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DIRECT LIMIT OF MATRIX-RINGS
MAY BE UNITAL

Sorin LUGOJAN
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Vol 63(77), Issue 1 MATHEMATICS –PHYSICS 2018

Abstract

Although the matrix-rings M(m;R) (R is a unital commutative ring) are
unital rings, yet their classical direct limit is a non-unital ring. It is presented
a direct system of matrix-rings that has a unital ring as a direct limit. 1

Keywords and phrases: block-diagonal matrix, direct limit, direct system,
matrix-ring.

1 Introduction

Let N = {1, 2, . . .}, let R be a unital commutative ring of characteristic zero, and
let Rng, Ring, R-mod respectively be the classical categories: rings, unital rings
and unital morphism, R-modules.

It is known that the direct limit, in Rng, of the matrix rings M(m;R), m ∈ N
is isomorph to R(N×N) , which belongs to Rng, although the matrix-rings belong
to Ring. By R(N×N) we mean the R-module of all mappings f : N ×N −→ R
having finite support (only a finite number of images are non-zero). Any such
mapping may be considered as a double infinite matrix

M =



f(1, 1) f(1, 2) . . .
f(2, 1) f(2, 2) . . .

...




Thus, one may say that the direct limit of the matrix-ring in Rng is the set
of infinite matrices having a finite support with the usual operations extended as
much as needed. That renders R(N×N) as a non-unital ring. We are going to use
a special case of block-diagonal matrices:

1. diag(A;r):= diag(A,...,A), where A appears on r slots

1MSC (2010): 13A99
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Direct Limit of Matrix-Rings may be Unital 5

2. diag(A,∞):=diag(A,...,A,...)∈ RN×N

The only possible unit of RN×N is diag(1,∞) , which has no finite support,
hence R(N×N) ∈ Rng−Ring.

Is it possible to have a unital ring as the direct limit of matrix-rings ? The
answer will be given in the followings. Firstly, one must remark that the direct
system of matrix-rings used for the direct limit in Rng is not a direct system in
Ring. Indeed, the mappings of the usual direct system are

fmn : M(m;R) −→M(n;R)

for any m < n, fmn(M) = (νij), where

νij =

{
µij , i, j ≤ n
0, else

and M = (µij). Those are not unital morphisms (fmn(Im) 6= In) In fact, the
direct limit in Rng is the direct limit in the category R-mod, plus the remark
that the objects and the morphisms implied belong to the category Rng, see [1],
p. 34. Therefore, if one wants to have a direct limit in Ring, one must firstly find
a direct system of matrix-rings in Ring. But here there is a problem shown in
the following theorem.

Theorem 1.1 If f : M(m;R) −→M(n;R) is a Ring-morphism for m < n, then
m|n (m divides n).

Proof. For the properties of matrices mentioned here, one may see [2] or the
Romanian translation [3]. Lets suppose f : M(m;R) −→ M(n;R) is a Ring-
morphism. That means:

1. f(M1 +M2) = F (M1) + f(M2), ∀M1,M2 ∈M(m;R)

2. f(M1 ·M2) = f(M1) · f(M2), ∀M1,M2 ∈M(m;R)

3. f(Im) = In.

The identity matrix Im may be decomposed into a sum

Im =
m∑

i=1

Ei

where Ei = (δij · δik)jk
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is the matrix having just one non-zero entry in the cell
(i, i). The images of Ei, denoted by Fi = f(Ei), i = 1, 2, . . . .m, inherit properties
of Ei, for example:

a)
∑m

i=1 Fi = In
b) the ranks of Fi are all equal.

The a) statement is due to 1) and 3). For b) we consider the matrix Mk,
which is obtain from Im by exchanging the k -th and the (k+1 )-th rows, that is

Mk =




1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...
0 0 · · · 0 1 · · · 0
0 0 · · · 1 0 . . . 0
...
0 0 · · · 0 0 · · · 1




The effect of leftwards multiplication of any matrix M ∈ M(m;R) by Mk is
the exchange of the k -th row by the (k+1 )-th row in M. The effect of rightwards
multiplication is the exchange of the k -th by the (k+1 )-th column in M. All the
matrices Mk, k = 1, . . . ,m− 1 are invertible, since their determinants equal
-1, the opposite of 1 in R, which is invertible in R. Then the images by f of
Mk, denoted by Nk = f(Mk), are invertible due to 2.) and 3.). By repeated
multiplication by Mk, leftwards and rightwards, it is possible to connect any two
matrices Ei. Then, any two matrices Fi may be connected by leftwards and
rightwards multiplication using invertible matrices in M(n, R), as a consequence
of 2.) and 3.). That means Fi has the same rank, ∀i ∈ {1, . . . ,m}.

On the other hand for any B ∈ M(n;R) there is a unique decomposition of
B in terms of Fi : B =

∑m
i=1BFi, by multiplying the relation a.) by B. Indeed,

if
∑
BFi =

∑
CFi, it results that

∑
(B − C)Fi = 0, hence B − C = 0. That

means BFi, BFj have non-zero entries in different cells ∀i, j. In order to realise
that Fi must have zero-columns. The same is true for FiB, but here Fi must
have zero-rows. Further, all the Fi must have the same number of zero-rows (and
zero-columns), else their ranks wouldn’t equal. It results that m|n.

Corollary 1.2 The conclusion is that there is no direct system in Ring made
by the matrix-rings M(m; R), over the index set N, endowed by the usual order
relation.

Still, we may have a direct system of matrix-rings over N, as is stated in the
followings.
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Lemma 1.3 The family M(m; R), m ∈ N is a direct system in Ring, over the
index set N, endowed by the relation ”divides”.

Proof The set N and the ”divides” relation is a directed set. If m|n, there is
r ∈ N such that n = r ·m. Then the Ring-morphism

fmn : M(m;R) −→M(n;R), fmn(M) = diag(M, r)

is the ring-morphism of a direct system in Ring. The requirements of direct
system are:

1. fmm = id, ∀m ∈ N (obvious)

2. fnp ◦ fmn = fmp, ∀m|n|p.

Indeed, supposing that n = r ·m, p = s · n, we have fmn(M) = diag(M, r), then
fnp(fmn(M)) = fnp(diag(M, r)) = diag(M, rs), and also fmp(M) = diag(M, rs).

Theorem 1.4 The direct limit in Ring of the matrix-rings M(m;R), m ∈ N,
corresponding to the direct system of the Lemma 1.3, is:

L = {diag(M,∞) |M ∈M(m;R), ∀m ∈ N}.

Proof. Following [1], p. 33, the direct limit of the direct system in Lemma 1.3 is
constructed by considering the direct sum of the R-modules M(m;R), m ∈ N.
Those are identified by their images in the direct sum. The direct limit is the
quotient set of the direct sum by the R-submodule generated by all the elements
M − fmn(M),∀M ∈ M(m;R) and m|n. That is, the image in the direct sum
of any M ∈ M(m;R) is identified by its image fmn(M) = diag(M, r), where
n = rm. Hence all the diagonal matrices diag (M, r) are identified, and the
equivalence class bijectively corresponds to diag(M,∞). Hence the quotient set
is L. L is also a unital ring, and all the implied morphisms are morphisms of
unital rings. That results by [1], p. 34 or by straightforward computation.
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Abstract

In this paper we study the Falkner-Skan equation. Some stability prob-
lems, Lax formulation and an approximate analytic solution by means of the
Optimal Homotopy Asymptotic Method (OHAM) were discussed. 1

Keywords and phrases: stability, Lax formulation, optimal homotopy
asymptotic method (OHAM), nonlinear differential system.

1 Introduction

The proprieties of viscoelastic materials have been intensively studied in re-
cent years because of their industrial and technological applications such as plastic
processing, cosmetics, paint flow, adhesives, accelerators, electrostatic filters, etc
[1].

The Falkner-Skan equation describing this proprieties were studied from var-
ious points of view: some approximate procedures to solve a boundary layer
equations [2], numerical solution [3], existence of a unique smooth solution [4], [5]
and [6], was analytically investigated [7] and [8], by using Adomian decomposition
method [9] and [10], etc.

The aim of the present paper is to propose a geometrical point of view and
an accurate approach to Falkner-Skan equation using an analytical technique,
namely optimal homotopy asymptotic method [11], [12], [13].

The validity of our procedure, which does not imply the presence of a small
parameter in the equation, is based on the construction and determination of
the auxiliary functions combined with a convenient way to optimally control the

1MSC (2010): 34-XX, 34A26, 34H05, 34M45, 35A24, 37C10, 49J15, 49K15, 65Lxx, 93C15,
93D05
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convergence of the solution. The efficiency of the proposed procedure is proves
while an accurate solution is explicitly analytically obtained in an iterative way
after only one iteration.

From the geometry point of view, we establish the equilibrium states of the
studied system and define a control function. Using specific Hamilton-Poisson
geometry methods, namely the energy-Casimir method [14] we are able to study
the nonlinear stability of these equilibrium states.

In this paper, a control function is proposed in order to study the stability
of the equilibrium states of the system and the numerical integration via the
Optimal Homotopy Asymptotic Method of the controlled system is presented.

The paper is organized as follows: in the second paragraph we put the Falkner-
Skan equation in a differential system form and find the equilibrium states of
the system. In the third section we find a control which preserves the equilib-
rium states of the system and give a Hamilton-Poisson realization of a controlled
system. The fourth section is dedicated to study of stability of the controlled
system. In a fifth paragraph is given a Lax formulation for the controlled system
and finally in the sixth section a briefly presentation of the Optimal Homotopy
Asymptotic Method, developed in [13] and used in the last part in order to obtain
the approximate analytic solutions of the controlled system.

2 The Falkner-Skan equation in the flow of a viscous
fluid

The dimensionless Falkner-Skan equation in the flow of a viscous fluid can be
written as [2], [3], [7], [10]:

X ′′′(t) +X(t)X ′′(t) + β
(

1− (X ′(t))2
)

= 0, (1)

with the initial and boundary conditions

X(0) = 0, X ′(0) = 0, lim
t→∞

X ′(t) = 1, (2)

where t > 0, β is a measure of the pressure gradient, and prime denotes derivative
with respect to t.

Using the notations:

X(t) = x1(t), X ′(t) = x2(t), X ′′(t) = x3(t),
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the nonlinear equation Eq. (1) becomes:




x′1 = x2
x′2 = x3 , t > 0.

x′3 = −β
(

1− x22
)
− x1x3

(3)

The nonlinear differential system (3) has an equilibrium state
eM = (M, 0, 0),M ∈ R iff β = 0.

3 The Hamilton-Poisson realization of the system (3)

For the beginning, let us recall very briefly the definitions of general Poisson
manifolds and the Hamilton-Poisson systems.

Definition: Let M be a smooth manifold and let C∞(M) denote the set of
the smooth real functions on M. A Poisson bracket on M is a bilinear map
from C∞(M)× C∞(M) into C∞(M), denoted as:

(F,G) 7→ {F,G} ∈ C∞(M), F,G ∈ C∞(M)

which verifies the following properties:
- skew-symmetry:

{F,G} = −{G,F} ;

- Jacobi identity:

{F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0;

- Leibniz rule:
{F,G ·H} = {F,G} ·H +G · {F,H} .

Proposition: Let {·, ·} a Poisson structure on Rn. Then for any
f, g ∈ C∞(Rn,R) the following relation holds:

{f, g} =
n∑

i,j=1

{xi, xj}
∂f

∂xi

∂g

∂xj
.

