDUCTOR

IN THE PRESENCE OF A FILAMENT

Dragan FILIPOVIĆ, Tatijana DLABAĈ

Abstract

In this paper we present separate rigorous analyses of the skin and prox-
imity effects in an inhomogeneous conductor in the presence of a filament.
The conductor consists of a massive hollow circular conductor coated with
a thin layer of different conductivity. The skin and proximity solutions are
assumed in the form of two infinite sums of the proper harmonics. The un-
known coefficients in the skin-effect case are found by applying boundary
conditions, while a system of two integral equations is used to determine the
unknown coefficients in the proximity-effect case, with no boundary condi-
tions involved. By using the found current density we derive formulas for the
conductor power loss.1

1 Introduction

There are very few cases where a solution for the current distribution of time-
varying currents can be obtained in a closed form. These cases include some
conductor configurations in the presence of a filament - massive circular conduc-
tor [1-3], thin tubular conductor [4,5], hollow massive conductor [2,6] thin two-
layer tubular conductor [7] and inhomogeneous massive solid conductor [8]. The
method of integral equations proved to be very powerful in these cases, requiring
no boundary conditions when the conductor is homogeneous.

In this paper we investigate the skin and proximity effects in the case of a
massive solid hollow circular conductor covered by a thin layer, in the presence
of a filament. Although the conductor is inhomogeneous, no boundary conditions
are required when analyzing the proximity part of the problem.

1Keywords and phrases: skin effect, proximity effect, inhomogeneous conductor, fila-
ment, current distribution, integral equation.
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2 Formulation of the problem and general form of the
solution

Geometry of the problem is shown in Fig. 1. An inhomogeneous conductor
consisting of a massive hollow conductor of radii a and b and conductivity σ1,
coated with a thin layer of thickness d(d << a), and conductivity σ2, and a
filament carry equal and opposite sinusoidal currents of rms I and frequency f .
Distance between the conductor axis and the filament is D. The object is to find
current distribution in the conductor.

The proper radial harmonics in cylindrical coordinates are modified Bessel
functions In(kr) and Kn(kr)

(
k2 = jωµ0σ

)
, and the proper angular harmonics are

trigonometrical functions cosnθ and sinnθ. Due to symmetry, the sine function
must be excluded, since the current density should be an even function of θ.
Hence, the general form of solution for current density in region 1 is

J1(r, θ) =
∞∑
n=0

[AnIn (k1r) +BnKn (k1r)] cosnθ (1)

In region 2, due to its small thickness, the radial dependence may be neglected,
so that general form of solution in this region is

J2(θ) =
∞∑
n=0

Cn cosnθ (2)

In (1) - (2), An, Bn and Cn are unknown coefficients that should be determined.

Figure 1: Inhomogeneous hollow conductor and fiament with equal and opposite
currents
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It is convenient to treat separately the skin and proximity effects in this prob-
lem. The skin-effect solutions (the filament is absent) is represented by the first
terms (n = 0) in (1)− (2), while the remaining infinite sums (n ≥ 1) account for
proximity effect.

2.1 Skin-effect solution

As mentioned above, this solution is given by

JS
1 (r) = A0I0 (k1r) +B0K0 (k1r) (3)

JS
2 (r) = C0 = const. (4)

The unknown coefficients A0, B0 and C0 should be found from the boundary
conditions and the known current in the conductor.

Equality of the tangential components of the electrical fields at the interface
r = b requires that

1

σ1
(A0I0 (k1b) +B0K0 (k1b)) =

C0

σ2
(5)

The (tangential) magnetic field at r = a should be zero, hence

A0I1 (k1a)−B0K1 (k1a) = 0 (6)

The total current through the conductor is

I =

∫
S1

J1(r, θ)rdrdθ + bd

∫ 2π

0
J2(θ)dθ

where only the first terms (n = 0) from (1) - (2) should be taken, since
2π∫
0

cosnθdθ = 0, n ≥ 1. Therefore,

I = 2π

∫ b

a
[A0I0 (k1r) +B0K0 (k1r) rdr] + 2πbdC0.

After integration we get

Ik1
2π

= M0A0 +N0B0 + k1bdC0 (7)

where

M0 = bI1 (k1b)− aI1 (k1a)

N0 = aK1 (k1a)− bK1 (k1b)
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From (5) - (7) we can find the unknown coefficients

A0 =
Ik21
2πb

K1 (k1a)

k1P0 + k22dQ0
(8)

B0 =
Ik21
2πb

I1 (k1a)

k1P0 + k22dQ0
(9)

C0 =
Ik22
2πb

Q0

k1P0 + k22dQ0
(10)

where

P0 = I1 (k1b)K1 (k1a)− I1 (k1a)K1 (k1b)

Q0 = I0 (k1b)K1 (k1a) + I1 (k1a)K0 (k1b)

Thus, the skin - effect solution, given by (3) - (4) is completed by (8) - (10).

2.2 Proximity-effect solution

To find the unknown coefficients An, Bn and Cn(n ≥ 1) in the proximity effect
solutions

Jp
1 (r, θ) =

∞∑
n=1

[AnIn (k1r) +BnKn (k1r)] cosnθ (11)

Jp
2 (θ) =

∞∑
n=1

Cn cosnθ (12)

we use the method of integral equations. For the case of two conductors in
the presence of a filament these equations have the following form in cylindrical
coordinates [9].

J1(r, θ) =
k21
4π

[
2∑

i=1

∫
Si

Ji
(
r′, θ′

)
ln f

(
r, r′, θ, θ′

)
dSi− (13)

−I ln f (r, r0, θ, θ0)] + k1, (r, θ) ∈ S1

J2(r, θ) =
k22
4π

[
2∑

i=1

∫
Si

Ji
(
r′, θ′

)
ln f

(
r, r′, θ, θ′

)
dSi− (14)

−I ln f (r, r0, θ, θ0)] +K2, (r, θ) ∈ S2
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where (r0, θ0) specifies the position of the filament, and

f
(
r, r′, θ, θ′

)
= ln

r2 + r′2 − 2rr′ cos (θ − θ′)

D2
.

In our specific case two conductors are actually the two regions of the in-
homogeneous conductor so that J1(r, θ) = Jp

1 (r, θ) , J2(r, θ) = Jp
2 (θ), dS1 =

r′dr′dθ′, r0 = D, θ0 = 0. Since d is very small we may take dS2 ≈ bddθ′, r ≈ b in
(14) and r′ ≈ b in the integral over S2 in (13). By replacing J1(r, θ) and J2(r, θ)
in (13) - (14) with Jp

1 (r, θ) and Jp
2 (θ) from (11) - (12) we obtain

∞∑
n=1

[AnIn (k1r) +BnKn (k1r)] cosnθ =

=
k21
4π

[ ∞∑
n=1

AnRn(r, θ) +
∞∑
n=1

BnSn(r, θ)+ (15)

+bd

∞∑
n=1

CnTn(r, θ)− I ln
r2 +D2 − 2rD cos θ

D2

]
+K1

∞∑
n=1

Cn cosnθ =

=
k21
4π

[ ∞∑
n=1

AnUn(r, θ) +

∞∑
n=1

BnVn(r, θ)+ (16)

+bd
∞∑
n=1

CnWn(θ)− I ln
b2 +D2 − 2bD cos θ

D2

]
+K2

where Rn, Sn, Tn, Un, Vn and Wn are some integrals given by

Rn(r, θ) =

∫ 2π

0
cosnθ′dθ′

∫ b

a
r′In

(
k1r

′) ln r2 + r′2 − 2rr′ cos (θ − θ′)

D2
dr′ (17)

Sn(r, θ) =

∫ 2π

0
cosnθ′dθ′

∫ b

a
r′Kn

(
k1r

′) ln r2 + r′2 − 2rr′ cos (θ − θ′)

D2
dr′ (18)

Tn(r, θ) =

∫ 2π

0
cosnθ′dθ′ ln

r2 + b2 − 2rb cos (θ − θ′)

D2
dθ (19)

Un(r, θ) =

∫ 2π

0
cosnθ′dθ′

∫ b

a
r′In

(
k1r

′) ln b2 + r′2 − 2br′ cos (θ − θ′)

D2
dr′ ∼= Rn(b, θ)

(20)



30 D. Filipović, T. Dlabač

Vn(r, θ) =

∫ 2π

0
cosnθ′dθ′

∫ b

a
r′Kn

(
k1r

′) ln b2 + r′2 − 2br′ cos (θ − θ′)

D2
dr′ ∼= Sn(b, θ)

(21)

Wn(r, θ) =

∫ 2π

0
cosnθ′ ln

4b2 sin2 (θ−θ′)
2

D2
dθ ≡ Tn(b, θ) (22)

Integrals (17)-(19) have been evaluated earlier. This is done in [6] for Rn and
Sn and in [8] for Tn. The remaining three integrals Un, Vn and Wn follow then
from Rn, Sn and Tn respectively by putting r = b. All these results (we will not
write them down) should be substituted into (15)-(16).

