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Camelia ARIEŞANU - Department of Mathematics, Politehnica University Timisoara
Nicolae M. AVRAM - Faculty of Physics, West University of Timisoara
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ON CONTRIBUTION OF DYNAMICAL

SYSTEMS TO EPIDEMIOLOGY

Gheorghe MOZA, Joan TORREGROSA

Abstract

The involvement of mathematical modeling in understanding the spread-
ing of infectious diseases is briefly presented in this short review. The article
addresses to different readers, from specialists familiar to the field of mathe-
matical modeling to the larger public interested in these topics.

1 Introduction

The way an infectious disease (like Covid-19) spreads is a challenge both for
science but also the large population. It is known from history that infectious
diseases have caused much suffering to the humanity. From time to time and from
place to place such pandemic plagues have appeared during the previous ages of
the society. We can cite, at least, two very bad previous pandemic periods, with
a very high number of death, the Black Plague and the Spanish flu. The first
was one of the worst pandemic recorded in history, which stormed the humanity
from 1346 to 1353 and has caused the death of 75–200 million people [1]. This
number represented about one-third of the total world population at that time
[2]. According to the World Health Organization, the Plague was created by the
bacterium Yersinia pestis, which was spreading by fleas [3]. The second, and more
recent, was the 1918 influenza pandemic, commonly known by the Spanish flu or
as the Great Influenza epidemic. The estimated number of deaths was 17–50
million people [4] but due to the censors during World War I, this number could
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arrive to 100 million. We will never know the actual number of total death. It was
an exceptionally deadly global influenza pandemic caused by the H1N1 influenza
A virus.

Various methods to constraint the disease and save people have been proposed
over the years and more medical solutions have been tested and developed in
this regard. Perhaps, the best medical solution against the plague caused by this
bacteria was the invention of antibiotics, which saved the lives of millions of people
over the years.

2 Models of population dynamics in epidemiology

Along with the research aimed at finding medical solutions, a new theoretical
framework of mathematical modeling of various characteristics related to a pan-
demic has started to develop. Perhaps, the works of Lotka [5] and Volterra [6]
around the year 1925 were the pioneering works in this new domain. They have
studied different types of interactions between groups of preys and predators in
real-life phenomena related to ecology. Their models of population dynamics are
known in the literature as predator-prey models or Lotka-Volterra models. The
field evolved rapidly, both in terms of new models being proposed but also in
terms of new domains where the models may have applications.

One of the new domains is epidemiology and, particularly, the transmission
of infectious diseases, since the ways an infectious disease spreads in a popula-
tion have many links with predator-prey models. A mathematical model which
studies the interactions of three groups of individuals in a population affected by
an infectious disease is the so-called SIR model [7], [8]. The three interacting
groups are S-susceptible, I-infected and R-recovered. In other words, the SIR
model considers the whole population to be studied as being formed by three
different groups of individuals: the group S which contains individuals which
may become infected, the group I of infected individuals and, finally, the group
R of recovered individuals. Notice that, all individuals from one of the three
groups have the same characteristics related to the disease. At any time t, these
three groups interact one to another and some individuals may pass from one
group to another group. These interactions depending on time t are modeled
by mathematical equations (particularly, differential or difference equations) of
Lotka-Volterra type. Then, such equations are studied using different math-
ematical tools, such as the theory of dynamical systems, to discover different
properties of the equations, which, in turn, explain different ways of possible
interactions of the three groups in the studied population. There are many pub-
lished scientific articles on SIR models and their variants, such as the models
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SIS (Susceptible-Infected-Susceptible), SIRD (Susceptible-Infectious-Recovered-
Deceased) [9], SIRV (Susceptible-Infectious-Recovered-Vaccinated) [10] and SEIR
(Susceptible-Exposed-Infectious-Recovered) [11]. Such models received a special
attention in the current pandemic caused by Covid-19. For example, a top Journal
Nonlinear Analysis: Real-World Applications presents a list of most downloaded
articles and, during May 2022, an article [12] on a variant of SIR models (the
SAIRS epidemic model) was the first article in the list.

Another direction of research where mathematical models contribute in un-
derstanding the spreading of the culprits (microbes such as viruses, bacteria, par-
asites and fungi) in an infectious disease, is by modeling the interactions between
microbes and different types of cells from immune system, such as neutrophils
and lymphocytes. For example, in [13] are presented more such models to study
interactions between host immunity and parasite spreading. A four-dimensional
model based on differential equations studying interactions between an invading
pathogen and the innate immune system is presented in [14], while a model for
interactions between influenza A virus and local tissues such as respiratory tract,
is reported in [15].

In conclusion, mathematical modeling and, in particular, tools and models
from dynamical systems theory, represent a relevant domain which contributes to
understanding the spreading of infectious diseases and other aspects in epidemi-
ology.
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ON THE PERIODIC

AND HOMOCLINIC ORBITS

OF A HAMILTON-POISSON SYSTEM

Cristian LĂZUREANU, Jinyoung CHO

Abstract

In this paper, we study a Hamilton-Poisson system that has a single family
of equilibrium points. We show that there are periodic orbits around all the
nonlinearly stable equilibrium points, and homoclinic orbits that connect
each unstable equilibrium point with itself. We point out these properties
in connection with the energy-Casimir mapping associated to the considered
system. 1

1 Introduction

Let Ω be an open set in R3 and H,C ∈ C∞(Ω). It is well known that the
functions H and C define the three-dimensional system of differential equations

ẋ = ∇H ×∇C, (1)

for which they are constants of motion. Moreover, (1) is a Hamilton-Poisson
system, where the Poisson bracket in the smooth category is given by (see, e.g.,
[14])

{f, g} = ∇C · (∇f ×∇g). (2)

This Poisson bracket can be written in matrix notation

Π =




0 C ′z −C ′y
−C ′z 0 C ′x
C ′y −C ′x 0


 . (3)

1MSC(2010): 70H12, 70H14, 70K20, 70K42, 70K44.
Keywords and phrases: Hamilton-Poisson system, energy-Casimir mapping, stability, periodic

orbits, homoclinic orbits.
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The study of the common level sets of the independent constants of motion
H and C may gives informations about the dynamics of (1). For instance, Holm
and Marsden described such results in the case of rigid body dynamics [6].

In [15], the energy-Casimir mapping associated to a three-dimensional Hamilton-

Poisson system was considered. If H is the Hamiltonian of the system and C is
a Casimir function of the Poisson structure, then the energy-Casimir mapping is
defined by

EC : R3 → R2 , EC(x, y, z) = (H(x, y, z), C(x, y, z)). (4)

In order to classify the types of the orbits of system (1), a partition of the
image of the energy-Casimir mapping given by the images of the equilibrium
points through the energy-Casimir mapping was constructed [15] (also see [4, 5,
7, 8, 9, 10, 11, 12, 13, 16, 17]). In these papers, the considered Hamilton-Poisson
systems have at least two families of equilibrium points, which lead to a partition
of the image of EC. Moreover, a topological classification of the fibers and the
corresponding dynamical description is obtained. The aim of our work is to verify
whether the connections between the above-mentioned partition and the dynamics
of the system, reported in the above papers, hold for a system with a single
family of equilibrium points. More precisely, we obtain that the boundary of the
set Im(EC) ⊊ R2 is the union of the images of some stable equilibrium points
through EC, and the image of the energy-Casimir mapping is convexly generated
by these images. Furthermore, the fibers F(h,c) = EC−1(h, c) corresponding to
the pairs (h, c) that belong to the boundary of Im(EC) contain only nonlinearly
stable equilibrium points. The images of the others critical points are in the
interior of Im(EC) and the corresponding fibers are periodic orbits and homoclinic
orbits for stable and unstable equilibria respectively. In addition, if Σ denotes an
open subset of the semialgebraic partition of Im(EC) that has dimension 2 and
(h, c) ∈ Σ, then the fiber F(h,c) contains periodic orbits.

In this paper we study the system defined by the functions

H(x, y, z) =
1

4
x2 +

1

4
y2 − z , C(x, y, z) =

1

2
x+

1

2
y +

1

2
z2, (5)

that is 



ẋ =
1

2
(1 + yz)

ẏ = −1

2
(1 + xz)

ż =
1

4
(x− y)

(6)

The paper is set up as follows. In Section 2, we analyze the nonlinear stability
of the equilibrium points of the considered system. In Section 3, we prove the
existence of periodic orbits around all the nonlinearly stable equilibrium points.
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In Section 4, we give two Hamilton-Poisson realizations of the considered system,
which lead to an infinite family of Hamilton-Poisson realizations. In Section 5,
we study some properties of the energy-Casimir mapping in connection with the
dynamics of system (6). Particularly, we deduce parametric equations for some
periodic and homoclinic orbits.

2 Stability

In this section we study the stability of the equilibrium points of system (6).

The equilibrium points of the system (6) satisfy the conditions





1

2
(1 + yz) = 0

−1

2
(1 + xz) = 0

1

4
(x− y) = 0

.

Solving this system, we get the following family of equilibrium points of system
(6)

E =

{(
M,M,− 1

M

)
|M ∈ R∗

}
. (7)

We obtain the following result regarding the stability of these equilibrium
points.

Proposition 2.1. Let EM =
(
M,M,− 1

M

)
∈ E an arbitrary equilibrium point.

Then EM is unstable for every M ∈ [1,+∞) and nonlinearly stable for every
M ∈ (−∞, 0) ∪ (0, 1).

Proof. Let M ∈ R∗, the equilibrium point EM =
(
M,M,− 1

M

)
and J(x, y, z) be

the matrix of linear part of system (6), that is

J(x, y, z) =




0
1

2
z

1

2
y

−1

2
z 0 −1

2
x

1

4
−1

4
0




(8)
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The characteristic polynomial of J(EM ) is given by

PJ(EM )(λ) = −λ
(
λ2 − M3 − 1

4M2

)
(9)

and the roots of PJ(EM ) are

λ1 = 0, λ2,3 = ±
√
M3 − 1

2M
(10)

For M ∈ (1,+∞) there is a positive eigenvalue and the equilibrium point EM
is unstable.

In the case M = 1, the equilibrium point EM becomes E1(1, 1,−1) and the

roots of the characteristic polynomial are all zero. We will show that there is a

homoclinic orbit that connects E1 with itself.

We remind that the functions H and C (5) are constants of motion, so we

can define implicit equation of an orbit of system (6) by considering the level sets

H(x, y, z) = constant and C(x, y, z) = constant. Particularly, for the equilibrium

point E1(1, 1,−1) we have

{
H(x, y, z) = H(1, 1,−1)
C(x, y, z) = C(1, 1,−1)

,

which is equivalent to {
x2 + y2 − 4z = 6
x+ y + z2 = 3

.

We get

x− y = ±
√
3 + 8z + 6z2 − z4.

To obtain solution of system (6), we can reduce it from three degrees of freedom

to one degree of freedom by rewriting the equation ż =
1

4
(x− y) as

ż = ±1

4

√
3 + 8z + 6z2 − z4. (11)

Therefore ∫
dz√

3 + 8z + 6z2 − z4
= ±1

4
t.

Denoting q = z + 1, the above integral writes
∫

dz√
3 + 8z + 6z2 − z4

=

∫
dq

q2
√

4

q
− 1
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Hence by integrating the equation (11), we get

−1

2

√
4

1 + z
− 1 = ±1

4
t

so we obtain

z(t) =
12− t2

4 + t2
(12)

Therefore we deduce

x(t) =
t4 + 24t2 − 64t− 48

(4 + t2)2
, y(t) =

t4 + 24t2 + 64t− 48

(4 + t2)2
. (13)

As a result, we get a solution of system (6).

Since lim
t→±∞

(x(t), y(t), z(t)) = (1, 1,−1), we get the homoclinic orbit

H = (x, y, z) : R → R3,H(t) = (x(t), y(t), z(t)), (14)

where the functions x,y,z are given by (12), (13).

For this reason, the equilibrium point (1, 1,−1) is unstable.

For M ∈ (0, 1), we will study stability of the equilibrium point EM using the

Arnold test [1] (also see [2]). We consider the function

Fλ(x, y, z) = C(x, y, z)− λH(x, y, z),

where λ is a real parameter. Then we have successively the following:

1. dFλ
(
M,M,− 1

M

)
= 0 if and only if λ = 1

M .

2. W = ker dC
(
M,M,− 1

M

)
= spanR

{(
1, 0,

M

2

)
,

(
0, 1,

M

2

)}
.

3. d2Fλ
∣∣
W×W =

(
M3 − 2

4M

)
dx2 +

M2

2
dxdy +

(
M3 − 2

4M

)
dy2

is negative definite for M ∈ (0, 1).

Hence, from the Arnold stability test we conclude that EM is nonlinearly stable

for M ∈ (0, 1).
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To study the stability of the equilibrium point EM in the case M ∈ (−∞, 0),
we will consider the Lyapunov function L ∈ C∞(R3,R),

L(x, y, z) = − 1

4M
(x−M)2 − 1

4M
(y −M)2 +

1

2

(
z +

1

M

)2

.

Obviously, L(x, y, z) > 0, ∀(x, y, z) ̸= EM and L(EM ) = 0, so L is positive definite.

Moreover, L̇ = ∇L · ẋ = 0, where ẋ = (ẋ, ẏ, ż) is given by (6). Therefore the

equilibrium point EM is nonlinearly stable, which ends the proof.

3 Periodic orbits

In this section we establish the existence of periodic orbits around the nonlin-
early stable equilibrium points of system (6). We shall use the following version
of the Moser-Weinstein theorem in the case of zero eigenvalue [3]:

Theorem 3.1. ([3]) Let ẋ = X(x) be a dynamical system on a differentiable
manifold U , x0 an equilibrium point, i.e., X(x0) = 0 and C := (C1, ..., Cj):U → Rj
a vector valued constant of motion for the above dynamical system with C(x0) a
regular value for C. If
(i) the eigenspace corresponding to the eigenvalue zero of the linearized system
around x0 has dimension j,
(ii) DX(x0) has a pair of pure complex eigenvalues ±iω with ω ̸= 0,
(iii) there exist a constant of motion I :U → R for the vector field X with dI(x0) =

= 0 and such that d2I(x0)|W×W > 0, where W =
j⋂
l=1

ker dCl(x0),

then for each sufficiently small ε > 0 any integral surface I(x) = I(x0) + ε2

contains at least one periodic solution of X whose period is close to the period of
the corresponding linear system around x0.

Using this theorem, we obtain the next result.

Proposition 3.2. Let EM =
(
M,M,− 1

M

)
∈ E be a nonlinearly stable equilibrium

point of system (6) such that M ∈ (−∞, 0). Then for each sufficiently small
ε ∈ R∗+, any integral surface

ΣEM
ε : − 1

4M
(x−M)2 − 1

4M
(y −M)2 +

1

2

(
z +

1

M

)2

= ϵ2

contains at least one periodic orbit γEM
ε of system (6) whose period is close to 2π

ω ,

where ω =
√
1−M3

2|M | .
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Proof. The characteristic polynomial associated with the linearization of system

(6) at EM has the eigenvalues λ1 = 0 and λ2,3 = ±i
√
1−M3

2M . The eigenspace

corresponding to the eigenvalue zero is spanR
{
(1, 1, 1

M2 )
}
, thus it has dimension 1.

Consider the constant of motion of system (6) given by

I(x, y, z) =
1

2

(
x+ y + z2

)
− 1

M

(
1

4
x2 +

1

4
y2 − z

)
.

We have

1. dI(M,M,− 1
M ) = 0.

2. d2I
(
M,M,− 1

M

)∣∣
W×W =

(
M3 − 2

4M

)
dx2 +

M2

2
dxdy+

(
M3 − 2

4M

)
dy2 > 0,

where W = ker dC
(
M,M,− 1

M

)
= spanR

{(
1, 0,

M

2

)
,

(
0, 1,

M

2

)}
.

Using Theorem 3.1, the conclusion follows.

Similarly, we get the existence of periodic orbits around the other nonlinearly
stable equilibrium points.

Proposition 3.3. Let EM =
(
M,M,− 1

M

)
∈ E be a nonlinear stable equilibrium

point of system (6) such that M ∈ (0, 1). Then for each sufficiently small ε ∈ R∗+,
any integral surface

ΣEM
ε :

1

4M
(x−M)2 +

1

4M
(y −M)2 − 1

2

(
z +

1

M

)2

= ϵ2

contains at least one periodic orbit γEM
ε of system (6) whose period is close to 2π

ω ,

where ω =
√
1−M3

2M .

4 Hamilton-Poisson realizations

In this section we prove that the considered system has infinitely many Hamilton-

Poisson realizations.
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Proposition 4.1. The system (6) has the Hamilton-Poisson realization (R3,Π1, H),
where

Π1 =




0 z −1

2

−z 0
1

2

1

2
−1

2
0




(15)

is the matrix representation of the Poisson structure and H is the Hamilton func-
tion defined in (5).

Proof. Considering the Casimir function C given by (5), the matrix Π (3) becomes

Π1 and Π1 · ∇C = 0. It is easy to see that system (6) writes Π1 · ∇H = ẋt, where
x = (x, y, z), as required.

Proposition 4.2. The system (6) has another Hamilton-Poisson realization
(R3,Π2, C), where the Poisson structure is given by

Π2 =




0 1
1

2
y

−1 0 −1

2
x

−1

2
y

1

2
x 0




(16)

and C is defined in (5). Moreover, system (6) is a bi-Hamiltonian system.

Proof. Hence Π2 verify Π2 · ∇C = ẋt and Π2 · ∇H = 0. We can observe that
Π1 · ∇H = Π2 · ∇C = ẋt. In addition, Π1 and Π2 are compatible Poisson
structures, i.e. their sum is also a Poisson structure, thus (6) is a bi-Hamiltonian
system.

Proposition 4.3. The system (6) has a family of Hamilton-Poisson realizations,
namely (R3,Πa,b, Hc,d), where the Hamiltonian function is given by

Hc,d =
d

4
(x2 + y2) +

c

2
(x+ y) +

c

2
z2 − dz,
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and the Poisson structure by

Πa,b =




0 az − b −1

2
a− 1

2
by

−az + b 0
1

2
a+

1

2
bx

1

2
a+

1

2
by −1

2
a− 1

2
bx 0




,

for every a, b, c, d ∈ R that fulfill the condition ad − bc = 1. A Casimir of the
Poisson structure is

Ca,b =
b

4
(x2 + y2) +

a

2
(x+ y) +

a

2
z2 − bz.

Proof. Let a, b, c, d ∈ R such that ad− bc = 1. Let us denote Πa,b = aΠ1 − bΠ2,
Hc,d = cC+dH, and Ca,b = aC+bH, where Π1 and Π2 are given by (15) and (16)
respectively. We observe that Πa,b verifies Πa,b · ∇Hc,d = ẋt and Πa,b · ∇Ca,b = 0
and the conclusion follows.

5 Energy-Casimir mapping

In this section, we point out some connections between some properties of the
energy-Casimir mapping (4) and the dynamics of the considered system (6).

In our case, the Hamiltonian H and a Casimir function C are given by (5).
Then the energy-Casimir mapping is given by

EC : R3 → R2 , EC(x, y, z) =

(
1

4
x2 +

1

4
y2 − z,

1

2
x+

1

2
y +

1

2
z2
)
. (17)

Recall that a point (x0, y0, z0) ∈ R3 is a critical point of the energy-Casimir
mapping if the rank of the Jacobian matrix of EC at this point is less than 2.

Remark 5.1. Since system (6) has the form (1), it results that the critical points
of EC are the equilibrium points (7) of the considered system.

The image of the equilibrium point EM
(
M,M,− 1

M

)
∈ E trough the energy-

Casimir mapping, given by

EC(EM ) =

(
1

2
M2 +

1

M
, M +

1

2M2

)
, (18)
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for every M ∈ R∗, is a critical value of EC. For M < 0, we consider the following
curve of critical values

Γ :





h =
1

2
M2 +

1

M

c =M +
1

2M2

,M < 0. (19)

It immediately follows that Γ is a simple regular curve that defines a convex
bijective function c : R → R, c = c(h) (Figure 1). For each M < 0, we denote a

point of Γ by (he, ce), where he =
1

2
M2 +

1

M
, ce =M +

1

2M2
.

The image of the energy-Casimir mapping is the set

Im(EC) =
{
(h, c) ∈ R2|(∃)(x, y, z) ∈ R3 : EC(x, y, z) = (h, c)

}
.

Now we can prove the next result.

Proposition 5.2. Let M < 0 and EC (17) be the energy-Casimir mapping of
system (6). Then the boundary of Im(EC) is Γ and Im(EC) = co{Γ}, where co
denoted the convex hull (Figure 1).

Proof. A pair (h, c) belongs to the image of the energy-Casimir mapping if and
only if the system 




h =
1

4
x2 +

1

4
y2 − z

c =
1

2
x+

1

2
y +

1

2
z2

(20)

or equivalent {
x2 + y2 − 4z = 4h
x+ y + z2 = 2c

(21)

has at least a solution.

First, it is obvious that the above system has solution for h = he and c = ce.

Now we show that there are no pairs (h, c) ∈ Im(EC) for h = he and c < ce,
that is system (20) has no solution in this case.