Let the matrix given by:
Π = [{xi, xj}] .

Proposition: Any Poisson structure {·, ·} on Rn is completely determined
by the matrix Π via the relation:

{f, g} = (5f)tΠ(5g).
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Definition: A Hamilton-Poisson system on Rn is the triple (Rn, {·, ·} , H),
where {·, ·} is a Poisson bracket on Rn and H ∈ C∞(Rn,R) is the energy (Hamil-
tonian). Its dynamics is described by the following differential equations system:

.
x = Π · ∇H

where x = (x1, x2, ...xn)t.

Definition: Let {·, ·} a Poisson structure on Rn. A Casimir of the configu-
ration (Rn, {·, ·}) is a smooth function C ∈ C∞(Rn,R) which satisfy:

{f, C} = 0, ∀f ∈ C∞(Rn,R).

Let us employ the control u ∈ C∞(R3,R),

u(x1, x2, x3) = (0 , x1x2 , −x22 − x21x2), (4)

for the system (3). The controlled system (3)−(4), explicitly given by:





x′1 = x2
x′2 = x3 + x1x2 , t > 0,
x′3 = −x1x3 − x22 − x21x2.

(5)

Proposition: The controlled system (5) has the Hamilton-Poisson realization

(R3,Π−, H),

where

Π− =




0 1 −x1
−1 0 x2
x1 −x2 0




is the minus Lie-Poisson structure and

H(x1, x2, x3) =
1

2
x22 − x1x3 − x21x2

is the Hamiltonian.
Proof: Indeed, we have:

Π− · ∇H =



x′1
x′2
x′3




and the matrix Π− is a Poisson matrix, see [15].
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The next step is to find the Casimirs of the configuration described by the
above Proposition. Since the Poisson structure is degenerate, there exist Casimir
functions. The defining equations for the Casimir functions, denoted by C, are

Πij∂jC = 0.

It is easy to see that there exists only one functionally independent Casimir
of our Poisson configuration, given by C : R3 → R,

C(x1, x2, x3) = −x3 − x1x2.

Consequently, the phase curves of the dynamics Eq. (5) are the intersections
of the surfaces H(x1, x2, x3) = const. and C(x1, x2, x3) = const..

4 Stability Problem

The concept of stability is an important issue for any differential equation.
The nonlinear stability of the equilibrium point of a dynamical system can be
studied using the tools of mechanical geometry, so this is another good reason
to find a Hamilton -Poisson realization. For more details, see [15]. We start this
section with a short review of the most important notions.

Definition: An equilibrium state xe is said to be nonlinear stable if for
each neighbourhood U of xe in D there is a neighbourhood V of xe in U such
that trajectory x(t) initially in V never leaves U.

This definition supposes well-defined dynamics and a specified topology. In
terms of a norm ‖‖ , nonlinear stability means that for each ε > 0 there is δ > 0
such that if

‖x(0) − xe ‖ < δ

then

‖x(t) − xe ‖ < ε, (∀) t > 0.

It is clear that nonlinear stability implies spectral stability; the converse is not
always true.

The equilibrium states of the dynamics Eq. (1) are

eM = (M, 0, 0), M ∈ R.

Proposition 1: For the equilibrium states eM = (M, 0, 0) the following state-
ments hold:
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a) eM = (M, 0, 0) are unstable for M > 0;
b) eM = (M, 0, 0) are unstable for M = 0

Proof: We will use energy-Casimir method, see [15] for details. Let

Fϕ(x1, x2, x3) = H(x1, x2, x3) + ϕ[C(x1, x2, x3)] =

=
1

2
x22 − x1x3 − x21x2 + ϕ(−x3 − x1x2)

be the energy-Casimir function, where ϕ : R → R is a smooth real valued
function.

Now, the first variation of Fϕ is given by

δFϕ(x1, x2, x3) = x2δx2 − x1δx3 − x3δx1 − 2x1x2δx1 − x21δx2+

+ϕ̇ (−x3 − x1x2) · (−x1δx2 − x2δx1 − δx3)
so we obtain

δFϕ(eM ) = [M + ϕ̇ (0)] · (−Mδx2 − δx3)
that is equals zero for any M ∈ R∗ if and only if

ϕ̇ (0) = −M. (6)

The second variation of Fϕ at the equilibrium of interest is given by

δ2Fϕ(eM ) = [ϕ̈(0)]−1 · [ϕ̈(0)δx3 − δx1 +M · ϕ̈(0)δx2]
2 +

+[ϕ̈(0)]−1[1 +M2ϕ̈(0)−M2(ϕ̈(0))2]−1 ·
[(

1 +M2ϕ̈(0)−M2(ϕ̈(0))2
)
δx2+

+
(
Mϕ̈(0)−M

)
δx1

]2
+[1+M2ϕ̈(0)−M2(ϕ̈(0))2]−1·

[
−1 +M2ϕ̈(0)−M2

] (
δx1

)2
.

If we choose now ϕ such that the relation (6) is valid and δ2Fϕ(eM ) is positive
defined, i.e.

ϕ̈(0) > 0 and 1 +M2ϕ̈(0)−M2(ϕ̈(0))2 > 0 and − 1 +M2ϕ̈(0)−M2 > 0

then the second variation of Fϕ at the equilibrium of interest is positive defined.
We can assume that M > 0. From these inequalities we deduce that:

M2 + 1

M2
< ϕ′′(0) <

M2 +M
√
M2 + 4

2M2
,
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that implies

2M2 + 2 < M2 +M
√
M2 + 4 ⇒ (M2 + 2)2 < M2(M2 + 4) ⇒ 4 < 0,

that is false.
Therefore, the equilibrium state eM (M, 0, 0) is unstable.
In the same way, we conclude that eM (M, 0, 0) is unstable for M = 0. �

Table 1: The comparison between the approximate solutions x̄1 given by Eq. (7)
and the corresponding numerical solutions for β = 0
(relative errors: εx1 = |x1numerical

− x̄1| )

t x1numerical
x̄1 given by Eq.
(7)

εx1

0 1.5671 ·10−25 -1.3322 ·10−15 1.3322 ·10−15

4/5 0.149674539444 0.149401535388 2.73004 ·10−4

8/5 0.582956328320 0.582978942361 2.2614 ·10−5

12/5 1.231527648000 1.231539489179 1.1841 ·10−5

16/5 1.990581010375 1.990607740256 2.6729 ·10−5

4 2.783886492275 2.783817337929 6.9154 ·10−5

24/5 3.583254092715 3.583303973631 4.9880 ·10−5

28/5 4.383220411026 4.383289581820 6.9170 ·10−5

32/5 5.183219409763 5.183234915896 1.5506 ·10−5

36/5 5.983219388168 5.983199995268 1.9392 ·10−5

8 6.783219382599 6.783194882759 2.4499 ·10−5

5 Lax formulation

Let introduce the matrices:

L =

(
1
2x

2
2 −x1x3 − x3 − 1

8x
4
2 − 1

2(−x1x3 − x21x2)2
1 −x1x3 − x21x2

)
,

B =

(
1 −x2(x3 + x1x2)
0 1

)
.

Then an easy computation we can establish the following result:

Theorem 5.1 The controlled system (5) have a Lax formulation, i.e., it can be
put in the equivalent form:

dL

dt
=
[
L , B

]
⇔ dL

dt
= L ·B −B · L.
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As in [15], the following properties hold:

H = Trace(L) and C =
1

2
Trace(L2),

where H- Hamiltonian function and C- Casimir function.

Table 2: The comparison between the approximate solutions x̄′1 from Eq. (7)
and the corresponding numerical solutions for β = 0 (relative errors: εx′

1
=

|x′1numerical
− x̄′1|)

t x′1numerical
x̄′1 from Eq. (7) εx′

1

0 -3.8645 ·10−21 8.8817 ·10−16 8.8818 ·10−16

4/5 0.371963259413 0.372477797312 5.1453 ·10−4

8/5 0.696699514599 0.696023892471 6.7562 ·10−4

12/5 0.901065461379 0.901471382767 4.0592 ·10−4

16/5 0.980364982283 0.980092859963 2.7212 ·10−4

4 0.997770087958 0.997861518336 9.1430 ·10−5

24/5 0.999859396033 0.999974757114 1.15361 ·10−4

28/5 0.999995149208 0.999946428194 4.8721 ·10−5

32/5 0.999999902864 0.999935247532 6.4655 ·10−5

36/5 0.999999992429 0.999977995910 2.1996 ·10−5

8 0.999999993273 1.000005054164 5.0608 ·10−6

6 Numerical simulation

In this section, the accuracy and validity of the OHAM technique is proved
using a comparison of our approximate solutions with numerical results obtained
via the fourth-order Runge-Kutta method for β = 0.

The convergence-control parameters K, Ci, i = 1, 8 are optimally determined
by means of the least-square method using the Mathematica 9.0 software.

Observation: If x̄(t) is the approximate analytic solution obtained via Opti-
mal Homotopy Asymptotic Method [13], then for β = 0 the convergence-control
parameters are respectively :

C1 = −5.146692834756 , C2 = −3.319352427903 , C3 = 1.365481026558 ,

C4 = −0.109053890316 , C5 = 63.014570679440 , C6 = −183.226725640327 ,

C7 = 47.317886321776 , C8 = 53.798097627583 , K = 1.679601787261 .
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Figure 1: Comparison between the approximate solutions x̄1 given by Eq. (7)
and the corresponding numerical solutions:
−−−−−−−−−−−−−−− numerical solution, · · · · · · · · · · · OHAM solution.

Table 3: The comparison between the approximate solutions x̄′′1 from Eq. (7)
and the corresponding numerical solutions for β = 0 (relative errors:
εx′′

1
= |x′′1numerical

− x̄′′1|)

t x′′1numerical
x̄′′1 from Eq. (7) εx′′

1

0 0.469599995897 0.469599895897 1.0000 ·10−7

4/5 0.451190185801 0.460093505720 8.9033 ·10−3

8/5 0.342486827279 0.342756074406 2.6924 ·10−4

12/5 0.167560529122 0.167075663254 4.8486 ·10−4

16/5 0.046370185755 0.046300824641 6.9361 ·10−5

4 0.006874039262 0.007295190897 4.2115 ·10−4

24/5 0.000538393988 0.000306981990 2.3141 ·10−4

28/5 0.000022211398 -9.0012 ·10−5 1.1222 ·10−4

32/5 4.7872 ·10−7 4.2932 ·10−5 4.2454 ·10−5

36/5 4.0075 ·10−9 4.9247 ·10−5 4.9243 ·10−5

8 6.8538 ·10−10 1.8697 ·10−5 1.8696 ·10−5

The first-order approximate solutions proposed in [13] becomes:
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x̄1(t) = −1.216776769791− 0.236541146259 · e−6.718407149045t + t+

+e−5.038805361784t · (2.067180899886 + 0.318125112302t− 0.554796671887t2)+

+e−3.359203574522t · (−4.570156113663− 5.624329520194t− 8.333219504464t2−

−4.761785285840t3) + e−1.679601787261t · (3.956293129828 + 4.426059140587t−

−1.432577756121t2 − 0.407499225829t3 + 0.162858423313t4 − 0.012985684004t5) .
(7)

Finally, Tables 1 - 3 and Figs. 1-2 emphasize the accuracy of the OHAM tech-
nique by comparing the approximate analytic solutions x̄1, x̄

′
1 and x̄′′1 respectively

presented above with the corresponding numerical integration values.