If we now equate the coefficients with rn cosnθ and the coefficients with
r−n cosnθ on both sides of (15)-(16), the following two equations follow

AnIn−1 (k1b)−BnKn−1 (k1b) + Cnk1d =
Ik1
πb

(
b

D

)n

(23)

AnIn+1 (k1a)−BnKn+1 (k1a) = 0 (24)

The third equation that is necessary for determining the three unknown coef-
ficients is obtained by equating the coefficients with cosnθ on both sides of (16).
It is:

AnMn +BnNn + Cnk1d

(
1 +

n

jλ2

)
=

Ik1
πb

(
b

D

)n

(25)

where

jλ2 =
k22bd

2

From (23) - (25) we can find the unknown coefficients

An =
Ik21
πb

(
b

D

)n Kn+1 (k1a)

k1Pn + k22dQn
(26)

Bn =
Ik21
πb

(
b

D

)n In+1 (k1a)

k1Pn + k22dQn
(27)

Cn =
Ik22
πb

(
b

D

)n Qn

k1Pn + k22dQn
(28)
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where

Pn = In−1 (k1b)Kn+1 (k1a)− In+1 (k1a)Kn−1 (k1b) (29)

Qn = In (k1b)Kn+1 (k1a)− In+1 (k1a)Kn (k1b) (30)

It should be noted that several formulas from the Bessel function theory have
to be used in deriving coefficients (26)(28).

A remarkable feature of the integral equation method that we used to deter-
mine the unknown coefficients in the proximity effect solution is that no boundary
conditions are used, although the conductor is inhomogeneous. Furthermore, it
may be shown that (26)-(28) ensure that the appropriate boundary conditions
(equality of the tangential components of the electric and magnetic fields at the
interface r = b) are met.

2.3 Solution for the total current densities

This solution is obtained by summing the skin and proximity-effect solutions

J1(r, θ) = A0I0 (k1r) +B0K0 (k1r)+

+
∞∑
n=1

[AnIn (k1r) +BnKn (k1r)] cosnθ (31)

J2(θ) = C0 +
∞∑
n=1

Cn cosnθ (32)

with An, Bn, Cn, n ≥ 0 given by (8) - (10), (26) - (28).
From the obtained results some special cases considered earlies immediately

follow: solid hollow conductor and filament [6] (we let σ2 = 0 (k2 = 0) in the ex-
pressions for An, Bn, Cn, n ≥ 0) and thin two-layer tubular conductor and filament
[7] (we let a = b− d, d << a).

3 Power loss in the conductor

The total power loss in the conductor is obtained by summing power losses in the
conductor core ( a < r < b ) and in the thin coat layer. These losses are calculated
by Joule’s low.

The power loss per unit lenhght in the conductor core is

P ′
J1 =

1

σ1

∫
S1

|J1|2 rdrdθ (33)
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By using (31) we can write

|J1|2 = J1 · J∗
1 =

∞∑
n=0

Dn(r) cosnθ ·
∞∑
n=0

D∗
n(r) cosnθ = (34)

=

∞∑
n=0

|Dn(r)|2 cos2 nθ +
∞∑

m,n=0
(m̸=n)

Dm(r)D∗
n(r) cosmθ cosnθ

where Dn(r) = AnIn (k1r) +BnKn (k1r).
The last summation in (34) does not contribute to the integral in (33), due to

ortogonality of the cosine function, hence

P ′
J1 =

1

σ1

∫ 2π

0
cos2 nθdθ

∫ b

a
r |Dn(r)|2 dr =

=
2π

σ1

(∫ b

a
r |D0(r)|2 dr +

1

2

∞∑
n=1

∫ b

a
r |Dn(r)|2 dr

)
. (35)

The integrals in (35) can be evaluated in a closed form [2], in terms of the
Kelvin functions, or alternatively by numerical techniques.

The power loss per unit length in the thin layer is

P ′
J1 =

bd

σ1

∫ 2π

0
|J2|2 dθ

where

|J2|2 = J2 · J∗
2 =

∞∑
n=0

Cn cosnθ ·
∞∑
n=0

C∗
n cosnθ =

=

∞∑
n=0

|Cn|2 cos2 nθ +
∞∑

m,n=0
(m ̸=n)

CnC
∗
n cosmθ cosnθ (36)
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As explaned above, we may ignore the last summation in (36), hence

P ′
J2 =

2πbd

σ1

(
|C0|2 +

1

2

∞∑
n=1

|Cn|2
)

4 Conclusion

A rigorous analysis of the current distribution in a massive hollow cylindrical
conductor with a thin layer in the presence of a filament is presented in this paper.
Closed form solutions are found in the two regions in the form of infinite sums
of the proper harmonics, and the unknown coefficients are found from boundary
conditions in the skin-effect case, and from two integral equations in the proximity-
effect case. It is remarkable that no boundary conditions are required in the latter
case. Formulas for the power loss in the conductor are also included.
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WITH DIFFERENTIABLE GROWTH RATES

IN BANACH SPACES
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Abstract

In this paper is considered the concept of uniform dichotomy with dif-
ferentiable growth rates for skew-evolution cocycles in Banach spaces which
includes as particular case, the well-known concept of uniform exponential
dichotomy. Necessary and sufficient conditions are presented using invariant
families of projectors. 1

1 Introduction

The notion of dichotomy represents one of the most significant asymptotic be-
havior studied for evolution equations. A great number of papers that describe
exponential dichotomy as well as dichotomy with growth rates regarding uniform
or nonuniform case are published by Dragičević, Sasu and Sasu (2022) [6], Găină,
Megan and Popa (2021) [7], Găină (2022) [8], Lupa and Megan (2014) [9], Megan,
Sasu and Sasu (2003) [11] , (2004) [12], Megan and Stoica (2009) [13], (2010)
[14], Rămneanţu, Ceauşu and Megan (2012) [18], Sasu and Sasu (2019) [19], Sasu
(2010) [20].

The uniform dichotomy with differentiable growth rates or uniform strong h-
dichotomy considered in this paper is a particular case of the above concepts. This
idea of introducing a growth rate is given by Pinto [17]. Also, recently, we remark
the results obtained for the notions of growth rates and differentiable growth rates
by Bento, Lupa, Megan and Silva (2017) [1], Boruga, Megan and Toth (2021) [2],

1Mathematical Subject Classification (2020): 34D05, 34D09
Keywords and phrases:uniform h-dichotomy, uniform exponential dichotomy, skew-evolution

cocycles.
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(2022) [3], Găină (2022) [8], Megan, Găină and Boruga (Toma) (2023) [10], Mihiţ,
Borlea and Megan (2017) [15], T. Yue (2022) [21] and the references therein.

In this paper, the starting point is due to Datko (1972) [5], who gave an integral
characterization of uniform exponential stabilty for the evolution operators. Ex-
tending the above work, it was obtained integral characterizations for the concept
of uniform dichotomy with differentiable growth rates for skew-evolution cocycles
in Banach spaces using invariant families of projectors. Also, the particular case
of uniform exponential dichotomy is presented.

2 Preliminaries

We consider X a metric space, V a Banach space and also B(V ) the Banach
algebra of all bounded linear operators acting on V .

The following sets will be used throughout the paper:

∆ = {(t, s) ∈ R2
+ : t ≥ s}

T = {(t, s, t0) ∈ R3
+ : t ≥ s ≥ t0}.