Suppose that system (20) has solution for h = he and c < ce. Using (21) we
get

(x−M)2 + (y −M)2 − 2M

(
z +

1

M

)2

= 4M2 +
2

M
− 4Mc,
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or equivalent

(x−M)2 + (y −M)2 − 2M

(
z +

1

M

)2

= 4M(ce − c). (22)

But M < 0 and c < ce, which leads to a contradiction with (22). So for h = he
and c < ce system (20) has no solution.

Finally, let h = he and c ≥ ce. Using (22), system (21) is equivalent with





x2 + y2 − 4z = 2M2 +
4

M

(x−M)2 + (y −M)2 − 2M

(
z +

1

M

)2

= 4M(ce − c)

,

which has solution because it that represents the intersection between an ellip-
soid with the center EM

(
M,M,− 1

M

)
and a circular paraboloid that contains

the point EM . Therefore system (20) has solution for h = he and c ≥ ce, that
is the points situated above the curve Γ belong to Im(EC), which finishes the
proof.

G

ImHECL

c

h0

ce

he

Figure 1: The image of the energy-Casimir mapping.

The images (18) of the equilibrium points through the energy-Casimir mapping
allows us to define other two curves of critical values

Γs :





h =
1

2
M2 +

1

M

c =M +
1

2M2

,M ∈ (0, 1) , Γu :





h =
1

2
M2 +

1

M

c =M +
1

2M2

,M ∈ [1,∞), (23)
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where ”s” and ”u” stand for stable and unstable respectively. These curves lead
to the following semialgebraic partition of the set Im(EC) depicted in Figure 2

Im(EC) = Γ ∪ Σ1 ∪ Γs ∪ Σ2 ∪ Γu.

G

G
u

c

h0

G
s

S1

S2

Figure 2: The semialgebraic partition of the image of the energy-Casimir mapping.

In the following, we point out connections between different types of the

orbits of system (6) and pairs (h, c) from the subsets of the above partition of

Im(EC).

The fiber of the energy-Casimir mapping EC corresponding to an element

(h0, c0) ∈ Im(EC) is the set

F(h0,c0) =
{
(x, y, z) ∈ R3 | EC(x, y, z) = (h0, c0)

}
(24)

and an implicit equation of it is given by

F(h0,c0) :





H(x, y, z) = h0

C(x, y, z) = c0 .
(25)

Since the dynamics of our system takes place at the intersection of the level

sets H(x, y, z) = constant and C(x, y, z) = constant, an orbit is given implicitly

by (25). In Figure 3 we show such intersections.
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(a) (h, c) ∈ Γ (b) (h, c) ∈ Σ1

(c) (h, c) ∈ Γs (d) (h, c) ∈ Σ2

(e) (h, c) ∈ Γu,M = 1 (f) (h, c) ∈ Γu,M > 1

Figure 3: Intersections of the level sets H(x, y, z) = h and C(x, y, z) = c:
(a) a stable equilibrium point; (b) a periodic orbit; (c) a stable equilibrium point and a periodic

orbit; (d) two periodic orbits; (e) a homoclinic orbit; (f) a pair of homoclinic orbits.
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We begin our study with the pairs (h, c) that belong to the boundary of
Im(EC).

Proposition 5.3. Let (h, c) ∈ Γ. Then the corresponding fiber contains only
nonlinear stable equilibrium point,

F(h,c) =

{(
M,M,− 1

M

) ∣∣∣M ∈ (−∞, 0)

}
.

Proof. In this case, (5) and (25) lead to

− 1

4M
(x−M)2 − 1

4M
(y −M)2 +

1

2

(
z +

1

M

)2

= c− 1

M
h− M

2
+

1

2M2

Since h =
1

2
M2 +

1

M
, c =M +

1

2M2
(19), we get c− 1

M
h− M

2
+

1

2M2
= 0 and

− 1

4M
(x−M)2 − 1

4M
(y −M)2 +

1

2

(
z +

1

M

)2

= 0

Therefore x = y =M and z = − 1

M
, as required.

In the proof of Proposition 2.1 we have determined the parametric equations
of a homoclinic orbit (see Figure 3(e)) in connection with the equilibrium point
E1(1, 1,−1) and the critical value (h, c) = EC(E1) ∈ Γu. More precisely, we have
obtained the following result.

Proposition 5.4. Let (h, c) = EC(E1) ∈ Γu. Then the corresponding fiber con-
tains the unstable equilibrium point E1(1, 1,−1) and the homoclinic orbit H (14).

Figure 3(f) indicates a pair of homoclinic orbits corresponding to the unstable
equilibrium point EM , M > 1. Their parametrizations are given in the next
result.

Proposition 5.5. Let (h, c) = EC(EM ) ∈ Γu,M > 1. Then the corresponding
fiber contains the unstable equilibrium point EM and a pair of homoclinic orbits
H1 and H2 given by

H1(t) = (x1(t), y1(t), z1(t)) , H2(t) = (x2(t), y2(t), z2(t)) , t ∈ R,
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where

x1(t)=
M3+4p−4(−1+M3)

3/2
p+12M3p2−6M6p2+4M3p3+4M3(−1+M3)

3/2
p3+M9p4

(M+2Mp+M4p2)
2

y1(t)=
M3+4p+4(−1+M3)

3/2
p+12M3p2−6M6p2+4M3p3−4M3(−1+M3)

3/2
p3+M9p4

(M+2Mp+M4p2)
2

z1(t)=
−1+2p−4M3p−M3p2

M(1+2p+M3p2)

and

x2(t)=
M3−4p+4(−1+M3)

3/2
p+12M3p2−6M6p2−4M3p3−4M3(−1+M3)

3/2
p3+M9p4

(M−2Mp+M4p2)
2

y2(t)=
M3−4p−4(−1+M3)

3/2
p+12M3p2−6M6p2−4M3p3+4M3(−1+M3)

3/2
p3+M9p4

(M−2Mp+M4p2)
2

z2(t)=
−1−2p+4M3p−M3p2

M(1−2p+M3p2) ,

with p = p(t) = e

√
−1+M3

2M
(t−t0).

Proof. The implicit equation of the fiber (25) leads to

x− y = ±
√
8h+ 8z − 4c2 + 4cz2 − z4.

Let M > 1 and (h, c) ∈ Γu (23). Then

x− y = ± 1

M2
(1 +Mz)

√
4M3 − (Mz − 1)2,

and the last equation of system (6) becomes

ż = ± 1

4M2
(1 +Mz)

√
4M3 − (Mz − 1)2.

Then ∫
4M2 dz

(1 +Mz)
√
4M3 − (Mz − 1)2

= ±(t− t0).

By changing of variable z =
1

v
− 1

M
we have

∫
4dv√

4Mv2 − (1− 2v
M )2

= ∓(t− t0). (26)
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Taking into account that M > 1, by integration we get the solutions z1(t)
and z2(t). Using again (25) in this case, we obtain x1(t), y1(t), x2(t), y2(t). It is
easy to see that lim

t→±∞
(x1(t), y1(t), z1(t)) = lim

t→±∞
(x2(t), y2(t), z2(t)) = EM , which

finishes the proof.

The next result regards the periodic orbit depicted in Figure 3(c).

Proposition 5.6. Let (h, c) = EC(EM ) ∈ Γs. Then the corresponding fiber con-
tains the nonlinearly stable equilibrium point EM and a periodic orbit O given
by

O(t) = (x(t), y(t), z(t)) , t ∈ R,

where

x(t) =
M3/2(3−2M3)−2(1−M3)

3/2
cos q+sin q(2+M9/2 sin q)

√
M(1+M3/2 sin q)

2

y(t) =
M3/2(3−2M3)+2(1−M3)

3/2
cos q+sin q(2+M9/2 sin q)

√
M(1+M3/2 sin q)

2

z(t) =− 1
M +

2(1−M3)
M(1+M3/2 sin q)

,

with q = q(t) =
√
1−M3

2M (t− t0).

Proof. As in the proof of Proposition 5.5, we obtain equation (26). Taking into
account that 0 < M < 1, we integrate this equation and get the solution z(t),
and then x(t), y(t). The presence of the functions sin q(t) and cos q(t) shows the
periodicity of the orbit.
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[12] C. Lăzureanu, T. B̂ınzar, Symmetries and properties of the energy-Casimir
mapping in the ball-plate problem, Advances in Mathematical Physics, bf2017,
(2017), 5164602.
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Abstract

In paper we present a statistical analysis of a problem from real word,
choose the adequate type of dental brackets for children in a dental clinic. A
generalized regression model by Poisson type was used to analyzed two data
group of children who use or used a dental brackets by different types. 1

1 Introduction

Dental epidemiology involves studying and investigating the distribution and de-
terminants of dental-related diseases in a specified population group to inform
decisions in the management of health problems. In dental epidemiology studies,
the hypothesis is typically followed by a cogent study design and data collection.
Appropriate statistical analysis is essential to demonstrate the scientific associa-
tion between the independent factors and the target variable. Analysis also helps
to develop and build a statistical model. Poisson regression and its extensions
have gained more attention in caries epidemiology than other working models
such as logistic regression (see for example [1] , [2] ,[3])

1Mathematical Subject Classification (2010):62P10, 62J12
Keywords and phrases: Poisson regression, generalized regression models, statistical tests
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2 Dental brackets

Dental braces (also known as brackets, orthodontic cases, or cases) are devices
used in orthodontics that align and straighten teeth and help position them with
regard to a person’s bite, while also aiming to improve dental health. They are
often used to correct underbites, as well as malocclusions, overbites, open bites,
gaps, deep bites, cross bites, crooked teeth, and various other flaws of the teeth
and jaw. Braces can be either cosmetic or structural. Dental braces are often
used in conjunction with other orthodontic appliances to help widen the palate or
jaws and to otherwise assist in shaping the teeth and jaws (see for example [4]).

Usually, the following types of dental appliances used in orthodontics are:

• Removable appliances – which can be taken out of the mouth by the patient;

• Functional appliances – which can be either removable or fixed;

• Fixed appliances – which are attached directly to the teeth.

Generally, removable appliances are used for simple tooth movement, such as
individual tipping or limited expansion. They can also be used as an adjunct
to fixed appliances, particularly during bite opening and molar distalization, or
prior to functional appliance therapy to facilitate mandibular postural advance-
ment. Functional appliances are used in the growing patient, often in conjunction
with extra-oral force, to help correct both sagittal and vertical skeletal discrepan-
cies, usually prior to the use of fixed appliances. Fixed appliances are the most
popular form of appliance currently in use today because they can effect complex
three-dimensional tooth movements in the management of many different types
of malocclusion. Fixed devices can be made by different materials and it can be:
aesthetic brackets or metal brackets.

2.1 Contemporary Metal Brackets

Metal brackets made from stainless steel are the most commonly used in orthodon-
tic practice, but the color of the metal and its visibility may be objectionable to
some adult patients. Manufacturers have tried to reduce the size of the bracket
and hence its visibility by continuously redesigning the appliance. Another rel-
atively recent introduction is a bracket made of titanium. A titanium bracket
has the potential of working well in the small number of patients who experience
nickel hypersensitivity from traditional metal brackets. Another variant of the
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metal bracket is a stainless steel bracket coated with a micro-thin layer of zirco-
nianitride to impart a gold color. Along with this bracket, gold arch wires are
available to complement the color (see [4], [5]). Brackets are either routinely cast
or injection-molded from stainless steel, although to reduce the chance of allergic
reaction, nickel-free brackets made from titanium or cobalt chromium are now
available. Bonding techniques rely on a physical interaction being established
between the bracket base and an etched enamel tooth surface. Bracket bases
are therefore roughened or sandblasted to improve this bond and often curved in
both the horizontal and vertical planes, which aids in bracket location and seating
on the tooth crown. A significant disadvantage of metallic orthodontic brackets
is their poor aesthetics. bracket systems that are transparent, or more closely
resemble natural tooth colour, have therefore been developed.

2.2 Plastic Brackets

The early aesthetic brackets were made of acrylic and polycarbonate, which dis-
coloured quite rapidly and were prone to both permanent deformation and fail-
ure. To overcome these problems, plastic brackets were made in polyurethane
or polycarbonate reinforced with ceramic or fibreglass fillers. Plastic brackets to
be bonded directly to enamel were initially made of polycarbonate and plastic
molding powder (Plexiglas). Plexiglas brackets did not last long because of their
discoloration, fragility, and breakage under stress. Also, much of the energy in
the wire was expended in distorting the brackets because of the poor integrity
of the arch wire slot, and therefore forces were not transmitted to the tooth. In
recent years there have been several improvements to reinforce plastic brackets,
such as precision-made stainless steel slot inserts and ceramic material fillers (15%
to 30%). Metal slot reinforcement of plastic brackets appears to strengthen the
matrix adequately so that torque can be applied at the same level as with metal
brackets. Ceramic-reinforced composite brackets without a metal slot insert have
been shown to have fairly low frictional characteristics compared with ceramic and
metal brackets .18 Hence the newly introduced ceramic-reinforced plastic brackets
are suitable for clinical use because they are color stable, have lower friction,”’ and
have the structural integrity to transmit orthodontic forces without distorting.

2.3 Ceramic Brackets

Ceramic brackets were introduced in the 1980s and provide higher strength, more
resistance to wear and deformation, better colour stability and superior aesthet-
ics. They are manufactured from aluminium oxide and are described as either
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monocrystalline or polycrystalline, depending upon whether they are made from
one or many crystals. During the last decade, ceramic brackets have become
the esthetic alternative to plastic brackets. The monocrystalline and polycrys-
talline ceramic materials used in manufacturing these brackets provide excellent
color fidelity and stain resistance. However, clinicians may be inhibited from
using ceramic brackets because of their reported fracture tendencies and, more
importantly, their reported tendency to damage enamel during the debonding
procedure. The manufacturers of these brackets have tried to improve bracket
characteristics to facilitate easier debonding. These changes have included a shift
from the purely chemical retention mechanism of resin bonding to the bracket
base to a totally mechanical mode of bonding for the polycrystalline bracket. In-
vestigations have found that debonding with sharp-edged pliers applies a bilateral
force at the bracket base-adhesive interface and is the most effective method for
debonding both polycrystalline and monocrystalline orthodontic brackets. There-
fore forces applied at the interface rather than the bracket itself may prevent
breakage on debonding. Brackets bonded by indirect techniques, which create a
resin interlayer, facilitate debonding at the interface formed between this inter-
layer and the filled resin. Ceramic brackets may fracture during torsional and
tipping movements, cause abrasion of opposing teeth, and have increased fric-
tional resistance in sliding mechanics compared with plastic and metal brackets.
Ceramic brackets have limitations and caution must be exercised in their use. Ce-
ramic brackets should not be bonded to teeth that have cracks or signs of physical
defects. A new design of the ceramic bracket is borrowed from the design of the
metal reinforced plastic bracket. This bracket system incorporates a metal slot in
the ceramic bracket, reducing the friction to levels experienced by stainless steel
brackets. Another feature of this appliance is the ease of debonding via a vertical
scribe line placed in the base of the bracket Despite these problems, adult patients
often request ceramic brackets because of the improved aesthetics.

3 Preliminaries

3.1 Generalized linear regression models

Let y1, . . . , yn be a series of n observations on a characteristic Y from a statistical
population. Of course, the (numerical) value yi is only one of the possible real-
izations of the random variable Yi. As we saw in the previous section, for linear
models, we accept that all random variables Yi are independent of each other and
have a normal distribution of parameters the mean µi and the dispersion σ2 i.e

Yi ∼ N (µi, σ
2)
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and we will assume that the mean (expected) value µi is a linear function of k
predictors that take the (numerical) values xi = (xi1, . . . , xik)

t or

µi = xi · β

where β is the vector of parameters (unknown).

It is known that the above model can be generalized in two stages, the first
refers to the stochastic component and the second to the systematic component
of the model (linear). We will describe the generalized linear model as formulated
by Nelder and Wedderburn in 1972 (see [6]).

Let’s assume that all the observations come from a distribution from a family
of exponential distributions with the probability density function

f(yi) = exp{yi · θi − b(θi)

ai(ϕ)
+ c(yi, ϕ)} (1)

where θi and ϕ are the parameters and ai(ϕ), b(θi) and c(yi, ϕ) are known func-
tions.

The parameters θi and ϕ are, in essence, the location and scale parameters.

The family of exponential distributions as defined includes, as special cases,
the normal distribution, the binomial distribution, the Poisson distribution, the
exponential distribution, the gamma distribution and the inverse Gaussian distri-
butions.

The second possible generalization of the linear model is based on the fact that
instead of modeling the average, as before, we will introduce a transformation,
i.e. a continuous, differentiable and bijective function g(yi) thus ’inc̊at

ηi = g(µi). (2)

The function g(µi) is called link function. Examples of related functions can be:
the identical function, the inverse (hyperbolic) function, the logarithmic function,
etc.

We will assume that the transformed model follows a linear model, i.e

ηi = xiβ. (3)

The quantity ηi is called linear predictor. Since the link function is bijective,
we can invert and we get

µi = g−1(xiβ). (4)



A statiscal analysis of dental brackets types 31

We denote by µ̂i the values estimated (predicted) by the ω model and let θ̂i be
the estimates corresponding to the canonical parameters. ”similarly, we denote
by µ̃i = yi ’and analogously θ̃i for the canonical parameters under Ω.

The ratio criterion for comparing the two models in the family of exponential
distributions is

−2 log λ = 2
n∑

i=1

yi(θ̃i − θ̂i − b(θ̃i) + b(θ̂i)

ai(ϕ)
.

The expression does not depend on the unknown parameters and it’s called
deviation

D(y, µ̂) = 2
n∑

i=1

pi[yi(θ̃i − θ̂i)− b(θ̃i) + b(θ̂i)] (5)

The criterion of the likelihood ratio −2 logL which represents the deviation di-
vided by the scale parameter ϕ is called scaled deviation.

Let us return now to the comparison of two models ω1, with p1 parameters,
and ω2 with p2 parameters, such that ω1 ⊂ ω2 ’and p2 > p1.

The logarithm of the ratio between the maximized likelihood functions for the
two models can it is written as a difference of deviations, that is

−2 log λ =
D(ω1)−D(ω2)

ϕ
. (6)

The scale parameter is either known or estimated using a larger model ω2.

The theory of large samples (law of large numbers) tells us that the asymptotic
distribution of this criterion, under the usual regularity conditions is χ2

ν with
ν = p2 − p1 degrees of freedom.

The problem of estimating the orders of linear models for data series was,
for many mathematicians, an important object of study during the 1960s and
1970s. H. Akaike noticed that there is a similarity between choosing the number
of factors in factorial analysis and determining the order of a linear model (that
is, the number of predictor variables) (see [8]). . For example, in the case of a
linear model, the idea of prediction is clear, but there is a problem that arises
when parameters are estimated from the recorded data. In factorial analysis, the
log-likelihoods are maximized and these maximizations are expected to be good
models for the prediction distributions, but in this case the prediction no longer is
a numerical value but a function that is estimated by the prediction distribution.
The expected log-likelihood can be given by the Kullback-Leibler information.
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Selecting the minimum of Kullback-Leibler information, comes back to maxi-
mizing Mf log g(y).

We considered n observations of some i.i.d. random variables. y1, . . . , yn
having an unknown probability density f(y). We assume that we have a lot of
alternative or candidate models of the type gm(.|θm), m = 1, 2, . . . ,M , where θm
is the vector of density parameters gm. We will want to estimate I(f, gm(.|θm)).
We assume that the parameter vector θm is known. Then, from the law of large
numbers, we have

Mf log gm(y|θm) =
∫ ∞

−∞
f(y) log gm(y|θm)dy =

1

N

N∑

n=1

log gm(yn|θm). (7)

The vector of parameters θm for the densities gm(.|θm) is unknown ’in practice’.
Parameters must be estimated from the data and under the assumption that the
model gm(|θm) has been chosen. It is natural to use the maximum likelihood
estimator θ̂m which maximizes the right member of (2.15). In this case, the law
of large numbers no longer occurs when the vector of parameters is replaced with
its estimates in the sense of maximum likelihood. so,

M Mf log gm(y|θ̂m) ̸=
1

N
M

N∑

n=1

log gm(ynθ̂m). (8)

This happens because the same set of data was used twice, for parameter
estimation and for log-likelihood estimation

The log-likelihood estimator in the case above is a shifted estimator. This
displacement (bias) is approximately equal to the number of parameters estimated
in the model. An approximate correction for this bias is given in the definition of
Akaike’s estimator denoted by AIC (Akaike’s Informational Criterion):

AIC(g) = −2(log-maximum likelihood of the model)+

+2(the number of estimated parameters of the model) =

= −2
N∑

n=1

log gm(yn|θ̂m) + 2|θ̂m|

where |.| represents the cardinality of the estimated parameters in the model.
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3.2 Poisson regression model

A random variable Y is said to have a Poisson distribution with parameter µ if a
takes integer values y = 0, 1, 2 . . . with the probability

Pr[Y = y] =
e−µµy

y!
(9)

for µ > 0. The mean and variance are

M(Y ) = V ar(Y ) = µ

Since the mean is equal to the variance, any factor that affects one will affect
the other. In other words, the usual assumption of homoscedasticity (equal vari-
ance) is not ”fulfilled”. for data with Poisson error (see [7]).