2 4 6 8
t

0.2

0.4

0.6

0.8

1.0
x1

' HtL

Figure 2: Comparison between the approximate solutions x̄′1 from Eq. (7) and
the corresponding numerical solutions: −−−−−−−−−−−−−−− numerical solution, · · · · · · · · · · ·
OHAM solution.

7 Conclusion

In this paper we analyze the Falkner-Skan equations from some geometrical
point of view. The stability of a nonlinear differential problem governing the
Falkner-Skan equation is investigated. Finding a Hamilton-Poisson realization,
the results were obtained using specific tools, such as the energy-Casimir method.
We give find a Lax formulation for the studied system.
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Finally, the analytical integration of the nonlinear system (obtained via the
Optimal Homotopy Asymptotic Method and presented in [13]) is compared with
the exact solution (obtained as intersections of the surfaces H(x1, x2, x3) = const.
and C(x1, x2, x3) = const).

Numerical integration of the controlled dynamics is obtained via the Optimal
Homotopy Asymptotic Method. Numerical simulations and a comparison with
Runge-Kutta 4 steps integrator are presented, too.
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[11] V. Marinca, N. Herişanu, Nonlinear Dynamical Systems in Engineering -
Some Approximate Approaches, Springer Verlag, Heidelberg, 2011.
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Abstract

The present paper studies the property of trichotomy described by a poly-
nomial behaviour according to decay, expansion and growth of the solution
on the stable, unstable and central manifold respectively. 1

Keywords and phrases: skew-evolution semiflow; polynomial trichotomy,
strong polynomial trichotomy and weak polynomial trichotomy.

1 Introduction

The issue of decomposing the state space into a direct sum of subspaces, where
the trajectories of the system define a prescribed behavior is triggered by the
asymptotic behavior of first-order differential equations. The term of exponential
trichotomy shapes the fact that the state space into three closed subspaces: stable
subspace, unstable subspace and the so-called central manifold. While the stable
subspace leads the pattern of the solution to converge (in norm) towards zero, and
the unstable one to converge (in norm) towards infinity, on the central manifold
the solutions need only to have polynomially growth and decay.

The trichotomy property is a natural generalization of the well-known di-
chotomy property of dynamical systems, refined as several results were published
from which we point out the following: [1], [4], [5], [6], [7], [8] and [10]. The
trichotomy property was first mentioned by Sacker and Sell in [9] and several
results, related to polynomial trichotomy, were published in [1], [4], [5], [8], [10].

The present paper studies the property of trichotomy described by a poly-
nomial behavior according to decay, expansion and growth of the solution on
the stable, unstable and central manifold respectively. The links between the

1MSC (2010): 34D09, 34D05
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concepts presented in this paper (polynomial trichotomy, strong polynomial tri-
chotomy and weak polynomial trichotomy) are indicated mostly with the aid
of examples and counterexamples, which provide a set of systems having such
properties on one hand, and clearly delimiting the concepts on the other hand.

2 Discrete evolution semiflows

Let (X, d) be a metric space, V a Banach space, and B(V ) the Banach space of all
bounded linear operators acting on V . We denote byD =

{
(m,n) ∈ N2 : m ≥ n

}
.

Definition 2.1. A mapping ϕ : D×X → X is called a discrete evolution semiflow
on X if the following conditions hold:

(es1) ϕ(m,m, x) = x, for all (m,x) ∈ N×X;

(es2) ϕ(m,n, ϕ(n, p, x)) = ϕ(m, p, x), for all (m,n), (n, p) ∈ D,x ∈ X.

Definition 2.2. A mapping Φ : D × X → B(V ) is called a discrete evolution
cocycle over the evolution semiflow ϕ if:

(ec1) Φ(m,m, x) = I, for all m ≥ 0, x ∈ X.

(ec2) Φ(m,n, ϕ(n, p, x))Φ(n, p, x) = Φ(m, p, x), for all (m,n), (n, p) ∈ D
and for all x ∈ X.

If Φ is a discrete evolution cocycle over the discrete evolution semiflow ϕ,
then the pair C = (ϕ,Φ), defined by C : D ×X × V → X × V , C(m,n, x, v) =
(ϕ(m,n, x),Φ(m,n, x)v) is called a discrete skew-evolution semiflow on X × V .

Definition 2.3. An operator valued sequence P : N→ B(V ) is called a sequence
of projections if PnPn = Pn for all n ∈ N, where Pn = P (n).

3 Trichotomy cvadruples

We will denote by V = l2(N,R) the Banach space containing all the real-valued
sequences v = (vk)k≥0 having the property

∞∑

n=0

|vn|2 <∞,

endowed with the norm ‖v‖2 =

( ∞∑
n=0
|vn|2

)1/2

.
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Definition 3.1. A sequence of projections P : N→ B(V ) is called polynomially
bounded if there exist M ≥ 1 and γ ≥ 0 such that ‖Pn‖ ≤ M(n + 1)γ for all
n ∈ NX. If γ = 0, we say that it is bounded.

Definition 3.2. Three sequences of projections P,Q,R : N → B(V ) are called
supplementary if for all n ∈ N we have Pn +Qn +Rn = I.

In what follows, we will present two examples which will serve our main aim.

Example 3.1. Consider V = l2(N,R) and p : N→ R a non-decreasing sequence.
For each n ∈ N we define P1,n : l2(N,R)→ l2(N,R) by P1,nv = (yk(n))k≥0, where
y3k(n) = v3k + p(n) · v3k+1, y3k+1(n) = y3k+2(n) = 0, k ∈ N.

We have that
P1,n ∈ B(l2(N,R))

and for all n ∈ N we have that

max{1, p(n)} ≤ ‖P1,n‖ ≤ 1 + p(n).

Furthermore, we define the sequence of projections

Q1 : N→ B(V )

by
Q1,nv = (zk(n))k≥0,

where

z3k(n) = −p(n)v3k+1, z3k+1(n) = v3k+1, z3k+2(n) = 0, k ∈ N.

The following hold:
|Q1,nv‖2 ≤ ‖Q1,mv‖2

‖Q1,nv‖2 =

√√√√(1 + p(n)2) ·
∞∑

k=0

|v3k+1|2.

Finally, we define
R1 : N→ B(V )

by
R1,nv = (wk(n))k≥0,

where
w3k(n) = w3k+1(n) = 0, w3k+2(n) = v3k+2, k ∈ N.

We have that R1 is bounded, with ‖R1,n‖ = 1, for all n ∈ N, x ∈ X and in
addition, the sequences P1, Q1 and R1 are supplementary.
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Example 3.2. Let V = l2(N,R) and consider

P2, Q2, R2 : N→ B(l2(N,R))

defined by P2,nv = (yk(n))k≥0, Q2,nv = (zk(n))k≥0 and R2,nv = (wk(n))k≥0,
where, for k ∈ N, y4n(n) = v4k, y4k+1(n) = y4k+2(n) = y4k+3(n) = 0, z4k(n) =
z4k+3(n) = 0, z4k+1(n) = v4k+1, z4k+2(n) = v4k+2, w4k(n) = w4k+1(n) =
w4k+2(n) = 0, w4k+3(n) = v4k+3. We have that P2, Q2 and R2 are three sup-
plementary sequences of projections, with ‖P2,n‖ = ‖Q2,n‖ = ‖R2,n‖ = 1 for all
n ∈ N.

Given three supplementary sequences of projections P , Q, R and C = (Φ, ϕ)
a discrete skew-evolution semiflow, we will say that (C,P,Q,R) is a trichotomic
cvadruple.

Two examples of trichotomic cvadruples are given below.

Example 3.3. On V = l2(N,R) consider the sequences of projections P1, Q1

and R1 from Example 3.1. Let

λ : N→ (0,∞)

and
Φ1 : D → B(l2(N,R))

given by

Φ1(m,n, x) =
λ(n)

λ(m)
· P1,n +

λ(m)

λ(n)
·Q1,m +R1,n

for all (m,n, x) ∈ D×X. Taking into account that, for all m,n ∈ N the following
hold:

P1,mP1,n = P1,n and Q1,mQ1,n = Q1,m

it is easy to check that Φ1 is a discrete skew-evolution co-cycle. Moreover we
have that for all (m,n, x) ∈ D ×X,

Φ1(m,n, x)P1,n =
λ(n)

λ(m)
P1,n,

Φ1(m,n, x)Q1,n =
λ(m)

λ(n)
Q1,m,

Φ1(m,n, x)R1,n = R1,n.
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Example 3.4. On V = l2(N,R) let P2, Q2 and R2 be the sequences of projections
defined in Example 3.2. For ψ : N→ (0,∞) we define

Φ2 : D → B(l2(N,R))

by

Φ2(m,n, x)v =

{
(yk(m,n))k≥0 if m > n

v, if m = n

where for all k ∈ N and (m,n, x, v) ∈ D ×X × l2(N,R),

y4k(m,n) =
ψ(n)

ψ(m)
v4k,

y4k+1(m,n) =
ψ(m)

ψ(n)
v4k+1,

y4k+2(m,n) = 0

and

y4k+3(m,n) = v4k+3.

One can easily observe that (Φ2, P2, Q2, R2) a trichotomic cvadruple and for

(m,n, x) ∈ D × l2(N,R)

we have that

Φ2(m,n, x)P2,nv = (pk(m,n))k≥0,

where

p4k(m,n) =
ψ(n)

ψ(m)
v4k,

p4k+1(m,n) = p4k+2(m,n) = p4k+3(m,n) = 0

and

Φ2(m,n, x)Q2,nv =

{
(qk(m,n))k≥0, m > n

(ρk(m,n))k≥0, m = n
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is given by

q4k(m,n) = q4k+2(m,n) = q4k+3(m,n) = 0,

q4k+1(m,n) =
ψ(m)

ψ(n)
v4k+1

and
ρ4k(m,n) = ρ4k+3(m,n) = 0,

ρ4k+1(m,n) = v4k+1,

ρ4k+2(m,n) = v4k+2,

for all n ∈ N, and
Φ2(m,n, x)R2(n)v = (rk(m,n))k≥0,

where
r4k(m,n) = r4k+1(m,n) = r4k+2(m,n) = 0,

r4k+3(m,n) = v4k+3.

In what follows, we will present the main concepts of trichotomy, which will
be studied and delimited in the remaining sections.

4 Concepts of discrete polynomial trichotomy

Definition 4.1. A trichotomic cvadruple (C,P,Q,R) is called polynomiallty
trichotomic (p.t) if there exist N ≥ 1, α > 0 and β ≥ 0 such that for all
(m,n, x) ∈ D ×X,

(pt1) (m+ 1)α‖Φ(m,n, x)Pn‖ ≤ N(n+ 1)α+β;

(pt2) (m+ 1)α ≤ N(m+ 1)β(n+ 1)α‖Φ(m,n, x)Qn‖;

(pt3) (n+ 1)α‖Φ(m,n, x)Rn‖ ≤ N(m+ 1)α(n+ 1)β;
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(pt4) (n+ 1)α ≤ N(m+ 1)α+β‖Φ(m,n, x)Rn‖.

If β = 0, then we say that (C,P,Q,R) is uniformly polynomially tri-
chotomic (u.p.t).

Remark 4.1. If (C,P,Q,R) is (p.t) with constants N,α, β then

max{‖Pn‖, ‖Qn‖, ‖Rn‖} ≤ 3N(n+ 1)β, ∀n ∈ N.