Definition 2.1. A mapping φ : ∆ ×X → X is called an evolution semiflow on
X if:

(es1) φ(s, s, x) = x, for all (s, x) ∈ R+ ×X;

(es2) φ(t, s, φ(s, t0, x0)) = φ(t, t0, x0), for all (t, s, t0, x0) ∈ T ×X.

Definition 2.2. Amapping Φ : ∆×X → B(V ) is called a skew-evolution semiflow
over the evolution semiflow φ if:

(ses1) Φ(s, s, x) = I (the identity operator on V ), for all (s, x) ∈ R+ ×X;

(ses2) Φ(t, s, φ(s, t0, x0))Φ(s, t0, x0) = Φ(t, t0, x0), for all (t, s, t0, x0) ∈ T ×X.

If φ : ∆ ×X → X is an evolution semiflow and Φ : ∆ ×X → B(V ) a skew-
evolution semiflow over the evolution semiflow φ, then the pair C = (Φ,φ) is
called a skew-evolution cocycle.

Example 2.3. Let X be a metric space, V a Banach space, φ : ∆×X → X an
evolution semiflow on X and A : X → B(V ) a continuous mapping. If Φ(t, s, x)
is the solution of the Cauchy problem{

v̇(t) = A(φ(t, s, x))v(t), t > s
v(s) = x ,

then C = (Φ,φ) is a skew-evolution cocycle.
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Definition 2.4. A mapping P : R+ ×X → B(V ) is called a family of projectors
if

P 2(t, x) = P (t, x), for all (t, x) ∈ R+ ×X.

If P : R+ ×X → B(V ) is a family of projectors, then Q : R+ ×X → B(V ),
Q(s, x) = I − P (s, x) is called the complementary family of projectors of P.

Definition 2.5. A family of projectors P : R+ ×X → B(V ) is called invariant
for the skew-evolution cocycle C if the following relation takes place

Φ(t, s, x)P (s, x) = P (t, φ(t, s, x))Φ(t, s, x),

for all (t, s, x) ∈ ∆×X.

Remark 2.6. If the family of projectors P : R+ × X → B(V ) is invariant for
the skew-evolution cocycle C, then its complementary family of projectors Q :
R+ ×X → B(V ) is also invariant for C.

In [10] is proved the following:

Proposition 2.7. If P is invariant for the skew-evolution cocycle C, then the
application ΦP : ∆×X → B(V ) defined by

ΦP (t, s, x) = Φ(t, s, x)P (s, x)

has the following properties:

(i) ΦP (t, s, x) = P (t, φ(t, s, x))ΦP (t, s, x), for all (t, s, x) ∈ ∆×X;

(ii) ΦP (t, t, x) = P (t, x), for all (t, x) ∈ R+ ×X;

(iii) ΦP (t, t0, x0) = ΦP (t, s, φ(s, t0, x0))ΦP (s, t0, x0), for all (t, s, t0, x0) ∈ T ×X.

Definition 2.8. A nondecreasing function h : R+ → [1,∞) with lim
t→∞

h(t) = ∞
is called a growth rate.

Definition 2.9. The pair (C,P ) is uniformly strongly h-dichotomic if there are
N ≥ 1 and ν > 0 with:

(ushd1) h(t)ν ||ΦP (t, t0, x0)v0|| ≤ N h′(s)
h(s) h(s)

ν ||ΦP (s, t0, x0)v0||;

(ushd2) h(t)ν ||ΦQ(s, t0, x0)v0|| ≤ N h′(t)
h(t) h(s)

ν ||ΦQ(t, t0, x0)v0||,

for all (t, s, t0, x0, v0) ∈ T ×X × V .
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Remark 2.10. In the definition just mentioned, it can be taken ν ∈ (0, 1).

Remark 2.11. The pair (C,P ) is said to be uniformly strongly h-dichotomic if
and only if there exist two constants N ≥ 1 and ν > 0 with:

(ushd′1) h(t)ν ||ΦP (t, s, x)v|| ≤ N h′(s)
h(s) h(s)

ν ||P (s, x)v||;

(ushd′2) h(t)ν ||Q(s, x)v|| ≤ N h′(t)
h(t) h(s)

ν ||ΦQ(t, s, x)v||,

for all (t, s, x, v) ∈ ∆×X × V .

Definition 2.12. The pair (C,P ) has uniform strong h-growth if there are M ≥
1, ω > 0 with:

(ushg1) h(s)ω||ΦP (t, t0, x0)v0|| ≤ M h′(s)
h(s) h(t)

ω||ΦP (s, t0, x0)v0||;

(ushg2) h(s)ω||ΦQ(s, t0, x0)v0|| ≤ M h′(t)
h(t) h(t)

ω||ΦQ(t, t0, x0)v0||,

for all (t, s, t0, x0, v0) ∈ T ×X × V .

Remark 2.13. The pair (C,P ) has uniform strong h-growth if and only if there
exist M ≥ 1 and ω > 0 with:

(ushg′1) h(s)ω||ΦP (t, s, x)v|| ≤ M h′(s)
h(s) h(t)

ω||P (s, x)v||;

(ushg′2) h(s)ω||Q(s, x)v|| ≤ M h′(t)
h(t) h(t)

ω||ΦQ(t, s, x)v||,

for all (t, s, x, v) ∈ ∆×X × V .

In what follows we denote by
• H the set of functions h : R+ → [1,∞) with the property that there exists

H > 1 such that h′(t) ≤ Hh(t), for all t ≥ 0.
• H1 the set of functions h : R+ → [1,∞) with the property that there exists

m > 0 such that h′(t) ≥ mh(t), for all t ≥ 0.

Remark 2.14. If h is an exponential function, then h ∈ H ∩H1.

Proposition 2.15. If h ∈ H, then:

(i) h(t) ≤ h(s)eH(t−s), for all (t, s) ∈ ∆;

(ii) h(t+ 1) ≤ eHh(t), for all t ≥ 0.

Proof. See [10].

Remark 2.16. The concept of uniform strong h-dichotomy implies the concept
of uniform strong h-growth. The converse implication is not valid, as we can see
in the following result.
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Example 2.17. We consider V = R2, C = (Φ,φ) a skew-evolution cocycle with
the evolution semiflow φ : ∆ × X → X and the skew-evolution semiflow Φ :
∆×X → B(V ) defined by

Φ(t, s, x)v =

(
h(t)

h(s)
v1,

h(s)

h(t)
v2

)
and the family of projectors P,Q : R+ ×X → B(V ) with

P (s, x)v = (v1, 0) and Q(s, x)v = (0, v2),

where v = (v1, v2) as in Example 2.3 from [8]. Besides these, we take h ∈ H1.
It is immediate that the pair (C,P ) has uniform strong h-growth, for ω = 2

and M = 1
m , where m is given by the definition of H1.

If we assume that the pair (C,P ) is uniformly strongly h-dichotomic, then it
results that there exist N ≥ 1 and ν > 0 such that

||ΦP (t, s, x)v|| ≤ N

(
h(t)

h(s)

)−ν h′(s)

h(s)
||P (s, x)v||.

We obtain
h(t)ν+1 ≤ NHh(s)νh′(s).

For s = 0 and t → ∞ we obtain contradiction, so (C,P ) is not an uniformly
strongly h-dichotomic pair.

Remark 2.18. If h(t) = et in Definition 2.9 and Definition 2.12, then we obtain
the concepts of uniform exponential dichotomy, respectively uniform exponential
growth.

3 Main results

Definition 3.1. The skew-evolution cocycle C = (Φ,φ) is said to be strongly
measurable if the mapping t 7→ ||Φ(t, s, x)v|| is measurable on [s,∞), for all
(s, x, v) ∈ R+ ×X × V .

In the following theorems we consider C = (Φ,φ) a strongly measurable skew-
evolution cocycle and P an invariant family of projectors.

