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2. OSCI LASI I

2. 1. NoSiuni general e

Se numestielf @fBiomenul fizic “n decursul cktrui a
fizickt a procesul ui prezinttpeorivarnicdaSi’en pteirmpo.di U
sistem fizic izolat, carztoest baauprodrindnesei | aSi e,
frecvenStreawmwen®a prepemal ui oscilant. Oscil asiil
funcSie de mai multe criteridi

Din punct de vedere a for mei de energie dezvo
intlni: (il osci | aSi i el astice, mecanice (au |l oc prin tra
cinetice “"n energie potenSialt),; (ii) oscilaSii e
reciproct a energiei electrice “n energie magneti
l oc prin transformarea reciproct a energiei mecan.i

Din punct de vedere al conservirii energi ei S i
oscilaSiile " n: (i) oscil aSii nedi sipative, i dece
conser vdi); (ii) oscil aSii di sipative sau amorti zat
for Sate sau ntreSinute (se furnizeazt energie di
pierderilor).

MLrimi caracteristice oscilaSiilor

St nottm cu Sz(itc)t nctarriemecaarfaict eri ozeazt o oscil
T este perioada oscil aSiei, mbLri mea S are aceacki

ulterior, t+ T:
S(t) = S(t+T)

OscilaSiile armonice s€ant ant¢el miip darastela$§
pot exprima prin func$Sili trigonometrice (sinus,
argumentcomple x ) . Acel e oscil aSii care nu sunt armonice
Fourier de funcSii. Reamintim de asemenea for mul
calculele urmktoare:

Mi kcar ea oscilatorie armoni ct apar e foarte d
exemplu foarte |l a “"ndem®©nt | constituie btttile in
btttile inimii sale pentru a cronometra mikcktrile

2.2. Mikcarea oscilatorie armonict ide

Cn absengSa unor forSe de frecmir ec asracua de di
oscilatorie este o mikcare idealt, deoarece enert
constantt “n timp. Mi kcarea este reversibilt&t, as
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revine “n poziSia iniSialt ki proceimorbuise reia. F
“n pozi Sia iniSialt «xi care pefworSé dentievweanea&
Aceastt for St de revenioel pmat mefal foktuBapekasthnedt
tub, etc.

St considertm un oscilatresor meedmaist¢ i € okmatundicr
punctiform, de mast m, | egat |l a capttul l'i ber al
corpul “n mikcare prin intermediul unei forSe ki
efectua o mikcare periodiuctitniomiciitlagli epo die@ildei de
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Fig. 2.1. OchiIator mecanic ideal: a) moment ul

forSa deFgrcgamphi tedinea mikcktrii oscilatori.]
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A Representation Theorem for the Error
of Recursive Estimators

Laszlé Gerencsér

Abstract— The objective of this paper is to present advanced
and less known techniques for the analysis of performance
degradation due to statistical uncertainty for a wide class of
linear stochastic systems in a rigorous and concise manner.
The main technical advance of the present paper is a strong
approximation theorem for the Djereveckii-Fradkov-Ljung
(DFL) scheme with enforced boundedness, in which, for any
q = 1, the Ly-norms of the so-called residual terms are shown
to tend to zero with rate N~ '/*~% with some ¢ > 0. This
is a significant extension of previous results for the recursive
prediction error or RPE estimator of ARMA processes given
in [L. Gerencsér, Systems Control Lett., 21 (1993}, pp. 347-351.
Two useful corollaries will be presented. In the first a standard
transform of the estimation-error process will be shown to be
L-mixing. In the second the asymptotic covariance matrix of
the estimator will be given. An application to the minimum-
variance sell-tuning regulator for ARMAX systems will be
described.

I. INTRODUCTION

The objective of this paper is to present new techniques
for the analysis of performance degradation due to statistical
uncertainty for a wide class of linear stochastic systems in
a rigorous and concise manner. It is hoped that this paper
helps to access the complete theory developed in [18].

Performance degradation due to statistical uncertainty is
called regret, following [28]. The objective of the paper is to
develop new techniques that can be used for analyzing the
path-wise (almost sure) asymptotics of the cumulative regret
for a class of adaptive prediction and stochastic adaptive
control problems. Special examples of these technical tools
have been presented in [16]. This research is also motivated
by problems in stechastic complexity and identification for
control, see [34] and [21].