Remark 4.2. If (C,P,Q,R) is (u.p.t) then it is also (p.t). The converse is not
generally true. Consider, for example, the trichotomic cvadruple (Φ1, P1, Q1, R1)
from Example 3.3 with p(n) = λ(n) = n+1. It is easy to check that (Φ1, P1, Q1, R1)
is (p.t), but it cannot be (u.p.t), because P is not bounded.

Definition 4.2. A trichotomic cvadruple (C,P,Q,R) is said to be strongly
polynomially trichotomic (s.p.t) if there exist N ≥ 1, α > 0 and β ≥ 0 such
that

(spt1) (m+ 1)α‖Φ(m,n, x)Pnv‖ ≤ N(n+ 1)α+β‖Pnv‖;

(spt2) (m+ 1)α‖Qnv‖ ≤ N(m+ 1)β(n+ 1)α‖Φ(m,n, x)Qnv‖;

(spt3) (n+ 1)α‖Φ(m,n, x)Rnv‖ ≤ N(m+ 1)α(n+ 1)β‖Rnv‖;

(spt4) (n+ 1)α‖Rnv‖ ≤ N(m+ 1)α+β‖Φ(m,n, x)Rnv‖

for all (m,n, x, v) ∈ D ×X × V.

If β = 0, then we say that (C,P,Q,R) is uniformly strongly polynomially
trichotomic (u.s.p.t).

Remark 4.3. If (C,P,Q,R) is (u.s.p.t) then it is also (s.p.t). The converse is
not generally true, fact shown by Example 5.1.

Remark 4.4. If (C,P,Q,R) is (s.p.t) then for all (m,n, x) ∈ D×X one has that
Range Qn ∩Ker Φ(m,n, x) = Range Rn ∩Ker Φ(m,n, x) = {0}.

Definition 4.3. A trichotomic cvadruple (C,P,Q,R) is said to be weakly poly-
nomially trichotomic (w.p.t) if there exist N ≥ 1, α > 0 and β ≥ 0 such that

(wpt1) (m+ 1)α‖Φ(m,n, x)Pn‖ ≤ N(n+ 1)α+β‖Pn‖;

(wpt2) (m+ 1)α‖Qn‖ ≤ N(m+ 1)β(n+ 1)α‖Φ(m,n, x)Qn‖;

(wpt3) (n+ 1)α‖Φ(m,n, x)Rn‖ ≤ N(m+ 1)α(n+ 1)β‖Rn‖;
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(wpt4) (n+ 1)α‖Rn‖ ≤ N(m+ 1)α+β‖Φ(m,n, x)Rn‖

for all (m,n, x) ∈ D ×X.

If β = 0 then we say that (C,P,Q,R) is uniformly weakly polynomially
trichotomic (u.w.p.t).

Remark 4.5. If (C,P,Q,R) is (u.w.p.t) then it is also (w.p.t). The converse is
not generally true, fact illustrated by Example 5.2.

In what follows, the connections between the above defined concepts are pre-
sented.

Remark 4.6. If a trichotomic cvadruple (C,P,Q,R) is (s.p.t) then it is also
(w.p.t). Moreover, if (C,P,Q,R) is (u.s.p.t), then it is also (u.w.p.t).

Proposition 4.1. Let (C,P,Q,R) be a trichotomic cvadruple. If (C,P,Q,R) is
(p.t) then it is also (w.p.t). Moreover, (u.p.t) ⇒ (u.w.p.t).

Proof. It follows the reasoning from Proposition 3.11 from [2].

Remark 4.7. Example 5.3 shows that (s.p.t) does not imply (p.t) and (u.s.p.t)
does not imply (u.p.t). Example 5.4 shows that the concepts of (p.t) and (w.p.t)
do not coincide. Example 5.5 shows that (p.t) doesn’t imply (s.p.t) and (u.p.t)
doesn’t imply (u.s.p.t). Finally, Example 5.6 shows that (w.p.t) doesn’t imply
(s.p.t) and (u.w.p.t) doesn’t imply (u.s.p.t).

Remark 4.8. The connections between the above enumerated concepts, taking
into account the presented results, and the examples from the next section, are
illustrated by the following diagram:

u.p.t
:; u.s.p.t

:⇒ u.w.p.t
⇐; u.p.t

6⇑⇓ 6⇑⇓ 6⇑⇓ 6⇑⇓
p.t

:; s.p.t
:⇒ w.p.t

⇐; p.t

5 Examples and counterexamples

Example 5.1. We will consider a simplified example. On V = R3, endowed
with the canonical norm, consider P,Q,R : N→ B(V ) the sequences of constant
canonical projections on R3, on the first, second and third coordinate respectively.
We define, for all (m,n, x) ∈ D ×X:

Φ(m,n, x) =
(n+ 1)1+an

(m+ 1)1+am
Pn +

m+ 1

n+ 1
Qn +Rn,
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where an = χ2N+1(n), n ∈ N (χA denotes the characteristic function of the set A).
It is easy to see that (Φ, P,Q,R) is a trichotomic cvadruple which is (s.p.t) with
N = α = β = 1. But, if we would assume that (Φ, P,Q,R) is (u.s.p.t), then, in
particular, there exist N ≥ 1 and α > 0 such that for all (m,n, x, v) ∈ D×X×V ,
we have that

(m+ 1)α‖Φ(m,n, x)Pnv‖ ≤ N(n+ 1)α‖Pnv‖.

Let

v = (1, 0, 0) ∈ RangePn
and k ∈ N. Fix x ∈ X and choose m = 2k + 2 and n = 2k + 1. The above
inequality yields the following contradiction:

2k + 2 ≤ N
(

2k + 2

2k + 3

)α−1

for all k ∈ N.

Example 5.2. Let (Φ1, P1, Q1, R1) be as in Example 5.1. According to Remark
4.6 we have that (Φ1, P1, Q1, R1) is (w.p.t). The same contradiction is obtained,
as in Example 5.1, by assuming that (Φ1, P1, Q1, R1) is (u.w.p.t).

Example 5.3. Let (Φ1, P1, Q1, R1) the trichotomic cvadruple from Example 3.3
cu p(n) = (n+ 1)n+1 and λ(n) = n+ 1. From the following estimations

(m+ 1)‖Φ1(m,n, x)P1,nv‖2 = (n+ 1)‖P1,nv‖2

(m+ 1)‖Q1,nv‖2 ≤ λ(m)‖Q1,mv‖2 = (n+ 1)‖Φ1(m,n, x)Q1,nv‖2
(n+ 1)‖Φ(m,n, x)Rnv‖2 ≤ (n+ 1)(m+ 1)‖Rnv‖2

(n+ 1)‖Rnv‖2 ≤ N(m+ 1)2‖Φ(m,n, x)Rnv‖2
valid for all (m,n, x, v) ∈ D×X×V , we can see that (Φ1, P1, Q1, R1) is (u.s.p.t),
hence it is also (s.p.t).
Assume by a contradiction that (Φ1, P1, Q1, R1) is (p.t). Then, according to
Remark 4.1, we have that there exist M ≥ 1, γ ≥ 0 such that ‖P1,n‖ ≤M(n+1)γ ,
or all n ∈ N. This leads us to (n + 1)n+1 = p(n) ≤ ‖P1,n‖ ≤ M(n + 1)γ . We
conclude that (Φ1, P1, Q1, R1) is not (p.t) hence not (u.p.t) as well.

Example 5.4. Let (Φ1, P1, Q1, R1) the trichotomic cvadruple from Example 5.3.
According to Remark 4.6, we have that (Φ1, P1, Q1, R1) is (u.w.p.t), hence it is
also (w.p.t). But, by Example 5.3, it is not (p.t), nor (u.p.t).
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Example 5.5. Let (C,P2, Q2, R2) the trichotomic cvadruple from Example 3.4
with ψ(n) = n + 1. This leads us easily to the fact that that (C,P2, Q2, R2) is
(u.p.t).
In what follows, we will show that (C,P2, Q2, R2) is not (s.p.t), and from here,
it cannot be neither (u.s.p.t). Assume, by a contradiction, that (C,P2, Q2, R2) is
(s.p.t). Let v = (vk)k≥0 given by v4k+2 = 1

4k+2 , v4k+3 = v4k+1 = v4k = 0, k ∈ N.
Obviously v ∈ l2(N,R) and by denoting, for every n ∈ N, Q2,nv = (zk(n))k≥0,
where z4k(n) = z4k+1(n) = x4k+1 = z4k+3 = 0, z4k+2(n) = v4k+2 = 1

4k+2 , we can
easily see that (zk(n))k≥0 is a nonzero sequence. Let now (m,n, x) ∈ D ×X be
with m > n. By denoting

Φ2(m,n, x)Q2,nv = (qk(m,n))k≥0,

with

q4k(m,n) = q4k+1(m,n) =
m+ 1

n+ 1
v4k+1 = q4k+2(m,n) = q4k+3(m,n) = 0,

it follows that Φ2(m,n, x)Q2,nv = 0, which contradicts the facts proven in Remark
4.4, hence (C,P2, Q2, R2) is not (s.p.t).

Example 5.6. Let (C,P2, Q2, R2) the trichotomic cvadruple from Example 5.5.
Taking into account that for all n ≥ 0,

‖P2,n‖ = ‖Q2,n‖ = ‖R2,n‖ = 1,

it follows that (C,P2, Q2, R2) is (u.w.p.t), hence (w.p.t). Again, by Example 5.5,
we obtain that (C,P2, Q2, R2) is not (s.p.t), hence it is neither (u.s.p.t).
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Abstract

The main objective of the present paper is to describe the polynomial
dichotomy behaviour in the uniform case of evolution operators in Banach
spaces. In this sense we generalize the uniform polynomial stability notion
by giving necessary and sufficient conditions for the dichotomy concept. 1

Keywords and phrases: evolution operator, uniform polynomial dichotomy

1 Introduction

The concept of exponential dichotomy was introduced in 1930 by O. Perron [4]
and it has been studied for many years. Even though nowadays it plays an impor-
tant role in the theory of dynamical systems, there are some situations in which
the notion of exponential dichotomy is too restrictive for the dynamics and for
this reason it is important to have in mind a more general type of dichotomic
behavior. In this sense, we refer to the polynomial dichotomy notion, which was
firstly mentioned for the nonuniform case by Barreira and Valls in [1]. Moreover,
the are many other works that deal with the polynomial asymptotic behaviors of
evolution operators [2], [3], [5].
The aim of this paper is to give characterization theorems for the uniform poly-
nomial dichotomy concept. The obtained results generalizes some well-known
theorems given for the stability property.

2 Preliminaries

Let X be a real or complex Banach space and B(X) the Banach algebra of
all bounded linear operators acting on X. The norms on X and on B(X) will be
denoted by ‖.‖ . The identity operator on X is denoted by I. We also denote by

1MSC (2010): 34D05, 34D09
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∆ = {(t, s) ∈ IR2
+ : t ≥ s}, ∆1 = {(t, s) ∈ ∆ : s ≥ 1}

and

T = {(t, s, t0) ∈ IR3
+ : t ≥ s ≥ t0}, T1 = {(t, s, t0) ∈ T : t0 ≥ 1}.

Definition 2.1. An application U : ∆→ B(X) is said to be an evolution operator
on X if

(e1) U(t, t) = I for every t ≥ 0

(e2) U(t, s)U(s, t0) = U(t, t0) for all (t, s, t0) ∈ T.