Suppose we have a sample with n observations y1, y2, . . . yn which can be
treated as realizations of independent Poisson random variables, with Yi ∼ P (µi),
and suppose that we want the mean (and, therefore, the variance!) to depend on
a vector of explanatory variables xi.

We could consider a simple linear shape model

µi = xi β

but this model has the disadvantage that the linear predictor on the right can
take any real value, while the Poisson mean on the left representing has a number
of expectations, it must be non-negative.

A simple solution to this problem is to model the logarithm of the mean using
a linear model. Thus, we calculated ηi = log(µi) ’and we assume that the mean
value of the transformation follows a linear model ηi = β xi. Thus, we will
consider a generalized linear model with a (natural) logarithmic link function.
Combine these two steps and we can write the log-linear model as

log(µi) = xi β. (10)

We apply the exponential function to equation (4.2) and obtain a multiplica-
tive model for the average:

µi = exp[β xi]

A measure of the discrepancy between the observed and estimated values is
the statistical deviation. It is shown that for the Poisson responses the deviation
is ia form

D = 2
∑

{yi log(
yi
µ̂i

− (yi − µ̂i)}

The first term is identical to the binomial deviation. The second term, a sum
of the differences between the observed and estimated values, is usually zero,
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because the maximum likelihood estimates in Poisson models have the property
of reproducing the marginal distributions.

For large samples, the distribution of the deviation is approximately χ2 with
n − p degrees of freedom, where n is the number of observations and p is the
number of parameters.

4 Methods and results

4.1 Methods

In this descriptive study, the dental data of two groups of children with dental
apparatus, the first group with ”in use” brackets and the second groups ”out use”,
i.e. children who have used a dental brackets. In both groups, the children were
randomly selected from a list of of patients from a dental clinic. Overall, 665
samples were selected and their data for dental brackets was evaluated, 330 in the
first group and 335 for the second group.

The response variable (denoted with Y a and respectively Y b) represent the
type of dental brackets and the predictor variables were the age and the sex of
patients (denoted with X1 a and X2 a and respectively X1 b and X2 b).

In the first step, it was analyzed, using appropriate statistical tests, if there
are significant statistical differences between the two groups. More precisely, the
F-test (to check the equality in the variance) and the t-test (for the equality in
the mean) were applied.

The next step, the generalized Poisson regression model was applied for the
two predictors in both groups.

The last step consisted in optimizing the number of predictors using the ”back-
ward” selection procedure. Data analysis was performed using the R software
(4.2.0).

4.2 Results

A primary descriptive statistics was made for the both groups. For the first group
they are 8 types of dental brackets : ”metalic clasic”, ”damon metalic”, ”safir”,
”damon clear”, ”aparat mobil” (i.e. mobile brackets) ,”genius”, ”metalic+safir”
The simple histogram is represented in Graph 1.
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Figure 1: Distribution of brackets types for the first group

In analogous way, for the second group, where we have just 6 types, ”metalic
clasic”, ”safir”, ”damon metalic”, ”damon clear”, ”metalic+safir”, ”genius”, the
histogram is presented in Graph 2.
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Figure 2: Distribution of brackets types for the second group

Using, successively, the F-test and the t-test, it was obtained that there are
statistically significant differences between the two groups. Furthermore, the anal-
ysis using the regression method was performed separately, on each group of data
(see Table 1 and Table 2, respectively).
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Table 1: Results form F -test for comparison of the groups.

F test to compare two variances

data: Y a and Y b

F = 1.6683, num df = 329, denom df = 334, p-value = 3.594e-06

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval: (1.344735, 2.069989)

sample estimates: ratio of variances 1.668261

Table 2: Results form t-test for comparison of the groups.

Welch Two Sample t-test

data: Y a and Y b

t = 1.6449, df = 619.49, p-value = 0.1005

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval: (-0.02507669, 0.28378315)

mean of x mean of y
1.466667 1.337313

Because, the both statistical test suggest a statistical difference between these
two groups, we will make the regression analyze for the each data groups.

Table 3: Statistical details on the Poisson regression with both predictors.

glm(formula = Y a ∼ X1 a + X2 a, family = poisson)

Deviance Residuals:

Min 1Q Median 3Q Max
-1.2272 -0.3640 -0.3040 -0.2205 2.9523

Coefficients:

Estimate Std. Error z value Pr(> |z|)
(Intercept) 0.026840 0.189632 0.142 0.887

X1 a 0.026091 0.005944 4.389 1.14e-05 ***
X2 a -0.076660 0.092703 -0.827 0.408

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 197.88 on 329 degrees of freedom

Residual deviance: 180.04 on 327 degrees of freedom

AIC: 912.73
Number of Fisher Scoring iterations: 5

First, we consider the Poisson regression model with both predictor variables, i.e.

X1=Age (as a normal random variable) and X2=Sex (as binary random variable with

two states ”M” and ”F” transformed in ”1” and ”2” ) for each data group (we denote

as X1 a and X2 a for group 1, respectively, X1 b and X2 b for the group 2). The

response variable is considered as categorial variable following a Poisson distribution
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(because de statistical mean value and variance value are almost the same , 1.466667

and 1.28308 for the first group and 1.337313 and 0.9691125 for the second group).

The results for the first group are presented in the Table 3.

Some detail about statistics indicators from above table.

• Coefficients and P-Values
The coefficient estimate in the output indicate the average change in the
log odds of the response variable associated with a one unit increase in each
predictor variable.
The standard error gives us an idea of the variability associated with the
coefficient estimate. We then divide the coefficient estimate by the standard
error to obtain a z value.
The p-value Pr(> |z|) tells us the probability associated with a particular
z value. This essentially tells us how well each predictor variable is able to
predict the value of the response variable in the model.

• Null and Residual Deviance
The null deviance in the output tells us how well the response variable can
be predicted by a model with only an intercept term.
The residual deviance tells us how well the response variable can be predicted
by the specific model that we fit with p predictor variables. The lower the
value, the better the model is able to predict the value of the response
variable.
To determine if a model is “useful” we can compute the Chi-Square statistic
as: X2 = Null deviance – Residual deviance with k degrees of freedom.
We can then find the p-value associated with this Chi-Square statistic. The
lower the p-value, the better the model is able to fit the dataset compared
to a model with just an intercept term.

• AIC
The Akaike information criterion (AIC) is a metric that is used to compare
the fit of different regression models. The lower the value, the better the
regression model is able to fit the data.

We observe that the predictor X2 a doesn’t pass the z-test (the P-value is
grater than alphs=0.05, i.e. there is a great probability such that the coefficient
to be null from the statistical point of view), therefore, following the backward
selection procedure, we can consider the regression model just with a single pre-
dictor, X1 a. The results are presented in the Table 4.
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Table 4: Statistical details on the Poisson regression with a single predictor (Age).

glm(formula = Y a ∼ X1 a, family = poisson)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.1568 -0.3689 -0.3109 -0.2539 3.0215

Coefficients:

Estimate Std. Error z value Pr(> |z|)
(Intercept) -0.09393 0.12229 -0.768 0.442

X1 a 0.02597 0.00596 4.357 1.32e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 197.88 on 329 degrees of freedom

Residual deviance: 180.72 on 328 degrees of freedom

AIC: 911.41

Number of Fisher Scoring iterations: 5

We can see that the intercept coefficient doesn’t pass the z-test. Therefore we,
consider the model with without intercept (this it is possible because we cannot
put a dental bracket for a child of zero age). In the Table 5, is presented the
statistical results for this model.

Table 5: Statistical details on the Poisson regression without intercept.

glm(formula = Y a ∼ -1 + X1 a, family = poisson)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.0428 -0.3927 -0.3439 -0.2958 2.9614

Coefficients:

Estimate Std. Error z value Pr(> |z|)
X1 a 0.021682 0.002233 9.709 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 260.62 on 330 degrees of freedom

Residual deviance: 181.31 on 329 degrees of freedom

AIC: 910

Number of Fisher Scoring iterations: 5

We can observe that this model is very good and the predictor ”age” it is
essential for the choosing of dental bracket of a child. In fact the model give as
the parameter for Poisson distribution, i.e. mean value

µ = e0.021682∗age

and with this value we can compute the probability to choose the k type from the
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set of 8 types, using the formula

P (Y = y) =
e−µµy

y!
, y = 0, 1, . . . , 7

In an analogous way, we analyse the data from the second group. The sta-
tistical results are given in Table 6 (the Poisson regression model with both pre-
dictors), Table 7 (regression with a single predictor after the optimization using
the backward selection procedure). We observe that for this group, the intercept
coefficient pass the t-test.

Table 6: Statistical details on the Poisson regression with both predictors, for the second group.

glm(formula = Y b ∼ X1 b + X2 b, family = poisson)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.4534 -0.2302 -0.1423 -0.0816 3.1830

Coefficients:

Estimate Std. Error z value Pr(> |z|)
(Intercept) -0.541685 0.203198 -2.666 0.00768 **

X1 b 0.041367 0.006065 6.821 9.04e-12 ***

X2 b 0.030077 0.102890 0.292 0.77004

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 132.32 on 334 degrees of freedom

Residual deviance: 93.14 on 332 degrees of freedom

AIC: 822.43

Number of Fisher Scoring iterations: 4

Table 7: Statistical details on the Poisson regression with a single predictors (Age),
for the second group.

glm(formula = Y b ∼ X2 b, family = poisson)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.4518 -0.2192 -0.1311 -0.0879 3.1993

Coefficients:

Estimate Std. Error z value Pr(> |z|)
(Intercept) -0.495886 0.128849 -3.849 0.000119 ***

X2 b 0.041611 0.006008 6.925 4.35e-12 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 132.318 on 334 degrees of freedom

Residual deviance: 93.226 on 333 degrees of freedom

AIC: 820.52

Number of Fisher Scoring iterations: 4

We can observe that this model is very good and the predictor ”age” was
essential for the choosing of dental bracket of a child. In this case the formula for
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Poisson parameter it is

µ = e−0.495886+0.041611∗age

and with this value we can compute the probability to choose the k type from the
set of 6 types, using the formula

P (Y = y) =
e−µµy

y!
, y = 0, 1, . . . , 5

5 Conclusions

We study the relation for the types of dental brackets and some records from
patients files. A generalized regression model by Poisson type was proposed,
based data from two different groups. In both cases, the mean value of the Poisson
distribution depend by a single predictor – Age. These results are supported by
dentists who note that the age of children is important for their teeth to support
a certain type of bracket material. Our results give a simple computation for the
probability of choosing a certain type of bracket based on the age of the children.
Of course, there exists a little difference between the new group (”in use”) and,
somehow, the old group (”out of use”) because there is a continuous development
of new materials and new types for the dental brackets.
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Abstract

We present a brief spray theory necessary for the geometric method in
hydrodynamics and shape analysis. We make use of the convenient calculus
to complete a unitary approach started by P. Michor and A. Kriegl.1

1 Introduction

The main goal of this article is to fix the lack o rigorousness in a few papers
involving infinite dimensional Lie groups. For infinite dimensional Lie groups we
have to do the things the right way: the ”convenient way”.

We will study infinite dimensional manifolds modelled on locally convex spaces.
As is well-known, beyond Banach spaces a lot of pathologies occur: ordinary dif-
ferential equations may not have solutions or the solutions may not be unique,
there is no genuine inverse function theorem, there is no natural topology for the
dual space and none of the candidates is metrizable. All these problems oblige
us to handle carefully the geometric objects related to an infinite dimensional
Fréchet manifold. There was a common belief between mathematicians that for
infinite dimensional calculus each serious application needs its own foundation
until 1982 when A. Frölicher and A. Kriegl presented independently the solution
to the question regarding the right differential calculus in infinite dimension: the
convenient calculus. P. Michor and A. Kriegl laid afterwards the foundations of
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the infinite dimensional differential geometry and brought everything together in
their seminal book [30].

Twenty years before, in his influential article [1], V. Arnold had the idea to
analyze the motion of hydrodynamical systems using geodesic flows. Actually he
showed that the Euler equations of hydrodynamics can be recast as geodesic equa-
tions of a right-invariant Riemannian metric on the group of volume-preserving
diffeomorphisms. Nowadays, similar methods are used in shape analysis [40]. This
approach became the so called geometric method in hydrodynamics (see [15] for
more details) and involves the use of geometric arguments to study issues like
well-posedness or stability.

For example, the Camassa-Holm equation

𝑢𝑡 − 𝑢𝑡𝑥𝑥 = 2𝑢𝑥𝑢𝑥𝑥 + 𝑢𝑢𝑥𝑥𝑥 − 3𝑢𝑢𝑥

describes the geodesic flow on the group Diff∞+ (S1) of orientation-preserving dif-
feomorphisms of the circle. The right-invariant metric considered is obtained by
right-translations from the inner product

⟨𝑢, 𝑣⟩ =
∫︁

S1
𝑢𝑣 + 𝑢𝑥𝑣𝑥 𝑑𝑥, 𝑢, 𝑣 ∈ 𝑇𝑖𝑑Diff∞+ (S1),

One can observe that the differential operator 𝐴 = 𝐼 −𝐷2, called inertia operator
in this context, generates the inner product by

⟨𝑢, 𝑣⟩ =
∫︁

S1
𝑢 ·𝐴𝑣 𝑑𝑥.

There is a high flexibility of this method given by the choice of an inertia op-
erator or by the choice of an algebraic structure, usually involving diffeomorphism
groups. In the last decade different inertia operators were studied starting with
differential operators with constant coefficients [10], Hilbert transforms [14, 41]
or Fourier multipliers [4, 13] and even pseudo-differential operators [7]. Among
the algebraic structures studied one should mention homogeneous spaces [27], the
Bott-Virasoro group [31], semi-direct products between a group and a vector space
[23, 42] or semidirect products between two groups [6, 7].

The idea behind this geometric approach, initially developed by D.Ebin and J.
Marsden in [12], is to use the right-invariance of the geodesic spray to obtain, via
a ”no gain, no loss” result (see [15] for details) a Cauchy-Lipschitz type theorem
on a Fréchet space. Using this method we avoid the Nash-Moser schemes in order
to obtain well-posedness in the smooth category. To formulate an inverse function
theorem for Fréchet spaces we have to restrict to the category of tame Fréchet
spaces, in the sense of R.S. Hamilton [20]. For example, the results obtained for
𝐻∞(R𝑑,R𝑑) in [4], with geometric arguments, can not be obtained with a classical
Nash-Moser approach, since 𝐻∞(R𝑑,R𝑑) is no longer a tame space.
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The article of V. Arnold is not rigorous enough for the infinite dimensional
case. Most of the research work influenced by [1] uses the concept of Gâteaux
smoothness. This concept of smoothness can be satisfactory for some problems
but it is not the appropriate one to use in manipulating vector bundles or differ-
ential forms. The convenient smoothness defined below fixes this problem. In [31]
and [30] the authors started to present a solid foundation of the aforementioned
geometric method in hydrodynamics. There is still a missing piece: an introduc-
tion via convenient calculus of the geodesic spray theory. Thus, in Section 6, we
will add the last piece of the puzzle.

2 Notations

In this article we will use the following notations:

• the letters E, F, G will be used to denote vector spaces.
• (spaces of linear mappings) L(E,F) denotes the space of linear and bounded
mappings that in general do not coincide with the space ℒ(E,F) of linear
and continuous mappings, since E and F might not be bornological spaces.

• (dual spaces) because sometimes we work with locally convex spaces which
may not be bornological we have two notions for the dual of a locally convex
space E: the bornological dual, denoted E′

, i.e. the set of all bounded linear
functionals 𝑓 : E → R, and the topological dual, denoted E*, which is the
set of all continuous linear functionals.

• (multiple derivatives) since we discuss different differentiability concepts we
denote with 𝐷𝑓 the Fréchet derivative, with 𝜕𝑓 the Gâteaux derivative, and
with 𝑑𝑓 the derivative in the convenient setting.

• 𝐺 is a Lie group, g its Lie algebra and 𝜅𝑟 is the right Maurer-Cartan form.
• (different objects) for elements in g, or in some modelling space E, we use
small letters like 𝑢, 𝑣 or 𝑥, 𝑦, for vector fields greek letters 𝜉, 𝜂, and for second
order vector fields capital letters like 𝑋,𝑌.

• (too many 𝑟’s) ℛ is the bornological isomorphism between the convenient
vector spaces 𝐶∞(𝐺, g) and Γ(𝑇𝐺) and 𝑅𝑔 are the right translations on 𝑇𝐺,
the tangent mappings of 𝑟𝑔(ℎ) := ℎ𝑔, for 𝑔, ℎ ∈ 𝐺.

• if 𝐴,𝐵,𝐶 are sets for two mappings 𝑓 : 𝐴 → 𝐶𝐵 and 𝑔 : 𝐴 × 𝐵 → 𝐶 one
can define the cannonically attached mappings, sometimes called adjoint
mappings:

𝑓∧ :𝐴×𝐵 → 𝐶, 𝑓∧(𝑎, 𝑏) := 𝑓(𝑎)(𝑏), 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵,

𝑔∨ :𝐴→ 𝐶𝐵, 𝑔∨(𝑎) := 𝑔(𝑎, ·), 𝑎 ∈ 𝐴.
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3 Smooth differentiable mappings

To discuss about a smooth structure of an infinite dimensional topological
manifold we need a notion of differentiability between Fréchet spaces. In Banach
spaces we have a notion of differentiability, called Fréchet differentiability, which
permits us to extend the differential calculus from finite dimension to infinite
dimensional Banach spaces.

Definition 3.1. Let E,F be Banach spaces, and 𝑈 an open subset of E. A mapping
𝑓 is said to be differentiable at a point 𝑥 ∈ 𝑈 , if there is an element 𝐴𝑥 ∈ ℒ(E,F)
such that

lim
ℎ→0

‖𝑓(𝑥+ ℎ)− 𝑓(𝑥)−𝐴𝑥(ℎ)‖
‖ℎ‖ = 0.

In this way 𝑓 can be approximated locally by an affine mapping generated
by the linear mapping 𝐴𝑥, usually denoted by 𝐷𝑥𝑓. If 𝑓 is differentiable at every
point 𝑥 ∈ 𝑈 , then 𝐷𝑓 can be regarded as a mapping of 𝑈 into ℒ(E,F), and 𝑓 is
a 𝐶1 differentiable mapping if and only if 𝐷𝑓 is continuous. Since ℒ(E,F) is a
Banach space, a 𝐶𝑘 differentiable mapping can be defined inductively.

When E,F are non-normable Fréchet spaces we have to cope with the following
phenomenon, namely the composition

∘ : ℒ(F,G)× ℒ(E,F) → ℒ(E,G)

is not continuous for any locally convex topology which can endow the space of
linear mappings, excepting the case when all the spaces are Banach. If we define
a concept of smoothness that uses the continuity of the mapping

𝐷𝑓 : 𝑈 → ℒ(E,F)

the concept will not be conserved by compositions, i.e. there will be no chain rule.
For a discussion on this topic one can consult [3] or [30].

The most used concept of smoothness for infinite dimensional manifolds, mod-
elled on locally convex topological vector spaces, see [20, 32, 35, 37], avoids the
topology of ℒ(E,F), using the product topology of E× F instead.

Definition 3.2. Let 𝑓 : 𝑈 ⊆ E → F be a mapping between Fréchet spaces, where 𝑈
is an open subset in E. We say that 𝑓 is Gâteaux differentiable at 𝑥 ∈ 𝑈 in the
direction ℎ ∈ E if the following limit exists

𝜕𝑥𝑓(ℎ) := lim
𝑡→0

𝑓(𝑥+ 𝑡ℎ)− 𝑓(𝑥)

𝑡
.

We say that 𝑓 is 𝐶1-Gâteaux differentiable on 𝑈 if 𝑓 is continuous, the limit exists
for all 𝑥 ∈ 𝑈 and ℎ ∈ E, and 𝜕𝑓 :𝑈 ×E → F is continuous relative to the product
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topology. Inductively we define the 𝐶𝑘-Gâteaux differentiable mappings for 𝑘 ≥ 2,
and the Gâteaux smooth mappings.

This notion of differentiability is weaker even in the context of Banach spaces,
where 𝐶𝑘+1-Gâteaux differentiability implies 𝐶𝑘-Fréchet differentiability, but the
classes of smooth mappings coincide. There is no need for the spaces to be Fréchet,
one can use locally convex topological vector spaces in the above definition, but
we are focused on our goal: the smooth Fréchet manifolds. This concept of 𝐶𝑘-
Gâteaux differentiable mappings coincides with those of 𝐶1

𝑀𝐵-mappings in the
sense of Michal-Bastiani [3, 29] or 𝐶𝑘𝑐 -mappings in the sense of Keller [21]. Using
this differentiability concept one can introduce a smooth Fréchet manifold, as in
[20].

Definition 3.3. A smooth Fréchet manifold is a Hausdorff topological space with
an atlas of coordinate charts taking their value in Fréchet spaces, such that the
coordinate transition functions are all Gâteaux smooth mappings between Fréchet
spaces.