The immediate technical objective is a detailed analysis of
the Djereveckii—Fradkov—Ljung (DFL) scheme with enforced
boundedness, given as Algorithm DFL, (21)-(22); see [7].
[33]. This is a practically useful recursive estimation method
with a wide range of applications; see [7], [33].

The study of the DFL scheme can be reduced to the study
of two related stochastic approximation methods, Algorithm
DR (discrete-time recursion) and Algorithm CR (continuous-
time recursion). Therefore some of the results will be stated
only for Algorithm CR.

Tight control of the difference between the estimation
error and its standard approximation, that will be referred

This research was supported by the National Research Foundation of
Hungary under grant T 047193,

MTA SZTAKI (Computer and Automation Research Institute of the
Hungarian Academy of Sciences). Kende 13-17, H-1111 Budapest, Hungary
(zerencser@sztaki.hu).

1-4244-0171-2/06/$20.00 ©2006 IEEE.

to as residuals, is crucial in the analysis of performance
degradation due to statistical uncertainty; see [16]. The main
technical advance of the present paper is a strong approxi-
mation theorem for the DFL scheme, given as Theorem 4.2.
It extends the result of [15] on the residual of the recursive
prediction error estimator for ARMA processes.

The proof relies on [12] and uses a nontrivial moment
inequality for weighted multiple integrals of L-mixing pro-
cesses given in [14]. Preliminary versions of the results of
have been formulated in [13]. In Theorem 5.1 a standard
transform of the estimation-error process for the basic re-
cursive estimation method, Algorithm CR, is shown to be
an L-mixing process, while in Theorem 6.1 the asymptotic
covariance matrix of the estimator for the same method will
be given.

The significance of the results of the present paper is
demonstrated by describing an applications in Section 7,
in which the path-wise cumulative regret for the minimum-
variance self-tuning regulator is computed.

II. BASIC NOTIONS AND CONDITIONS

We shall need the following definition, see [10]. We say
that a discrete-time R”-valued stochastic process (un) is M-
bounded if, for all 1 < g < =<,

Mg(u) := sup EY9u,, |9 < . [§)]
n=0
In this case we also write 1, = Oyy(1). For a stochastic
process (z,),n > 0, and a positive sequence (¢,,) we write
2n = Opr(en) if up = 2 /e, = Oy (1).

A basic tool that we will use is the theory of L-mixing
processes, see [10], that has been successfully applied in
[11]. [12], [15], [23], [26]. For a similar notion see Def-
inition 3.1 in Section 8.3 of [3]. Let a probability space
(©,F, P) be given together with a pair of families of o-
algebras (Fn,F,F),n = 0,1,..., such that (i) F, € F is
monotone increasing, (i) 7,7 C F is monotone decreasing,
and (iii) , and F,| arc independent for all n. For n < 0
we set Fo = F.

Definition 2.1: A stochastic process u = (1, ),n > 0, is
L-mixing with respect to (Fn, F,7) if it is Fy-adapted, M-
bounded, and for all ¢ = 1, with 7 = 0 and

Ta(T 1) = 7(T) = supE””mn —E (un|F )9,
naTt

we have
oo

T, =T,u) = Zq-q(r) < . 2)

T=0
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The process u is L*-mixing if, in addition, for all ¢ = 1
there exist Cy, ¢; > 0 such that for all 7 > 0,

Yo(ryu) < Co(1+7)71 7%,

The verification of L-mixing is typically easy in problems
of system identification, in contrast to other notions of mix-
ing. such as ¢-mixing. see, e.g.. Chapter 7.2 of [9]. For this
see see Chapter 17 of [25]. The prime example for L-mixing
processes is a sequence of i.i.d. random variables with finite
moments of all orders. The response of an exponentially
stable linear filter, with an L-mixing process as its input,
is L-mixing. Products of L-mixing processes are also L-
mixing.