Definition 2.2. An evolution operator U : ∆ → B(X) is said to be strongly
measurable if for all (s, x) ∈ IR+ ×X, the mapping t 7→ ‖U(t, s)x‖ is measurable
on [s,∞).

Definition 2.3. An application P : IR+ → B(X) is said to be a projection family
on X if P 2(t) = P (t), for all t ≥ 0.

Remark 2.1. If P : IR+ → B(X) is a projection family on X, then the mapping
Q : IR+ → B(X), Q(t) = I−P (t) is also a projection family on X, which is called
the complementary projection of P .

Definition 2.4. A projection family P : IR+ → B(X) is said to be invariant to
the evolution operator U : ∆→ B(X) if

U(t, s)P (s) = P (t)U(t, s),

for all (t, s) ∈ ∆.

In what follows, if P : IR+ → B(X) is an invariant projection family to the
evolution operator U : ∆→ B(X), we will say that (U,P ) is a dichotomic pair.

Definition 2.5. The pair (U,P ) is uniformly polynomially dichotomic
(u.p.d.) if there are N ≥ 1 and ν > 0 such that:

(upd1) (t+ 1)ν‖U(t, s)P (s)x‖ ≤ N(s+ 1)ν‖P (s)x‖

(upd2) (t+ 1)ν‖Q(s)x‖ ≤ N(s+ 1)ν‖U(t, s)Q(s)x‖

for all (t, s, x) ∈ ∆×X.

Definition 2.6. The pair (U,P ) is uniformly logarithmic dichotomic (u.l.d.) if
there exists L > 1 such that:
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(uld1) ‖U(t, s)P (s)x‖ ln
t+ 1

s+ 1
≤ L‖P (s)x‖

(uld2) ‖Q(s)x‖ ln
t+ 1

s+ 1
≤ L‖U(t, s)Q(s)x‖

for all (t, s, x) ∈ ∆×X.

Definition 2.7. The pair (U,P ) is uniformly dichotomic (u.d.) if there exists
N ≥ 1 such that

(ud1) ‖U(t, s)P (s)x‖ ≤ N‖P (s)x‖

(ud2) ‖Q(s)x‖ ≤ N‖U(t, s)Q(s)x‖

for all (t, s, x) ∈ ∆×X.

Definition 2.8. The pair (U,P ) has uniform polynomial growth (u.p.g.) if there
are M ≥ 1 and ω > 0 such that

(upg1) (s+ 1)ω‖U(t, s)P (s)x‖ ≤M(t+ 1)ω‖P (s)x‖

(upg2) (s+ 1)ω‖Q(s)x‖ ≤M(t+ 1)ω‖U(t, s)Q(s)x‖

for all (t, s, x) ∈ ∆×X.

Remark 2.2. It is obvious that

u.p.d.⇒ u.d.⇒ u.p.g.

3 Uniform polynomial dichotomy

Lemma 3.1. Let U : ∆→ B(X) be an evolution operator and P : IR+ → B(X) a
projection family invariant to U . If (U,P ) is u.l.d. then there exists L > 1 such
that for all (t, s) ∈ ∆1 there exists n ∈ IN with the following properties:

(i) se4nL ≤ t < se4(n+1)L

(ii) ‖U(se4nL, s)P (s)x‖ ≤ 1

2n
‖P (s)x‖

(iii) ‖U(se4nL, s)Q(s)x‖ ≥ 2n‖Q(s)x‖, ∀x ∈ X

Proof. It follows immediately by taking n =

[
ln

(
t

s

) 1
4L

]
.
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The next theorem is a logarithmic criterion for the uniform polynomial di-
chotomy concept.

Theorem 3.2. The pair (U,P ) is uniformly polynomially dichotomic if and only
if (U,P ) has uniform polynomial growth and (U,P ) is uniformly logarithmic di-
chotomic.

Proof. Necessity. We suppose that (U,P ) is u.p.d. Then, from Remark 2.2 we
obtain that (U,P ) has u.p.g. We prove that (U,P ) is u.l.d. We consider the
application

f : [1,∞)→ IR, f(t) =
ln t

t
,

with f(t) ≤ 1

e
. Then, for the first condition (uld1) we have

‖U(t, s)P (s)x‖ ln
t+ 1

s+ 1
≤ N

(
s+ 1

t+ 1

)ν
‖P (s)x‖ ln

t+ 1

s+ 1
=

N

ν

(
s+ 1

t+ 1

)ν
‖P (s)x‖ ln

(
t+ 1

s+ 1

)ν
=

N

ν
‖P (s)x‖f

((
t+ 1

s+ 1

)ν)
≤

≤ N

ν
· f(t)‖P (s)x‖ ≤ N

νe
‖P (s)x‖.

For (uld2) we do in a similar manner and we obtain

‖Q(s)x‖ ln
t+ 1

s+ 1
≤ N

νe
‖U(t, s)Q(s)x‖.

So, we have that (U,P ) is u.l.d. for L =
N

νe
+ 1.

Sufficiency. Let N = 2Me4Lω and ν =
ln 2

4L
.

‖U(t, s)P (s)x‖ = ‖U(t, se4nL)U(se4nL, s)P (s)x‖ ≤

≤M
(

t+ 1

se4nL + 1

)ω
‖U(se4nL + 1, s)P (s)x‖ ≤

≤M · e4Lω · 1

2n
‖P (s)x‖ =

N

2n+1
‖P (s)x‖ =

N

e(n+1) ln 2
‖P (s)x‖ ≤

≤ N
(
t+ 1

s+ 1

) ln 2
4L

‖P (s)x‖ = N ·
(
s+ 1

t+ 1

)ν
‖P (s)x‖
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It results in the same way as (upd1).

Another characterization of uniform polynomial dichotomy concept is given
by

Theorem 3.3. The pair (U,P ) is uniformly polynomially dichotomic if and only
if (U,P ) has uniform polynomial growth and there exists r > 1 such that

(upH1) 2‖U(rs, s)P (s)x‖ ≤ ‖P (s)x‖

(upH2) ‖U(rs, s)Q(s)x‖ ≥ 2‖Q(s)x‖

for all s ≥ 1, x ∈ X.

Proof. Necessity We suppose that (U,P ) is u.p.d. Then, from Remark 2.2 we

obtain that (U,P ) has u.p.g. Now, let r = 2(2N)
1
ν .

(upH1)

‖U(rs, s)P (s)x‖ ≤ N
(
s+ 1

rs+ 1

)ν
‖P (s)x‖ ≤ N ·

(
2

r

)ν
‖P (s)x‖1

2
‖P (s)x‖.

(upH2)

‖U(rs, s)Q(s)x‖ ≥ ‖Q(s)x‖
N

(
rs+ 1

s+ 1

)ν
≥ ‖Q(s)x‖

N
·
(r

2

)ν
= 2‖Q(s)x‖.

Sufficiency Let (t, s) ∈ ∆1 and n =

[
ln

(
t

s

) 1
ln r

]
. Then we obtain the rela-

tion srn ≤ t < srn+1. In order to prove that (U,P ) is u.p.d., we show that (U,P )
is u.l.d. and then we use Theorem 3.2.
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(upL1)

‖U(t, s)P (s)x‖ = ‖U(t, srn)P (srn)U(srn, s)P (s)x‖ ≤

≤M
(

t+ 1

srn + 1

)ω
‖P (srn)U(srn, s)P (s)x‖ ≤

≤M · (r + 1)ω‖U(srn, s)P (s)x‖ =

= M(r + 1)ω‖U(srn, srn−1)P (srn−1)U(srn−1, s)P (s)x‖ ≤

≤ M

2
(r + 1)ω‖U(srn−1, s)P (s)x‖ ≤ · · · ≤ 2M(r + 1)ω

2n+1
‖P (s)x‖ ≤

≤ ln r

ln t+1
s+1

· 2M(r + 1)ω‖P (s)x‖

(upL2) We apply the evolution property and we use the same technique as in
the previous case. We obtain

‖U(t, s)Q(s)x‖ ≥
‖Q(s)x‖ · 1

ln r
· ln t+ 1

s+ 1
2M(r + 1)ω

Finally, we have that (U,P ) is u.l.d. for L = 2M(r + 1)ω ln r + 1 and from
Theorem 3.2, it results that (U,P ) is u.p.d.

Remark 3.4. The previous theorem is a generalization of some results proved by
Hai in [3].

In what follows, we will present a characterization of Datko type of the uni-
form polynomial dichotomy concept.

Theorem 3.5. Let (U,P ) be a strongly measurable dichotomic pair with uniform
polynomial growth. Then (U,P ) is uniformly polynomially dichotomic if and only
if there exists D > 1 with

(upD1)

∞∫

t

‖U(τ, t0)P (t0)x0‖
τ + 1

dτ ≤ D‖U(s, t0)P (t0)x0‖

(upD2)

t∫

t0

‖U(s, t0)Q(t0)x0‖
s+ 1

ds ≤ D‖U(t, t0)Q(t0)x0‖

for all (t, t0, x0) ∈ ∆×X.
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Proof. Necessity. A simple computation shows that the relations (upD1) and

(upD2) take place for D = 1 +
N

ν
.

Sufficiency. Step 1. We show that (U,P ) is uniformly dichotomic.

(ud1) If t ≥ 2s+ 1 then

‖U(t, t0)P (t0)x0‖ =
2

t+ 1

t∫

t−1
2

‖U(t, t0)P (t0)x0‖dτ ≤

≤ 2M

t∫

t−1
2

(
t+ 1

τ + 1

)ω ‖U(τ, t0)P (t0)x0‖
τ + 1

dτ ≤

≤ DM2ω‖U(s, t0)P (t0)x0‖ = M1‖U(s, t0)P (t0)x0‖

where M1 = MD2ω + 1.

If t ∈ [s, 2s+ 1) then
t+ 1

s+ 1
≤ 2. We obtain

‖U(t, t0)P (t0)x0‖ ≤M
(
t+ 1

s+ 1

)ω
‖U(s, t0)P (t0)x0‖ ≤

≤ 2ωM‖U(s, t0)P (t0)x0‖ ≤M1‖U(s, t0)P (t0)x0‖.

(ud2) Analogous with (ud1).

Step 2. We prove that U is u.p.d.

(upl1)

‖U(t, t0)P (t0)x0‖ ln
t+ 1

s+ 1
=

t∫

s

‖U(t, t0)P (t0)x0‖
τ + 1

dτ ≤

≤M1

t∫

s

‖P (τ)U(τ, t0)x0‖
τ + 1

dτ ≤ DM1‖U(s, t0)P (t0)x0‖.

(upl2)

‖Q(t0)x0‖ ln
t+ 1

s+ 1
=

t∫

s

‖Q(t0)x0‖
τ + 1

dτ ≤M1

t∫

s

‖U(τ, t0)Q(t0)x0‖
τ + 1

dτ ≤

≤ DM1‖U(t, t0)Q(t0)x0‖.
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For t0 = s, x0 = x and from Theorem (3.2) we obtain the conclusion.

The next theorem is a characterization which uses Lyapunov functions for the
uniform polynomial dichotomy of an evolution operator.