Although this definition is the most popular one, it raises serious barriers when
one tries to define some elementary geometric objects, e.g. differential forms. Of
course, there are attempts in this field to use a stronger notion of differentiability,
see [34] for example, but most of them seem to fail in having serious applications
in infinite dimensional differential geometry. To be able to do some decent anal-
ysis one has to consider smooth Fréchet manifolds as particular cases of a more
general notion: the smooth convenient manifolds.

J. Boman had in [5] the idea to test the smoothness along smooth curves:
a mapping 𝑓 from R𝑑 to R is smooth if and only if it sends smooth curves
𝑢 ∈ 𝐶∞(R,R𝑑) into smooth curves 𝑓 ∘ 𝑢 ∈ 𝐶∞(R,R). This concept was ex-
tended to mappings between locally convex spaces by A. Frölicher and A. Kriegl
and it will agree in the case of Fréchet spaces with most of the smoothness notions
already defined there. One can consult [2, 21] for a comparison between differ-
ent differentiability concepts for locally convex spaces. Thus, in [17], the authors
constructed the so called convenient calculus for locally convex topological vec-
tor spaces. In this context the k-fold differentiability is defined directly as well
as infinite differentiability and one can avoid the topology of the space ℒ(E,F).
The remaining of this section is devoted to introducing the notion of convenient
smoothness. We will explain why this notion coincides with the Gâteaux smooth-
ness in the case of Fréchet manifolds.

For locally convex topological vector space E we call the final topology with
respect to all smooth curves 𝑐 ∈ 𝐶∞(R,E), the 𝑐∞-topology.

Definition 3.4. A subset 𝑈 ⊆ E is called 𝑐∞-open iff 𝑐−1(𝑈) is open in R for all
𝑐 ∈ 𝐶∞(R,E), and we denote by 𝑐∞E the space E equiped with this topology.
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In other words the 𝑐∞-topology is the finest topology on E such that all the
smooth curves 𝑐 : R → E become continuous. If E is a Fréchet space then the
𝑐∞-topology coincides with the given locally convex topology, according to [30],
but in general the 𝑐∞-topology is finer than any locally convex topology with the
same bounded sets. The space 𝑐∞E is not a topological vector space in general.

In a locally convex space E a curve 𝑐:R → E is called smooth if all its derivatives
exist and are continuous. The smoothness of the curves does not depend on the
topology given on E, in the sense that for all topologies leading to the same dual
we have the same family of smooth curves. In fact it depends only on the family
of bounded sets, the bornology of E, see the Appendix.

Definition 3.5. Let E,F be locally convex spaces, a mapping 𝑓 :𝑈 ⊆ E → F defined
on a 𝑐∞-open subset 𝑈 it is called convenient smooth if it maps smooth curves in
𝑈 into smooth curves in F.

With this concept of smoothness there exist convenient smooth mappings
which are not continuous, but all the convenient smooth mappings are contin-
uous relative to the 𝑐∞-topology, according to [17, 30]. The Gâteaux smoothness
will imply convenient smoothness but not conversely. Anyway, on Fréchet spaces
the two notions coincide.

Proposition 3.6. Let E,F be Fréchet spaces and 𝑈 ⊆ E a 𝑐∞-open subset, then 𝑈
is open and the mapping 𝑓 : 𝑈 ⊆ E → F is Gâteaux smooth if and only if it is
convenient smooth.

Proof. As we mentioned before in the case of a Fréchet space 𝑐∞E = E and thus
𝑈 is open for the given topology on E. If 𝑓 is Gâteaux smooth then one can easily
see that 𝑓 ∘ 𝑐 will be Gâteaux smooth for all smooth curves 𝑐 ∈ 𝐶∞(R,E), thus
𝑓 is convenient smooth. We denote by 𝑑𝑥𝑓 the derivative of a convenient smooth
mapping as in the Appendix. If 𝑓 is smooth in the convenient sense then, by
Proposition A.8 in the Appendix, the mapping 𝑑𝑓 : 𝑈 → L(E,F) exists and is
convenient smooth. Here L(E,F) denotes the space of bounded (not necessarily
continuous) linear mappings between convenient vector spaces. See the Apppendix
for the definition of a convenient vector space. The cartesian closedness property,
Proposition A.9, implies that 𝜕𝑓 := 𝑑𝑓 : 𝑈 × E → F is convenient smooth, thus
continuous relative to the 𝑐∞- topologies, which coincide here with the given
topologies on E,F.

Remark 3.7. This notion of convenient smoothness or Boman smoothness can
substitute the most used notion of smoothness for Fréchet spaces and implicitly
for smooth Fréchet manifolds.
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4 Convenient manifolds. Regular Lie groups

Let us introduce now the geometric objects we will need. In order to do that
we follow closely [30]:

Definition 4.1. (Convenient manifolds) A chart (𝒰 , 𝜙) on a set 𝑀 is a bijection
𝜙 : 𝒰 → 𝑈 ⊆ E𝒰 from a subset 𝒰 ⊆ 𝑀 onto a 𝑐∞-open subset 𝑈 of a convenient
vector space E𝒰 . For two charts (𝒰𝛼, 𝜙𝛼) and (𝒰𝛽, 𝜙𝛽) on M the mapping

𝜙
𝛼𝛽

:= 𝜙𝛼 ∘ 𝜙−1𝛽 : 𝜙𝛽(𝒰𝛼 ∩ 𝒰𝛽) → 𝜙𝛼(𝒰𝛼 ∩ 𝒰𝛽)

is called the transition mapping. A family (𝒰𝛼, 𝜙𝛼)𝛼∈𝐴 of charts on 𝑀 is called
an atlas for 𝑀, if the sets 𝛼 form a cover of 𝑀 and all transition mappings are
defined on 𝑐∞-open subsets.

An atlas for 𝑀 is called smooth if all transition mappings 𝜙𝛼𝛽 are convenient
smooth. Two smooth atlases are called smooth-equivalent if their union is again a
smooth atlas. An equivalence class of smooth atlases is a smooth structure for 𝑀.
A smooth convenient manifold 𝑀 is a set together with a smooth structure on it.

The isomorphism type of the modelling spaces E𝒰 is constant on the connected
components of the manifold 𝑀, since the derivative of the chart changings are
linear isomorphisms. The manifold Diff∞+ (S1), considered as an example in this
article, is a connected manifold. Since we are focused only in offering a theoretical
background for the Euler-Poincaré-Arnold equations, we are entitled to consider
E𝒰 = E in some of our reasonings to avoid further technicalities. In the case of
manifolds modelled on Fréchet spaces the above definition coincides with the one
presented before.

Definition 4.2. A mapping 𝑓 :𝑀 → 𝑁 between convenient smooth manifolds is
called convenient smooth if for each 𝑝 ∈ 𝑀 and each chart (𝒱𝛽, 𝜓𝛽) on 𝑁, with
𝑓(𝑝) ∈ 𝒱𝛽 there is a chart (𝒰𝛼, 𝜙𝛼) on 𝑀 with 𝑝 ∈ 𝒰𝛼, 𝑓(𝒰𝛼) ⊆ 𝒱𝛽 and the local
representative 𝜓𝛽 ∘ 𝑓 ∘ 𝜙−1𝛼 is convenient smooth. This is the case if and only if
𝑓 ∘ 𝑐 is a smooth curve on 𝑀 for each smooth curve 𝑐 : R →𝑀.

Definition 4.3. A convenient smooth Lie group 𝐺 is a convenient smooth manifold
and a group such that the multiplication 𝑚𝐺 : 𝐺 × 𝐺 → 𝐺 and the inversion
𝑖𝐺 :𝐺→ 𝐺 are convenient smooth.

The conjugation mapping 𝑐𝑔(𝑥) := 𝑔𝑥𝑔−1 generates the adjoint representation
of the Lie group 𝐺

Ad :𝐺→ 𝐺𝐿(g) ⊂ 𝐿(g, g),
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considered as a convenient smooth mapping into 𝐿(g, g). In this way it makes
sense to define the ajoint representation of the Lie algebra g as

ad := 𝑇𝑒Ad :g → gl(g) = 𝐿(g, g).

In the particular case 𝐺 = Diff∞+ (S1), the group of orientation-preserving
diffeomorphisms of the circle, its Lie algebra is g = C∞(S1) the vector space of
smooth real functions on the circle. The adjoint representation of g = C∞(S1) is
given by

ad𝑢 𝑣 = −[𝑢, 𝑣] = 𝑢𝑥𝑣 − 𝑣𝑥𝑢, 𝑢, 𝑣 ∈ C∞(S1). (4.1)

For an infinite dimensional Lie group the Lie exponential mapping may not exist

or may not be smooth. An attempt to find a condition which ensures both these

properties led to the notion of regular Lie groups, introduced by J. Milnor [32].

Definition 4.4. A convenient smooth Lie group is called regular if for every curve
𝑢 ∈ C∞(R, g) there exists a curve 𝑔 ∈ C∞(R, 𝐺) such that

{︃
𝑔(0) = 𝑒

G
,

𝑅𝑔(𝑡)−1 𝑔̇(𝑡) = 𝑢(𝑡).

and the evolution mapping

evol𝑟
G
: C∞(R, g) → 𝐺, evol𝑟

G
(𝑢) := 𝑔(1)

exists and is convenient smooth.

Examples of regular Lie groups are offered by the strong ILH-Lie groups in
the sense of H. Omori [37].

Definition 4.5. A topological group 𝐺 is a strong ILH-Lie group modelled on the
Fréchet space g := E = lim

←𝑞
E𝑞, 𝑞 ≥ 𝑑, if and only if there exists a system 𝐺𝑞, 𝑞 ≥ 𝑑,

of topological groups 𝐺𝑞 satisfying the following conditions:

(𝐺1) every group 𝐺𝑞 is a Hilbert manifold modelled on the Hilbert space E𝑞,

(𝐺2) 𝐺
𝑞+1 is a dense subgroup in 𝐺𝑞, and the embedding 𝐺𝑞+1 ⊂ 𝐺𝑞 is a mapping

of class 𝐶∞,

(𝐺3) 𝐺 = ∩
𝑞≥𝑑

𝐺𝑞 with inverse limit topology,

(𝐺4) the group multiplication mapping 𝑚𝐺 : 𝐺 × 𝐺 → 𝐺 extends to a mapping
𝐺𝑞+𝑙 ×𝐺𝑞 → 𝐺𝑞 of class 𝐶 𝑙,
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(𝐺5) the inversion mapping 𝑖𝐺 :𝐺→ 𝐺 extends to a mapping 𝐺𝑞+𝑙 → 𝐺𝑞 of class
𝐶 𝑙,

(𝐺6) for each 𝑔 ∈ 𝐺𝑞 the right translation 𝑟𝑔 :𝐺
𝑞 → 𝐺𝑞 is a mapping of class 𝐶∞,

(𝐺7) let g𝑞 := E𝑞 be the tangent space of 𝐺𝑞 at the identity 𝑒 ∈ 𝐺𝑞, and let
𝑇𝐺𝑞 be the tangent bundle. The mapping 𝑇𝑟 : g𝑞+𝑙 ×𝐺𝑞 → 𝑇𝐺𝑞 defined by
𝑇𝑟(𝑢, 𝑔) := 𝑅𝑔𝑢 is a mapping of class 𝐶 𝑙,

(𝐺8) there exists an open neighborhood 𝑈 of zero in g𝑑 and a diffeomorphism Φ
of 𝑈 onto an open neighborhood 𝒰 of the unity 𝑒 ∈ 𝐺𝑑, Φ(0) = 𝑒, such that
the restriction of Φ to 𝑈 ∩ g𝑞 is a diffeomorphism of the open subset 𝑈 ∩ g𝑞

from g𝑞 onto an open subset 𝒰 ∩𝐺𝑞 from 𝐺𝑞 for any 𝑞 ≥ 𝑑.

In the case 𝐺 = Diff∞+ (S1) for 𝑞 > 3
2 , the set 𝐺𝑞 := 𝒟𝑞(S1) of 𝐶1-orientation

preserving diffeomorphisms of the circle, which are of class 𝐻𝑞, has the structure
of a Hilbert manifold modelled on E𝑞 := 𝐻𝑞(S1). It is also a topological group.
Diff∞+ (S1) = ∩𝑞> 3

2
𝒟𝑞(S1) is a strong ILH-Lie group according to [37], thus a

regular convenient smooth Lie group.

5 Euler-Arnold equations on regular Lie groups

In oder to define a Riemannian metric on a regular convenient Lie group 𝐺
an inner product on the Lie algebra g is extended to every tangent space by right
translations

⟨𝑢𝑔, 𝑣𝑔⟩𝑔 = ⟨𝑅𝑔−1𝑢𝑔, 𝑅𝑔−1𝑣𝑔⟩𝑒, 𝑢𝑔, 𝑣𝑔 ∈ 𝑇𝑔𝐺, 𝑔 ∈ 𝐺. (5.1)

If this inner product is generated by an isomorphism 𝐴 :g → g*, which is positive-
definite and symmetric with respect to the natural pairing (·, ·) between elements
of g* and g

⟨𝑢, 𝑣⟩𝐴𝑒 := (𝑢,𝐴𝑣) = (𝐴𝑢, 𝑣), 𝑢, 𝑣 ∈ g, (5.2)

then this operator is called the inertia operator on 𝐺. The natural pairing is
actually the evaluation mapping. By Remark B.3 in the Appendix, it is convenient
smooth if, for example, the topological dual 𝑔* is endowed with the strong topology
and 𝑔 is a convenient vector space. It will never be Gâteaux smooth because
Gâteaux smoothness implies continuity.

Remark 5.1. When working with an infinite dimensional Lie group one can not
consider bi-invariant metrics because in this case the Riemannian exponential
mapping and the Lie exponential mapping will coincide and the latter one can
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behave bizarrely. Another problem occurs, exemplified here for the Fréchet -Lie
group 𝐺 = Diff∞+ (S1). In order to maintain the isomorphism property of the
inertia operator, described above, we have to restrict g* to its regular dual

g*𝑟𝑒𝑔 ∼= C∞(S1),

defined as the space of linear functionals of the form

𝑢→
∫︁

S1
𝑚 · 𝑢𝑑𝑥,

for 𝑚 ∈ C∞(S1), due to [22, 24]. The pairing between the elements of g*𝑟𝑒𝑔 and g
will be given by the 𝐿2(S1)-inner product

(𝑢, 𝑣) := ⟨𝑢, 𝑣⟩𝐿2(S1) =

∫︁

S1
𝑢 · 𝑣 𝑑𝑥. (5.3)

The topology on g*𝑟𝑒𝑔 is not the induced one and now the pairing becomes even
Gâteaux smooth, which is impossible without the above convention. With this
convention the inertia operator 𝐴 : g → g*𝑟𝑒𝑔 will be called regular inertia operator.

If the adjoint of ad𝑣 relative to the inner product (5.2) exists then the geodesics
can be determined with the help of this operator. We remind here that a bilin-
ear operator is bounded if and only if it is convenient smooth by Theorem A.8.
On C∞(S1) boundedness will be equivalent with continuity, being a bornological
space.

Theorem 5.2. (V. Arnold, [1]) If the inner product ⟨·, ·⟩𝑒 : g × g → R defined in
(5.2) is bounded and there exists a bounded bilinear operator

𝐵 : g× g → g,

with the property

⟨𝐵(𝑢, 𝑣), 𝑤⟩𝑒 = ⟨𝑢, ad𝑣 𝑤⟩𝑒, 𝑤 ∈ g,

where 𝑎𝑑𝑣 is the adjoint representation of g, then a smooth curve 𝑔(𝑡) on the
regular convenient Lie group 𝐺 is a geodesic for the right-invariant metric defined
by (5.1) if and only if its Eulerian velocity 𝑢(𝑡) = 𝑅𝑔(𝑡)−1 𝑔̇(𝑡) satisfies the first
order equation

𝑢𝑡 = −𝐵(𝑢, 𝑢).

Proof. We present the proof adapted to the convenient approach, whereas the
original proof of V. Arnold is not rigorous enough in the infinite dimensional
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setting. Parts of the proof are presented in Section 46.4 of [30].
For a smooth 𝑔 : [𝑎, 𝑏] → 𝐺 the energy functional of the curve 𝑔 is

𝐸(𝑔) :=
1

2

∫︁ 𝑏

𝑎
⟨𝑔̇(𝑡), 𝑔̇(𝑡)⟩𝑔(𝑡)𝑑𝑡 =

1

2

∫︁ 𝑏

𝑎
⟨𝑔*𝜅𝑟(𝜕𝑡), 𝑔*𝜅𝑟(𝜕𝑡) ⟩𝑒𝑑𝑡,

where we pullback the Maurer-Cartan form 𝜅𝑟 on 𝑇R, by 𝑔.
The first part uses arguments borrowed from the finite dimensional case. One

has to introduce 𝑔(𝑠, 𝑡) a smooth variation of the curve 𝑔, 𝑠 ∈ (−𝜀, 𝜀), 𝑡 ∈ [𝑎, 𝑏],
with fixed endpoints 𝑔(𝑠, 𝑎) = 𝑔(𝑎), 𝑔(𝑠, 𝑎) = 𝑔(𝑏) and let us denote the curves
𝑢(𝑠, 𝑡) := 𝑅𝑔(𝑠,𝑡)−1𝜕𝑡𝑔(𝑠, 𝑡) and 𝑣(𝑠, 𝑡) := 𝑅𝑔(𝑠,𝑡)−1𝜕𝑠𝑔(𝑠, 𝑡). In particular we have
𝑢0(𝑡) := 𝑢(0, 𝑡) : [𝑎, 𝑏] → g and 𝑣0(𝑡) := 𝑣(0, 𝑡) : [𝑎, 𝑏] → g.

𝜕𝑠𝐸(𝑔) =
1

2

∫︁ 𝑏

𝑎
2⟨𝜕𝑠(𝑔*𝜅𝑟(𝜕𝑡)), 𝑔*𝜅𝑟(𝜕𝑡) ⟩𝑒 𝑑𝑡

=

∫︁ 𝑏

𝑎
⟨𝜕𝑡(𝑔*𝜅𝑟(𝜕𝑠))− 𝑑(𝑔*𝜅𝑟)(𝜕𝑡, 𝜕𝑠), 𝑔*𝜅𝑟(𝜕𝑡) ⟩𝑒 𝑑𝑡

because [𝜕𝑡, 𝜕𝑠] = 0 by Schwarz’s theorem. Further

∫︁ 𝑏

𝑎
−⟨𝑔*𝜅𝑟(𝜕𝑠), 𝜕𝑡(𝑔*𝜅𝑟(𝜕𝑡))⟩𝑒 − ⟨[𝑔*𝜅𝑟(𝜕𝑡), 𝑔*𝜅𝑟(𝜕𝑠)], 𝑔*𝜅𝑟(𝜕𝑡) ⟩𝑒 𝑑𝑡

= −
∫︁ 𝑏

𝑎
⟨𝑔*𝜅𝑟(𝜕𝑠), 𝜕𝑡(𝑔*𝜅𝑟(𝜕𝑡)) +𝐵(𝑔*𝜅𝑟(𝜕𝑡), 𝑔*𝜅𝑟(𝜕𝑡)) ⟩𝑒 𝑑𝑡,

exploiting the fixed endpoints of the variation and applying the right Maurer-
Cartan equation.

The curve 𝑔 is a geodesic for the metric (5.1) iff the derivative vanishes at 𝑠 = 0
for all variations 𝑔(𝑠, 𝑡) of 𝑔 with fixed endpoints. By Corollary 38.13 in [30] the
group C∞(R, 𝐺) is a regular convenient Lie group, if 𝐺 is a regular convenient Lie
group. It has the Lie algebra C∞(R, g) with the bracket [𝑋,𝑌 ](𝑡) := [𝑋(𝑡), 𝑌 (𝑡)]g.
Thus, following the definition of a regular convenient Lie group, for every curve

𝑣(𝑠, 𝑡) ∈ C∞(R,C∞(R, g)) = C∞(R× R, g)

there exists a curve

𝑔(𝑠, 𝑡) ∈ C∞(R,C∞(R, 𝐺)) ⊆ C∞(R× R, 𝐺),

such that {︃
𝑔(0, 𝑡) = 𝑔(𝑡) ∈ C∞(R, 𝐺),
𝑣(𝑠, 𝑡) := 𝑅𝑔(𝑠,𝑡)−1𝜕𝑠𝑔(𝑠, 𝑡).
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In particular, every smooth curve 𝑣0 : [𝑎, 𝑏] → g corresponds to a variation with
fixed endpoints of 𝑔. Eventually, for all 𝑣0

∫︁ 𝑏

𝑎
⟨𝑣0(𝑡), 𝑢̇0(𝑡) +𝐵(𝑢0(𝑡), 𝑢0(𝑡))⟩𝑒 𝑑𝑡 = 0.

Applying this identity for the smooth curve 𝑣0(𝑡) := 𝑢̇0(𝑡)+𝐵(𝑢0(𝑡), 𝑢0(𝑡)) we
get the conclusion, since the inner product (5.2) is positive definite and smoothness
implies continuity for curves.