Theorem 3.2. We consider that (C,P ) has uniform strong h-growth with h ∈
H ∩H1. The pair (C,P ) is uniformly strongly h-dichotomic if and only if there
exist D > 1 and d ∈ (0, 1) with

(ushD1)
∞∫
t

h′(τ)
h(τ) h(τ)

d||ΦP (τ, t0, x0)v0||dτ ≤ Dh(t)d h′(t)
h(t) ||ΦP (t, t0, x0)v0||,
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(ushD2)
∞∫
t

h′(τ)
h(τ)

h(τ)d

||ΦQ(τ,t0,x0)v0||dτ ≤ h′(t)
h(t)

Dh(t)d

||ΦQ(t,t0,x0)v0|| with Q(t0, x0)v0 ̸= 0,

for all (t, t0, x0, v0) ∈ ∆×X × V .

Proof. Necessity. We consider d ∈ (0, ν). The relations (ushd1) =⇒ (ushD1)
and (ushd2) =⇒ (ushD2) result from Definition 2.9 :

∞∫
t

h′(τ)

h(τ)
h(τ)d||ΦP (τ, t0, x0)v0||dτ ≤

≤ N

∞∫
t

h′(τ)

h(τ)
h(τ)d

(
h(τ)

h(t)

)−ν h′(t)

h(t)
||ΦP (t, t0, x0)v0||dτ ≤

≤ Nh(t)ν
h′(t)

h(t)
||ΦP (t, t0, x0)v0||

∞∫
t

h′(τ)h(τ)d−ν−1dτ ≤

≤ N

ν − d
h(t)d

h′(t)

h(t)
||ΦP (t, t0, x0)v0||,

respectively

∞∫
t

h′(τ)

h(τ)

h(τ)d

||ΦQ(τ, t0, x0)v0||
dτ ≤ N

∞∫
t

h′(τ)

h(τ)

(
h(τ)

h(t)

)−ν h′(τ)

h(τ)

h(τ)d

||ΦQ(t, t0, x0)v0||
dτ =

=
NHh(t)ν

||ΦQ(t, t0, x0)v0||

∞∫
t

h′(τ)h(τ)d−ν−1dτ ≤

≤ NH

m(ν − d)

h′(t)

h(t)

h(t)d

||ΦQ(t, t0, x0)v0||
.

Sufficiency. In order to obtain the concept of uniform strong h-dichotomy
we use two cases, one for the relation (ushD1) =⇒ (ushd1):

Case 1. t ≥ s+ 1.

||ΦP (t, t0, x0)v0|| =
t∫

t−1

||ΦP (t, t0, x0)v0||dτ ≤
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≤ M

t∫
t−1

(
h(t)

h(τ)

)ω h′(τ)

h(τ)
||ΦP (τ, t0, x0)v0||dτ =

= M

t∫
t−1

(
h(t)

h(s)

)−d( h(t)

h(τ)

)d+ω h′(τ)

h(τ)

(
h(τ)

h(s)

)d

||ΦP (τ, t0, x0)v0||dτ ≤

≤ MeH(ω+d)

(
h(t)

h(s)

)−d
∞∫
s

h′(τ)

h(τ)

(
h(τ)

h(s)

)d

||ΦP (τ, t0, x0)v0||dτ ≤

≤ DMeH(ω+d)

(
h(t)

h(s)

)−dh′(s)

h(s)
||ΦP (s, t0, x0)v0||.

Case 2. t ∈ [s, s+ 1) .

||ΦP (t, t0, x0)v0|| ≤ M

(
h(t)

h(s)

)ω h′(s)

h(s)
||ΦP (s, t0, x0)v0|| =

= M

(
h(t)

h(s)

)ω+d(h(t)

h(s)

)−dh′(s)

h(s)
||ΦP (s, t0, x0)v0|| ≤

≤ MeH(ω+d)

(
h(t)

h(s)

)−dh′(s)

h(s)
||ΦP (s, t0, x0)v0||.

and another one for (ushD2) =⇒ (ushd2):
Case 1: t ≥ s+ 1 and Q(t0, x0)v0 ̸= 0.

h(t)d

||ΦQ(t, t0, x0)v0||
=

t∫
t−1

h(t)d

||ΦQ(t, t0, x0)v0||
dτ ≤

≤ M

t∫
t−1

h′(t)

h(t)

(
h(t)

h(τ)

)ω h(t)d

||ΦQ(τ, t0, x0)v0||
dτ ≤

≤ M

m

h′(t)

h(t)

t∫
t−1

(
h(t)

h(τ)

)ω+dh′(τ)

h(τ)

h(τ)d

||ΦQ(τ, t0, x0)v0||
dτ ≤

≤ M

m
eH(ω+d)h

′(t)

h(t)

∞∫
s

h′(τ)

h(τ)

h(τ)d

||ΦQ(τ, t0, x0)v0||
dτ ≤

≤ DM

m
eH(ω+d)h

′(t)

h(t)

h′(s)

h(s)

h(s)d

||ΦQ(s, t0, x0)v0||
≤

≤ DMH

m
eH(ω+d)h

′(t)

h(t)

h(s)d

||ΦQ(s, t0, x0)v0||
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Case 2. t ∈ [s, s+ 1)

||ΦQ(s, t0, x0)v0|| ≤ M

(
h(t)

h(s)

)ω h′(t)

h(t)
||ΦQ(t, t0, x0)v0|| =

= M

(
h(t)

h(s)

)ω+d(h(t)

h(s)

)−dh′(t)

h(t)
||ΦQ(t, t0, x0)v0|| ≤

≤ MeH(ω+d)

(
h(t)

h(s)

)−dh′(t)

h(t)
||ΦQ(t, t0, x0)v0||.

Theorem 3.3. Let us consider the pair (C,P ) that has uniform strong h-growth,
where h ∈ H∩H1. The pair (C,P ) is uniformly strongly h-dichotomic if and only
if there exist the constants D > 1 and d ∈ (0, 1) such that

(ushD′
1)

t∫
t0

h′(s)
h(s)

h(s)−d

||ΦP (s,t0,x0)v0||ds ≤
h′(t)
h(t)

Dh(t)−d

||ΦP (t,t0,x0)v0|| with ΦP (t, t0, x0)v0 ̸= 0;

(ushD′
2)

t∫
t0

h′(τ)
h(τ) h(τ)

−d||ΦQ(τ, t0, x0)v0||dτ ≤ D h′(t)
h(t) h(t)

−d||ΦQ(t, t0, x0)v0||,

for all (t, t0, x0, v0) ∈ ∆×X × V .

Proof. Necessity. Let d be from (0, ν).

t∫
t0

h′(s)

h(s)

h(s)−d

||ΦP (s, t0, x0)v0||
ds ≤ N

t∫
t0

h′(s)

h(s)

(
h(t)

h(s)

)−ν h′(s)

h(s)

h(s)−d

||ΦP (t, t0, x0)v0||
ds ≤

≤ NHh(t)−ν

||ΦP (t, t0, x0)v0||

t∫
t0

h′(s)h(s)ν−d−1ds ≤

≤ NH

m(ν − d)

h′(t)

h(t)

h(t)−d

||ΦP (t, t0, x0)v0||
.
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In a similar way we obtain:

t∫
t0

h′(τ)

h(τ)
h(τ)−d||ΦQ(τ, t0, x0)v0||dτ ≤

≤ N

t∫
t0

h′(τ)

h(τ)
h(τ)−d

(
h(t)

h(τ)

)−ν h′(t)

h(t)
||ΦQ(t, t0, x0)v0||dτ =

= Nh(t)−ν h
′(t)

h(t)
||ΦQ(t, t0, x0)v0||

∞∫
t

h′(τ)h(τ)ν−d−1dτ ≤

≤ N

ν − d
h(t)−dh

′(t)

h(t)
||ΦQ(t, t0, x0)v0||.

Sufficiency. By Definition 2.12 and relations (ushD′
1) respectively (ushD′

2)
we have

Case 1: t ≥ s+ 1 and ΦP (t, t0, x0)v0 ̸= 0.

h(s)−d

||ΦP (s, t0, x0)v0||
=

s+1∫
s

h(s)−d

||ΦP (s, t0, x0)v0||
dτ ≤

≤ M

s+1∫
s

h′(s)

h(s)

(
h(τ)

h(s)

)ω h(s)−d

||ΦP (τ, t0, x0)v0||
dτ ≤

≤ M

m

h′(s)

h(s)

s+1∫
s

(
h(τ)

h(s)

)ω+dh′(τ)

h(τ)

h(τ)−d

||ΦP (τ, t0, x0)v0||
dτ ≤

≤ M

m
eH(ω+d)h

′(s)

h(s)

t∫
t0

h′(τ)

h(τ)

h(τ)−d

||ΦP (τ, t0, x0)v0||
dτ ≤

≤ DM

m
eH(ω+d)h

′(t)

h(t)

h′(s)

h(s)

h(t)−d

||ΦP (t, t0, x0)v0||
≤

≤ DMH

m
eH(ω+d)h

′(s)

h(s)

h(t)−d

||ΦP (t, t0, x0)v0||
.