I1I. GENERAL RECURSIVE ESTIMATION SCHEMES

The prime objective of this section is to formulate a
general recursive estimation method, the DFL scheme with
enforced boundedness, together with conditions that ensure
its convergence. But first we present two closely related
recursive algorithms which can be interpreted as “frozen
parameter” approximations to the DFL scheme. The con-
nection between Algorithm DR and the DFL scheme is not
straightforward at all, and will be discussed in some detail.

Our continuous-time recursive estimation process is given
by a random differential equation of the form

b= L(H(Lzow) +H(LW), =& O)

defined over an underlying probability space ({2, F, P). Here
x¢ is the estimator sequence and H = (H(t,»,w)) is a
random field defined in [1, oc)x D % (), where D is a bounded
open domain in B? and §H (t, w)) is a perturbation term. The
technical conditions are identical with those of [18].

Condition 3.1: The process H = (H (i, z,w)) is defined
in QxR* x D, where D C I” is an open domain. It is three
times continuously differentiable with respect to = for 2 € [J
and for all w, and for any compact set Dy € I H and its
derivatives up to order 3 are M -bounded in Iy. Furthermore
(H(t,z,w)) and its first derivative H, = (H,(t,z,w)) are
L+ -mixing with respect to (F;, F;"), uniformly in = € Dy.

Condition 3.2: H(t,x,w) is piecewise continuous in ¢ for
all w, and for any compact set )y C ) there exists a random
variable Ly = L;(w) = 0 such that

|He(t,z,w)| < Li(w)

for all z € Dy, and here L, is such that for some = > 0 we
have
supEexp(sLy) < oo. )

It follows that if (c)'h;(t._ w)) is piecewise continuous in ¢ for
all w, then a solution (z¢) of (3) exists for all w in some
finite or infinite interval. A central role in the analysis of
(z¢) is played by the mean-field EH (¢, », w).

Condition 3.3: We have for any compact set Dy C D and
t=>0,ze Dy

EH(t,z,w) = G(z) + 6G(t,x),

WeA09.5

where §G(t,z) = O(t~1/275) uniformly in z € Dy, with
some £ > 0. G(y) has continuous and bounded partial
derivatives up to third order. Finally, we assume that

G(z) =0 )

has a unique solution z* in D.

The celebrated "ODE principle” states that the solution
trajectories of the random differential equation (3). under
additional conditions, follow the solution trajectories (x;) of
the associated ODE (6) given by

1
U = ?G(m}. ys =& s= 1 (6)

Under the conditions above, (6) has a unique solution in
some finite or infinite interval, which we denote by y(t, s, £).
Since H is not defined on the whole space, we have to make
sure that the process () is constrained to D by a resetting
mechanism.

Algorithm CR. Consider a continuous-time recursion given
by a random differential equation

b= {(H(ow) +0H0W),  m=& @)

combined with the following resetfing mechanism. Let Dy C

D denote a compact truncation domain such that =% €
int Dy, Let & > 1 and let

(o) =min{t: t = o, 2, € D}, (8)

where d1)y denotes the boundary of Dy. Then we reset =
to o1 = &, which is formally stated by requiring that the
right-hand side limit of =, at t =7 = 7(7) will be &;:

T =&y @

Thus we get a piecewise continuous trajectory (z;) defined
in some finite or infinite interval.

To ensure that the estimator sequence is not bounced back
and forth by resetting we need to impose some condition on
relative position of =* and £; to the truncation domain. We
define the star-like closure of the set [y, relative to 2™ as

Diy=Ay:y=z"+Mxr—2%), 0<A<1,2ze Dy}.

Condition 3.4: Let Dy < D be a compact truncation
domain such that =* € intDj. We assume that (i) D is
convex and there exists a compact set Dfj C D such that
y(t,s5,&) € Df for £ € Dy and y(i,5,£) € D for £ € Df for
all £ > ¢ > 1. In addition lim,_, ., y(t,5,{) =2* for £ € D
and

l{(a/ag)y(t, s, &) = Cols/t)* (1)

with some Cy > 1, > O forall £ € Dy and t > s > 1.
(ii) We have an initial estimate 1 = £; such that for all
t > s > 1 we have y(t,s,&) € int Dy. (iii) Finally, for the
star-like closure of the set )y we have Dj C D.
On (10): it can be shown that with
G (x
AT = ai. )|:r:x‘

(11)
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