In the case 𝐺 = Diff∞+ (S1), for the right-invariant metric induced as in (5.1)
and (5.2) by the inner product ⟨𝑢, 𝑣⟩ =

∫︀
𝑆1 𝐴𝑢 · 𝑣 𝑑𝑥, with 𝐴 : C∞(S1) → C∞(S1)

continuous linear, invertible, positive definite and 𝐿2-symmetric, one gets

𝐵(𝑢, 𝑣) = 𝐴−1 {𝑢 · (𝐴𝑣)𝑥 + 2𝐴𝑣 · 𝑢𝑥} ,

since ad𝑢 𝑣 has the expression given in (4.1). Hence a curve 𝜙(𝑡) is a geodesic
of the right-invariant metric induced by the inertia operator 𝐴 if and only if its
Eulerian velocity 𝑢(𝑡) := 𝑅𝜙(𝑡)−1𝜙̇(𝑡) = 𝜙̇(𝑡) ∘ 𝜙(𝑡)−1 satisfies the equation

𝑢𝑡 = −𝐴−1 {𝑢 · (𝐴𝑢)𝑥 + 2𝐴𝑢 · 𝑢𝑥} .

The equation from the above theorem is called the Euler-Arnold equation
induced by an inertia operator 𝐴. In general a Levi-Civita connection related to
the Riemannian metric (5.1) is not granted, because a metric like (5.1) generates
a flat mapping 𝑣𝑔 ↦→ ⟨𝑣𝑔, ·⟩𝑔 that is only injective. If the adjoint ad𝑇𝑢 exists such a
connection also exists. To derive its formula we have to identify the space Γ(𝑇𝐺)
of smooth sections with the convenient vector space 𝐶∞(𝐺, g) of g-valued fuctions
on 𝐺. The isomorphism is induced by the right trivialization 𝜌 = (𝜋𝐺, 𝜅

𝑟) :𝑇𝐺→
→ 𝐺× g.

Proposition 5.3. The mapping ℛ : 𝐶∞(𝐺, g) → Γ(𝑇𝐺)

𝑋 → ℛ𝑋

where ℛ𝑋 is defined by ℛ𝑋(𝑔) := 𝑅𝑔(𝑋(𝑔)), for 𝑋 ∈ C∞(𝐺, g), 𝑔 ∈ 𝐺, is a
bornological isomorphism.

Proof. We have to argue thatℛ andℛ−1 send bounded sets into bounded sets. Of
course, we refer here to the von Neumann bornology corresponding to the natural
topologies on 𝐶∞(𝐺, g) and Γ(𝑇𝐺), presented in the Appendix. For ℛ−1 one gets
the conclusion observing that ℛ−1(𝜉) = 𝜅𝑟(𝜉), for 𝜉 ∈ Γ(𝑇𝐺), and the insertion
mapping 𝑖 : Γ(𝑇𝐺)× Ω1(𝐺, g) → Ω0(𝐺, g) := 𝐶∞(𝐺, g) is convenient smooth.
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Since 𝑇𝐺 is trivializable, let us denote by 𝑓𝛼:Γ(𝑇𝐺) → 𝐶∞(R, g), the mappings
with respect to which Γ(𝑇𝐺) has the initial topology (see the Appendix B)

𝑓𝛼 := 𝑐* ∘ (𝑢−1𝛼 )* ∘ (𝑝𝑟2 ∘ 𝜌)* ∘ (𝑖𝒰𝛼)*.

Let us also denote by 𝑔𝛼 : 𝐶∞(𝐺, g) → 𝐶∞(R, g) the mappings that give the
topology on 𝐶∞(𝐺, g). Then ℛ is bounded if and only if 𝑓𝛼 ∘ℛ is bounded, since
the von Neumann bornology coincides with the initial bornology induced by 𝑓𝛼
on Γ(𝑇𝐺) (cf. [19]). But 𝑓𝛼 ∘ ℛ = 𝑔𝛼 ∘ 𝐼𝑑𝐶∞(𝐺,g), thus ℛ is bounded.

As a consequence ℛ and ℛ−1 are convenient smooth. In order to avoid some
cumbersome expressions we will use, in the next proposition, the same nota-
tion for the vector field and the curve attached via the isomorphism ℛ. Relation
(5.4) should be written as ∇ℛ𝑋

ℛ𝑌 := ℛ∇𝑋𝑌
, for some mappings 𝑋,𝑌 ,∇𝑋𝑌 ∈

∈ C∞(𝐺, g). Because the flat mapping is only injective the idea is to build the
below candidate and to prove that this is the unique Levi-Civita connection, re-
lated to the right-invariant metric (5.1).

Proposition 5.4. Assume that for all 𝑢 ∈ g the adjoint ad𝑇𝑢 with respect to the
bounded inner product ⟨·, ·⟩𝑒 exists and that 𝑢 ↦→ ad𝑇𝑢 is bounded. Then the Levi-
Civita connection related to the metric (5.1) exists and is given by

∇ℛ𝑋
ℛ𝑌 := ℛ∇𝑋𝑌 , ∇𝑋𝑌 ∈ C∞(𝐺, g), (5.4)

where

∇𝑋𝑌 (𝑔) := 𝑇𝑔𝑌 (ℛ𝑋(𝑔))−
1

2
ad𝑋(𝑔) 𝑌 (𝑔)+

1

2
ad𝑇𝑋(𝑔) 𝑌 (𝑔)+

1

2
ad𝑇𝑌 (𝑔)𝑋(𝑔), (5.5)

for 𝑋,𝑌 ∈ C∞(𝐺, g), 𝑔 ∈ 𝐺.

Proof. See Section 46.5 in [30].

Remark 5.5. This formula coincides pointwise with the corrected version of the
formula given in [9], for the particular case 𝐺 = Diff∞+ (S1)

(∇𝑋𝑌 )𝜙 = [𝑋,𝑌 − 𝑌 𝑅
𝜙 ]𝜙 +

1

2

(︀
[𝑋𝑅

𝜙 , 𝑌
𝑅
𝜙 ]𝜙 +𝐵(𝑋𝑅

𝜙 , 𝑌
𝑅
𝜙 )𝜙 +𝐵(𝑌 𝑅

𝜙 , 𝑋
𝑅
𝜙 )𝜙

)︀
,

where, for 𝑋 ∈ Γ(TDiff∞+ (S1)), the term 𝑋𝑅
𝜙 denotes the right-invariant vector

field whose value at 𝜙 ∈ Diff∞+ (S1) is 𝑋𝜙, thus 𝑋
𝑅
𝜙 = ℛ𝑋𝜙∘𝜙−1 and the operator

𝐵(𝑢, 𝑣) := ad𝑇𝑣 𝑢 was extended to the family of right-invariant vector fields by
𝐵(𝑍,𝑊 )𝜙 = 𝐵(𝑍𝑖𝑑,𝑊𝑖𝑑) ∘ 𝜙.
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6 The geodesic spray

An interesting phenomenon concerning the Euler-Poincaré-Arnold equations
occurs for some Fréchet-Lie groups: the propagator of the evolution equation
which describes the geodesic flow (Lagrangian coordinates) has better properties
than the one corresponding to the Euler-Arnold equation (Eulerian coordinates).

We will exemplify this remark by considering the case 𝐺 = Diff∞+ (S1), with a
right-invariant metric constructed as in (5.2) and A a pseudo-differential operator
of Hörmander class 𝑆𝑟1,0, 𝑟 ≥ 1, as in [7]. The spray equation will be

{︃
𝜙𝑡 = 𝑣

𝑣𝑡 = 𝑆𝜙(𝑣)
, (6.1)

where
𝑆𝜙(𝑣) = 𝑅𝜙 ∘ 𝑆 ∘𝑅𝜙−1(𝑣),

and
𝑆(𝑢) = 𝐴−1{[𝐴, 𝑢]𝐷(𝑢) + 𝑢[𝐴,𝐷](𝑢)− 2𝐴(𝑢)𝐷(𝑢)}.

with 𝐷 := 𝑑
𝑑𝑥 on 𝑆1, defined as in [18].

The mapping F : TDiff∞+ (S1) → TTDiff∞+ (S1), locally defined by

𝐹 (𝜙, 𝑣) := (𝜙, 𝑣, 𝑣, 𝑆𝜙(𝑣)), (6.2)

extends to a smooth mapping 𝐹 : 𝑇𝒟𝑞(S1) → 𝑇𝑇𝒟𝑞(S1), mostly because of the
commutators that appear in the above expressions. Hence, it is possible to re-
cast the spray equation as an ODE on suitable Hilbert spaces and to work on
the Hilbert approximations of the ILH Lie group Diff∞+ (S1). This phenomenon
is exploited in order to obtain the existence of an integral curve of the geodesic
spray, see [4, 7, 9, 12, 13, 23].

On the other hand, denoting 𝜙𝑡 = 𝑢 ∘𝜙, one discovers via Theorem 5.2 that 𝜙
satisfies the spray equation iff the Eulerian velocity 𝑢 satisfies the the Euler-Arnold
equation

𝑢𝑡 = −𝐴−1{𝑢 · (𝐴𝑢)𝑥 + 2𝐴𝑢 · 𝑢𝑥}.
Unfortunately, this equation has a derivative loss when considered on the Hilbert
approximations, thus it needs some Nash-Moser schemes in order to be solved in
the smooth category. Such an approach is used in [8], with a comparison between
these two methods.

The above discussion contains the essence of the so called ”geometric method
in hydrodynamics”[15]. Most of the papers concerned with this geometric method
do not define rigorously the spray in the case of a Fréchet manifold. This is what
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we intend to do in the sequel. We are interested here only in sprays related to a
right-invariant metric on a regular Lie group. There is not a direct way to define
a spray on a Fréchet-Lie group using the concept of Gâteaux smoothness, without
introducing some conventions or losing generality. The convenient calculus per-
mits us to define a geodesic spray on Fréchet manifolds and afterwards one can
use the ILH structure of the Lie group for proving the existence of an integral
curve.

6.1 Sprays on Banach manifolds

In the case of a Banach manifold 𝑀 modelled on a Banach space E, in order
to define the spray related to a metric, the classical approach is to use the flat
mapping

̂︀𝑔 : 𝑇𝑝𝑀 → 𝑇 *𝑝𝑀, 𝜉 → 𝑔(𝑝)(𝜉, ·),
where 𝑔 is a smooth Riemannian metric on 𝑀. On the cotangent bundle of 𝑀 we
can define the canonical Liouville 1-form by

Θ𝜔(𝑋) := 𝜔(𝑇𝜋*(𝑋)), 𝜔 ∈ 𝑇 *𝑥𝑀,𝑋 ∈ 𝑇𝜔(𝑇
*𝑀),

where 𝜋* : 𝑇 *𝑀 → 𝑀 is the canonical projection. There is also a canonical
symplectic form on 𝑇 *𝑀 obtained as

Ω = −𝑑Θ,

where 𝑑 is the exterior derivative of a 1-form.
We can pullback the Liouville form by the flat mapping ̂︀𝑔 to obtain a 1-form

Θ𝑔 on 𝑇𝑀

Θ𝑔
𝜉(𝑋) := 𝑔(𝑝)(𝜉, 𝑇𝜋𝑀 (𝑋)), 𝜉 ∈ 𝑇𝑀,𝑋 ∈ 𝑇𝜉(𝑇𝑀),

and further a symplectic form on 𝑇𝑀

Ω𝑔 := −𝑑Θ𝑔.

If the metric is strong we can associate to every function 𝐻 on 𝑇𝑀 a Hamil-
tonian vector field 𝐹𝐻 on 𝑇𝑀 defined as

𝑑𝜉𝐻(𝑋) := Ω𝑔(𝐹𝐻(𝜉), 𝑋), (6.3)

where 𝜉 ∈ 𝑇𝑀 and 𝑋 ∈ 𝑇𝜉(𝑇𝑀). If the metric is weak the flat mapping and the
symplectic form Ω𝑔 are only injective and thus given a function 𝐻 on 𝑇𝑀 the
Hamiltonian vector field corresponding to it may not exist, but if exists it is given
by the above relation (6.3).
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Definition 6.1. (see [26]) The geodesic spray 𝐹 associated to a strong metric 𝑔 is
defined as the Hamiltonian vector field of the energy function

𝐸(𝜉) :=
1

2
𝑔(𝑝)(𝜉, 𝜉).

In a local chart 𝑈E × E of 𝑇𝑀 the Hamiltonian vector field 𝐹 is

𝐹 (𝑥, 𝑣) := (𝑥, 𝑣, 𝑣, 𝑆(𝑥, 𝑣)),

where 𝑆(𝑥, 𝑣) is defined by

𝑔(𝑥)(𝑆(𝑥, 𝑣), 𝑢) =
1

2
𝐷𝑥𝑔(𝑢)(𝑣, 𝑣)−𝐷𝑥𝑔(𝑣)(𝑣, 𝑢),

for 𝑥 ∈ 𝑈E ⊆ E and 𝑢, 𝑣 ∈ E, where 𝐷𝑥𝑔 represents the Fréchet derivative of the
local representative of the metric. Since the flat mapping ̂︀𝑔 is bijective one gets

𝑆(𝑥, 𝑣) = 𝑝𝑟2[̂︀𝑔−1(𝑥,
1

2
𝐷𝑥𝑔(𝑢)(𝑣, 𝑣)−𝐷𝑥𝑔(𝑣)(𝑣, 𝑢))].

6.2 Sprays for the geometric method

By 𝑇𝑀 we will denote the kinematic tangent bundle of an infinite dimensional
manifold, modeled on a convenient vector space E.

Definition 6.2. We define a spray 𝐹 to be a convenient smooth section of both
𝜋𝑇𝑀 : 𝑇𝑇𝑀 → 𝑇𝑀 and 𝑇𝜋𝑀 : 𝑇𝑇𝑀 → 𝑇𝑀 (symmetric vector field) which
satisfies the quadratic condition

𝐹 ∘𝑚𝑇𝑀
𝜆 = 𝑇𝑚𝑇𝑀

𝜆 ∘𝑚𝑇𝑇𝑀
𝜆 ∘ 𝐹,

where 𝑚𝑇𝑀
𝜆 ,𝑚𝑇𝑇𝑀

𝜆 denote the fiber scalar multiplications.

Let 𝐺 be a regular convenient Lie group and 𝑔 a convenient smooth right-
invariant metric defined as in (5.1) by a bounded inner product ⟨·, ·⟩. Generally, a
Riemannian metric 𝑔 on an convenient manifold 𝐺 can be defined as a convenient
smooth section of the vector bundle 𝐿(𝑇𝐺 ⊕ 𝑇𝐺,𝐺 × R), that gives a positive
definite and symmetric bilinear form 𝑔(𝑝)(·, ·) on each tangent space 𝑇𝑝𝐺, 𝑝 ∈ 𝐺.
Let us consider the following mapping on 𝑇𝑇𝐺

Θ𝑔
𝜉(𝑋) := 𝑔(𝜉, 𝑇𝜉𝜋𝐺(𝑋)) = ⟨𝜅𝑟(𝜉), (𝜋*𝐺𝜅𝑟)𝜉(𝑋)⟩, 𝑋 ∈ 𝑇𝜉𝑇𝐺,
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where ⟨·, ·⟩ is the inner product (5.2), 𝜅𝑟 the right Maurer-Cartan form and the
mapping 𝜋𝐺 : 𝑇𝐺 → 𝐺 is the canonical projection. Θ𝑔 is a convenient smooth
section of the convenient convenient smooth vector bundle 𝐿(𝑇𝑇𝐺, 𝑇𝐺×R), thus
a kinematic 1-form on the kinematic tangent bundle 𝑇𝐺, when 𝐺 is a regular
convenient Lie group. The smoothness of 𝜉 → 𝜅𝑟(𝜉) from Γ(𝑇𝐺) to 𝐶∞(𝐺, g) was
justified in the previous section. Now, one can define a kinematic 2-form on 𝑇𝐺
by

𝜔𝑔(𝑌,𝑋) := −𝑑Θ𝑔(𝑌,𝑋).

To every right-invariant metric on a regular convenient Lie group 𝐺 one can
associate the energy function 𝐸 : 𝑇𝐺→ R

𝐸(𝜉) :=
1

2
𝑔(𝜉, 𝜉) = ⟨𝜅𝑟(𝜉), 𝜅𝑟(𝜉)⟩, 𝜉 ∈ 𝑇𝐺.

Proposition 6.3. If there exists a vector field 𝐹 on the kinematic tangent bundle
𝑇𝐺 satisfying

𝑖𝐹𝜔
𝑔 = 𝑑𝐸, (6.4)

then it is unique and it is a right-invariant spray.

Proof. If 𝐹 (𝑥, 𝑣) = (𝑥, 𝑣, 𝑆1(𝑥, 𝑣), 𝑆2(𝑥, 𝑣)) is the local representative of the vector
field 𝐹 then, using Remark A.11 in the Appendix, the local expression of 𝑖𝐹𝜔

𝑔 =
= 𝑑𝐸 is

𝑑𝑥𝑔(𝑢)(𝑣, 𝑆1(𝑥, 𝑣)) + 𝑔(𝑥)(𝑤, 𝑆1(𝑥, 𝑣))− 𝑑𝑥𝑔(𝑆1(𝑥, 𝑣))(𝑣, 𝑢)− 𝑔(𝑥)(𝑆2(𝑥, 𝑣), 𝑢)

=
1

2
𝑑𝑥𝑔(𝑢)(𝑣, 𝑣) + 𝑔(𝑥)(𝑣, 𝑤),

for 𝑋 = (𝑥, 𝑣, 𝑢, 𝑤). Choosing 𝑢 = 0 implies 𝑆1(𝑥, 𝑣) = 𝑣. Hence 𝐹 is a symmetric
vector field and 𝑆2(𝑥, 𝑣) satisfies

𝑔(𝑥)(𝑆2(𝑥, 𝑣), 𝑢) =
1

2
𝑑𝑥𝑔(𝑢)(𝑣, 𝑣)− 𝑑𝑥𝑔(𝑣)(𝑣, 𝑢).

Finally 𝑆2(𝑥, 𝜆𝑣) = 𝜆2𝑆2(𝑥, 𝑣) and 𝑆2 is quadratic in 𝑣, thus 𝐹 is a spray.
The vector field (if exists) defined by (6.4) has to be unique because 𝑔 is

non-degenerate and one can easily see that 𝐹 is actually invariant under any
isometry of the metric (5.1) because 𝐸 and 𝜔𝑔 are.

There are two possible trivializations of 𝑇𝑇𝐺 ∼= 𝑇 (𝐺Ⓢg), the first one is

𝑡𝑟1𝑇𝑇𝐺(𝜉𝑔, 𝜉𝑢) = (𝑔, 𝑢, 𝜅𝑟(𝜉𝑔), 𝜉𝑢 + [𝑢, 𝜅𝑟(𝜉𝑔)]), 𝑔 ∈ 𝐺, 𝜉𝑔 ∈ 𝑇𝑔𝐺, 𝑢 ∈ g, 𝜉𝑢 ∈ 𝑇𝑢g.
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and is obtained decomposing 𝑇 (𝐺Ⓢg) as the semidirect product between 𝐺Ⓢg
and gⓈg, see [16]. The second one is obtained using 𝑡𝑟2𝑇𝑇𝐺 = 𝜎 ∘ (𝜌 × 𝑖𝑑) ∘ 𝑇𝜌,
where 𝜎(𝑔, 𝑢, 𝑣, 𝑤) = (𝑔, 𝑣, 𝑢, 𝑤) is the canonical involution. Thus

𝑡𝑟2𝑇𝑇𝐺(𝜉𝑔, 𝜉𝑢) = (𝑔, 𝑢, 𝜅𝑟(𝜉𝑔), 𝜉𝑢), 𝑔 ∈ 𝐺, 𝑢 ∈ g.

Of course, the symmetric vector fields on 𝑇𝐺 are invariant under these two triv-
ializations. We prove now that, when the Arnold operator exists, also a spray
related to the right-invariant metric (5.1) exists. The formula is similar to the one
obtained in [25] in a more restrictive setting. Propositions 6.4 and 6.5 together
with Theorem 5.2 and Proposition 5.4 form a unitary convenient approach of the
so called geometric method in hydrodynamics.

Proposition 6.4. If the inner product (5.2) is bounded and the Arnold operator
𝑎𝑑𝑇 : g× g → g exists and is convenient smooth then the mapping

𝐹 : 𝑇𝐺→ 𝑇𝑇𝐺,

defined, with respect to any of the two trivializations of 𝑇𝑇𝐺, by

𝐹 (𝜉) := (𝑔, 𝜅𝑟(𝜉), 𝜅𝑟(𝜉),−𝑎𝑑𝑇𝜅𝑟(𝜉)𝜅𝑟(𝜉)), 𝜉 ∈ 𝑇𝑔𝐺, (6.5)

is convenient smooth and satisfies the identity

𝑖𝐹𝜔
𝑔(𝑋) = 𝑑𝐸(𝑋), ∀ 𝑋 ∈ 𝑇𝑇𝐺.