Case 2. t ∈ [s, s+ 1). It is similar to Case 2. from Theorem 3.2 .

In a similar manner we obtain:



44 A. Găină

Case 1. t ≥ s+ 1.

||ΦQ(s, t0, x0)v0|| =
s+1∫
s

||ΦQ(s, t0, x0)v0||dτ ≤

≤ M

s+1∫
s

(
h(τ)

h(s)

)ω h′(τ)

h(τ)
||ΦQ(τ, t0, x0)v0||dτ =

= M

s+1∫
s

(
h(t)

h(s)

)−d(h(τ)

h(s)

)ω+d( h(t)

h(τ)

)dh′(τ)

h(τ)
||ΦQ(τ, t0, x0)v0||dτ ≤

≤ MeH(ω+d)

(
h(t)

h(s)

)−d
t∫

t0

(
h(t)

h(τ)

)dh′(τ)

h(τ)
||ΦQ(τ, t0, x0)v0||dτ ≤

≤ DMeH(ω+d)

(
h(t)

h(s)

)−dh′(t)

h(t)
||ΦQ(t, t0, x0)v0||.

Case 2. t ∈ [s, s+ 1) . It is similar to Case 2. from Theorem 3.2 .

Remark 3.4. If we consider in Theorem 3.2 and Theorem 3.3 the particular
case when h(t) = et, then we obtain integral characterizations for the concept of
uniform exponential dichotomy. Another direction for the study of these integral
characterizations is given by Megan, Găină and Boruga (Toma) in [10] for the
nonuniform case of dichotomy with differentiable growth rates, by Găină in [8] for
uniform dichotomy with growth rates, by Boruga and Megan in [1] for uniform
exponential dichotomy using evolution operators.

References

[1] A. Bento, N. Lupa, M. Megan, C. Silva, Integral conditions for nonuniform
µ−dichotomy on the half-line, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017),
3063–3077.

[2] R. Boruga (Toma), M. Megan, D. M-M. Toth, Integral characterizations for
uniform stability with growth rates in Banach spaces, Axioms, 10, 235 (2021),
1-12.

[3] R. Boruga (Toma), M. Megan, D. M-M. Toth, On uniform instability with
growth rates in Banach spaces, Carpathian J. Math. 38 (2022), No. 3, 789-
796.



Uniform Dichotomy 45

[4] R. Boruga, M. Megan, On some characterizations for uniform dichotomy of
evolution operators in Banach spaces. Mathematics , 10(19) (2022), 3704,
1-21.

[5] R. Datko, Uniform asymptotic stability of evolutionary processes in Banach
space, SIAM J. Math. Anal. , 3 (1972), 428-445.
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[7] A. Găină, M. Megan, C. F. Popa, Uniform dichotomy concepts for discrete-
time skew evolution cocycles in Banach spaces, Mathematics 9(17) 2177
(2021), 1-11.

[8] A. Găină, On uniform h-dichotomy of skew-evolution cocycles in Banach
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[16] C. L. Mihiţ, M. Megan, Integral characterizations for the (h, k)-splitting of
skew-evolution semiflows, Stud. Univ. Babeş-Bolyai Math., 62 (3) (2017), 353-
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OSCILLATOR
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Abstract

In this paper we study the stability and some special orbits of an one-
parameter Hamilton-Poisson jerk system, namely the jerk version of an an-
harmonic oscillator. Moreover, we point out some properties of the energy-
Casimir mapping associated to this system. 1

1 Introduction

In a mechanical system, let x = x(t) be the displacement of a moving object.

Then, ẋ =
dx

dt
and ẍ =

d2x

dt2
represents its velocity and acceleration, respectively.

In addition, the jerk is the rate of change of acceleration, the third derivative
...
x

of position with respect to time [7]. A differential equation of the form
...
x = j(x, ẋ, ẍ),

where j is a smooth function usually, is called a jerk equation. This equation
takes the form of a differential system, namely

ẋ = y, ẏ = z, ż = j(x, y, z),

called a jerk system.
The harmonic oscillator, described by the equation ẍ+ ωx2 = 0, models pro-

cesses that exhibit sinusoidal oscillations with constant amplitude. Anharmonic
oscillators are a type of oscillator that deviate from the simple harmonic mo-
tion. These oscillators are often described by equations that include nonlinear

1Mathematical Subject Classification (2020): 37D45, 70H05
Keywords and phrases:Energy-Casimir mapping, stability, periodic orbit, equilibrium point
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terms to account for the deviation from simple harmonic motion, and they can
exhibit nonlinear behavior. Such an anharmonic oscillator is given by the equation
ẍ+ δxn = 0 [4].

In this paper we study the jerk version of the anharmonic oscillator

ẍ− g

3
x3 = 0,

namely the jerk equation
...
x − gx2ẋ = 0,

or equivalent, the jerk system 
ẋ = y
ẏ = z
ż = gx2y

, (1)

where g is a real parameter.
The paper is organized as follows. In Section 2, we give the Hamilton-Poisson

realization of the considered system. Then, following [8], we consider the energy-
Casimir mapping associated to this realization. Moreover, we determine the image
of this mapping. In Section 3, we point out some fibers of the energy-Casimir
mapping in correspondence with some dynamical properties of the considered
system, such as stable equilibrium points, periodic orbits, and so called split-
homoclinic orbits.

2 Energy-Casimir mapping

In this section we point out a Hamilton-Poisson realization of the considered
system and the image of the corresponding energy-Casimir mapping.

We consider the functions

H(x, y, z) =
y2

2
− xz +

gx4

4
, C(x, y, z) = z − gx3

3
. (2)

Using (1) we deduce Ḣ = 0 and Ċ = 0, thus H and C are constants of motion.
Moreover, Π · ∇C = 0 and system (1) writes ẋT = Π · ∇H, where x = (x, y, z)T

and

Π =


0 1 0

−1 0 −gx2

0 gx2 0

 .

Consequently, system (1) has the Hamilton-Poisson realization
(
R3,Π, H

)
, where

H is the Hamiltonian function and C is a Casimir of the Poisson structure given
by Π.
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In this framework, the energy-Casimir mapping associated to system (1) is
defined by EC : R3 → R2,

EC(x, y, z) = (H(x, y, z), C(x, y, z)) =

(
y2

2
− xz +

gx4

4
, z − gx3

3

)
. (3)

We notice that system (1) writes ẋT = ∇H × ∇C. Therefore the critical points
of energy Casimir mapping (3) are the equilibrium points of system (1), namely
EM = (M, 0, 0),M ∈ R.

The image of the energy-Casimir mapping EC is the set

Im(EC) =
{
(h, c) ∈ R2|(∃)(x, y, z) ∈ R3 : EC(x, y, z) = (h, c)

}
.

As we have seen in other papers ([8]; also see [5] and references therein), the
image EC(EM ) of the critical points through the energy-Casimir mapping leads
to a partition of Im(EC). In our case, EC(EM ) is the curve

Γ =

{
(h, c) ∈ R2|h =

gM4

4
, c = −gM3

3
,M ∈ R

}
. (4)

For g ̸= 0, the curve Γ takes the form

Γ =

{
(h, c) ∈ R2|c4 − 64g

81
h3 = 0

}
. (5)

We define the sets

Σ1 =

{
(h, c) ∈ R2|c4 − 64g

81
h3 < 0

}
, (6)

Σ2 =

{
(h, c) ∈ R2|c4 − 64g

81
h3 > 0

}
. (7)

Proposition 2.1. Let g > 0 and let EC (3) be the energy-Casimir mapping of
system (1). Then Im(EC) = Γ ∪ Σ1 ∪ Σ2 = R2 (Figure 2).