Theorem 3.6. Let (U,P ) be a strongly measurable dichotomic pair with uniform
polynomial growth. Then (U,P ) is uniformly polynomially dichotomic if and only
if there are D > 1 and L : ∆×X → IR+ with the properties:

(i) L(t, t0, x0) ≤ D (‖U(t, t0)P (t0)x0‖+ ‖U(t, t0)Q(t0)x0‖)
for all (t, t0, x0) ∈ ∆×X

(ii) L(t, t0, P (t0)x0) +

t∫

s

‖U(τ, t0)P (t0)x0‖
τ + 1

dτ = L(s, t0, P (t0)x0)

for all (t, s, t0, x0) ∈ T ×X

(iii) L(s, t0, Q(t0)x0) +

t∫

s

‖U(τ, t0)Q(t0)x0‖
τ + 1

dτ = L(t, t0, Q(t0)x0),

for all (t, s, t0, x0) ∈ T ×X.

Proof. Necessity. If U is u.p.d. then by Theorem (3.5) the function

L : ∆×X → IR+

defined by

L(t, t0, x0) =

∞∫

s

‖U(τ, t0)P (t0)x0‖
τ + 1

dτ +

t∫

t0

‖U(τ, t0)Q(t0)x0‖
τ + 1

dτ

satisfies the conditions (i)− (iii).

Sufficiency.

It follows from Theorem (3.5).
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Abstract

In this paper, we obtaining analytical approximate solutions for frac-
tional ordinary differential equations using Polynomial Least Square Method
(PLSM). An example is illustrated to show the presented methods efficiency
and convenience. 1

Keywords and phrases: Fractional ordinary differential equations, Poly-
nomial Least Square Method(PLSM), Caputos fractional derivative

1 Introduction

In recent years, fractional ordinary differential equations have been investigated
by many authors. Fractional ordinary differential equations are generally used
in many branches of science such as: mathematics, physics, chemistry and engi-
neering.

Since most of these equations have no exact solutions, it has been necessary
to develop numerical methods or analytical methods to find the approximate
solutions of these equations.

In order to find approximate solutions of these equations, many methods were
proposed, such as:

• Fractional Adams-Bashforth-Moulton method [2];

• Adomian decomposition method [4];

• Homotopy analysis method [3], [8];

• Variational iteration method [9], [10].

We consider the following fractional ordinary differential equation:

Dαy(x) = f(x, y(x)) (1)

1MSC (2010): 60H20, 34F15
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α > 0, with the initial condition:

y(0) = ν0 (2)

where ν0 are real constant and Dα denote the Caputo’s fractional derivative:

Dαỹ(x) =
1

Γ(n− α)
·
x∫

0

(x− ζ)n−α−1 · ỹ(n)(ζ)dζ

n− 1 < α < n where n ∈ N∗.
In the next section we will introduce the Polynomial Least Square Method

(PLSM) which allows us to determine analytical approximate polynomial solu-
tions for fractional ordinary differential equations and in the third section we
will compare our approximate solutions with approximate solutions presented by
fractional Adams-Bashforth-Moulton method (FABMM).

2 The Polynomial Least Squares Method

We denote by ỹ an approximate solution of equation (1). The error obtained by
replacing the exact solution y with the approximation ỹ is given by the remainder:

R(x, ỹ(x)) = Dαỹ(x)− f(x, ỹ(x)). (3)

For ε ∈ R+, we will compute approximate polynomial solutions ỹ of the problem
(1, 2) on the interval [0, b].

Definition 2.1. We call an ε-approximate polynomial solution of the problem
(1, 2) an approximate polynomial solution ỹ satisfying the relations

|R(ỹ)| < ε (4)

ỹ(0) = ν0. (5)

We call a weak ε-approximate polynomial solution of the problem (1, 2) an
approximate polynomial solution ỹ satisfying the relation:

b∫

0

|R(ỹ)|dx ≤ ε (6)

together with the initial conditions (5).
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Definition 2.2. Let Pm(x) = c0 + c1x + c2x
2 + · · · + cmx

m, ci ∈ R, i = 0,m
be a sequence of polynomials satisfying the condition:

Pm(0) = ν0.

We call the sequence of polynomials Pm(x) convergent to the solution of the
problem (1, 2) if lim

m→∞
D(Pm(x)) = 0.

We observe that from the hypothesis of the initial problems (1, 2) it follows
that there exists a sequence of polynomials Pm(x) which converges to the solution
of the problem.

We will compute a weak ε - approximate polynomial solution, in the sense of
the Definition 2.1, of the type:

ỹ(x) =

m∑

k=0

dkx
k (7)

where d0, d1, · · · , dm are constants which are calculated using the following steps:

• By substituting the approximate solution (7) in the equation (1) we obtain
the expression:

R(ỹ) = Dαỹ(x)− f(x, ỹ(x)). (8)

If we could find d0, d1, · · · , dm such R(ỹ) = 0, ỹ(0) = ν0, then by substi-
tuting d0, d1, · · · , dm in (7) we obtain the solutions of equation (1).

• Then we attach to the problem (1,2) the following functional:

J (d1, d2, d3, · · · , dm) =

b∫

0

R2(ỹ)dx (9)

where d0 is computed as functions of d1, d2, d3, · · · , dm using the initial con-
dition (5).

• We compute the values d01, d
0
2, d

0
3, · · · , d0m as the values which give the mini-

mum of the functional J , and the values of d0 is function of d01, d
0
2, d

0
3, · · · , d0m

using the initial condition.

• With constants d01, d
0
2, d

0
3, · · · , d0m previously determined we consider the

polynomial:

Mm(x) =
m∑

k=0

d0kx
k. (10)
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Theorem 2.1. The sequence of polynomials Mm(x) from (10) satisfies the prop-
erty:

lim
x→∞

b∫

0

R2(Mm(x))dx = 0. (11)

Moreover, ∀ε > 0, ∃mo ∈ N, m > m0 it follows that Mm(x) is a weak ε-
approximate polynomial solution of the problem (1, 2).

Proof. Based on the way the polynomials Mm(x) are computed and taking into
account the relations (8)-(11), the following inequalities are satisfied:

0 ≤
b∫

0

R2(Mm(x))dx ≤
b∫

0

R2(Pm(x))dx, ∀m ∈ N,

where Pm(x) is the sequence of polynomials introduced in Definition 2.2.
It follows that:

0 ≤ lim
x→∞

b∫

0

R2(Mm(x))dx ≤ lim
x→∞

b∫

0

R2(Pm(x))dx = 0.

We obtain:

lim
x→∞

b∫

0

R2(Mm(x))dx = 0.

From this limit we obtain that ∀ε > 0, ∃mo ∈ N, m > m0 it follows that Mm(x)
is a weak ε-approximate polynomial solution of the problem (1, 2).

In order to find ε-approximate polynomial solutions of the problem (1,2) by
using the Polynomial Least Squares Method we will first determine weak approx-
imate polynomial solutions, ỹ.

If |R(ỹ)| < ε then ỹ is also an ε approximate polynomial solution of the
problem.

3 Application

We consider the following linear fractional differential equation ([2]):

Dαy(x) + y(x)− xα+3 − Γ(4 + α)

6
· x3 = 0 (12)

α = 0, 25; x ∈ [0, 1
30 ] and the initial condition: y(0) = 0.
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The exact solution of the problem is:

y(x) = x3+α.

A numerical solutions for this problem is presented by Baskonus at all in [2] using
fractional Adams-Bashfort-Moulton method (FABMM).

Using (PLSM):

• We compute a solution of the type:

ỹ(x) = d0 + d1 · x1 + d2 · x2 + d3 · x3 + d4 · x4

with initial condition: ỹ(0) = 0 we obtain: d0 = 0.

• The approximate solution becomes:

ỹ(x) = d1 · x1 + d2 · x2 + d3 · x3 + d4 · x4.

• The corresponding remainder is:

R(x) =
4x3/4

(
385d1 + 8x

(
55d2 + 60d3x+ 64d4x

2
))

1155Γ
(
3
4

) +

+ d1x+ d2x
2 + d3x

3 + d4x
4 − x13/4 − 1

6
x3Γ

(
17

4

)
. (13)

Next we compute:

J (d1, d2, d3, · · · , dm) =

1
30∫

0

R2(ỹ)dx

and minimize it obtaining the values:

d1 = 3, 53901 · 10−6; d2 = 0, 00131029; d3 = 0, 387136, d4 = 2, 29079.

• The approximate analytical solution of the problem (12) using (PLSM) is:

ỹ(x) = 3, 53901 · 10−6 · x+ 0, 00131029 · x2 + 0, 387136 · x3 + 2, 29079 · x4.

Table 1 present the comparison between absolute errors coresponding to the
numerical solution proposed by Baskonus in [2] using (FABMM) and aur solution
(PLSM).

From the table, it is easy to see that using (PLSM) results are better than
using (FABMM).

Additionally, (PLSM) obtains the analytical solution of the polynomial form
of the problem, not only numerical solutions, thus demonstrating the usefulness
and accuracy of the (PLSM).
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Table 1: Numerical results

x Exactsolution Error(FABMM) Error(PLSM)

0.0033333 2.82× 10−3 3.8343× 10−9 2.9598× 10−9

0.0066667 1.73× 10−3 2.1194× 10−8 7.4355× 10−11

0.0100000 3.31× 10−4 5.4419× 10−8 1.8279× 10−9

0.0133333 1.15× 10−3 1.0405× 10−7 1.1658× 10−9

0.0166667 1.75× 10−3 1.7047× 10−7 6.2667× 10−10

0.0200000 2.36× 10−3 2.5705× 10−7 1.8004× 10−9

0.0233333 1.49× 10−3 3.5512× 10−7 1.2389× 10−9

0.0266667 2.66× 10−3 4.7380× 10−7 7.2161× 10−10

0.0300000 4.88× 10−3 6.1050× 10−7 1.7042× 10−9

0.0333333 0 7.6535× 10−7 3.1652× 10−9

Figure 1 - The approximate analytical solution using (PLSM)

Figure 2 - The absolute errors corresponding to the approximations given by
(PLSM)
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4 Conclusions

The computations performed show that (PLSM) allows us to obtain approxima-
tions with an error relative to the exact or numerical solution smaller than the
errors obtained using by fractional Adams-Bashforth-Moulton method (FABMM).

The application presented emphasize the high accuracy of the method by
means of a comparison with previous results.
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Abstract

The paper considers a notion of nonuniform splitting with growth rates
for skew-evolution semiflows in Banach spaces. Characterizations for this
concept are given through Lyapunov functionals with invariant and strongly
invariant families of projections. 1

Keywords and phrases: Lyapunov functionals, skew-evolution semiflows,
splitting

1 Introduction. Preliminaries

The asymptotic property of (exponential) splitting was introduced by B.
Aulbach and J. Kalkbrenner in [1] as a generalization of (exponential) dichotomy
for difference equations. Regarding the qualitative results obtained for the di-
chotomy notion, we mention the contributions from [2], [4], [6] and the references
therein.

Recent studies for more general concepts of splitting are made in [3] for
noninvertible differential equations with impulse effect, respectively in [5] for
skew-evolution semiflows.

The integral conditions represent an important tool to give criteria for asymp-
totic behaviours (see for instance [7], [8]). In this article, a result for nonuniform
splitting with Lyapunov functionals is proved from the point of view of invariant
families of projections, using an auxiliary integral characterization. Also, similar
results are shown in the case of strongly invariant families of projections.

1MSC(2008): 34D05, 93D30
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Let X be a real or complex Banach space and Θ a metric space. B(X)
represents the Banach algebra of all bounded linear operators on X and the
norms on X, respectively on B(X), will be denoted by || · ||. We consider the sets

∆ = {(t, s) ∈ R2
+ : t ≥ s}, T = {(t, s, t0) ∈ R3

+ : t ≥ s ≥ t0}

and Γ = Θ×X.