Proof. Let E be a convenient vector space and 𝑓 :𝑀 → E a convenient smooth
mapping. Since, by [30], a kinematic vector field is also an operational vector field,
then for a convenient smooth kinematic vector field 𝜉 one obtains a convenient
smooth E-valued mapping by 𝜉(𝑓) := 𝑝𝑟2 ∘ 𝑇𝑓 ∘ 𝜉. Here the right term is the
differential of 𝑓 , but in order to avoid another 𝑑 in our arguments we prefer this
notation, compare to Section 28.15 in [30]. The following formula holds

𝜉 (⟨𝑓, 𝑔⟩) (𝑝) = ⟨𝜉(𝑓), 𝑔⟩(𝑝) + ⟨𝑓, 𝜉(𝑔)⟩(𝑝), 𝑝 ∈𝑀,

for a bounded inner product ⟨·, ·⟩ on E, and 𝑓, 𝑔 :𝑀 → E smooth.
We will do the computations using the second trivialization of 𝑇𝑇𝐺. The kine-

matic vector field 𝐹 defined above is symmetric, hence we get 𝜋*𝐺𝜅
𝑟(𝐹 (𝜉)) = 𝜅𝑟(𝜉).

The global formula holds for the exterior derivative of a kinematic differential form,
according to Section 33.12 in [30], thus

𝜔𝑔𝜉 (𝐹 (𝜉), 𝑋(𝜉)) = −𝐹 (Θ𝑔 ∘𝑋)(𝜉) +𝑋(Θ𝑔 ∘ 𝐹 )(𝜉) + (Θ𝑔 ∘ [𝐹,𝑋])(𝜉)

= −⟨𝐹 (𝜅𝑟)(𝜉), 𝜋*𝐺𝜅𝑟(𝑋(𝜉))⟩ − ⟨𝜅𝑟(𝜉), 𝐹 (𝜋*𝐺𝜅𝑟(𝑋))(𝜉)⟩
+ ⟨𝑋(𝜅𝑟)(𝜉), 𝜅𝑟(𝜉)⟩+ ⟨𝜅𝑟(𝜉), 𝑋(𝜋*𝐺𝜅

𝑟(𝐹 ))(𝜉)⟩
+ ⟨𝜅𝑟(𝜉), 𝜋*𝐺𝜅𝑟([𝐹,𝑋](𝜉))⟩

= −⟨𝐹 (𝜅𝑟)(𝜉), 𝜋*𝐺𝜅𝑟(𝑋(𝜉))⟩+ ⟨𝑋(𝜅𝑟)(𝜉), 𝜅𝑟(𝜉)⟩
− ⟨𝜅𝑟(𝜉), 𝑑(𝜋*𝐺𝜅𝑟)(𝐹 (𝜉), 𝑋(𝜉))⟩.
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But

𝑑(𝜋*𝐺𝜅
𝑟)(𝐹,𝑋) = 𝜋*𝐺 𝑑𝜅

𝑟(𝐹,𝑋) = 𝜋*𝐺

(︂
1

2
[𝜅𝑟, 𝜅𝑟]∧(𝐹,𝑋)

)︂

= [𝜅𝑟(𝑇𝜋𝐺(𝐹 )), 𝜅
𝑟(𝑇𝜋𝐺(𝑋))] = ad𝜅𝑟(𝑇𝜋𝐺(𝐹 )) 𝜅

𝑟(𝑇𝜋𝐺(𝑋)),

by applying the Maurer-Cartan equation. In the same time 𝑇𝜋𝐺(𝐹 (𝜉)) = 𝜉 and
𝐹 (𝜅𝑟)(𝜉) = 𝑝𝑟2 (𝑇𝜉𝜅

𝑟(𝐹 (𝜉))) = − ad𝑇𝜅𝑟(𝜉) 𝜅
𝑟(𝜉), since 𝜎∘(𝜌× 𝑖𝑑)∘(𝑇𝜋𝐺, 𝑇𝜅𝑟) gives

the chosen trivialization of 𝑇𝑇𝐺. Eventually

𝜔𝑔𝜉 (𝐹 (𝜉), 𝑋(𝜉)) =− ⟨− ad𝑇𝜅𝑟(𝜉) 𝜅
𝑟(𝜉), 𝜅𝑟(𝑇𝜋𝐺(𝑋(𝜉))⟩+ ⟨𝑋(𝜅𝑟)(𝜉), 𝜅𝑟(𝜉)⟩

− ⟨ad𝑇𝜅𝑟(𝜉) 𝜅𝑟(𝜉), 𝜅𝑟(𝑇𝜋𝐺(𝑋(𝜉))⟩
=⟨𝑋(𝜅𝑟)(𝜉), 𝜅𝑟(𝜉)⟩ = 𝑑𝜉𝐸(𝑋(𝜉)).

Written in the manner of Proposition 5.4 the above result becomes.

Proposition 6.5. Assume that for all 𝑢 ∈ g the adjoint ad𝑇𝑢 with respect to the
bounded inner product ⟨·, ·⟩𝑒 exists and that 𝑢 ↦→ ad𝑇𝑢 is bounded. Then the metric
spray is given by

𝐹 = ℛ𝑆 ,

where ℛ :𝐶∞(𝑇𝐺, 𝑇g) → Γ(𝑇𝑇𝐺) is the canonical isomorphism and the mapping
𝑆 : 𝑇𝐺→ 𝑇g is defined as

𝑆(𝜉) =
(︁
𝜅𝑟(𝜉),− ad𝑇𝜅𝑟(𝜉) 𝜅

𝑟(𝜉)
)︁
, 𝜉 ∈ 𝑇𝐺.

Proof. One has only to argue that

(𝜎 ∘ (𝜌× 𝑖𝑑) ∘ 𝑇𝜌) (ℛ𝑆(𝜉)) =
(︁
𝑔, 𝜅𝑟(𝜉), 𝜅𝑟(𝜉),− ad𝑇𝜅𝑟(𝜉) 𝜅

𝑟(𝜉)
)︁

which is straightforward, since by its very definition

ℛ𝑆(𝜉) = 𝑅𝜉(𝑆(𝜉)) =
(︁
𝜉, 𝜅𝑟(𝜉), ad𝑇𝜅𝑟(𝜉) 𝜅

𝑟(𝜉)
)︁

Proposition 6.6. If the inner product (5.2) is bounded and the operator 𝑎𝑑𝑇 exists
and is bounded, then a smooth curve 𝑔 :R → 𝐺 is a geodesic of the right-invariant
metric (5.1) if and only if 𝑔̇(𝑡) :R → 𝑇𝐺 is an integral curve of the right-invariant
spray 𝐹 defined by (6.4), and we call it the geodesic spray corresponding to this
metric.
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Proof. It is a straightforward consequence of Proposition 5.2 and of Proposition
6.4, since 𝜅𝑟(𝑔̇(𝑡)) = 𝑅𝑔(𝑡)−1 𝑔̇(𝑡).

Remark 6.7. Since we work on manifolds modelled on non normable locally convex
spaces the existence of an integral curve for a smooth vector field is not granted.
Most of the times we speculate the right invariance of the geodesic spray. It is a
challenge to find new ways for proving the existence of integral curves for a given
spray, motivated in practice by metrics which are not right-invariant. These kind
of metrics can appear in fields like image processing or shape analysis.

In order to prove the existence of an integral curve of the geodesic spray one
has to visualize it in an appropriate way. The Lie group 𝐺 = Diff∞+ (S1) is a good
ambient group for exemplifying the construction of Euler-Arnold’s equation or the
connection compatible with a given right-invariant weak Riemannian metric, but
not for aspects regarding the geodesic spray. The occurrence of some particular
phenomena (existence of an universal cover, for example) makes this group inap-
propriate if one wants to grasp the overall picture. That’s why we have to switch
to the more general case 𝐺 = Diff∞(𝑀), with 𝑀 a compact manifold.

6.3 The EPDiff equation

Let us consider a compact manifold 𝑀 and the Lie group 𝐺 = Diff∞(𝑀) of
diffeomorphisms isotopic to the identity. We define an inner product on its Lie
algebra Γ(𝑇𝑀), the set of all smooth sections of 𝑇𝑀 , via

⟨𝑢1, 𝑢2⟩ :=
∫︁

𝑀
𝑔 (𝐴𝑢1, 𝑢2) 𝑑𝜇 ,

where 𝑢1, 𝑢2 ∈ Γ(𝑇𝑀), 𝑔 is the Riemannian metric on 𝑇𝑀 , 𝑑𝜇, the Riemannian
density and the inertia operator

𝐴 : Γ(𝑇𝑀) → Γ(𝑇𝑀)

is a 𝐿2-symmetric, positive definite, continuous linear operator. In order to get an
inner product on each tangent space 𝑇𝜙Diff∞(𝑀), we translate the above inner
product using the right translations 𝑅𝜙

𝐺𝜙(𝑣𝜙, 𝑤𝜙) =

∫︁

𝑀
𝑔
(︀
𝐴(𝑅𝜙−1𝑣𝜙), 𝑅𝜙−1𝑤𝜙

)︀
𝑑𝜇 ,

where 𝑣𝜙, 𝑤𝜙 ∈ 𝑇𝜙Diff∞(𝑀), and 𝐴𝜙 := 𝑅𝜙 ∘𝐴 ∘𝑅𝜙−1 .

Let 𝑢(𝑡) := 𝑅𝜙−1(𝑡)𝜙̇(𝑡) be the Eulerian velocity of the geodesic curve 𝜙(𝑡).
Then 𝑢(𝑡) is a solution of the Euler-Poincaré equation (EPDiff) on Diff∞(𝑀)

𝑚𝑡 +∇𝑢𝑚+ (∇𝑢)𝑡𝑚+ (div𝑢)𝑚 = 0, 𝑚 := 𝐴𝑢 , (6.6)
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where (∇𝑢)𝑡 is the Riemannian adjoint (with respect to the metric 𝑔) of ∇𝑢.

When 𝐴 is invertible, the EPDiff equation (6.6) can be recast as

𝑢𝑡 = −𝐴−1
{︀
∇𝑢𝐴𝑢+ (∇𝑢)𝑡𝐴𝑢+ (div𝑢)𝐴𝑢

}︀
, (6.7)

which is the Euler–Arnold equation for Diff∞(𝑀).
In the sequel we would like to introduce the spray related to the metric 𝐺𝜙,

but one has to find the best way to visualize it. We need some terminology from
classical mechanics, in order to give an interpretation to some abstract compu-
tations. The configuration space of the fluid motion (the space of all physically
valid states) is Diff∞(𝑀) and every 𝜙 ∈ Diff∞(𝑀) takes a particle 𝑝 ∈ 𝑀 to a
particle 𝜙(𝑝). Thus every 𝜙 is a symmetry of the mechanical system. A motion
of the fluid is a curve 𝜙(𝑡) ∈ Diff∞(𝑀). Obviously during a motion every particle
𝑝 describes a path 𝑡→ 𝜙(𝑡, 𝑝) and we call 𝜙(𝑡, 𝑝) the Eulerian points of this path.
The Lagrangian velocity field 𝜙̇(𝑡, 𝑝) is the time derivative of this trajectory. The
Eulerian velocity is defined as 𝑢(𝑡, 𝑞) = 𝜙̇(𝑡, 𝜙−1(𝑡)(𝑞)) and is the velocity at time
𝑡 of the particle currently in position 𝑞.

The covariant derivative along the path 𝜙(𝑡, 𝑝) is called the material derivative
and connects the Eulerian derivative 𝑢𝑡 with the Lagrangian and Eulerian velocity
fields (︀

∇
t
𝜙̇(𝑡, 𝑝)

)︀
(𝑡0) = (𝑢𝑡 +∇𝑢𝑢)(𝜙(𝑡0, 𝑝)) . (6.8)

Locally on 𝑇𝑇𝑀 the second order tangent vector 𝜙(𝑡, 𝑝) is expressed as

(︁
𝜙(𝑡, 𝑝), 𝜙̇(𝑡, 𝑝), 𝜙̇(𝑡, 𝑝),−Γ𝜙(𝑡,𝑝)(𝜙̇(𝑡, 𝑝), 𝜙̇(𝑡, 𝑝)) +∇

t
𝜙̇(𝑡, 𝑝)

)︁
(6.9)

because of∇
t
𝜙̇(𝑡, 𝑝) = 𝜙(𝑡, 𝑝)+Γ𝜙(𝜙̇(𝑡, 𝑝), 𝜙̇(𝑡, 𝑝)). Here Γ is the Christoffel symbol

corresponding to the metric given on 𝑀.
We start now with the connection ∇ of 𝑀 and we build a connection ̃︀∇𝑞 on

𝒟𝑞(𝑀), in the way done in Section 9 of [12]. Usually the restriction 𝑞 > 3
2 is taken

into consideration. The projections 𝜋𝑀 , 𝜋𝑇𝑀 and connector 𝐾 ascend to smooth
mappings ̃︀𝜋𝑞𝑀 , ̃︀𝜋

𝑞
𝑇𝑀 and ̃︀𝐾𝑞, respectively. Here by ̃︀𝐾𝑞 we mean ̃︀𝐾𝑞(𝑋) := 𝐾 ∘𝑋,

when 𝑋 ∈ 𝑇𝑇𝒟𝑞(𝑀), with similar meaning for ̃︀𝜋𝑞𝑀 , ̃︀𝜋
𝑞
𝑇𝑀 .

By their very definition:

𝑇𝒟𝑞(𝑀) = {𝜉 ∈ 𝐻𝑞(𝑀,𝑇𝑀) : ̃︀𝜋𝑞𝑀 ∘ 𝜉 ∈ 𝒟𝑞(𝑀)},

𝑇𝑇𝒟𝑞(𝑀) = {𝑋 ∈ 𝐻𝑞(𝑀,𝑇𝑇𝑀) : ̃︀𝜋𝑞𝑇𝑀 ∘𝑋 ∈ 𝑇𝒟𝑞(𝑀)},
thus first and second order vector fields on 𝒟𝑞(𝑀) can be seen as mappings on𝑀 .
Since the connecting morphisms of the inverse systems {𝒟𝑞(𝑀)}𝑞, {𝑇𝒟𝑞(𝑀)}𝑞
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and {𝑇𝑇𝒟𝑞(𝑀)}𝑞 are inclusion mappings it is straightforward to argue the exis-

tence of the inverse limits ̃︀𝐾 = lim
←𝑞

̃︀𝐾𝑞, ̃︀𝜋𝑀 = lim
←𝑞

̃︀𝜋𝑞𝑀 , and ̃︀𝜋𝑇𝑀 = lim
←𝑞

̃︀𝜋𝑞𝑇𝑀 .

We consider now 𝜙(𝑡) ∈ Diff∞(𝑀) a motion of the fluid. The mapping ̃︀𝐾 will
induce an ILH connection ̃︀∇ on Diff∞(𝑀), in the sense of [36, 37]. Using ̃︀∇ we
get a covariant derivative along the motion 𝜙(𝑡) that satisfies

(︁
̃︀∇

t
𝜙̇
)︁
(𝑡0)(𝑝) =

(︀
∇

t
𝜙̇(𝑡, 𝑝)

)︀
(𝑡0).

Because of (6.8) one can recast the Euler-Arnold equation (6.7) in the form

̃︀∇
t
𝜙̇ = 𝑆𝜙(𝜙̇) = 𝑅𝜙 ∘ 𝑆 ∘𝑅𝜙−1(𝜙̇), (6.10)

where

𝑆(𝑢) = 𝐴−1
{︀
[𝐴,∇𝑢]𝑢− (∇𝑢)𝑡𝐴𝑢− (div𝑢)𝐴𝑢

}︀
.

Further, we will relate the above Lagrangian description (6.10) of the EPDiff
equation to the spray equation. First of all, we need an image of the spray
equation. Since the local charts on Diff∞(𝑀) use the Riemannian exponential of
𝑀 , see [37], it will not be helpful to switch from the Eulerian description (6.7) of
the spray equation to a local description on 𝑇𝑇Diff∞(𝑀).

The double tangent bundle 𝑇𝑇𝒟𝑞(𝑀) has also a fiber bundle structure over
𝒟𝑞(𝑀) which is identified with 𝑇𝒟𝑞(𝑀)⊕𝑇𝒟𝑞(𝑀)⊕𝑇𝒟𝑞(𝑀), via Dombrowski’s
isomorphism [26]. In order to get an appropriate image of the spray equation, let
us consider the fiber subbundle of 2-velocities, see also [33]

𝑇 2𝒟𝑞(𝑀) =
{︀
𝜉 ∈ 𝑇𝑇𝒟𝑞(𝑀) : ̃︀𝜋𝑞𝑇𝑀 (𝜉) = 𝑇̃︀𝜋𝑞𝑀 (𝜉)

}︀
.

The advantage of 𝑇 2𝒟𝑞(𝑀) consists in its vector bundle structure over 𝒟𝑞(𝑀),
apart from its canonical identification with 𝑇𝒟𝑞(𝑀)⊕𝑇𝒟𝑞(𝑀). Moreover, for ̃︀∇
exists, one can construct the inverse limit of vector bundles

𝑇 2Diff∞(𝑀) = lim
←𝑞

𝑇 2𝒟𝑞(𝑀)

as in [11], for example. The identification of 𝑇 2Diff∞(𝑀) with the Whitney sum
𝑇Diff∞(𝑀)⊕ 𝑇Diff∞(𝑀) is via

(𝜙, 𝜙̇, 𝜙) → (𝜙̇, ̃︀∇𝜙̇𝜙̇).

The equation (6.10) corresponds, under the above identification, to the spray
equation. Thus, it makes sense to call the mapping

𝑣𝜙 ↦→ (𝑣𝜙, 𝑆𝜙(𝑣𝜙)), 𝑇Diff∞(𝑀) ↦→ 𝑇Diff∞(𝑀)⊕ 𝑇Diff∞(𝑀)
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the geodesic spray related to the right-invariant metric (6.3). The idea is to prove
the existence of geodesics 𝜙𝑞 on Banach approximations 𝒟𝑞(𝑀) and then to ob-
tain geodesics on Diff∞(𝑀) as an inverse limit 𝜙 = lim

←𝑞
𝜙𝑞. The big stake is

the well-posedness, in the smooth category, of the EPDiff equation on a compact
manifold, with an inertia operator 𝐴 of a pseudo-differential type, an extension of
the results presented in [7, 13].

In the end, in order to help the reader to follow some of the arguments pre-
sented in this paper, we will list in an Appendix some basic facts from convenient
calculus.
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A A glimpse into the convenient calculus

We add some details about the convenient calculus of A. Frölicher and A.
Kriegl. All the missing proofs of the statements presented below can be found in
[30].

In locally convex spaces there is a weaker notion than that of Cauchy se-
quences, namely the Mackey-Cauchy sequences.

Definition A.1. A sequence (𝑥𝑛)𝑛 in E is called Mackey-Cauchy if there exists a
bounded and absolutely convex set 𝐵 and for every 𝜀 > 0 an integer 𝑛𝜀 ∈ N such
that

𝑥𝑛 − 𝑥𝑚 ∈ 𝜀𝐵, ∀𝑛 > 𝑚 > 𝑛𝜀.

This is equivalent with 𝑡𝑛𝑚(𝑥𝑛 − 𝑥𝑚) → 0 for some 𝑡𝑛𝑚 → ∞ in R.

Definition A.2. A convenient vector space is a locally convex topological vector
space which is Mackey complete (every Mackey-Cauchy sequence converges in E).

Any sequentially complete topological vector space is Mackey-complete.

Definition A.3. (Bornology) Let 𝑋 be a set, a bornology on 𝑋 is a collection ℬ of
subsets such that:
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(i) ℬ covers 𝑋, i.e. 𝑋 =
⋃︀
𝐵∈ℬ

𝐵.

(ii) ℬ is stable under inclusions, if 𝐵 ∈ ℬ and 𝐵0 ⊆ 𝐵, then 𝐵0 ∈ ℬ.

(ii) ℬ is stable under finite unions, if 𝐵1, . . . , 𝐵𝑛 ∈ ℬ, then
𝑛⋃︀
𝑖=1

𝐵𝑖 ∈ ℬ.

Given a locally convex space (E, 𝜏) we obtain a natural bornology on E (von
Neumann bornology) consisting of all bounded sets. We call a set 𝑈 ⊆ E borniv-
orous if it absorbs every bounded set from its von Neumann bornology.

Definition A.4. A Hausdorff locally convex space E is called bornological if each
convex, balanced and bornivorous set in E is a neighborhood of 0.

Definition A.5. Let (E, 𝜏) be a locally convex topological vector space, then the
collection of all absolutely convex bornivorous subsets forms a locally convex topol-
ogy 𝜏𝑏𝑜𝑟𝑛 called the bornologification of the initial topology. The space E𝑏𝑜𝑟𝑛 :=
:= (E, 𝜏𝑏𝑜𝑟𝑛) is called the attached bornological space and it is the finest locally
convex structure having the same bounded sets as (E, 𝜏).