Proof. A pair (h, c) belongs to the image of the energy-Casimir mapping if and
only if the system 

h =
y2

2
− xz +

gx4

4

c = z − gx3

3

(8)

has at least a solution. Let us denote he =
gM4

4 and ce = −gM3

3 , for any M ∈ R.
Let (h, c) ∈ Γ ∪ Σ1 such that h ≥ he. Using (8) we get

y2 =
gx4

6
+ 2cx+ 2h,

or equivalent

y2 =
g

6
(x−M)2[(x+M)2 + 2M2] + 2(h− he).
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Because h ≥ he, system (8) has solution. Therefore, Γ ∪ Σ1 ⊂ Im(EC).
Let (h, c) ∈ Σ2 and y = 0. Using (8) we obtain

gx4

6
+ 2cx+ 2h = 0.

We will deduce that system (8) has solution by showing the above equation (2)
has solution for (h, c) ∈ Σ2. Consider the function f : R → R,

f(x) =
gx4

6
+ 2cx+ 2h.

By studying the behavior of the function f , we have fmin = 2h− 3c
2

3

√
3c
g < 0 for

any (h, c) ∈ Σ2, hence the equation (2) has solution if (h, c) ∈ Σ2. Therefore,
system (8) has solution for (h, c) ∈ Σ2. Thus Σ2 ⊂ Im(EC) and consequently
Im(EC) = R2, as required.

S2

S1

G

c

h0

Figure 2: The image of the energy-Casimir mapping (g > 0).

Proposition 2.2. Let g < 0 and let EC (3) be the energy-Casimir mapping of
system (1). Then Im(EC) = Γ ∪ Σ2 (Figure 3).

Proof. It is clear that system (8) has solution for h = he = gM4

4 and c = ce =

−gM3

3 , for every M ∈ R.
First, we prove that there are no pairs (h, c) ∈ Im(EC) for (h, c) ∈ Σ1 by

showing that the system (8) has no solution. Suppose that system (8) has solution
for h < he and c = ce. Using (8) we obtain

−g(x−M)2[(x+M)2 + 2M2] + 6y2 = 12

(
h− gM4

4

)



The energy Casimir mapping of the jerk version of an anharmonic oscillator 51

or equivalent

−g(x−M)2[(x+M)2 + 2M2] + 6y2 = 12 (h− he) . (9)

But h < he, which leads to a contradiction. Thus, for h < he and c = ce system
(8) has no solution, that is Σ1 ∩ Im(EC) = ∅.

Now, let (h, c) ∈ Σ2. Consider y = 0 and the function f defined in (2). Using
the similar method as in Proposition 2.1, we get that system (8) has solution for
(h, c) ∈ Σ2. Therefore Σ2 ⊂ Im(EC), and the conclusion follows.

S2
G

c

h0

Figure 3: The image of the energy-Casimir mapping (g < 0).

Proposition 2.3. Let g = 0 and let EC (3) be the energy-Casimir mapping of
system (1). Then Im(EC) = R2\Σ0, where Σ0 = {(h, c) ∈ R2|h < 0, c = 0}
(Figure 4).

Proof. Let (h, c) ∈ Σ0. Suppose that system (8) has solution for h < 0 and c = 0.
System (8) becomes  h =

y2

2
− xz

z = 0
(10)

From (10) it follows that h =
y2

2
> 0 which leads to a contradiction. Thus, for

h < 0 and c = 0 system (8) has no solution. Therefore Σ0 ∩ Im(EC) = ∅.
If (h, c) ∈ R2\Σ0, system (8) becomes h =

y2

2
− xz

c = z
. (11)
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Using (11) we get cx+h =
y2

2
> 0. There exist x ∈ R such that cx+h > 0 for all

(h, c) ∈ R2\Σ0, thus system (8) has solutions. Therefore, R2\Σ0 ⊂ Im(EC) and
the conclusion follows.

S2

G

S0

c

h0

Figure 4: The image of the energy-Casimir mapping (g = 0).

3 Connections between the energy-Casimir mapping
and some dynamical properties of the system

In this section we study the stability of the equilibrium points, the existence of
periodic orbits and other types of orbits of system (1) in connection with the
image of the energy-Casimir mapping (3).

Proposition 3.1. Let g < 0. Then the equilibrium point EM = (M, 0, 0), M ∈ R
is nonlinearly stable.

Proof. The jacobian matrix of system (1) at EM is

J(M, 0, 0) =


0 1 0

0 0 1

0 gM2 0

 . (12)

The corresponding eigenvalues are λ1 = 0, λ2,3 = ±M
√
g.

Let M ̸= 0. Then the above Jacobian function (12) has a pair of imaginary
eigenvalues. In this case we use the Arnold stability test [1]. We consider the
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function

F (x, y, z) = H(x, y, z) +MC(x, y, z). (13)

The following hold:

1. dF (M, 0, 0) = 0.

2. W = ker dC(M, 0, 0) = spanR{(1, 0, gM2), (0, 1, 0)}.

3. d2F (M, 0, 0)|W×W = dy2 − 1

gM2
dz2 is positive definite (g < 0 and M ̸= 0).

In conclusion, EM is a nonlinear stable (Lyapunov stable) equilibrium point for
M ̸= 0 in the case g < 0.

For M = 0, the equilibrium point EM becomes (0, 0, 0). We show that the
function L ∈ C∞(R3,R),

L(x, y, z) =

(
y2

2
− xz +

gx4

4

)2

+

(
z − gx3

3

)2

(14)

is a Lyapunov function for system (1) and the equilibrium (0, 0, 0).

It is easy to check that L̇ = ∇L · ẋ = 0, where ẋ = (ẋ, ẏ, ż) is given by (1).

In addition, the condition L(x, y, z) = 0 implies
y2

2
− xz +

gx4

4
= 0, z − gx3

3
= 0,

whence −gx4+6y2 = 0. Because g < 0, it follows that x = y = 0 and consequently
z = 0. Thus L(x, y, z) > 0, ∀(x, y, z) ̸= (0, 0, 0) and L(0, 0, 0) = 0. In conclusion,
L is a Lyapunov function and the equilibrium point (0, 0, 0) is nonlinearly stable,
which finishes the prove.

Remark 3.2. For g < 0, the images of the stable equilibrium points (M, 0, 0)
through the energy-Casimir mapping (3) give the border Γ (5) of the set Im(EC)
(see Figure 3).

The inverse image of (h, c) ∈ Im(EC) under the energy-Casimir mapping EC

is the set

F(h,c) =
{
(x, y, z) ∈ R3 | EC(x, y, z) = (h, c)

}
called the fiber of EC corresponding to (h, c).

Proposition 3.3. Let g < 0 and (h, c) ∈ Γ (4). Then the corresponding fiber
F(h,c) is a nonlinear stable equilibrium point, namely

F(h,c) =

{
(M, 0, 0) |M = − 3

√
3c

g

}
.
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Proof. Let (h, c) ∈ Γ (4). Then there is M ∈ R such that h =
gM4

4
, c = −gM3

3
,

namely M = − 3

√
3c

g
. The condition EC(x, y, z) = (h, c) is equivalent to

y2

2
− xz +

gx4

4
=

gM4

4

z − gx3

3
= −gM3

3

.

We get

−g(x−M)2[(x+M)2 + 2M2] + 6y2 = 0,

and taking into account that g < 0, it follows x = M , y = z = 0, as required.

We expect that there are periodic orbits around each stable equilibrium point
(M, 0, 0). Indeed, we have.

Proposition 3.4. Let g < 0 and M ∈ R∗. Then for each sufficiently small
ε ∈ R∗

+, any integral surface

ΣM
ε :

g

12
(3x4 − 4Mx3 +M4) +

1

2
y2 − (x−M)z = ε2

contains at least one periodic orbit γMε of system (1) whose period is close to
2π

ω
,

where ω = M
√
−g.

Proof. The characteristic polynomial of the Jacobian matrix (12) of system (1)
at the stable equilibrium point EM = (M, 0, 0) has the eigenvalues λ1 = 0 and
λ2,3 = ±iM

√
−g. Hence we can apply a version of the Moser theorem regarding

the existence of periodic orbits in the case of a zero eigenvalue [2].