Definition 1.1. A continuous mapping ϕ : ∆ × Θ → Θ is called evolution
semiflow on Θ if the following relations hold:

(es1) ϕ(s, s, θ) = θ, for all (s, θ) ∈ R+ ×Θ;

(es2) ϕ(t, s, ϕ(s, t0, θ)) = ϕ(t, t0, θ), for all (t, s, t0, θ) ∈ T ×Θ.

Definition 1.2. We say that Φ : ∆ × Θ → B(X) is evolution cocycle over the
evolution semiflow ϕ if:

(ec1) Φ(s, s, θ) = I (the identity operator on X), for all (s, θ) ∈ R+ ×Θ;

(ec2) Φ(t, s, ϕ(s, t0, θ))Φ(s, t0, θ) = Φ(t, t0, θ), for all (t, s, t0, θ) ∈ T ×Θ;

(ec3) (t, s, θ) 7→ Φ(t, s, θ)x is continuous for every x ∈ X.

Definition 1.3. If ϕ is evolution semiflow on Θ and Φ is evolution cocycle over
the evolution semiflow ϕ, then the pair C = (ϕ,Φ) is called skew-evolution semi-
flow on Γ.

Definition 1.4. A continuous mapping P : R+ ×Θ→ B(X), which satisfies

P 2(t, θ) = P (t, θ), for all (t, θ) ∈ R+ ×Θ,

is called family of projections on X.

If P : R+ ×Θ → B(X) is a family of projections, then Q : R+ ×Θ → B(X),
Q(t, θ) = I − P (t, θ) is the complementary family of projections of P .

Definition 1.5. A family of projections P : R+ ×Θ→ B(X) is called invariant
for the skew-evolution semiflow C = (ϕ,Φ) if:

P (t, ϕ(t, s, θ))Φ(t, s, θ) = Φ(t, s, θ)P (s, θ), for all (t, s, θ) ∈ ∆×Θ.

If in addition, for all (t, s, θ) ∈ ∆ × Θ the mapping Φ(t, s, θ) is an isomorphism
from Range Q(s, θ) to Range Q(t, ϕ(t, s, θ)), then we say that P is strongly
invariant for C = (ϕ,Φ).
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Let C = (ϕ,Φ) be a skew-evolution semiflow, P : R+ × Θ → B(X) an in-
variant family of projections for C and h, k : R+ → [1,+∞) growth rates (i.e.
nondecreasing functions with lim

t→+∞
h(t) = lim

t→+∞
k(t) = +∞).

Definition 1.6. The pair (C,P ) admits (h, k)-splitting if there exist α, β ∈ R,
with α < β and a nondecreasing function N : R+ → [1,+∞) such that:

(hs1) h(s)α||Φ(t, t0, θ)P (t0, θ)x|| ≤ N(s)h(t)α||Φ(s, t0, θ)P (t0, θ)x||;
(ks1) k(t)β||Φ(s, t0, θ)Q(t0, θ)x|| ≤ N(t)k(s)β||Φ(t, t0, θ)Q(t0, θ)x||,

for all (t, s, t0, θ, x) ∈ T × Γ.

In particular, if α < 0 < β, then we have the concept of (h, k)-dichotomy.

Definition 1.7. We say that (C,P ) has (h, k)-growth if there exist ω > 0 and a
nondecreasing function M : R+ → [1,+∞) with:

(hg1) h(s)ω||Φ(t, t0, θ)P (t0, θ)x|| ≤M(t0)h(t)ω||Φ(s, t0, θ)P (t0, θ)x||;
(kg1) k(s)ω||Φ(s, t0, θ)Q(t0, θ)x|| ≤M(t)k(t)ω||Φ(t, t0, θ)Q(t0, θ)x||,

for all (t, s, t0, θ, x) ∈ T × Γ.

Further, we recall some results obtained in [5].

Proposition 1.1. If P : R+ × Θ → B(X) is a strongly invariant family of
projections for C = (ϕ,Φ), then there exists an isomorphism Ψ : ∆×Θ→ B(X)
from Range Q(t, ϕ(t, s, θ)) to Range Q(s, θ), such that:

(Ψ1) Φ(t, s, θ)Ψ(t, s, θ)Q(t, ϕ(t, s, θ)) = Q(t, ϕ(t, s, θ));

(Ψ2) Ψ(t, s, θ)Φ(t, s, θ)Q(s, θ) = Q(s, θ);

(Ψ3) Ψ(t, s, θ)Q(t, ϕ(t, s, θ)) = Q(s, θ)Ψ(t, s, θ)Q(t, ϕ(t, s, θ));

(Ψ4) Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ)) = Ψ(s, t0, θ)Ψ(t, s, ϕ(s, t0, θ))Q(t, ϕ(t, t0, θ)),

for all (t, s, t0, θ) ∈ T ×Θ.

Proof. See [5], Proposition 2.9.

We denote by H1 the set of all growth rates h : R+ → [1,+∞) with

+∞∫

0

h(s)cds < +∞, for all c < 0.
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Also, K1 represents the set of all growth rates k : R+ → [1,+∞), with the
property that there exists a constant K1 ≥ 1 such that

t∫

0

k(s)cds ≤ K1k(t)c, for all c > 0, t ≥ 0.

By H we denote the set of all growth rates h : R+ → [1,+∞) with the property
that there exists H > 1 such that

1 ≤ h(t+ 1)

h(t)
< H, for all t ≥ 0.

Theorem 1.1. Let (C,P ) be a pair with (h, k)-growth, where h ∈ H1 ∩ H and
k ∈ K1∩H. Then (C,P ) admits (h, k)-splitting if and only if there exist d1, d2 ∈ R,
d1 < d2 and a nondecreasing mapping D : R+ → [1,+∞) such that the following
assertions hold:

(Dhs1)

+∞∫

s

||Φ(τ, t0, θ)P (t0, θ)x||
h(τ)d1

dτ ≤ D(s)

h(s)d1
||Φ(s, t0, θ)P (t0, θ)x||,

for all (s, t0, θ, x) ∈ ∆× Γ;

(Dks1)

t∫

t0

||Φ(τ, t0, θ)Q(t0, θ)x||
k(τ)d2

dτ ≤ D(t)

k(t)d2
||Φ(t, t0, θ)Q(t0, θ)x||,

for all (t, t0, θ, x) ∈ ∆× Γ.

Proof. See [5], Theorem 3.2.

2 The main results

Let C = (ϕ,Φ) be a skew-evolution semiflow, P : R+×Θ→ B(X) an invariant
family of projections for C and h, k : R+ → [1,+∞) two growth rates.

Definition 2.1. We say that L : T × Γ → R+ is (h, k)-Lyapunov functional for
the pair (C,P ) if there exist two real constants l1 < l2 such that:

(hL1)

t∫

s

||Φ(τ, t0, θ)P (t0, θ)x||
h(τ)l1

dτ ≤ L(s, s, t0, θ, P (t0, θ)x)− L(t, s, t0, θ, P (t0, θ)x)

h(s)l1
;

(kL1)

t∫

s

||Φ(τ, t0, θ)Q(t0, θ)x||
k(τ)l2

dτ ≤ L(t, t, t0, θ,Q(t0, θ)x)− L(t, s, t0, θ,Q(t0, θ)x)

k(t)l2
,
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for all (t, s, t0, θ, x) ∈ T × Γ.

Theorem 2.1. We consider (C,P ) a pair with (h, k)-growth, where h ∈ H1 ∩H
and k ∈ K1 ∩H. Then (C,P ) admits (h, k)-splitting if and only if there exist
L : T × Γ → R+ a (h, k)-Lyapunov functional for (C,P ) and a nondecreasing
function λ : R+ → [1,+∞) with:

(L1) L(s, s, t0, θ, P (t0, θ)x) ≤ λ(s)||Φ(s, t0, θ)P (t0, θ)x||;
(L2) L(t, t, t0, θ,Q(t0, θ)x) ≤ λ(t)||Φ(t, t0, θ)Q(t0, θ)x||,

for all (t, s, t0, θ, x) ∈ T × Γ.

Proof. Necessity. Let L : T × Γ→ R+ be defined by

L(t, s, t0, θ, x) =

+∞∫

t

(
h(s)

h(τ)

)d1
||Φ(τ, t0, θ)P (t0, θ)x||dτ+

+

s∫

t0

(
k(t)

k(τ)

)d2
||Φ(τ, t0, θ)Q(t0, θ)x||dτ,

where d1 < d2 are given by Theorem 1.1.
It is immediate to see that the (hL1) and (kL1) from Definition 2.1 are satisfied.
From Theorem 1.1, we deduce that (L1) and (L2) are verified.

Sufficiency. Using Definition 2.1, (hL1), we have

t∫

s

||Φ(τ, t0, θ)P (t0, θ)x||
h(τ)l1

dτ ≤ L(s, s, t0, θ, P (t0, θ)x)

h(s)l1
≤

≤ λ(s)

h(s)l1
||Φ(s, t0, θ)P (t0, θ)x||,

which implies

+∞∫

s

||Φ(τ, t0, θ)P (t0, θ)x||
h(τ)l1

dτ ≤ λ(s)

h(s)l1
||Φ(s, t0, θ)P (t0, θ)x||, (1)

for all (s, t0, θ, x) ∈ ∆× Γ.
Similarly, from (kL1), for t0 = s it follows
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t∫

t0

||Φ(τ, t0, θ)Q(t0, θ)x||
k(τ)l2

dτ ≤ L(t, t, t0, θ,Q(t0, θ)x)

k(t)l2

and then

t∫

t0

||Φ(τ, t0, θ)Q(t0, θ)x||
k(τ)l2

dτ ≤ λ(t)||Φ(t, t0, θ)Q(t0, θ)x||
k(t)l2

, (2)

for all (t, t0, θ, x) ∈ ∆× Γ.
From (1), (2) and Theorem 1.1 we obtain that (C,P ) has (h, k)-splitting.

In what follows, P : R+ × Θ → B(X) represents a strongly invariant family
of projections for C and Ψ : ∆×Θ→ B(X) is given by Proposition 1.1.

Proposition 2.1. The mapping L : T × Γ → R+ is (h, k)-Lyapunov functional
for the pair (C,P ) if and only if there exist l1, l2 ∈ R, l1 < l2 with the properties:

(hL1)

t∫

s

||Φ(τ, t0, θ)P (t0, θ)x||
h(τ)l1

dτ ≤ L(s, s, t0, θ, P (t0, θ)x)− L(t, s, t0, θ, P (t0, θ)x)

h(s)l1
;

(kL′
1)

t∫

s

||Ψ(t, τ, ϕ(τ, t0, θ))Q(t, ϕ(t, t0, θ))x||
k(τ)l2

dτ ≤

≤ L(t, t, t0, θ,Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))x)− L(t, s, t0, θ,Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))x)

k(t)l2
,

for all (t, s, t0, θ, x) ∈ T × Γ.