Remark A.6. A subset 𝑈 in E is 𝑐∞-open iff for every 𝑥 ∈ 𝑈 there is a borniv-
orous set 𝐵 such that 𝑥 + 𝐵 ⊂ 𝑈 . Instead, a subset 𝑈 is open relative to the
bornologification of the initial topology iff for every 𝑥 ∈ 𝑈 there exists a convex,
balanced and bornivorous set 𝐵 such that 𝑥+𝐵 ⊂ 𝑈.

A convenient vector space E interacts naturally with the 𝑐∞-topology: a con-
venient smooth map between convenient vector spaces will be continuous relative
to this topology and usually is not continuous relative to the initial topology on E.
But, in general, the 𝑐∞-topology is not a liniar topology ! For linear mappings the
above phenomenon is not a problem: a linear mapping between convenient vector
spaces is bounded iff it is convenient smooth. Besides the cartesian closedness,
another cornerstone of the convenient calculus is the fact that the two fundamen-
tal spaces C∞(E,F) and L(E,F) (linear and bounded) will remain in this category,
when E,F are convenient vectors spaces. The smoothness of a curve 𝑐 : R → E
does not depend on the initial topology on E, it depends only on its bornology.
Usually we substitute the initial locally convex topology with its bornologification
and work with bornological locally convex spaces. In this way we can exploit the
characteristic property: on bornological spaces a linear mapping is continuous if
and only if it is bounded.

We equip C∞(R,F) with the bornologification of the topology of uniform con-
vergence on compact sets, in all derivatives separately. The space C∞(E,F) will be
equiped with the bornologification of the initial topology relative to all pullback
mappings 𝑐*:C∞(E,F) → C∞(R,F), 𝑐*(𝑓) := 𝑓∘𝑐, for all 𝑐 ∈ C∞(R,E). If a locally
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convex space E is Mackey-complete (convenient) then its attached bornological
space¸ E𝑏𝑜𝑟𝑛, having the same bounded sets, will be Mackey-complete.

Proposition A.7. For locally convex spaces E,F we have:

(i) If F is a convenient vector space then C∞(E,F) is a convenient vector space,
for any E. The space L(E,F) is a closed linear subspace and it is a conve-
nient vector space endowed with the initial topology relative to the inclusion
mapping.

(ii) If E is a convenient vector space then a curve 𝑐 : R → L(E,F) is smooth if
and only if 𝑡 ↦→ 𝑐(𝑡)(𝑥) is a smooth curve in F, for all 𝑥 ∈ E.

Proposition A.8. Let E,F,G be convenient vector spaces, 𝑈 ⊂ E, 𝑉 ⊂ F 𝑐∞-open
subsets:

(i) If 𝑓 : 𝑈 → F is convenient smooth, then the mapping 𝑑𝑓 : 𝑈 → L(E,F) is
convenient smooth and linear bounded in the second component, where:

𝑑𝑥𝑓(ℎ) :=
𝑑

𝑑𝑡

⃒⃒
⃒⃒
𝑡=0

𝑓(𝑥+ 𝑡ℎ).

(ii) The differentiation operator 𝑑 : C∞(𝑈,F) → C∞(𝑈,L(E,F)) exists, is linear
and bounded (smooth) and the chain rule holds:

𝑑𝑥(𝑓 ∘ 𝑔)(𝑣) = 𝑑𝑔(𝑥)𝑓(𝑑𝑥𝑔(𝑣)).

(iii) Convenient smooth mappings are continuous with respect to the 𝑐∞-topology.

(iv) Multilinear mappings are convenient smooth if and only if they are bounded
and for the derivative we have the product rule:

𝑑(𝑥1,...𝑥𝑛)𝑓(𝑣1, . . . , 𝑣𝑛) =

𝑛∑︁

𝑖=1

𝑓(𝑥1, . . . , 𝑥𝑖−1, 𝑣𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛).

(v) (Smooth uniform boundedness) A linear mapping 𝑓 :E → C∞(𝑉,G) is conve-
nient smooth (bounded) if and only if 𝑒𝑣𝑣∘𝑓 :E → G is convenient smooth, for
each 𝑣 ∈ 𝑉 ⊂ F, where ev𝑣 : C

∞(𝑉,G) → G denotes the evaluation mapping.

(vi) (Smooth detection principle) A mapping 𝑓 : 𝑈 ⊂ E → L(F,G) is convenient
smooth if and only if ev𝑦 ∘ 𝑓 : 𝑈 → G is convenient smooth for all 𝑦 ∈ F.

(vii) A mapping 𝑓 :𝑈 → L(F,G) is convenient smooth if and only if the mapping
𝑓 : 𝑈 → C∞(F,G) is convenient smooth, i.e. L(F,G) →˓ C∞(F,G) is initial.
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Proposition A.9. (Cartesian closedness) Let 𝑈𝑖 ⊆ E𝑖, 𝑖 = 1, 2, be two 𝑐∞-open
subsets in locally convex spaces which need not to be convenient. Then a mapping
𝑓 : 𝑈1 × 𝑈2 → F is convenient smooth if and only if the cannonically associated
mapping 𝑓∨ : 𝑈1 → C∞(𝑈2,F) exists and is convenient smooth:

C∞(𝑈1 × 𝑈2,F) = C∞(𝑈1,C
∞(𝑈2,F)).

As a consequence of the cartesian closedness property let us note that the
evaluation mapping

ev : C∞(𝑈,F)× 𝑈 → F, ev(𝑓, 𝑥) := 𝑓(𝑥),

and the composition mapping

∘ : C∞(F,G)× C∞(𝑈,F) → C∞(𝑈,G)

are convenient smooth.

Proposition A.10. Let 𝑓 : E → F and 𝐴 : E → L(F,G) be convenient smooth map-
pings, then

𝑑𝑥(𝐴(·)𝑓(·))𝑣 = 𝑑𝑥𝐴(𝑣)(𝑓(𝑥)) +𝐴(𝑥)(𝑑𝑥𝑓(𝑣)),

for all 𝑥, 𝑣 ∈ E.

Proof. The evaluation mapping ev : C∞(F,G)× F → G is convenient smooth and
the curve 𝑐 :R → L(F,G) is smooth iff 𝑐 :R → C∞(F,G) is smooth by Proposition
A.8 (vii). Thus ev : L(F,G)× F → G is convenient smooth and bilinear. Hence

𝑑𝑥(𝐴(·)𝑓(·))𝑣 = 𝑑𝑥(ev(𝐴(·), 𝑓(·)))(𝑣) = 𝑑(𝐴(𝑥),𝑓(𝑥))ev(𝑑𝑥𝐴(𝑣), 𝑑𝑥𝑓(𝑣))

= ev𝑑𝑥𝑓(𝑣)𝐴(𝑥) + ev𝑓(𝑥)𝑑𝑥𝐴(𝑣) = 𝑑𝑥𝐴(𝑣)(𝑓(𝑥)) +𝐴(𝑥)(𝑑𝑥𝑓(𝑣)),

using Proposition A.8 (iii).

Remark A.11. The identity is also true for 𝐿𝑘(E,F) instead of 𝐿(E,F).

B Vector bundles over a convenient manifold

For 𝑥 ∈ E the kinematic tangent vector with foot point 𝑥 is the pair (𝑥,𝑋),

𝑋 ∈ E. The space 𝑇𝑥E = E of kinematic tangent vectors with foot point 𝑥 consists
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of all derivatives 𝑐
′
(0) of the smooth curves 𝑐:R → E with 𝑐(0) = 𝑥. For a convenient

smooth mapping 𝑓 : E → F the kinematic tangent mapping at 𝑥 is defined by

𝑇𝑥𝑓 : 𝑇𝑥E → 𝑇𝑓(𝑥)F, 𝑇𝑥𝑓(𝑥,𝑋) := (𝑓(𝑥), 𝑑𝑥𝑓(𝑋)).

If 𝑀 is a convenient smooth manifold on the set
⋃︁

𝛼∈𝐴
𝒰𝛼 × E𝛼 × {𝛼},

we consider the equivalence relation

(𝑝, 𝑣, 𝛼) ∼ (𝑞, 𝑤, 𝛽) ⇐⇒ 𝑝 = 𝑞, and 𝑑𝜙
𝛽
(𝑝)(𝜙𝛼𝛽)𝑤 = 𝑣

and denote the quotient set by 𝑇𝑀, the kinematic tangent bundle of𝑀.We define
𝜋𝑀 : 𝑇𝑀 → 𝑀 by 𝜋𝑀 ([𝑝, 𝑣, 𝛼]) = 𝑝 and 𝑇𝒰𝛼 := 𝜋−1𝑀 (𝒰𝛼) ⊂ 𝑇𝑀. The mapping
𝑇𝑢𝛼 : 𝑇𝒰𝛼 → 𝑢𝛼(𝒰𝛼)× E𝛼 defined by

𝑇𝑢𝛼([𝑝, 𝑤, 𝛽]) = (𝑢𝛼(𝑝), 𝑑𝑢
𝛽
(𝑝)(𝑢𝛼𝛽)𝑤)

is giving a chart for an atlas (𝑇𝒰𝛼, 𝑇𝑢𝛼)𝛼∈𝐴 of 𝑇𝑀.

The set 𝑇𝑝𝑀 := 𝜋−1𝑀 (𝑝) is called the fiber over 𝑝 of the tangent bundle. It
carries a canonical convenient vector space structure induced by

𝑇𝑝𝑢𝛼 := 𝑇𝑢𝛼|𝑇𝑝𝑀 : 𝑇𝑝𝑀 → {𝑝} × E𝛼 ∼= E𝛼,

for 𝑝 ∈ 𝒰𝛼. For connected convenient manifolds, e.g. Diff∞+ (S1), the fiber of the
tangent bundle coincides with the modelling space. The same observation holds,
in particular, for the Lie algebra of a connected Lie group.

The kinematic tangent bundle can be also defined as the quotient of the space
𝐶∞(R,𝑀) by the equivalence relation: 𝑐1 ∼ 𝑐2 ⇐⇒ 𝑐1(0) = 𝑐2(0) and in each
chart (𝒰𝛼, 𝑢𝛼) with 𝑐1(0) = 𝑐2(0) ∈ 𝒰𝛼 we have (𝑢𝛼 ∘ 𝑐1)

′
(0) = (𝑢𝛼 ∘ 𝑐2)

′
(0). In

this way any curve 𝑐 ∈ C∞(R,𝑀) corresponds to the kinematic tangent vector
[𝑐(0), (𝑢𝛼 ∘ 𝑐)′(0), 𝛼]. For a convenient smooth mapping 𝑓 :𝑀 → 𝑁 the tangent
mapping 𝑇𝑓 will send the equivalence class [𝑐] in the equivalence class [𝑓 ∘ 𝑐]
and its local representative with respect to some charts is the kinematic tangent
mapping of the local representative of 𝑓.

Remark B.1. On convenient vector spaces another kind of tangent vectors are
available: the operational tangent vectors, see Section 28.1 in [30]. The two no-
tions will not coincide in general and will give two different tangent bundles of
a convenient manifold. This difference causes some headaches and leads to the
existence of 12 different notions of differential forms in the convenient setting.
The ”right” notion for a convenient manifold is the kinematic tangent bundle, the
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other one does not even preserve products or there exist no vertical lifts. Anyway,
for manifolds modelled on nuclear Fréchet spaces the two notions coincide and
one recovers the result from the finite dimensional case: any tangent vector is a
derivation.

In the convenient setting it’s worth reducing everything to curves, thus the
convenient vector space 𝐶∞(R, E) will play a central role. First of all, the space
of E-valued functions on a manifold 𝑀 will be endowed with the initial topology
with respect to the mappings

𝐶∞(𝑀,E)
(𝑖𝒰𝛼 )*−−−−→ 𝐶∞(𝒰𝛼,E)

(𝑢−1
𝛼 )*−−−−→ 𝐶∞(𝑈𝛼,E)

𝑐*−→ 𝐶∞(R,E)

The space of smooth sections of 𝑇𝑀 is endowed with the topology given by
the closed embedding

Γ(𝑇𝑀) →
∏︁

𝛼

𝐶∞(𝒰𝛼,E)

𝑠→ (𝑝𝑟2 ∘ 𝜓𝛼 ∘ 𝑠|𝒰𝛼)𝛼
which is actually the initial topology with respect to the family of mappings

Γ(𝑇𝑀)
(𝑖𝒰𝛼 )*−−−−→ Γ(𝑇𝑀 |𝒰𝛼)

(𝑝𝑟2∘𝜓𝛼)*−−−−−−→ 𝐶∞(𝒰𝛼,E)
(𝑢−1

𝛼 )*−−−−→ 𝐶∞(𝑈𝛼,E)
𝑐*−→ 𝐶∞(R,E)

where 𝑖𝒰𝛼 is the restriction to 𝒰𝛼 and 𝜓𝛼 is a local trivialization of 𝑇𝑀.

Let now 𝜋 : 𝐸 → 𝑀 be a convenient smooth mapping between convenient
smooth manifolds. By a vector bundle chart on (𝐸, 𝜋,𝑀,F) we mean a pair (𝒰 , 𝜓),
where 𝒰 is an open subset in 𝑀, and where 𝜓 is a fiber respecting diffeomorphism
𝜓 : 𝐸𝒰 := 𝜋−1(𝒰) → 𝒰 × E such that

𝑝𝑟1 ∘ 𝜓 = 𝜋,

where E is a fixed convenient vector space, called the standard fiber.

Two vector bundle charts (𝒰𝛼, 𝜓𝛼), (𝒰𝛽 , 𝜓𝛽) are called compatible, if the map-
ping 𝜓1 ∘ 𝜓−12 is a fiber linear isomorphism

𝜓𝛼 ∘ 𝜓−1𝛽 (𝑝, 𝑣) = (𝑝, 𝜓𝛼𝛽(𝑝)𝑣), 𝑣 ∈ E,

for some mapping 𝜓𝛼𝛽 : 𝒰𝛼𝛽 := 𝒰𝛼 ∩ 𝒰𝛽 → 𝐺𝐿(E). The mapping is then unique
and convenient smooth into 𝐿(E,E), and is called the transition function between
the two vector bundle charts.
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Remark B.2. Compare this definition with the definition of a Banach vector bun-
dle, presented in [26]. An extension of a result known for Banach spaces ([26]
Proposition III.1.1, [37] Theorem 5.3) holds if the mapping 𝑓 : 𝑈 × E → F is a
convenient smooth and linear in the second argument, then the mapping of 𝑈 into
𝐿(E,F), 𝑥 ↦→ 𝑓(𝑥, ·), is a convenient smooth mapping. The converse also holds,
by Proposition A.9, since 𝐿(E,F) ⊂ C∞(E,F) is initial. In [26] the author has
omitted the veracity of the result for infinite dimensional Banach spaces and thus
the conditions VB1 and VB2, in Chapter III, are enough to define a Banach vec-
tor bundle. With VB1 and VB2 in Definition III.1 of [26] we obtain the above
formulation for Banach manifolds.

If (𝐸, 𝜋,𝑀,E) is a convenient smooth vector bundle with a vector bundle atlas
(𝜙𝛼, 𝜋

−1(𝒰𝛼))𝛼∈𝐴, then we define the dual vector bundle

𝐸
′
:=

⋃︁

𝑝∈𝑀
𝐸

′
𝑝,

with the standard fiber the bornological dual E′
and the transition functions

𝜓𝛼𝛽(𝑝) := (𝜙𝛽𝛼(𝑝))
𝑡,

naturally obtained using the transpose mapping relative to the bornological du-
als. For two convenient smooth vector bundles (𝐸, 𝜋1,𝑀,E) and (𝐹, 𝜋2,𝑀,F)
with (𝜋−11 (𝒰𝛼), 𝜙𝛼)𝛼∈𝐴1 , and (𝜋−12 (𝒱𝛼), 𝜑𝛼)𝛼∈𝐴2 the corresponding vector bundle
atlases, one can construct another vector bundle over 𝑀, the Hom-bundle

𝐿(𝐸,𝐹 ) :=
⋃︁

𝑝∈𝑀
𝐿(𝐸𝑝, 𝐹𝑝),

having the standard fiber the convenient vector space 𝐿(E,F). The transition
functions are

𝜓𝛼𝛽(𝑝)(𝑇 ) := 𝜑𝛼𝛽(𝑝) ∘ 𝑇 ∘ 𝜙−1𝛼𝛽(𝑝), 𝑇 ∈ 𝐿(E,F).

With this terminology we have 𝐸
′
:= 𝐿(𝐸,𝑀×R). We are ready to define now

the kinematic cotangent bundle 𝑇
′
𝑀, having the transition functions

𝜓𝛼𝛽(𝑝) := 𝑇𝜙𝛼(𝑝)(𝜙𝛽 ∘ 𝜙−1𝛼 )𝑡 ∈ 𝐺𝐿(E′
) ⊂ 𝐿(E′

,E′
).

If we use the Gâteaux smoothness to define a manifold modelled by locally
convex spaces then we can not define differential forms as Gâteaux smooth sections
of a vector bundle, see [35] for a discussion. This is the case because for non
normable locally convex spaces the evaluation mapping:

ev : E× E′ → R,
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is not continuous for any linear topology on E′
, by a theorem of B. Maissen [28].

In the convenient setting a kinematic differential 𝑘-form is defined as a conve-
nient smooth section of the vector bundle 𝐿𝑘𝑎𝑙𝑡(𝑇𝑀,𝑀 ×R):

Ω𝑘(𝑀) := Γ(𝐿𝑘𝑎𝑙𝑡(𝑇𝑀,𝑀 ×R)),

with the modelling space 𝐿𝑘𝑎𝑙𝑡(E,R), the space of bounded 𝑘-linear alternating
mappings, where E is the modelling space of 𝑀. This construction is the only one
which is invariant under Lie derivatives, pullbacks or exterior derivatives. There
are a lot of other candidates but all have major drawbacks, see Section 33 of [30]
for a discussion.

Remark B.3. The reason why this construction is possible is the following: the
evaluation mapping ev :E×E′ → R is always convenient smooth, thus continuous
relative to the 𝑐∞-topology on 𝑐∞ (E × E′

). But 𝑐∞ (E × E′
) is not a topological

vector spaces in general (if E is not normable), and thus ev is not continuous
relative to some linear topology on the space E′

, to avoid any contradiction with
Maissen’s theorem.

The space Ω𝑘(𝑀) carries the structure of a convenient vector space, induced
by the closed embedding

Ω𝑘(𝑀) →
∏︁

𝛼

𝐶∞(𝒰𝛼, 𝐿𝑘𝑎𝑙𝑡(E,R)),

𝜔 ↦→ 𝑝𝑟2 ∘ 𝜓𝛼 ∘ (𝜔|𝒰𝛼),

having the initial topology induced by the mappings

Γ(𝐿𝑘𝑎𝑙𝑡(𝑇𝑀,𝑀×R))
(𝑝𝑟2∘𝜓𝛼)*∘(𝑖𝒰𝛼 )*−−−−−−−−−−−→ 𝐶∞(𝒰𝛼, 𝐿𝑘𝑎𝑙𝑡(E,R))

𝑐*∘(𝑢−1
𝛼 )*−−−−−−→ 𝐶∞(R, 𝐿𝑘𝑎𝑙𝑡(E,R))

where 𝑢𝛼 : 𝒰𝛼 → E is a smooth atlas of 𝑀 , 𝜓𝛼 the induced vector bundle chart,
a similar construction to the one for Γ(𝑇𝑀). In the same manner the space
Ω𝑘(𝑀,𝑉 ), of differential forms with values in a convenient vector space 𝑉 , be-
comes a convenient vector space.

Remark B.4. The following mappings are convenient smooth:

𝑑 : Ω𝑘(𝑀) → Ω𝑘+1(𝑀) (exterior differentiation operator)

𝑖 : Γ(𝑇𝑀)× Ω𝑘(𝑀) → Ω𝑘−1(𝑀) (insertion operator)

𝑓* : Ω𝑘(𝑀) → Ω𝑘(𝑁) (pullback operator)
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PIECEWISE POLYNOMIAL LEAST

SQUARES METHOD FOR NONLINEAR

HEAT TRANSFER PROBLEMS

Mǎdǎlina Sofia PAŞCA

Abstract

In this paper is used a recently introduced approximation method, namely
the Piecewise Polynomial Least Squares Method (PWPLSM), in order to
compute analytical approximate polynomial solutions for several nonlinear
heat transfer problems.

Analyzing the errors obtained by applying the Piecewise Polynomial Least
Squares Method with those found in the literature, the accuracy of the
method is illustrated. 1

1 Introduction

The heat transfer phenomena are mainly nonlinear and thus they are best
modeled by using nonlinear equations. These equations most of the time can not
be solved analytically using traditional methods and, when the numerical solutions
are not sufficient, an approximate analytical solution must be computed. In recent
years many methods have been developed to compute approximate solutions for
nonlinear heat transfer problems. Is mentioned only some of the methods that
led to obtaining approximate solutions for this type of equations:

• the Homotopy perturbation method (HPM)([2],[1],[3]),

1Mathematical Subject Classification(2010):34K28, 45L05
Keywords and phrases:Nonlinear heat transfer problems, Piecewise Polynomial Least Squares

Method (PWPLSM), analyrical approximate polynomial solutions,
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• the Optimal Homotopy Asymptotic Method (OHAM)([4]),
• the Homotopy analysis method (HAM)([5],[6]),
• the Squared remainder minimization method (SRMM)([7]),
• the Generalized approximation method (GAM)([8]),
• the Least Squares Differential Quadrature Method (LSDQM) ([9]).