The eigenspace corresponding to the eigenvalue zero, which is spanR{(1, 0, 0)},
has dimension 1.

Let us consider the constant of motion of system (1)

I(x, y, z) =
y2

2
− xz +

gx4

4
+M

(
z − gx3

3

)
. (15)

It follows that:

1. dI(M, 0, 0) = 0.

2. d2I(M, 0, 0)|W×W = dy2 − 1

gM2
dz2 > 0 is positive definite (g < 0,M ̸= 0),

where W = ker dC(M, 0, 0) = spanR{(1, 0, gM2), (0, 1, 0)}.

Using the above-mentioned theorem, the conclusion follows.
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Remark 3.5. Let g < 0 and (h, c) ∈ Σ2, i.e. (h, c) belongs to the interior of the
image of EC. Then the above proposition tells us that as long as the intersection
of the level sets H(x, y, z) = h,C(x, y, z) = c is a closed curve, the corresponding
fiber F(h,c) is a periodic orbit around the stable equilibrium point EM (Figure
5). Moreover, when ε → 0 these curves shrink to EM . Such periodic orbits are
presented in Figure 6, considering c fixed and h variable.

Figure 5: The fiber F(h,c), (h, c) ∈ Σ2: a periodic orbit.

Figure 6: The family of periodic orbits around a stable equilibrium point (on the
level set C(x, y, z) = c ).
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Proposition 3.6. Let g ≥ 0. Then the equilibrium point EM = (M, 0, 0), M ∈ R
is unstable.

Proof. If g = 0, system (1) becomes the equation
...
x = 0, which has the unbounded

solution x(t) =
C1

2
t2 + C2t+ C3, where C1, C2, C3 ∈ R. It results that EM is an

unstable equilibrium point.

Now, let g > 0. As we have seen, the eigenvalues of the jacobian matrix at
EM (12) are λ1 = 0, λ2,3 = ±M

√
g. Thus, if M ̸= 0, then λ2,3 is a pair of opposite

sign real eigenvalues, thus EM is unstable.

For M = 0, the eigenvalues the Jacobian function (12) are λ1 = λ2 = λ3 = 0.
In this case we determine a solution of system (1) that starts out near (0, 0, 0),
but it is unbounded, i.e. we prove that (0, 0, 0) is unstable.

The dynamics of system (1) takes place at the intersection of the level sets
H(x, y, z) = constant, C(x, y, z) = constant. We consider

H(x, y, z) = H(0, 0, 0), C(x, y, z) = C(0, 0, 0),

which is equivalent with 
y2

2
− xz +

gx4

4
= 0

z − gx3

3
= 0

. (16)

We chose an initial condition (x0, y0, z0) in a neighborhood of (0, 0, 0) that satisfies
(16), namely x0 = ε, y0 = aε2, z0 = 2a2ε3, where ε > 0 is close to zero and a =√

g

6
. Then there is a solution (x(t), y(t), z(t)) with (x(0), y(0), z(0)) = (x0, y0, z0)

which also satisfies (16). We get y(t) = ax2(t), z(t) = 2a2x3(t) and system (1)
reduces in this case to the equation

ẋ = ax2, a > 0.

We obtain the solution

x(t) =
ε

1− aεt
, y(t) =

aε2

(1− aεt)2
, z(t) =

2a2ε3

(1− aεt)3
, t ∈

[
0,

1

aε

)
,

where ε > 0 is close to zero and a =

√
g

6
.

It easy to see that this solution starts near equilibrium point (0, 0, 0), but it
does not stay near (0, 0, 0). Therefore, the equilibrium point (0, 0, 0) is unstable,
which finishes the prove.

For g > 0, the image of the energy-Casimir mapping is R2. The images of
the unstable equilibrium points (M, 0, 0) through EC belong to the curve Γ (5),
and the corresponding fibers can contain homoclinic or heteroclinic orbits (see,
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e.g., [3]), or split-homoclinic and split-heteroclinic orbits [6]. In our case we have
obtained split-homoclinic orbits.

Recall that a homoclinic orbit H : R → R3 is a solution (x(t), y(t), z(t))
of the considered system which joins an unstable equilibrium point E to itself,
that is H(t) := (x(t), y(t), z(t)) and H(t) → E as t → ±∞. In addition, if
(x(t), y(t), z(t)), t ∈ (−∞, s)∪ (s,∞) is a solution of the considered system, which
is indefinite in s, such that (x(t), y(t), z(t)) → E as t → ±∞, then we say that
SH : (−∞, s)∪ (s,∞) → R3, SH(t) := (x(t), y(t), z(t)) is a split-homoclinic orbit.

Proposition 3.7. Let g > 0, (h, c) ∈ Γ, c ̸= 0, and M = 3

√
−3c

g
. Denote

x1(t) =
M
(
e2p(t) + 8ep(t) − 2

)
e2p(t) − 4ep(t) − 2

,

y1(t) = −
12M2ep(t)

√
g
(
e2p(t) + 2

)(
e2p(t) − 4ep(t) − 2

)2 ,

z1(t) =
gM3

3

((
e2p(t) + 8ep(t) − 2

)3(
e2p(t) − 4ep(t) − 2

)3 − 1

)
,

x2(t) =
M
(
2e2p(t) − 8ep(t) − 1

)
2e2p(t) + 4ep(t) − 1

,

y2(t) =
12M2ep(t)

√
g
(
2e2p(t) + 1

)(
2e2p(t) + 4ep(t) − 1

)2 ,

z2(t) =
gM3

3

((
2e2p(t) − 8ep(t) − 1

)3(
2e2p(t) + 4ep(t) − 1

)3 − 1

)
,

with p(t) = M(t
√
g +K) and K ∈ R.

Then the fiber F(h,c) contains two split-homoclinic orbits

SH1 : R \

{
ln
(
2 +

√
6
)
−KM

M
√
g

}
→ R3, SH1 = (x1, y1, z1),

SH2 : R \

{
−KM − ln(2) + ln

(√
6− 2

)
M

√
g

}
→ R3, SH2 = (x2, y2, z2),

which tend to the equilibrium point EM = (M, 0, 0) as t → ±∞

Proof. The intersection of the level sets H(x, y, z) = h,C(x, y, z) = c for (h, c) ∈ Γ
is given by {

H(x, y, z) = H(M, 0, 0)
C(x, y, z) = C(M, 0, 0)

,
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or equivalent 
y2

2
− xz +

gx4

4
=

gM4

4

z − gx3

3
= −gM3

3

.

We get

z =
gx3

3
− gM3

3
, y2 =

1

6
g(x−M)2[(x+M)2 + 2M2]. (17)

System (1) reduces in this case to the equation ẋ = y. First, we consider

ẋ = −
√

g

6
(x−M)

√
(x+M)2 + 2M2,

which is equivalent with∫
dx

(x−M)
√

(x+M)2 + 2M2
= −

√
g

6
t+K, K ∈ R.

By integration, we obtain the solution x1, and using (17), the functions y1 and

z1, with t ∈ R\

{
ln
(
2 +

√
6
)
−KM

M
√
g

}
.

Similarly, we reduce system (1) to

ẋ =

√
g

6
(x−M)

√
(x+M)2 + 2M2,

which is equivalent with∫
dx

(x−M)
√

(x+M)2 + 2M2
=

√
g

6
t+K, K ∈ R,

and we get the solution (x2, y2, z2), t ∈ R \

{
−KM − ln(2) + ln

(√
6− 2

)
M

√
g

}
.

We can also see that

lim
t→±∞

(x1(t), y1(t), z1(t)) = (M, 0, 0),

lim
t→±∞

(x2(t), y2(t), z2(t)) = (M, 0, 0),

as required.

Remark 3.8. In Figure 7, some fibers of the energy-Casimir mapping (3) are
drawn on the level set C(x, y, z) = c, c fixed. More precisely, the fiber correspond-
ing to (h, c) = EC(M, 0, 0) ∈ Γ contains a pair of split-homoclinic orbits (white
curves). Keeping c fixed and changing h, we obtain unbounded orbits (yellow
curves for (h, c) ∈ Σ1 and green curves for (h, c) ∈ Σ2).
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Figure 7: Split-homoclinic and other orbits near the unstable equilibrium point

EM = (M, 0, 0), M = 3

√
−3c

g
, on the level set C(x, y, z) = c.