Proof. It is sufficient to justify the equivalence (kL1) ⇔ (kL′
1) and we use the

relations from Proposition 1.1.
If (kL1) holds, then for all (t, s, t0, θ, x) ∈ T × Γ we have:

t∫

s

||Ψ(t, τ, ϕ(τ, t0, θ))Q(t, ϕ(t, t0, θ))x||
k(τ)l2

dτ =

=

t∫

s

||Q(τ, ϕ(τ, t0, θ))Ψ(t, τ, ϕ(τ, t0, θ))Q(t, ϕ(t, t0, θ))x||
k(τ)l2

dτ =
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=

t∫

s

||Φ(τ, t0, θ)Ψ(τ, t0, θ)Q(τ, ϕ(τ, t0, θ))Ψ(t, τ, ϕ(τ, t0, θ))Q(t, ϕ(t, t0, θ))x||
k(τ)l2

dτ =

=

t∫

s

||Φ(τ, t0, θ)Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))x||
k(τ)l2

dτ =

=

t∫

s

||Φ(τ, t0, θ)Q(t0, θ)Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))x||
k(τ)l2

dτ ≤

≤ L(t, t, t0, θ,Q(t0, θ)Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))x)

k(t)l2
−

−L(t, s, t0, θ,Q(t0, θ)Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))x)

k(t)l2
=

=
L(t, t, t0, θ,Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))x)− L(t, s, t0, θ,Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))x)

k(t)l2
.

Conversely, if (kL′
1) is satisfied, then

t∫

s

||Φ(τ, t0, θ)Q(t0, θ)x||
k(τ)l2

dτ =

t∫

s

||Q(τ, ϕ(τ, t0, θ))Φ(τ, t0, θ)Q(t0, θ)x||
k(τ)l2

dτ =

=

t∫

s

||Ψ(t, τ, ϕ(τ, t0, θ))Φ(t, τ, ϕ(τ, t0, θ))Q(τ, ϕ(τ, t0, θ))Φ(τ, t0, θ)Q(t0, θ)x||
k(τ)l2

dτ =

=

t∫

s

||Ψ(t, τ, ϕ(τ, t0, θ))Q(t, ϕ(t, t0, θ))Φ(t, t0, θ)Q(t0, θ)x||
k(τ)l2

dτ ≤

≤ L(t, t, t0, θ,Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))Φ(t, t0, θ)Q(t0, θ)x)

k(t)l2
−

−L(t, s, t0, θ,Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))Φ(t, t0, θ)Q(t0, θ)x)

k(t)l2
=

=
L(t, t, t0, θ,Q(t0, θ)x)− L(t, s, t0, θ,Q(t0, θ)x)

k(t)l2
,

for all (t, s, t0, θ, x) ∈ T × Γ.
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Theorem 2.2. Let (C,P ) be a pair with (h, k)-growth, h ∈ H1∩H and k ∈ K1∩H.
Then (C,P ) has (h, k)-splitting if and only if there exist L : T ×Γ→ R+ a (h, k)-
Lyapunov functional for (C,P ) and a nondecreasing mapping λ : R+ → [1,+∞)
such that:

(L1) L(s, s, t0, θ, P (t0, θ)x) ≤ λ(s)||Φ(s, t0, θ)P (t0, θ)x||;
(L′

2) L(t, t, t0, θ,Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))x) ≤ λ(t)||Q(t, ϕ(t, t0, θ))x||,

for all (t, s, t0, θ, x) ∈ T × Γ.

Proof. We show the equivalence between the conditions (L2) and (L′
2), using

Proposition 1.1.
If (L2) is verified, then we deduce:

L(t, t, t0, θ,Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))x) =

= L(t, t, t0, θ,Q(t0, θ)Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))x) ≤

≤ λ(t)||Φ(t, t0, θ)Q(t0, θ)Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))x|| =

= λ(t)||Q(t, ϕ(t, t0, θ))x||,

for all (t, t0, θ, x) ∈ ∆× Γ.
In a similar manner, if (L′

2) holds, then we obtain:

L(t, t, t0, θ,Q(t0, θ)x) = L(t, t, t0, θ,Ψ(t, t0, θ)Φ(t, t0, θ)Q(t0, θ)x) =

= L(t, t, t0, θ,Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))Φ(t, t0, θ)Q(t0, θ)x) ≤

≤ λ(t)||Q(t, ϕ(t, t0, θ))Φ(t, t0, θ)Q(t0, θ)x|| = λ(t)||Φ(t, t0, θ)Q(t0, θ)x||,

for all (t, s, t0, θ, x) ∈ T × Γ.
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V. Pârvan Blv. 4, 300223, Timişoara, ROMANIA
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Abstract

Using a new permittivity - defined by author (in Part I) for dielectrics
with permanent polarization we will demonstrate new theorems of refraction
(in Part II), more general, for three-dimensional (3D) electric field lines
at the separation surface of two nonlinear and anisotropic materials with
permanent polarization, which have random polarization main directions.
Then (in Part three), some applications of the new refraction theorems are
presented, for particular cases. 1

1 Applications of the new refraction theorems for par-
ticular cases.

1.1 Fields 3D in nonlinear and isotropic dielectrics, with perma-
nent polarization.

For isotropic dielectrics, the components of calculation permittivity in the two
materials are:

εp1x = εp1y = εp1z = εp1 , (1.1)

εp2x = εp2y = εp2z = εp2 . (1.2)

If we take into account equations (1.1) and (1.2), the theorem (31) from [10]
for refraction of electric field strength lines becomes

εp1(E1xn + E1yn + E1zn) − εp2(E2xn + E2yn + E2zn)+
+(Pp1xn + Pp1yn + Pp1zn) − (Pp2xn + Pp2yn + Pp2zn) = 0 .

(1.3)

1Keywords and phrases: a new permittivity, permanent polarization, random anisotropy, 3D
refraction theorems
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Considering the signification from theorem (31) from [10], the expression (3) may
be written shortly in this way:

εp1E1n = εp2E2n − (Pp1n − Pp2n) . (1.4)

Alike, taking into account equations (1.1) and (1.2), the theorem (31) from
[10], for refraction of calculation electric flux density lines, becomes:

1

εp1
(Dp1xt +Dp1yt +Dp1zt) −

1

εp2
(Dp2xt +Dp2yt +Dp2zt) = 0. (1.5)

Considering the signification from theorem (36) from [10], the expression (1.5)
can be written in a more concise form:

Dp1t

εp1
=
Dp2t

εp2
. (1.6)

Equations (1.4) and (1.6) represent the theorems of refraction for E and Dp in
3D fields, for nonlinear and isotropic dielectrics, with permanent polarization.
We can remark that, the theorem (6) of refraction in dielectrics with permanent
polarization ( for the tangent components of Dp) has a similar form (but another
content) with the classical theorem of refraction in materials without permanent
polarization.
Also, the theorem (6) has a more simple form than classical treatment for re-
fraction of electric flux density linesD, in nonlinear and isotropic dielectrics with
permanent polarization (see [6], eq. (31)). This simple form occurs as a result of
the introduction of new quantities Dpand εp.

1.2 Fields 3D in nonlinear and isotropic dielectrics without per-
manent polarization

For dielectrics without permanent polarization (P p = 0), from eq. (1.5) from [9]
we obtain Dp = D. Also, from eq. (1.8) from [9], for isotropic media we can write
εp = Dp/E = D/E. So εp = ε, which means that (if the dielectric is without
permanent polarization)the calculation permittivity is identical with the classical
permittivity.

Particularizing eq.(1.4) and (1.6) for this case and taking into account the
previous observation, we obtain

εp1
εp2

=
Dp1t

Dp2t
=
E2n

E1n
=
ε1
ε2

=
D1t

D2t
. (1.7)

The dielectrics are isotropic and therefore Dp and E have the same spectrum.
Since Dp and D are identical, it follows that D and E have the same spectrum.
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1.3 Fields 2D in nonlinear and anisotropic/isotropic dielectrics
with permanent polarization

In the case of nonlinear and anisotropic or isotropic dielectrics, for two-dimensional
(2D) field, vectors Dp, E and P p have not the components after z axis, but only
after x and y axes. Eq. (1.4) and (1.6) are valid in this case, but z components
missing from the detailed eq. (1.3) and (1.5).

For 2D fields, in anisotropic dielectrics by orthogonal directions, if we rep-
resent Dpλ and Eλ vectors and their normal and tangential components to the
surfaceS12, we obtain the representations of Figure 1 (for Dp) and Figure 2 (for
E). These are analogous to classical representation, but Dp in place to D (see
[8], Figure 2 and Figure 3).

Figure 1– Refraction of Dp
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For isotropic dielectrics Dp and E have the same spectrum and would obtain
similar representations to those in Figure 3 and Figure 4, but with
αλ = βλ , (λ = 1, 2).

We remark that the classical quantities D and E have not the same spectrum
(even if the dielectrics are isotropic) because it is permanent polarization.

Figure 2– Refraction of E

1.4 Fields 2D in nonlinear and isotropic dielectrics without per-
manent polarization

In this case Dpλ = Dλ , εpλ = ελ , αλn = βλn , αλt = βλt and αλn +
αλt = 900(λ = 1, 2 ). Taking into account and the classical representation for 2D
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field refraction in isotropic dielectrics without permanent polarization [1, 2, 3],
with these specifications, eq. (1.7) can be completed, being found and classical
expressions:

εp1
εp2

=
Dp1t

Dp2t
=
E2n

E1n
=
ε1
ε2

=
D1t

D2t
=
tg α1n

tg α2n
=
tg β1n
tg β2n

. (1.8)

2 Other specifications

From the general expressions of refraction theorems for lines of vectors E
and Dp, or from particular forms already mentioned, can be obtained also other
particular forms. Such cases are possible when the permanent polarization vec-
tors P p have particular orientations, when one of the dielectrics has permanent
polarization and the other one does not (for example: dielectric with permanent
polarization – air, dielectric with permanent polarization – ordinary dielectric
without permanent polarization and so on), or when the polarization main direc-
tions are particular orientations(for example, rectangular directions) etc.

If known the electric hysteresis cycle for the isotropic dielectric, we should de-
termine the nonlinear functionDp(E). Then, it can be determined the diagram of
nonlinear function εrp(E) (or εp(E)), following the procedure used by the author
for the permeability of permanent magnets (see [5], [7]). For an anisotropic dielec-
tric with permanent polarization, the electric hysteresis cycles must be known by
the all main directions of polarization. In this case, it can be determined (follow-
ing similar procedures) the diagrams of nonlinear functions Dpν(E) and εrpν(E),
where ν = x , y , z.

It notes that similar theorems were demonstrated by the same author (see [5],
[7]) for the magnetic field lines refraction in materials with permanent magneti-
zation (i.e. permanent magnets). If compare the two situations, is remarkable
analogy between the equations for electric field refraction in dielectrics with per-
manent polarization, respectively the equations for magnetic field refraction in
permanent magnets.

3 Conclusions

Referring to the entire work (Part one, Part two, Part three) it highlights the
following conclusions:

The introduction of calculation flux density Dp and of new relative permittiv-
ity εrp for anisotropic dielectrics, nonlinear and with permanent polarization (in
Part one, namely [9]) is a useful operation, because the solution of field problem
can be obtained in an advantageous way.
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In applications that refer to new forms of the theorems for 3D electric field
lines refractions in nonlinear dielectrics, with permanent polarization and random
anisotropy (in Part two, namely [10]), the equations obtained are more concise,
so simpler. It is possible to make and useful analogies with the simpler case of
the materials without permanent polarization.

As applications of new defined quantities, for anisotropic dielectrics with ran-
dom polarization main directions and with permanent polarization, the author
has demonstrated (in Part two, namely [10]) new refraction theorems for 3D elec-
tric field (eq. (31) from [10] for electric field strength E, respectively eq. (36)
from [10] for calculation electric flux density Dp).

Starting from these general forms of the theorems, some particular forms
have been deduced, in this paper (Part three). These can be useful in solving
the electric field problems for nonlinear, anisotropic systems and with permanent
polarization.
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