In this paper is computed approximate analytical solutions for some well-
known nonlinear heat transfer problems ([16],[17],[18]) modeled by using nonlin-
ear ordinary differential equations.

In the second section is described the Piecewise Polynomial Least Squares
Method (PWPLSM), which is used for determine analytical approximate polyno-
mial solutions for the above-mentioned type of problems. In the last section with
numerical application, is compared approximate solutions obtained by using PW-
PLSM with previous approximate solutions presented in ([4],[8],[7],[10],[9] ). The
computations show that by using Piecewise Polynomial Least Squares Method we
obtain approximations with an error smaller than the errors obtained by using
other methods thus the usefulness of the method being demonstrated.

2 Piecewise Polynomial Least Squares Method (PWPLSM)

We consider a problem consisting of a nonlinear differential equation of order n:

y(n)(x) = F (y(n−1)(x), y(n−2)(x), · · · , y(1)(x), y(x), x) (1)

where F is a continuous function, y is an absolutely continuous function, x ∈ [a, b]
and the boundary conditions:

d1iy
(n−1)(a) + d2iy

(n−1)(b) + d3iy
(n−2)(a) + d4iy

(n−2)(b) + · · ·+
+d(2n−3)iy

(1)(a) + d(2n−2)iy
(1)(b) + d(2n−1)iy(a) + d2niy(b) = µ1i, i = 1, n

(2)

are satisfied.

We will consider a division ∆M of the interval I = [a, b] consisting of M + 1

equidistant points: a = a0 < a1 < a2 < · · · < aM−1 < aM = b.

To the equation (1) we attach the following operator:

D(y(x)) = y(n)(x)− F (y(n−1)(x), y(n−2)(x), · · · , y(1)(x), y(x), x). (3)

We denote by ỹi(x) an approximate solution of the equation (1) on each
subinterval I = [ai, ai+1].
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By replacing in D the exact solution y(x) with this approximate solution we
obtain the reminder on each subinterval:

Ri(x, ỹi(x)) = D(ỹi(x)), x ∈ [ai, ai+1]. (4)

Definition 1. We call an ϵ-approximate piecewise polynomial (pwpl) solu-
tion of the problem (1 - 2) related to the division ∆M an approximate polynomial
solution ỹ(x) = ỹi(x), x ∈ Ii which satisfies on each subinterval the following
relations:

Ri(x, ỹi(x)) < ε, ε > 0, i = 0,M, (5)

d1iỹ
(n−1)(a) + d2iỹ

(n−1)(b) + d3iỹ
(n−2)(a) + d4iỹ

(n−2)(b) + · · ·+
d(2n−3)iỹ(1)(a) + d(2n−2)iỹ(1)(b) + d(2n−1)iỹ(a) + d2niỹ(b) = µ1i, i = 1, n

(6)

Definition 2. We call a week ϵ-approximate piecewise polynomial (pwpl)
solution of the problem (1 - 2) an approximate polynomial solution ỹ(x) =

ỹi(x), x ∈ Ii which satisfies on each subinterval the relations:

ai+1∫

ai

|Ri(x, ỹi(x)) < ε, ε > 0, i = 0,M, (7)

d1iỹ
(n−1)(a) + d2iỹ

(n−1)(b) + d3iỹ
(n−2)(a) + d4iỹ

(n−2)(b) + · · ·+
d(2n−3)iỹ(1)(a) + d(2n−2)iỹ(1)(b) + d(2n−1)iỹ(a) + d2niỹ(b) = µ1i, i = 1, n

(8)

Definition 3. Let

Pim(x) = ci0 + ci1x+ ci2x
2 + · · ·+ cimx

m,

cij ∈ R, i = 0,M, j = 0,m.

We call the sequence of polynomials Pim(x) convergent to the solution of the
problem (1 - 2) if:

lim
m→∞

Ri(x, Pim(x)) = 0. (9)

According to the Weierstrass Theorem on Polynomial Approximation, it fol-
lows that there exists a sequence of polynomials Pim(x) which converges to the
solution of the equation (1).

It is computed a weak ϵ - approximate pwpl solution, in the sense of the
Definition 1, of the type:

ỹi(x) =
m∑

k=0

cikx
k,m > 0 (10)

where the coefficients ci0, ci1, · · · , cim are calculated using the following algorithm:
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1. By substituting the approximate solutions (10) in the equation (1) is ob-
tained the expressions:

Ri(x, ỹi(x)) = y
(n)
i (x)− F (y

(n−1)
i (x), y

(n−2)
i (x), · · · , y(1)i (x), yi(x), x)

i = 0,M − 1, x ∈ [ai, ai+1]
(11)

2. On each interval Ii is attached to the equation (1) the following functional:

Ji(ci0, ci1, ci2, · · · , cim) =

ai+1∫

ai

R2
i (x, ỹi(x))dx (12)

3. Is computed the real values c0i0, c
0
i1, · · · , c0im as the values which give the

minimum of the functionals Ji.

4. With coefficients c0i0, · · · , c0im previously determined is constructed the poly-
nomials:

Tim(x) =
m∑

k=0

c0ikx
k. (13)

Theorem 2.1. The sequence of polynomials Tim(x) from (13) satisfies the pro-
perty:

lim
m→∞

ai+1∫

ai

R2
i (x, Tim(x))dx = 0. (14)

Proof: Based on the way the polynomials Tim(t) are computed and taking into
account the relations (11)-(13), the following inequalities are satisfied:

0 ≤
ai+1∫

ai

R2
i (x, Tim(x))dx ≤

ai+1∫

ai

R2
i (x, Pim(x))dx, ∀m ∈ N. (15)

It follows that:

0 ≤ lim
m→∞

ai+1∫

ai

R2
i (x, Tim(x))dx ≤ lim

m→∞

ai+1∫

ai

R2
i (x, Pim(x))dx = 0. (16)

and:

lim
m→∞

ai+1∫

ai

R2
i (x, Tim(x))dx = 0. (17)
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Moreover, ∀ϵ > 0, ∃mo ∈ N, m > m0 it follows that Tim(x) is a weak
ϵ-approximate polynomial solution of the equation (1) to each interval Ii and the
piecewise polynomial:

Tm(x) =





T1m(x), x ∈ [a0, a1]

T2m(x), x ∈ [a1, a2]

· · ·
TMm(x), x ∈ [aM−1, b]

(18)

is a weak ϵ-approximate piecewise polynomial solution of the equation, on the
interval I = [a, b].

3 Application

We consider a lumped system of combined convective–radiative heat transfers.
The specific heat coefficient is a linear function of temperature ([7],[10],[11]):

c = ca(1 + γ(T − Ta))

where γ is a constant and ca is the specific heat at Ta.

The cooling process of the system is:

ρV c
dT

dτ
+ hA(T − Ta) + EσA(T 4 − T 4

s ) = 0, T (0) = Ti (19)

Performing the changes of variables:

y =
T

Ti
, ya =

Ta
Ti
, x =

τ (hA)

ρV ca
, ε1 = γTi, ε2 =

EσT 3
i

h
, ys =

Ts
Ti

and ya = ys = 0

we obtain the following problem:

y′(x)(1 + ε1y(x)) + y(x) + ε2y
4(x) = 0,

y(0) = 1
(20)

Case 1: ϵ1 = 1, ϵ2 = 1

To verify the effectiveness of the method described in the previous section, an
approximate annalytical solution is determined as follows:
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• it divides the interval I = [0, 1] into four subintervals of equal length:

0 = a0 < a1 < · · · a4 = 1 and is computed on each subinterval Ii = [ai, ai+1]

an approximate solution of the type:

ỹi(x) =
m∑

k=0

cikx
k, m > 0, i = 0, 4.

• from initial conditions is determined ci0.

• the corresponding remainders are: Ri(x, ỹi(x)) .

• the following functionals are computed:

Ji(ci1, ci2, · · · cik) =
ai+1∫

ai

R2
i (x, ỹi(x))dx

Using an mathematical soft for minimizing Ji it obtaining the PWPLSM so-
lution of the problem (20).

To the interval I1 = [0, 0.25], we conssider a third degree polynomial:

ỹ1(x) = c10 + c11x+ c12x
2 + c13x

3

and from initial condition ỹ1(0) = 0.25 is determined c10.

The corresponding remainder is:

R1(x, ỹ1(x)) =
(
c11x+ c12x

2 + c13x
3 + 0.25

)4
+(

c11 + 2c12x+ 3c13x
2
) (
c11x+ c12x

2 + c13x
3 + 1.25

)
+ c11x+ c12x

2 + c13x
3 + 0.25

The following functionals is computed: J1(c11, c12, c13) =

0.25∫

0

R2
1(x, ỹ1(x))dx

Minimizing J1(c11, c12, c13) with respect to the real coefficients c11, c12, c13, the
PWPLSM solution of the problem (20) on the interval I1 is:

ỹ1(x) = −0.01156x3 + 0.0696x2 − 0.2031x+ 0.25
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Going through the algorithm for each of the four subintervals Ii, the
PWPLSM solution is obtained:

ỹ(x) =





−0.01156x3 + 0.0696x2 − 0.2031x+ 0.25, x ∈ [0, 0.25]

0.02558x4 − 0.08186x3 + 0.1922x2 − 0.4573x+ 0.6035, x ∈ [0.25, 0.5]

0.1646x4 − 0.6051x3 + 1.02x2 − 1.258x+ 1.189, x ∈ [0.5, 0.75]

0.852x4 − 3.698x3 + 6.431x2 − 5.843x+ 3.055, x ∈ [0.75, 1]

Figure 1: The absolute errors corresponding to ỹ(x) case ϵ1 = 1, ϵ2 = 1 App. 1

Table 1 presents the comparison between the erors obtained by different methods.

Table 1: Comparison of HPM, HAM, SRMM, LSDQ and PWPLSM for ϵ1 = ϵ2 = 1

x HPM HAM SRMM3rd deg LSDQ3rd deg PWPLSM

0.1 1.209 1.86× 10−2 1.704× 10−3 5.38× 10−4 7.81× 10−8

0.2 7.24× 10−1 5.82× 10−3 4.66× 10−4 1.403× 10−3 3.49× 10−8

0.3 4.27× 10−1 6.18× 10−3 1.19× 10−3 3.37× 10−3 3.16× 10−8

0.4 2.47× 10−1 1.709× 10−2 2.12× 10−3 4.302× 10−3 2.36× 10−8

0.5 1.38× 10−1 2.68× 10−2 1.99× 10−3 3.89× 10−3 8.45× 10−9

0.6 7.49× 10−2 3.52× 10−2 9.44× 10−4 2.38× 10−3 3.09× 10−7

0.7 3.81× 10−2 4.25× 10−2 5.48× 10−4 3.06× 10−4 7.73× 10−8

0.8 1.78× 10−2 4.85× 10−2 1.78× 10−3 1.57× 10−3 8.41× 10−7

0.9 7.303× 10−2 5.34× 10−2 1.93× 10−3 2.35× 10−3 2.11× 10−6

We will compare the absolute errors for approximate PWPLSM solutions with
previous solutions: HPM obtained by Ganji et all in ([10]), HAM obtained by
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Damiary et all in ([12]) and SRMM obtained by Caruntu and Bota in ([7]),
obtained by Pasca et all in ([9]). Since the problem (20) does not have a known
exact solution, we computed for each approximate solution the relative error as the
difference (in absolute value) between the approximate solution and the numerical
solution given by the Wolfram Mathematica software.

Better errors are observed in the case of the PWPLSM solution, even if the
approximation was made with a polynomial of third degree.

Case 2: ϵ1 = 1, ϵ2 = 0

Using PWPLSM we computed the following piecewise polynomial approximate
solution of equation (20):

ỹ(x) =





0.0613117x2 − 0.199774x+ 0.25, x ∈ [0, 0.25]

0.0738664x2 − 0.370244x+ 0.587944, x ∈ [0.25, 0.5]

0.0712664x2 − 0.499941x+ 0.982154, x ∈ [0.5, 0.75]

1.41134− 0.596745x+ 0.064394x2, x ∈ [0.75, 1]

Figure 2: The absolute errors corresponding to ỹ(x) case ϵ1 = 1, ϵ2 = 0 App. 1

As in Case 1, we compare in Table 2 the erors from PWPLSM solutions with
previous one: HPM obtained by Ganji in ([13]), HAM obtained by Abbasbandy
in ([14]), OHAM by Marinca and Herisanu in ([4]), SRMM by Caruntu and
Bota in ([7]) and Pasca et all in ([9]).
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Table 2: Comparison erors of HPM, HAM, OHAM, SRMM, LSDQ and PWPLSM
for ϵ1 = 1, ϵ2 = 0 in Application 1

x HPM HAM OHAM SRMM2nd deg LSDQ2nd deg PWPLSM

0.1 3.35× 10−2 3.67× 10−5 3.708× 10−2 1.56× 10−3 1.07× 10−4 2.63× 10−4

0.2 4.345× 10−2 1.954× 10−3 5.366× 10−2 8.024× 10−5 2.67× 10−4 5.73× 10−6

0.3 4.029× 10−2 4.091× 10−3 5.658× 10−2 1.138× 10−3 5.698× 10−5 6.51× 10−7

0.4 3.071× 10−2 5.415× 10−3 5.113× 10−2 1.669× 10−3 4.325× 10−5 2.58× 10−7

0.5 1.886× 10−2 5.541× 10−3 4.118× 10−2 1.730× 10−3 1.571× 10−4 7.42× 10−8

0.6 7.170× 10−3 4.432× 10−3 2.942× 10−2 1.379× 10−3 2.600× 10−4 1.01× 10−6

0.7 3.062× 10−3 2.243× 10−3 1.762× 10−2 6.736× 10−4 3.292× 10−4 2.51× 10−6

0.8 1.125× 10−2 7.827× 10−4 6.855× 10−3 3.304× 10−4 3.449× 10−4 3.63× 10−6

0.9 1.726× 10−2 4.372× 10−3 2.320× 10−3 1.575× 10−3 2.903× 10−4 2.11× 10−6

Case 3: ϵ1 = 0, ϵ2 = 1

In this case, the solution was calculated keeping, as in the other two cases,
four equidistant subintervals of the interval I = [a.b]. On each subinterval Ii =
[ai, a+i+1] the approximate solution ỹ(x) is a third degree polynomial, the four
coefficients were calculated to determine the approximate polynomial ỹi.

For this case is computed the following piecewise polynomial least squares
annalytical approximate solution:

ỹ(x) =





0.25− 0.253847x+ 0.133416x2 − 0.0453598x3, x ∈ [0, 0.25]

0.669223− 0.806281x+ 0.574651x2 − 0.22838x3, x ∈ [0.25, 0.5]

1.73516− 3.16098x+ 2.94193x2 − 1.12119x3, x ∈ [0.5, 0.75]

6.39624− 14.8875x+ 13.5242x2 − 4.35673x3, x ∈ [0.75, 1]

Figure 3: The absolute errors corresponding to ỹ(x) case ϵ1 = 0, ϵ2 = 1 App. 1

In Table 3 we present the comparison between the errors of solutions obtained
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by PWPLSM and the erors of solution obtained by Rajabi et all in ([15]) using
HPM , Domairry et all in ([12]) using HAM , Caruntu and Bota in ([7]) using
SRMM and Pasca et all usind LSDQM in ([9]).

Table 3: Comparison of HPM, HAM, SRMM, LSDQ and PWPLSM
erors for ϵ1 = 0, ϵ2 = 1 in Application 1

t HPM HAM SRMM5th deg LSDQ5nd deg PWPSM

0.1 2.24× 10−3 1.18× 10−5 6.08× 10−5 2.52× 10−3 7.18× 10−7

0.2 9.47× 10−3 8.72× 10−4 1.25× 10−3 3.51× 10−3 4.47× 10−7

0.3 1.79× 10−2 1.25× 10−3 3.12× 10−3 1.40× 10−3 5.05× 10−6

0.4 2.51× 10−2 1.54× 10−2 9.67× 10−3 7.42× 10−3 7.31× 10−6

0.5 3.004× 10−2 2.09× 10−2 1.12× 10−3 1.06× 10−3 1.25× 10−9

0.6 3.27× 10−2 3.04× 10−2 1.78× 10−4 2.87× 10−3 7.08× 10−5

0.7 3.37× 10−2 4.35× 10−2 8.14× 10−4 1.83× 10−4 4.69× 10−5

0.8 3.35× 10−2 5.95× 10−2 7.43× 10−3 1.94× 10−3 3.34× 10−4

0.9 3.23× 10−2 7.72× 10−2 3.59× 10−3 2.69× 10−3 3.54× 10−4

4 Conclusions

In the present paper we obtain analytical approximate solutions for nonlinear
heat transfer problems using the recently introduced Piecewise Polynomial Least
Squares Method. Using the Piecewise Polynomial Least Squares Method one ob-
tains the analytical solution of the problem, not only numerical solutions, fact
which demonstrates the usefulness of the method (PWPLSM).

The application presented clearly illustrate the accuracy of the method. The
very good errors (smaller than those existing in the literature) that can be ob-
served in each of the three tables, were calculated starting from approximate
solutions, polynomial of not very high degree. If in ([7]) using SRMM and in ([9])
with LSDQ, the approximation polynomial had five degree, with this new method
we only used third degree polynomial and the approximate analytical solution
found being closer to the exact solution. The degree of the approximation poly-
nomial being lower, fewer coefficients are calculated that minimize the functional
J , which means that the required resources are also fewer.

For all these reasons, it appears that the proposed method is useful and easy
to use in practice.



PWPLSM for nonlinear heat transfer problems 85

References

[1] J.H. He, Application of homotopy perturbation method to nonlinear wave equa-
tions, Chaos, Solitons and Fractals 26 (3) (2005) 695–700.

[2] J.H. He, Homotopy perturbation technique, Journal of Computer Methods in
Ap- plied Mechanics and Engineering 17 (8) (1999) 257–262.

[3] V. Marinca, Application of modified homotopy perturbation method to nonlin-
ear oscillations, Archives of Mechanics 58 (3) (2006) 241–256.

[4] V. Marinca, N. Herisanu, Application of Optimal Homotopy Asymptotic
Method for solving nonlinear equations arising in heat transfer, International
Communi- cations in Heat and Mass Transfer 35 (2008) 710–715.

[5] S.J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis
Method, Chapman and Hall/CRC Press, Boca Raton, (2003).

[6] S.J. Liao, On the homotopy analysis method for nonlinear problems, Applied
Mathematics and Computation 147 (2004) 499–513.

[7] B.Caruntu, C.Bota, Approximate polynomial solutions for nonlinear heat
transfer problems using the squared remainder minimization method, Inter-
national Communications in Heat and Mass Transfer 39 (2012) 1336 - 1341.

[8] R.A. Khan, The generalized approximation method and nonlinear heat transfer
equations, Electronic Journal of Qualitative Theory of Differential Equations
2 (2009) 1–15.

[9] M.S.Paşca, M. Lăpădat: Approximate solutions by the least squares differential
quadrature method for nonlinear heat transfer problems, Scientific Buletin of
The Politehnica University of Timisoara, Transactions on Mathematics and
Physics, Volume 64(78), Issue 1, 2019, pag 4-13

[10] D.D. Ganji, A. Rajabi,Assessment of homotopy-perturbation and perturbation
methods in heat radiation equations, International Communications in Heat
and Mass Transfer 33 (2006) 391–400.

[11] S. Abbasbandy, Homotopy analysis method for heat radiation equations,
Interna- tional Communications in Heat and Mass Transfer 34 (2007) 380–387.

[12] G. Domairry, N. Nadim, Assessment of homotopy analysis method and ho-
motopy perturbation method in non-linear heat transfer equation, International
Communications in Heat and Mass Transfer 35 (2008) 93–102.

[13] D.D. Ganji, The application of He’s homotopy perturbation method to nonlin-
ear equations arising in heat transfer, Physics Letters A 355 (2006) 337–341.

[14] S. Abbasbandy, The application of homotopy analysis method to nonlinear
equations arising in heat transfer, Physics Letters A 360 (2006) 109–113.
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[15] A. Rajabi, D.D. Ganji, H. Taherian, Application of homotopy perturbation
method in nonlinear heat conduction and convection equations, Physics Letters
A 360 (2007) 570–573.

[16] O. Abdulaziz, I. Hashim, Fully developed free convection heat and mass trans-
fer of a micropolar fluid between porous vertical plates, Numerical Heat Trans-
fer, Part A: Applications 55 (3) (2009) 270–288.

[17] C.M. Fan, H.F. Chan Modified collocation Trefftz method for the geometry
boundary identification problem of heat conduction, Numerical Heat Transfer,
Part B: Fundamentals 59 (1) (2011) 58–75.

[18] D. Slota, Homotopy perturbation method for solving the two-phase inverse
stefan problem, Numerical Heat Transfer, Part A: Applications 59 (10) (2011)
755–768.
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