Proposition 3.9. Let g > 0 and x0 ∈ R∗. Denote

x3(t) =
x0

1− ax0t
, y3(t) =

ax20
(1− ax0t)2

, z3(t) =
2a2x30

(1− ax0t)3
,

x4(t) =
x0

1 + ax0t
, y4(t) =

−ax20
(1 + ax0t)2

, z4(t) =
2a2x30

(1 + ax0t)3
,

where a =

√
g

6
. Then the fiber F(0,0) contains two split-homoclinic orbits

SH3 :

(
−∞,

1

ax0

)
∪
(

1

ax0
,∞
)

→ R3, SH3 = (x3, y3, z3),

SH4 :

(
−∞,− 1

ax0

)
∪
(
− 1

ax0
,+∞

)
→ R3, SH4 = (x4, y4, z4),

which tend to the equilibrium point E0 = (0, 0, 0) as t → ±∞ (Figure 8).
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Figure 8: A pair of split-homoclinic orbits.

Proof. We consider the level sets{
H(x, y, z) = H(0, 0, 0)
C(x, y, z) = C(0, 0, 0)

,

that is 
y2

2
− xz +

gx4

4
= 0

z − gx3

3
= 0

.

Then

z =
gx3

3
, y2 =

1

6
x4. (18)

We chose an initial condition (x0, y0, z0) that satisfies (18), that is y0 = ax20,
z0 = 2a2x30. System (1) reduces in this case to the equation

ẋ = ax2, a > 0.

We obtain the solution x3, and then y3 and z3, t ∈ R\
{

1

ax0

}
.

Similarly, choosing y0 = −ax20, z0 = 2a2x30, we reduce system (1) to

ẋ = −ax2, a > 0,

and we get the solution x4, and then y4 and z4, t ∈ R\
{
− 1

ax0

}
.

We can also see that

lim
t→±∞

(x3(t), y3(t), z3(t)) = (0, 0, 0),

lim
t→±∞

(x4(t), y4(t), z4(t)) = (0, 0, 0),

as required.
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Cristian Lăzureanu – Department of Mathematics,
Politehnica University of Timişoara,
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E-mail: cristian.lazureanu@upt.ro



SCIENTIFIC BULLETIN
OF

THE POLITEHNICA UNIVERSITY OF TIMISOARA

Vol.67(81) MATHEMATICS–PHISYCS 2022

THE DETERMINATION OF THE STATISTICAL
DISTRIBUTION FUNCTION IN THE TESTING

OF PRODUCT LIFE

Marius Valentin BOLDEA

Abstract

In this paper I consider that a series type system is a system that functions
only if all its components are functioning. In case that the distribution
functions for all the components of a series type system are known, then the
distribution function of the whole system is given by relation (9). Particular
cases are analysed when the components are exponential distributions of the
Weibull or Rayleigh type. 1

The theory of durability has found large application in the statistical control
of products, in the security of the technical systems, as well as in demographic
problems such as those referring to the medium duration of life etc.

The above mentioned theory has been dealt with in several works. One must
mention in this regard the basic works written by B. Epstein and M. Sobel. Con-
trol plans have been elaborated, being based on different rules of statistical dis-
tribution such as: exponential [2], Rayleigh [3], Weibull [4], gamma [5].

It follows that one of the outstanding problems of the theory of durability is
the determination of the function of distribution. Although there are sufficient
possibilities to determine a rule of distribution, the former are insufficient and
their approximation to reality is rather unsatisfactory. For this reason we suggest
new functions of distribution in this domain, even if some of them are combined
with those existent.

Since f(t) is the function of distribution in time, the function of distribution
will be:

F (t) =

∫ t

0
f(u)du. (1)

1Mathematical Subject Classification (2020): 62N05, 60K10
Keywords and phrases: statistical distribution, testing of product life
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The function P (t) called function of survival (in demography), respectively
function of security or fiability (in technics) is defined:

P (t) = 1− F (t). (2)

The mortality rate, respectively the rate of destruction is defined:

λ(t) = f(t)/(1− F (t)). (3)

The following relations are to be observed between these three functions:

f(t) = λ(t)P (t) (4)

P (t) = e−
∫ t
0 λ(u)du (5)

The testing of the durability of a complex system cannot be carried out with-
out a previous analysis of the durability of the component parts of the system.
The question that arises is to determine the same function when the function of
distribution of the component parts is known.

A system usually functions only if each component is functioning i. e. a series
type connection. In these conditions the probability of their functioning is given
by the rule of the multiplication of the probability of independent cases. In case
that fi(t), (i = 1, 2, ..., n) are the rules of the distribution of the elements of the
systems, then λi(t) and Pi(t) are the rates, respectively the corresponding security
functions.

Since Pi(t) is the probability that the component i should not be out of order
up to the moment t, the probability of the functioning of the whole system is:

Ps(t) = P1(t) · P2(t) · ... · Pn(t) (6)

Because of relation (5), relation (6) becomes:

P (t) = e−
∫ t
0

∑n
i=1 λi(u)du (7)

We note: λs =
∑n

i=1 λi and relation (7) becomes:

Ps(t) = e−
∫ t
0 λsdu (8)

Also:

fs(t) = λs · Ps =

n∑
i=1

λi ·
n∏

i=1

Pi =
n∑

i=1

λi ·
∏n

i=1 fi∏n
i=1 λi

and

fs(t) =

∑n
i=1 λi∏n
i=1 λi

·
n∏

i=1

fi (9)

If the functions of distributions for the components of the systems are fi(t)
the function of distribution of the whole system is given by relation (9).

We may conclude that in a series type system the rates are additive.
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We consider that the functions of all the components of the system follow
Weibull’s rule:

fi(t) = k · ai · tk−1 · e−ai·tk

with the rate:

λi(t) = k · ai · tk−1

Calculating the functions of distribution of the system with relation (9) it
results that:

fs(t) =
k ·
∑n

i=1 ai · tk−1

kn · (tk−1)n ·
∏n

i=1 ai
· kn · (tk−1)n ·

n∏
i=1

ai · e−
∑n

i=1 ait
k

so

fs(t) = k ·
n∑

i=1

ai · tk−1 · e−
∑n

i=1 ait
k

(10)

which is a Weibull distribution too.

Thus, if in a series type system each component follows a rule of Weibull
distribution, the system itself functions according to a rule of Weibull distribution.

Special cases: let be k = 1, Weibull’s rule is the exponential distribution and
the theorem becomes: if in a series type system each component follows a rule of
exponential distribution, the system also follows a rule of exponential distribution.

Let be k = 2, Weibuul’s rule is the Rayleigh distribution and the theorem
becomes: if in a series type system each component follows a Rayleigh distribution
rule, the system also follows a Rayleigh distribution rule.

Thus one can explain the occurrence of systems with distributions of the ex-
ponential or Rayleigh type.

Let us suppose that each component of the system follows another rule of
distribution, but each of them of the Weibull type, i. e.:

fi(t) = ki · ai · tki−1 · e−ai·tki

Using relation (9) we get the distribution of system:

fs(t) =
n∑

i=1

ki · ai · tki−1 · e−
∑n

i=1 ai·tki (11)

which is no longer a Weibull distribution.

For example, a system consisting of two subsystems, one of them with an
exponential distribution rule and the other with a Rayleigh type rule, will have a
distribution rule got from the relation (11) for k1 = 1 and k2 = 2 as follows:

fs(t) = (a1 + 2a2 · t) · e−(a1·t+a2·t2) (12)

If only the experimental data of the system are known, to determine its distri-
bution function, it is necessary to calculate and to represent graphically the rate
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of distribution from the experimental data in the histogram. Then the function
of this curve is to be determined, preferably a sum of other functions as simple as
possible, if possible a sum of exponentials, admitting that the system consisted of
Weibuul components.

Provided that the rate is a sum of exponentials i. e.:

λs(t) =

n∑
i=1

ci · tbi

it may be formulated as follows:

λs(t) =
n∑

i=1

kiai · tki−1

and the function of distribution is given by relation (11).
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